1
|
Nova A, Gentilini D, Di Caprio G, Bourguiba‐Hachemi S, Vince N, Gourraud P, Bernardinelli L, Fazia T. Stratifying Multiple Sclerosis Susceptibility Risk: The Role of HLA-E*01 and Infectious Mononucleosis in a Population Cohort. Eur J Neurol 2025; 32:e70131. [PMID: 40192262 PMCID: PMC11973926 DOI: 10.1111/ene.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Epstein-Barr Virus (EBV) and its clinical manifestation, infectious mononucleosis (IM), are strongly linked to MS risk. A recent in vitro study suggests that HLA-E*01:03, in contrast to HLA-E*01:01, may protect against MS through more effective immune responses against EBV-infected B cells. However, the role of HLA-E*01 in MS remains unclear. METHODS We investigated if HLA-E*01:01 was significantly associated with higher MS risk in individuals with a history of IM diagnosis, using 487,144 individuals from the UK Biobank's cohort. We estimated the interaction between HLA-E*01:01 and IM using Cox proportional hazard models, adjusting for demographics, smoking, childhood body size, older siblings, and MS-related HLA alleles (e.g., HLA-DRB1*15:01). RESULTS HLA-E*01:01 allele alone was not significantly associated with IM or MS (p > 0.05). However, a significant interaction between HLA-E*01:01 and IM history was observed in relation to MS risk (p < 0.001). Specifically, MS risk was significantly higher in both HLA-E*01:01 heterozygotes (HR = 1.74 [95% CI: 1.36, 1.97], p < 0.001) and homozygotes (HR = 3.01 [95% CI: 1.81, 3.88], p < 0.001) with IM history, compared to HLA-E*01:03 homozygotes. Conversely, these associations were non-significant in individuals without IM history (p > 0.05). The estimated proportion of the combined risk attributable to interaction effects was 40% in HLA-E*01:01 heterozygotes and 65% in HLA-E*01:01 homozygotes. CONCLUSIONS HLA-E*01:01 carriers diagnosed with IM are at significantly increased risk of MS, independently from other MS-related HLA alleles. This supports the hypothesis that HLA-E*01:01 may contribute to MS susceptibility due to weaker immune control over EBV infection. Incorporating HLA-E*01:01 into existing MHC-based MS risk models could then enhance personalized risk assessments in individuals with IM history.
Collapse
Affiliation(s)
- Andrea Nova
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Davide Gentilini
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Bioinformatics and Statistical Genomic UnitIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Giovanni Di Caprio
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Sonia Bourguiba‐Hachemi
- Center for Research in Transplantation and Translational Immunology, UMR 1064Nantes Université, CHU Nantes, INSERMNantesFrance
| | - Nicolas Vince
- Center for Research in Transplantation and Translational Immunology, UMR 1064Nantes Université, CHU Nantes, INSERMNantesFrance
| | - Pierre‐Antoine Gourraud
- Center for Research in Transplantation and Translational Immunology, UMR 1064Nantes Université, CHU Nantes, INSERMNantesFrance
| | | | - Teresa Fazia
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| |
Collapse
|
2
|
Sattarnezhad N, Kockum I, Thomas OG, Liu Y, Ho PP, Barrett AK, Comanescu AI, Wijeratne TU, Utz PJ, Alfredsson L, Steinman L, Robinson WH, Olsson T, Lanz TV. Antibody reactivity against EBNA1 and GlialCAM differentiates multiple sclerosis patients from healthy controls. Proc Natl Acad Sci U S A 2025; 122:e2424986122. [PMID: 40063790 PMCID: PMC11929495 DOI: 10.1073/pnas.2424986122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 03/25/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS), which is linked to Epstein-Barr virus (EBV) infection, preceding the disease. The molecular mechanisms underlying this connection are only partially understood. We previously described molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and three human CNS proteins: anoctamin-2 (ANO2), alpha-B crystallin (CRYAB), and glial cellular adhesion molecule (GlialCAM). Here, we investigated antibody responses against EBNA1 and GlialCAM in a large cohort of 650 MS patients and 661 matched population controls and compared them to responses against CRYAB and ANO2. We confirmed that elevated IgG responses against EBNA1 and all three CNS-mimic antigens associate with increased MS risk. Blocking experiments confirmed the presence of cross-reactive antibodies and molecular mimicry between EBNA1 and GlialCAM, and accompanying antibody responses against adjacent peptide regions of GlialCAM suggest epitope spreading. Antibody responses against EBNA1, GlialCAM, CRYAB, and ANO2 are elevated in MS patients carrying the main risk allele HLA-DRB1*15:01, and combinations of HLA-DRB1*15:01 with anti-EBNA1 and anti-GlialCAM antibodies increase MS risk significantly and in an additive fashion. In addition, antibody reactivities against more than one EBNA1 peptide and more than one CNS-mimic increase the MS risk significantly but modestly. Overall, we show that molecular mimicry between EBNA1 and GlialCAM is likely an important molecular mechanism contributing to MS pathology.
Collapse
Affiliation(s)
- Neda Sattarnezhad
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA94304
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm171 76, Sweden
| | - Olivia G. Thomas
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Department of Clinical Neuroscience, Therapeutic Immune Design, Center for Molecular Medicine, Karolinska Institute, Stockholm171 77, Sweden
| | - Yicong Liu
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm171 76, Sweden
| | - Peggy P. Ho
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Alison K. Barrett
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Alexandros I. Comanescu
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Tilini U. Wijeratne
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Lars Alfredsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm171 77, Sweden
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- The Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA94304
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm171 76, Sweden
| | - Tobias V. Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
3
|
Pache F, Otto C, Wilken D, Lietzow T, Steinhagen K, Grage-Griebenow E, Schindler P, Niederschweiberer M, Wildemann B, Jarius S, Ruprecht K. Broad Analysis of Serum and Intrathecal Antimicrobial Antibodies in Multiple Sclerosis Underscores Unique Role of Epstein-Barr Virus. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200332. [PMID: 39602676 PMCID: PMC11616972 DOI: 10.1212/nxi.0000000000200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/19/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND OBJECTIVES There is a strong link between Epstein-Barr virus (EBV) and multiple sclerosis (MS), but the underlying mechanisms are unclear. Patients with MS typically have a polyspecific intrathecal production of immunoglobulin G (IgG), part of which is directed against various microbial antigens. In this study, we comprehensively analyzed seroprevalences and frequencies of an intrathecal IgG production to EBV compared with 10 other common microbes in patients with MS. METHODS Antibodies to EBV and to Borrelia burgdorferi, cytomegalovirus, herpes simplex virus type 1/2, measles virus, mumps virus, rubella virus, parvovirus B19, tick-borne encephalitis virus, Toxoplasma gondii, and varicella zoster virus (VZV) were determined in stored paired CSF and serum samples of 50 patients with MS. Intrathecal antimicrobial antibody production was assessed by calculating antibody indices (AIs) according to standard formula. RESULTS While 50 (100%) of 50 patients with MS were EBV seropositive, seroprevalences of all other 10 microbes were lower, ranging from 94% (VZV) to 6% (Borrelia burgdorferi). An intrathecal production of antimicrobial antibodies was detected in 102 (28%) of 370 AI determinations of patients who were seropositive to the respective antimicrobial antibodies but was practically absent in seronegative patients (2/187 [1%], p < 0.0001). The frequency of intrathecally produced antimicrobial antibodies among patients who were seropositive for the respective antibodies was roughly 40% for measles, rubella, mumps, and VZV and 70% for parvovirus B19. By contrast, the frequency of intrathecally produced EBV antibodies was low (10%) and, when related to their respective seroprevalences, lower than those of all other investigated microbes. DISCUSSION Despite the universal EBV seroprevalence, the frequency of intrathecally produced EBV antibodies in patients with MS is lower than that of other microbes, whose seroprevalences are lower than those of EBV. This seemingly paradoxical finding underscores the unique role of EBV in MS and could be explained by the hypothesis that B lineage cells responsible for intrathecal antibody production are primed during and through acute EBV infection to enter the CNS of patients with MS, that is, at a time point when EBV antibody-producing cells have not yet been generated and, therefore, are not yet available for entering the CNS.
Collapse
Affiliation(s)
- Florence Pache
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Carolin Otto
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Diana Wilken
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Tatjana Lietzow
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Katja Steinhagen
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Evelin Grage-Griebenow
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Patrick Schindler
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Moritz Niederschweiberer
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Brigitte Wildemann
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Sven Jarius
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Klemens Ruprecht
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| |
Collapse
|
4
|
Lanz TV, Robinson WH. Connecting the dots: Presentation of EBV antigens on HLA class II risk alleles connects the two main risk factors of multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2420070121. [PMID: 39585999 PMCID: PMC11626193 DOI: 10.1073/pnas.2420070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Affiliation(s)
- Tobias V. Lanz
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA94305
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA94305
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA94305
- Geriatric Research Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA94304
| |
Collapse
|
5
|
Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 2024; 20:729-740. [PMID: 39390260 DOI: 10.1038/s41584-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
The Epstein-Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Shady Younis
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Zelda Z Love
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Huang J, Tengvall K, Lima IB, Hedström AK, Butt J, Brenner N, Gyllenberg A, Stridh P, Khademi M, Ernberg I, Al Nimer F, Manouchehrinia A, Hillert J, Alfredsson L, Andersen O, Sundström P, Waterboer T, Olsson T, Kockum I. Genetics of immune response to Epstein-Barr virus: prospects for multiple sclerosis pathogenesis. Brain 2024; 147:3573-3582. [PMID: 38630618 PMCID: PMC11449136 DOI: 10.1093/brain/awae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Epstein-Barr virus (EBV) infection has been advocated as a prerequisite for developing multiple sclerosis (MS) and possibly the propagation of the disease. However, the precise mechanisms for such influences are still unclear. A large-scale study investigating the host genetics of EBV serology and related clinical manifestations, such as infectious mononucleosis (IM), may help us better understand the role of EBV in MS pathogenesis. This study evaluates the host genetic factors that influence serological response against EBV and history of IM and cross-evaluates them with MS risk and genetic susceptibility in the Swedish population. Plasma IgG antibody levels against EBV nuclear antigen-1 [EBNA-1, truncated = amino acids (aa) (325-641), peptide = aa(385-420)] and viral capsid antigen p18 (VCAp18) were measured using bead-based multiplex serology for 8744 MS cases and 7229 population-matched control subjects. The MS risk association for high/low EBV antibody levels and history of IM was compared to relevant clinical measures along with sex, age at sampling, and associated HLA allele variants. Genome-wide and HLA allele association analyses were also performed to identify genetic risk factors for EBV antibody response and IM history. Higher antibody levels against VCAp18 [odds ratio (OR) = 1.74, 95% confidence interval (CI) = 1.60-1.88] and EBNA-1, particularly the peptide (OR = 3.13, 95% CI = 2.93-3.35), were associated with an increased risk for MS. The risk increased with higher anti-EBNA-1 IgG levels up to 12× the reference risk. We also identified several independent HLA haplotypes associated with EBV serology overlapping with known MS risk alleles (e.g. DRB1*15:01). Although there were several candidates, no variants outside the HLA region reached genome-wide significance. Cumulative HLA risk for anti-EBNA-1 IgG levels, particularly the peptide fragment, was strongly associated with MS. In contrast, the genetic risk for high anti-VCAp18 IgG levels was not as strongly associated with MS risk. IM history was not associated with class II HLA genes but negatively associated with A*02:01, which is protective against MS. Our findings emphasize that the risk association between anti-EBNA-1 IgG levels and MS may be partly due to overlapping HLA associations. Additionally, the increasing MS risk with increasing anti-EBNA-1 levels would be consistent with a pathogenic role of the EBNA-1 immune response, perhaps through molecular mimicry. Given that high anti-EBNA-1 antibodies may reflect a poorly controlled T-cell defence against the virus, our findings would be consistent with DRB1*15:01 being a poor class II antigen in the immune defence against EBV. Last, the difference in genetic control of IM supports the independent roles of EBNA-1 and IM in MS susceptibility.
Collapse
Affiliation(s)
- Jesse Huang
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Katarina Tengvall
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE 751 23 Uppsala, Sweden
| | - Izaura Bomfim Lima
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), DE-69120 Heidelberg, Germany
| | - Nicole Brenner
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), DE-69120 Heidelberg, Germany
| | - Alexandra Gyllenberg
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ali Manouchehrinia
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, SE-171 77 Stockholm, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburgh, Sweden
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), DE-69120 Heidelberg, Germany
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
7
|
Marti Z, Ruder J, Thomas OG, Bronge M, De La Parra Soto L, Grönlund H, Olsson T, Martin R. Enhanced and cross-reactive in vitro memory B cell response against Epstein-Barr virus nuclear antigen 1 in multiple sclerosis. Front Immunol 2024; 15:1334720. [PMID: 39257578 PMCID: PMC11385009 DOI: 10.3389/fimmu.2024.1334720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 09/12/2024] Open
Abstract
Multiple sclerosis (MS) is a prototypical autoimmune disease of the central nervous system (CNS). In addition to CD4+ T cells, memory B cells are now recognized as a critical cell type in the disease. This is underlined by the fact that the best-characterized environmental risk factor for MS is the Epstein-Barr virus (EBV), which can infect and persist in memory B cells throughout life. Several studies have identified changes in anti-EBV immunity in patients with MS. Examples include elevated titers of anti-EBV nuclear antigen 1 (EBNA1) antibodies, interactions of these with the MS-associated HLA-DR15 haplotype, and molecular mimicry with MS autoantigens like myelin basic protein (MBP), anoctamin-2 (ANO2), glial cell adhesion molecule (GlialCAM), and alpha-crystallin B (CRYAB). In this study, we employ a simple in vitro assay to examine the memory B cell antibody repertoire in MS patients and healthy controls. We replicate previous serological data from MS patients demonstrating an increased secretion of anti-EBNA1380-641 IgG in cell culture supernatants, as well as a positive correlation of these levels with autoantibodies against GlialCAM262-416 and ANO21-275. For EBNA1380-641 and ANO21-275, we provide additional evidence suggesting antibody cross-reactivity between the two targets. Further, we show that two efficacious MS treatments - natalizumab (NAT) and autologous hematopoietic stem cell transplantation (aHSCT) - are associated with distinct changes in the EBNA1-directed B cell response and that these alterations can be attributed to the unique mechanisms of action of these therapies. Using an in vitro system, our study confirms MS-associated changes in the anti-EBNA1 memory B cell response, EBNA1380-641 antibody cross-reactivity with ANO21-275, and reveals treatment-associated changes in the immunoglobulin repertoire in MS.
Collapse
Affiliation(s)
- Zoe Marti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Research and Development, Cellerys, Schlieren, Switzerland
- Department of Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Zurich, Switzerland
| | - Josefine Ruder
- Department of Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Zurich, Switzerland
| | - Olivia G Thomas
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Bronge
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo De La Parra Soto
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hans Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neurocience, Karolinska Institutet, Stockholm, Sweden
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Research and Development, Cellerys, Schlieren, Switzerland
- Department of Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Zurich, Switzerland
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Thomas OG, Haigh TA, Croom-Carter D, Leese A, Van Wijck Y, Douglas MR, Rickinson A, Brooks JM, Taylor GS. Heightened Epstein-Barr virus immunity and potential cross-reactivities in multiple sclerosis. PLoS Pathog 2024; 20:e1012177. [PMID: 38843296 PMCID: PMC11156336 DOI: 10.1371/journal.ppat.1012177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tracey A. Haigh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Alison Leese
- School of Biological Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Yolanda Van Wijck
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Michael R. Douglas
- Dudley Group of Hospitals NHS Foundation Trust, Dudley, United Kingdom
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Jill M. Brooks
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
9
|
Tarlinton R, Tanasescu R, Shannon-Lowe C, Gran B. Ocrelizumab B cell depletion has no effect on HERV RNA expression in PBMC in MS patients. Mult Scler Relat Disord 2024; 86:105597. [PMID: 38598954 DOI: 10.1016/j.msard.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Epstein barr virus (EBV) infection of B cells is now understood to be one of the triggering events for the development of Multiple Sclerosis (MS), a progressive immune-mediated disease of the central nervous system. EBV infection is also linked to expression of human endogenous retroviruses (HERVs) of the HERV-W group, a further risk factor for the development of MS. Ocrelizumab is a high-potency disease-modifying treatment (DMT) for MS, which depletes B cells by targeting CD20. OBJECTIVES We studied the effects of ocrelizumab on gene expression in peripheral blood mononuclear cells (PBMC) from paired samples from 20 patients taken prior to and 6 months after beginning ocrelizumab therapy. We hypothesised that EBV and HERV-W loads would be lower in post-treatment samples. METHODS Samples were collected in Paxgene tubes, subject to RNA extraction and Illumina paired end short read mRNA sequencing with mapping of sequence reads to the human genome using Salmon and differential gene expression compared with DeSeq2. Mapping was also performed separately to the HERV-D database of HERV sequences and the EBV reference sequence. RESULTS Patient samples were more strongly clustered by individual rather than disease type (relapsing/remitting or primary progressive), treatment (pre and post), age, or sex. Fourteen genes, all clearly linked to B cell function were significantly down regulated in the post treatment samples. Interestingly only one pre-treatment sample had detectable EBV RNA and there were no significant differences in HERV expression (of any group) between pre- and post-treatment samples. CONCLUSIONS While EBV and HERV expression are clearly linked to triggering MS pathogenesis, it does not appear that high level expression of these viruses is a part of the ongoing disease process or that changes in virus load are associated with ocrelizumab treatment.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom.
| | - Radu Tanasescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
10
|
Palmer AJ, Zhao T, Taylor BV, van der Mei I, Campbell JA. Exploring the cost-effectiveness of EBV vaccination to prevent multiple sclerosis in an Australian setting. J Neurol Neurosurg Psychiatry 2024; 95:401-409. [PMID: 37918903 DOI: 10.1136/jnnp-2023-332161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Increasing evidence suggests the potential of Epstein-Barr virus (EBV) vaccination in preventing multiple sclerosis (MS). We aimed to explore the cost-effectiveness of a hypothetical EBV vaccination to prevent MS in an Australian setting. METHODS A five-state Markov model was developed to simulate the incidence and subsequent progression of MS in a general Australian population. The model inputs were derived from published Australian sources. Hypothetical vaccination costs, efficacy and strategies were derived from literature. Total lifetime costs, quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICERs) were estimated for two hypothetical prevention strategies versus no prevention from the societal and health system payer perspectives. Costs and QALYs were discounted at 5% annually. One-way, two-way and probabilistic sensitivity analyses were performed. RESULTS From societal perspective, EBV vaccination targeted at aged 0 and aged 12 both dominated no prevention (ie, cost saving and increasing QALYs). However, vaccinating at age 12 was more cost-effective (total lifetime costs reduced by $A452/person, QALYs gained=0.007, ICER=-$A64 571/QALY gained) than vaccinating at age 0 (total lifetime costs reduced by $A40/person, QALYs gained=0.003, ICER=-$A13 333/QALY gained). The probabilities of being cost-effective under $A50 000/QALY gained threshold for vaccinating at ages 0 and 12 were 66% and 90%, respectively. From health system payer perspective, the EBV vaccination was cost-effective at age 12 only. Sensitivity analyses demonstrated the cost-effectiveness of EBV vaccination to prevent MS under a wide range of plausible scenarios. CONCLUSIONS MS prevention using future EBV vaccinations, particularly targeted at adolescence population, is highly likely to be cost-effective.
Collapse
Affiliation(s)
- Andrew J Palmer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ting Zhao
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Julie A Campbell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
11
|
Bose A, Khalighinejad F, Hoaglin DC, Hemond CC. Evaluating the Clinical Utility of Epstein-Barr Virus Antibodies as Biomarkers in Multiple Sclerosis: A Systematic Review. Mult Scler Relat Disord 2024; 84:105410. [PMID: 38401201 DOI: 10.1016/j.msard.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND EBV is a necessary but not sufficient factor in the pathophysiology of multiple sclerosis (MS). EBV antibodies to the nuclear antigen (EBNA1) and viral capsid antigen (VCA) rise rapidly prior to MS disease manifestations, and their absence has clinical utility with a high negative predictive value. It remains unclear whether EBV levels act as prognostic, monitoring, or pharmacodynamic/response biomarkers. Substantial literature on this topic exists but has not been systematically reviewed. We hypothesized that EBV levels against EBNA1 and VCA are potential prognostic and monitoring biomarkers in MS, and that patient population, MS clinical phenotype, and EBV assay method may play important roles in explaining variation among study outcomes. METHODS We systematically searched PubMed and EMBASE from inception to April 1, 2022. After removal of duplicates, records were screened by abstract. Remaining full-text articles were reviewed. Clinical and MRI data were extracted from full-text articles for comparison and synthesis. RESULTS Searches yielded 696 unique results; 285 were reviewed in full, and 36 met criteria for data extraction. Heterogeneity in sample population, clinical outcome measures, assay methods and statistical analyses precluded a meta-analysis. EBV levels were not consistently associated with clinical disease markers including conversion from CIS to RRMS, neurological disability, or disease phenotype. Studies using repeated-measures design suggest that EBNA1 levels may temporarily reflect inflammatory disease activity as assessed by gadolinium-enhancing Magnetic Resonance Imaging (MRI) lesions. Limited data also suggest a decrease in EBV levels following initiation of certain disease-modifying therapies. CONCLUSION Heterogeneous methodology limited generalization and meta-analysis. EBV antibody levels are unlikely to represent prognostic biomarkers in MS. The areas of highest ongoing promise relate to diagnostic exclusion and pharmacodynamic/disease response. Use of EBV antibodies as biomarkers in clinical practice remains additionally limited by lack of methodological precision, reliability, and validation.
Collapse
Affiliation(s)
- Abigail Bose
- University of Massachusetts Chan Medical School.
| | | | | | | |
Collapse
|
12
|
Goldacre R. Risk of multiple sclerosis in individuals with infectious mononucleosis: a national population-based cohort study using hospital records in England, 2003-2023. Mult Scler 2024; 30:489-495. [PMID: 38511730 PMCID: PMC11010560 DOI: 10.1177/13524585241237707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is thought to be a necessary causative agent in the development of multiple sclerosis (MS). Infectious mononucleosis (IM), which occurs up to 70% of adolescents and young adults with primary EBV infection, appears to be a further risk factor but few studies have been highly powered enough to explore this association by time since IM diagnosis. OBJECTIVE The objective was to quantify the risk of MS in individuals with IM compared with the general population, with particular focus on time since IM diagnosis. METHODS In this retrospective cohort study using English national Hospital Episode Statistics from 2003 to 2023, patients with a hospital diagnosis of IM were compared with the general population for MS incidence. RESULTS MS incidence in patients with IM was nearly three times higher than the general population after multivariable adjustment (adjusted hazard ratio = 2.8, 95% confidence interval (CI = 2.3-3.4), driven by strong associations at long time intervals (>5 years) between IM diagnosis and subsequent MS diagnosis. CONCLUSION While EBV infection may be a prerequisite for MS, the disease process of IM (i.e. the body's defective immune response to primary EBV infection) seems to be, in addition, implicated over the long term.
Collapse
Affiliation(s)
- Raphael Goldacre
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Jons D, Grut V, Bergström T, Zetterberg H, Biström M, Gunnarsson M, Vrethem M, Brenner N, Butt J, Blennow K, Nilsson S, Kockum I, Olsson T, Waterboer T, Sundström P, Andersen O. Seroreactivity against lytic, latent and possible cross-reactive EBV antigens appears on average 10 years before MS induced preclinical neuroaxonal damage. J Neurol Neurosurg Psychiatry 2024; 95:325-332. [PMID: 37802637 PMCID: PMC10958269 DOI: 10.1136/jnnp-2023-331868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) and presymptomatic axonal injury appear to develop only after an Epstein-Barr virus (EBV) infection. This association remains to be confirmed across a broad preclinical time range, for lytic and latent EBV seroreactivity, and for potential cross-reacting antigens. METHODS We performed a case-control study with 669 individual serum samples obtained before clinical MS onset, identified through cross-linkage with the Swedish MS register. We assayed antibodies against EBV nuclear antigen 1 (EBNA1), viral capsid antigen p18, glycoprotein 350 (gp350), the potential cross-reacting protein anoctamin 2 (ANO2) and the level of sNfL, a marker of axonal injury. RESULTS EBNA1 (latency) seroreactivity increased in the pre-MS group, at 15-20 years before clinical MS onset, followed by gp350 (lytic) seroreactivity (p=0.001-0.009), ANO2 seropositivity appeared shortly after EBNA1-seropositivity in 16.7% of pre-MS cases and 10.0% of controls (p=0.001).With an average lag of almost a decade after EBV, sNfL gradually increased, mainly in the increasing subgroup of seropositive pre-MS cases (p=8.10-5 compared with non-MS controls). Seropositive pre-MS cases reached higher sNfL levels than seronegative pre-MS (p=0.038). In the EBNA1-seropositive pre-MS group, ANO2 seropositive cases had 26% higher sNfL level (p=0.0026). CONCLUSIONS Seroreactivity against latent and lytic EBV antigens, and in a subset ANO2, was detectable on average a decade before the appearance of a gradually increasing axonal injury occurring in the last decade before the onset of clinical MS. These findings strengthen the hypothesis of latent EBV involvement in the pathogenesis of MS.
Collapse
Affiliation(s)
- Daniel Jons
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Viktor Grut
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Martin Biström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Martin Gunnarsson
- Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Vrethem
- Department of Neurology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nicole Brenner
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | - Julia Butt
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Center, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Center, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
14
|
Mohammadzamani M, Kazemzadeh K, Chand S, Thapa S, Ebrahimi N, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. Insights into the interplay between Epstein-Barr virus (EBV) and multiple sclerosis (MS): A state-of-the-art review and implications for vaccine development. Health Sci Rep 2024; 7:e1898. [PMID: 38361801 PMCID: PMC10867693 DOI: 10.1002/hsr2.1898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Background and Aims Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). MS results from an inflammatory process leading to the loss of neural tissue and increased disability over time. The role of Epstein Barr Virus (EBV), as one of the most common global viruses, in MS development has been the subject of several studies. However, many related questions are still unanswered. This study aimed to review the connection between MS and EBV and provide a quick outline of MS prevention using EBV vaccination. Methods For this narrative review, an extensive literature search using specific terms was conducted across online databases, including PubMed/Medline, Scopus, Web of Science, and Google Scholar, to identify pertinent studies. Results Several studies proved that almost 100% of people with MS showed a history of EBV infection, and there was an association between high titers of EBV antibodies and an increased risk of MS development. Various hypotheses are proposed for how EBV may contribute to MS directly and indirectly: (1) Molecular Mimicry, (2) Mistaken Self, (3) Bystander Damage, and (4) Autoreactive B cells infected with EBV. Conclusion Given the infectious nature of EBV and its ability to elude the immune system, EBV emerges as a strong candidate for being the underlying cause of MS. The development of an EBV vaccine holds promise for preventing MS; however, overcoming the challenge of creating a safe and efficacious vaccine presents a significant obstacle.
Collapse
Affiliation(s)
- Mahtab Mohammadzamani
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Kimia Kazemzadeh
- Students' Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Swati Chand
- Westchester Medical CenterNew York Medical CollegeValhallaNew YorkUSA
| | - Sangharsha Thapa
- Department of Neurology, Westchester Medical CenterNew York Medical CollegeValhallaUSA
| | - Narges Ebrahimi
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | | | - Vahid Shaygannejad
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
15
|
Asplund Högelin K, Isac B, Khademi M, Al Nimer F. B cell activating factor levels are linked to distinct B cell markers in multiple sclerosis and following B cell depletion and repopulation. Clin Immunol 2024; 258:109870. [PMID: 38101497 DOI: 10.1016/j.clim.2023.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
Recent studies have highlighted the important role of B cells in the pathogenesis of multiple sclerosis (MS). B cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) play a major role in B cell survival and homeostasis. Here, we studied the association of BAFF and APRIL with B cell immune markers in MS and following B cell depletion and repopulation. We found that BAFF but not APRIL was significantly higher in plasma in untreated MS compared to controls. BAFF increased after rituximab treatment and decreased again during repopulation displaying an inverse correlation with B cell numbers, and more specifically switched memory B cell numbers. Cerebrospinal fluid BAFF inversely correlated with IgG index. BAFF displayed an inverse association to anti-EBV-CA antibodies. In summary, our study identified immune cells and factors that might regulate or be regulated by BAFF and APRIL levels in MS, and during B cell depletion and repopulation.
Collapse
Affiliation(s)
- Klara Asplund Högelin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Beshoy Isac
- Biomedical Laboratory Science, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Holt EA, Waytashek CM, Sessions KJ, Asarian L, Lahue KG, Usherwood EJ, Teuscher C, Krementsov DN. Host Genetic Variation Has a Profound Impact on Immune Responses Mediating Control of Viral Load in Chronic Gammaherpesvirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1526-1539. [PMID: 37819784 PMCID: PMC10841120 DOI: 10.4049/jimmunol.2300294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Chronic infection with the gammaherpesvirus EBV is a risk factor for several autoimmune diseases, and poor control of EBV viral load and enhanced anti-EBV responses elevate this risk further. However, the role of host genetic variation in the regulation of immune responses to chronic gammaherpesvirus infection and control of viral replication remains unclear. To address this question, we infected C57BL/6J (B6) and genetically divergent wild-derived inbred PWD/PhJ (PWD) mice with murine gammaherpesvirus-68 (MHV-68), a gammaherpesvirus similar to EBV, and determined the effect of latent gammaherpesvirus infection on the CD4 T cell transcriptome. Chronic MHV-68 infection of B6 mice resulted in a dramatic upregulation of genes characteristic of a cytotoxic Th cell phenotype, including Gzmb, Cx3cr1, Klrg1, and Nkg7, a response that was highly muted in PWD mice. Flow cytometric analyses revealed an expansion of CX3CR1+KLRG1+ cytotoxic Th cell-like cells in B6 but not PWD mice. Analysis of MHV-68 replication demonstrated that in spite of muted adaptive responses, PWD mice had superior control of viral load in lymphoid tissue, despite an absence of a defect in MHV-68 in vitro replication in PWD macrophages. Depletion of NK cells in PWD mice, but not B6 mice, resulted in elevated viral load, suggesting genotype-dependent NK cell involvement in MHV-68 control. Taken together, our findings demonstrate that host genetic variation can regulate control of gammaherpesvirus replication through disparate immunological mechanisms, resulting in divergent long-term immunological sequelae during chronic infection.
Collapse
Affiliation(s)
- Emily A. Holt
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Courtney M. Waytashek
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Katherine J. Sessions
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Loredana Asarian
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Cory Teuscher
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
17
|
Thomas OG, Olsson T. Mimicking the brain: Epstein-Barr virus and foreign agents as drivers of neuroimmune attack in multiple sclerosis. Front Immunol 2023; 14:1304281. [PMID: 38022632 PMCID: PMC10655090 DOI: 10.3389/fimmu.2023.1304281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
T cells have an essential role in adaptive immunity against pathogens and cancer, but failure of thymic tolerance mechanisms can instead lead to escape of T cells with the ability to attack host tissues. Multiple sclerosis (MS) occurs when structures such as myelin and neurons in the central nervous system (CNS) are the target of autoreactive immune responses, resulting in lesions in the brain and spinal cord which cause varied and episodic neurological deficits. A role for autoreactive T cell and antibody responses in MS is likely, and mounting evidence implicates Epstein-Barr virus (EBV) in disease mechanisms. In this review we discuss antigen specificity of T cells involved in development and progression of MS. We examine the current evidence that these T cells can target multiple antigens such as those from pathogens including EBV and briefly describe other mechanisms through which viruses could affect disease. Unravelling the complexity of the autoantigen T cell repertoire is essential for understanding key events in the development and progression of MS, with wider implications for development of future therapies.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
18
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
19
|
Hedström AK. Risk factors for multiple sclerosis in the context of Epstein-Barr virus infection. Front Immunol 2023; 14:1212676. [PMID: 37554326 PMCID: PMC10406387 DOI: 10.3389/fimmu.2023.1212676] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Compelling evidence indicates that Epstein Barr virus (EBV) infection is a prerequisite for multiple sclerosis (MS). The disease may arise from a complex interplay between latent EBV infection, genetic predisposition, and various environmental and lifestyle factors that negatively affect immune control of the infection. Evidence of gene-environment interactions and epigenetic modifications triggered by environmental factors in genetically susceptible individuals supports this view. This review gives a short introduction to EBV and host immunity and discusses evidence indicating EBV as a prerequisite for MS. The role of genetic and environmental risk factors, and their interactions, in MS pathogenesis is reviewed and put in the context of EBV infection. Finally, possible preventive measures are discussed based on the findings presented.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
Oddsson A, Sulem P, Sveinbjornsson G, Arnadottir GA, Steinthorsdottir V, Halldorsson GH, Atlason BA, Oskarsson GR, Helgason H, Nielsen HS, Westergaard D, Karjalainen JM, Katrinardottir H, Fridriksdottir R, Jensson BO, Tragante V, Ferkingstad E, Jonsson H, Gudjonsson SA, Beyter D, Moore KHS, Thordardottir HB, Kristmundsdottir S, Stefansson OA, Rantapää-Dahlqvist S, Sonderby IE, Didriksen M, Stridh P, Haavik J, Tryggvadottir L, Frei O, Walters GB, Kockum I, Hjalgrim H, Olafsdottir TA, Selbaek G, Nyegaard M, Erikstrup C, Brodersen T, Saevarsdottir S, Olsson T, Nielsen KR, Haraldsson A, Bruun MT, Hansen TF, Steingrimsdottir T, Jacobsen RL, Lie RT, Djurovic S, Alfredsson L, Lopez de Lapuente Portilla A, Brunak S, Melsted P, Halldorsson BV, Saemundsdottir J, Magnusson OT, Padyukov L, Banasik K, Rafnar T, Askling J, Klareskog L, Pedersen OB, Masson G, Havdahl A, Nilsson B, Andreassen OA, Daly M, Ostrowski SR, Jonsdottir I, Stefansson H, Holm H, Helgason A, Thorsteinsdottir U, Stefansson K, Gudbjartsson DF. Deficit of homozygosity among 1.52 million individuals and genetic causes of recessive lethality. Nat Commun 2023; 14:3453. [PMID: 37301908 PMCID: PMC10257723 DOI: 10.1038/s41467-023-38951-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.
Collapse
Affiliation(s)
| | | | | | - Gudny A Arnadottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Henriette Svarre Nielsen
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - David Westergaard
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
| | - Juha M Karjalainen
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Kristjan H S Moore
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Helga B Thordardottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pernilla Stridh
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Laufey Tryggvadottir
- Icelandic Cancer Registry, Icelandic Cancer Society, Reykjavik, Iceland
- Faculty of Medicine, BMC, Laeknagardur, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Oleksandr Frei
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | | | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Hjalgrim
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Geir Selbaek
- Norwegian National Centre of Ageing and Health, Vestfold Hospital Trust, Tonsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mette Nyegaard
- Deptartment of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thorsten Brodersen
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kaspar Rene Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Thomas Folkmann Hansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Thora Steingrimsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | - Leonid Padyukov
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Johan Askling
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | | | - Alexandra Havdahl
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Bjorn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund, Sweden
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mark Daly
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Deptartment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Agnar Helgason
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
21
|
Thomas OG, Bronge M, Tengvall K, Akpinar B, Nilsson OB, Holmgren E, Hessa T, Gafvelin G, Khademi M, Alfredsson L, Martin R, Guerreiro-Cacais AO, Grönlund H, Olsson T, Kockum I. Cross-reactive EBNA1 immunity targets alpha-crystallin B and is associated with multiple sclerosis. SCIENCE ADVANCES 2023; 9:eadg3032. [PMID: 37196088 PMCID: PMC10191428 DOI: 10.1126/sciadv.adg3032] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system, for which and Epstein-Barr virus (EBV) infection is a likely prerequisite. Due to the homology between Epstein-Barr nuclear antigen 1 (EBNA1) and alpha-crystallin B (CRYAB), we examined antibody reactivity to EBNA1 and CRYAB peptide libraries in 713 persons with MS (pwMS) and 722 matched controls (Con). Antibody response to CRYAB amino acids 7 to 16 was associated with MS (OR = 2.0), and combination of high EBNA1 responses with CRYAB positivity markedly increased disease risk (OR = 9.0). Blocking experiments revealed antibody cross-reactivity between the homologous EBNA1 and CRYAB epitopes. Evidence for T cell cross-reactivity was obtained in mice between EBNA1 and CRYAB, and increased CRYAB and EBNA1 CD4+ T cell responses were detected in natalizumab-treated pwMS. This study provides evidence for antibody cross-reactivity between EBNA1 and CRYAB and points to a similar cross-reactivity in T cells, further demonstrating the role of EBV adaptive immune responses in MS development.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Mattias Bronge
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Katarina Tengvall
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Birce Akpinar
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Ola B. Nilsson
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Erik Holmgren
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Tara Hessa
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Guro Gafvelin
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Lars Alfredsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Roland Martin
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - André Ortlieb Guerreiro-Cacais
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Hans Grönlund
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
| |
Collapse
|
22
|
Debuysschere C, Nekoua MP, Hober D. Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms 2023; 11:1262. [PMID: 37317236 DOI: 10.3390/microorganisms11051262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Viral infections have been suspected of being involved in the pathogenesis of certain autoimmune diseases for many years. Epstein-Barr virus (EBV), a DNA virus belonging to the Herpesviridae family, is thought to be associated with the onset and/or the progression of multiple sclerosis (MS), systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and type 1 diabetes. The lifecycle of EBV consists of lytic cycles and latency programmes (0, I, II and III) occurring in infected B-cells. During this lifecycle, viral proteins and miRNAs are produced. This review provides an overview of the detection of EBV infection, focusing on markers of latency and lytic phases in MS. In MS patients, the presence of latency proteins and antibodies has been associated with lesions and dysfunctions of the central nervous system (CNS). In addition, miRNAs, expressed during lytic and latency phases, may be detected in the CNS of MS patients. Lytic reactivations of EBV can occur in the CNS of patients as well, with the presence of lytic proteins and T-cells reacting to this protein in the CNS of MS patients. In conclusion, markers of EBV infection can be found in MS patients, which argues in favour of a relationship between EBV and MS.
Collapse
Affiliation(s)
- Cyril Debuysschere
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
23
|
Rostgaard K, Nielsen NM, Melbye M, Frisch M, Hjalgrim H. Siblings reduce multiple sclerosis risk by preventing delayed primary Epstein-Barr virus infection. Brain 2023; 146:1993-2002. [PMID: 36317463 DOI: 10.1093/brain/awac401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
Epstein-Barr virus infection, and perhaps almost exclusively delayed Epstein-Barr virus infection, seems to be a prerequisite for the development of multiple sclerosis. Siblings provide protection against infectious mononucleosis by occasionally preventing delayed primary Epstein-Barr virus infection, with its associated high risk of infectious mononucleosis. Each additional sibling provides further protection according to the age difference between the index child and the sibling. The closer the siblings are in age, the higher the protection, with younger siblings being more protective against infectious mononucleosis than older siblings. If the hypothesis that delayed Epstein-Barr virus infection is necessary for the development of multiple sclerosis is true, then the relative risk of multiple sclerosis as a function of sibship constellation should mirror the relative risk of infectious mononucleosis as a function of sibship constellation. Such an indirect hypothesis test is necessitated by the fact that age at primary Epstein-Barr virus infection is unknown for practically all people who have not experienced infectious mononucleosis. In this retrospective cohort study using nationwide registers, we followed all Danes born during the period 1971-2018 (n = 2 576 011) from 1977 to 2018 for hospital contacts with an infectious mononucleosis diagnosis (n = 23 905) or a multiple sclerosis diagnosis (n = 4442), defining two different end points. Relative risks (hazard ratios) of each end point as a function of sibship constellation were obtained from stratified Cox regression analyses. The hazard ratios of interest for infectious mononucleosis and multiple sclerosis could be assumed to be identical (test for homogeneity P = 0.19), implying that having siblings, especially of younger age, may protect a person against multiple sclerosis through early exposure to the Epstein-Barr virus. Maximum protection per sibling was obtained by having a 0-2 years younger sibling, corresponding to a hazard ratio of 0.80, with a 95% confidence interval of 0.76-0.85. The corresponding hazard ratio from having an (0-2 years) older sibling was 0.91 (0.86-0.96). Our results suggest that it may be possible essentially to eradicate multiple sclerosis using an Epstein-Barr virus vaccine administered before the teenage years. Getting there would require both successful replication of our study findings and, if so, elucidation of why early Epstein-Barr virus infection does not usually trigger the immune mechanisms responsible for the association between delayed Epstein-Barr virus infection and multiple sclerosis risk.
Collapse
Affiliation(s)
- Klaus Rostgaard
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Nete Munk Nielsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mads Melbye
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Morten Frisch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
24
|
Ortega-Hernandez OD, Martínez-Cáceres EM, Presas-Rodríguez S, Ramo-Tello C. Epstein-Barr Virus and Multiple Sclerosis: A Convoluted Interaction and the Opportunity to Unravel Predictive Biomarkers. Int J Mol Sci 2023; 24:ijms24087407. [PMID: 37108566 PMCID: PMC10138841 DOI: 10.3390/ijms24087407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Since the early 1980s, Epstein-Barr virus (EBV) infection has been described as one of the main risk factors for developing multiple sclerosis (MS), and recently, new epidemiological evidence has reinforced this premise. EBV seroconversion precedes almost 99% of the new cases of MS and likely predates the first clinical symptoms. The molecular mechanisms of this association are complex and may involve different immunological routes, perhaps all running in parallel (i.e., molecular mimicry, the bystander damage theory, abnormal cytokine networks, and coinfection of EBV with retroviruses, among others). However, despite the large amount of evidence available on these topics, the ultimate role of EBV in the pathogenesis of MS is not fully understood. For instance, it is unclear why after EBV infection some individuals develop MS while others evolve to lymphoproliferative disorders or systemic autoimmune diseases. In this regard, recent studies suggest that the virus may exert epigenetic control over MS susceptibility genes by means of specific virulence factors. Such genetic manipulation has been described in virally-infected memory B cells from patients with MS and are thought to be the main source of autoreactive immune responses. Yet, the role of EBV infection in the natural history of MS and in the initiation of neurodegeneration is even less clear. In this narrative review, we will discuss the available evidence on these topics and the possibility of harnessing such immunological alterations to uncover predictive biomarkers for the onset of MS and perhaps facilitate prognostication of the clinical course.
Collapse
Affiliation(s)
- Oscar-Danilo Ortega-Hernandez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Eva M Martínez-Cáceres
- Department of Immunology, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Silvia Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| |
Collapse
|
25
|
Aloisi F, Giovannoni G, Salvetti M. Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy. Lancet Neurol 2023; 22:338-349. [PMID: 36764322 DOI: 10.1016/s1474-4422(22)00471-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 02/10/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the CNS that results from the interplay between heritable and environmental factors. Mounting evidence from different fields of research supports the pivotal role of the Epstein-Barr virus (EBV) in the development of multiple sclerosis. However, translating this knowledge into clinically actionable information requires a better understanding of the mechanisms linking EBV to pathophysiology. Ongoing research is trying to clarify whether EBV causes neuroinflammation via autoimmunity or antiviral immunity, and if the interaction of EBV with genetic susceptibility to multiple sclerosis can explain why a ubiquitous virus promotes immune dysfunction in susceptible individuals. If EBV also has a role in driving disease activity, the characterisation of this role will help diagnosis, prognosis, and treatment in people with multiple sclerosis. Ongoing clinical trials targeting EBV and new anti-EBV vaccines provide hope for future treatments and preventive interventions.
Collapse
Affiliation(s)
- Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine and Blizard Institute, Queen Mary University, London, UK
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
26
|
Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol 2023; 19:160-171. [PMID: 36759741 DOI: 10.1038/s41582-023-00775-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/11/2023]
Abstract
Epidemiological studies have provided compelling evidence that multiple sclerosis (MS) is a rare complication of infection with the Epstein-Barr virus (EBV), a herpesvirus that infects more than 90% of the global population. This link was long suspected because the risk of MS increases markedly after infectious mononucleosis (symptomatic primary EBV infection) and with high titres of antibodies to specific EBV antigens. However, it was not until 2022 that a longitudinal study demonstrated that MS risk is minimal in individuals who are not infected with EBV and that it increases over 30-fold following EBV infection. Over the past few years, a number of studies have provided clues on the underlying mechanisms, which might help us to develop more targeted treatments for MS. In this Review, we discuss the evidence linking EBV to the development of MS and the mechanisms by which the virus is thought to cause the disease. Furthermore, we discuss implications for the treatment and prevention of MS, including the use of antivirals and vaccines.
Collapse
Affiliation(s)
- Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Thomas OG, Rickinson A, Palendira U. Epstein-Barr virus and multiple sclerosis: moving from questions of association to questions of mechanism. Clin Transl Immunology 2023; 12:e1451. [PMID: 37206956 PMCID: PMC10191779 DOI: 10.1002/cti2.1451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
The link between Epstein-Barr virus (EBV) and multiple sclerosis (MS) has puzzled researchers since it was first discovered over 40 years ago. Until that point, EBV was primarily viewed as a cancer-causing agent, but the culmination of evidence now shows that EBV has a pivotal role in development of MS. Early MS disease is characterised by episodic neuroinflammation and focal lesions in the central nervous system (CNS) that over time develop into progressive neurodegeneration and disability. Risk of MS is vanishingly low in EBV seronegative individuals, history of infectious mononucleosis (acute symptomatic primary infection with EBV) significantly increases risk and elevated antibody titres directed against EBV antigens are well-characterised in patients. However, the underlying mechanism - or mechanisms - responsible for this interplay remains to be fully elucidated; how does EBV-induced immune dysregulation either trigger or drive MS in susceptible individuals? Furthermore, deep understanding of virological and immunological events during primary infection and long-term persistence in B cells will help to answer the many questions that remain regarding MS pathogenesis. This review discusses the current evidence and mechanisms surrounding EBV and MS, which have important implications for the future of MS therapies and prevention.
Collapse
Affiliation(s)
- Olivia G Thomas
- Department of Clinical Neuroscience, Therapeutic Immune Design, Centre for Molecular MedicineKarolinska InstituteStockholmSweden
| | - Alan Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of Birmingham, EdgbastonBirminghamUK
| | - Umaimainthan Palendira
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
28
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
29
|
Leffler J, Trend S, Hart PH, French MA. Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: a hypothesis. Clin Transl Immunology 2022; 11:e1418. [PMID: 36325491 PMCID: PMC9621333 DOI: 10.1002/cti2.1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis is associated with Epstein-Barr virus (EBV) infection, B-cell dysfunction, gut dysbiosis, and environmental and genetic risk factors, including female sex. A disease model incorporating all these factors remains elusive. Here, we hypothesise that EBV-infected memory B cells (MBCs) migrate to gut-associated lymphoid tissue (GALT) through EBV-induced expression of LPAM-1, where they are subsequently activated by gut microbes and/or their products resulting in EBV reactivation and compartmentalised anti-EBV immune responses. These responses involve marginal zone (MZ) B cells that activate CD4+ T-cell responses, via HLA-DRB1, which promote downstream B-cell differentiation towards CD11c+/T-bet+ MBCs, as well as conventional MBCs. Intrinsic expression of low-affinity B-cell receptors (BCRs) by MZ B cells and CD11c+/T-bet+ MBCs promotes polyreactive BCR/antibody responses against EBV proteins (e.g. EBNA-1) that cross-react with central nervous system (CNS) autoantigens (e.g. GlialCAM). EBV protein/autoantigen-specific CD11c+/T-bet+ MBCs migrate to the meningeal immune system and CNS, facilitated by their expression of CXCR3, and induce cytotoxic CD8+ T-cell responses against CNS autoantigens amplified by BAFF, released from EBV-infected MBCs. An increased abundance of circulating IgA+ MBCs, observed in MS patients, might also reflect GALT-derived immune responses, including disease-enhancing IgA antibody responses against EBV and gut microbiota-specific regulatory IgA+ plasma cells. Female sex increases MZ B-cell and CD11c+/T-bet+ MBC activity while environmental risk factors affect gut dysbiosis. Thus, EBV infection, B-cell dysfunction and other risk factors converge in GALT to generate aberrant B-cell responses that drive pathogenic T-cell responses in the CNS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia,Perron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Martyn A French
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia,Immunology DivisionPathWest Laboratory MedicinePerthWAAustralia
| |
Collapse
|
30
|
Altered Immune Response to the Epstein-Barr Virus as a Prerequisite for Multiple Sclerosis. Cells 2022; 11:cells11172757. [PMID: 36078165 PMCID: PMC9454695 DOI: 10.3390/cells11172757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Strong epidemiologic evidence links Epstein–Barr virus (EBV) infection and its altered immune control to multiple sclerosis (MS) development. Clinical MS onset occurs years after primary EBV infection and the mechanisms linking them remain largely unclear. This review summarizes the epidemiological evidence for this association and how the EBV specific immune control is altered in MS patients. The two main possibilities of mechanisms for this association are further discussed. Firstly, immune responses that are induced during a symptomatic primary EBV infection, namely infectious mononucleosis, might be amplified during the following years to finally cause central nervous system (CNS) inflammation and demyelination. Secondly, genetic predisposition and environmental factors might not allow for an efficient immune control of the EBV-infected B cells that might drive autoimmune T cell stimulation or CNS inflammation. These two main hypotheses for explaining the association of the EBV with MS would implicate opposite therapeutic interventions, namely either dampening CNS inflammatory EBV-reactive immune responses or strengthening them to eliminate the autoimmunity stimulating EBV-infected B cell compartment. Nevertheless, recent findings suggest that EBV is an important puzzle piece in the pathogenesis of MS, and understanding its contribution could open new treatment possibilities for this autoimmune disease.
Collapse
|
31
|
Aloisi F, Veroni C, Serafini B. EBV as the 'gluten of MS' hypothesis: Bypassing autoimmunity. Mult Scler Relat Disord 2022; 66:104069. [PMID: 35908445 DOI: 10.1016/j.msard.2022.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
The EBV as the 'gluten of MS' hypothesis discussed by Drosu et al. in a recent Editorial envisages the existence of similar mechanisms leading to celiac disease and multiple sclerosis, such as induction of immunity against an ubiquitous exogenous antigen - gluten and EBV, respectively - and subsequent development of autoimmunity that is maintained by persistence of the initial trigger. While this hypothesis provides the rationale for treating MS with antivirals to lower EBV load, it can be misleading when trying to translate concepts of T cell-B cell interaction and autoimmunity development in celiac disease to multiple sclerosis. Here, we propose that EBV might act as the driver of multiple sclerosis without involving autoimmunity.
Collapse
Affiliation(s)
- Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | - Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| |
Collapse
|
32
|
Maple PA, Ascherio A, Cohen JI, Cutter G, Giovannoni G, Shannon-Lowe C, Tanasescu R, Gran B. The Potential for EBV Vaccines to Prevent Multiple Sclerosis. Front Neurol 2022; 13:887794. [PMID: 35812097 PMCID: PMC9263514 DOI: 10.3389/fneur.2022.887794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 01/22/2023] Open
Abstract
There is increasing evidence suggesting that Epstein-Barr virus infection is a causative factor of multiple sclerosis (MS). Epstein-Barr virus (EBV) is a human herpesvirus, Human Gammaherpesvirus 4. EBV infection shows two peaks: firstly, during early childhood and, secondly during the teenage years. Approximately, 90-95% of adults have been infected with EBV and for many this will have been a subclinical event. EBV infection can be associated with significant morbidity and mortality; for example, primary infection in older children or adults is the leading cause of infectious mononucleosis (IM). A disrupted immune response either iatrogenically induced or through genetic defects can result in lymphoproliferative disease. Finally, EBV is oncogenic and is associated with several malignancies. For these reasons, vaccination to prevent the damaging aspects of EBV infection is an attractive intervention. No EBV vaccines have been licensed and the prophylactic vaccine furthest along in clinical trials contains the major virus glycoprotein gp350. In a phase 2 study, the vaccine reduced the rate of IM by 78% but did not prevent EBV infection. An EBV vaccine to prevent IM in adolescence or young adulthood is the most likely population-based vaccine strategy to be tested and adopted. National registry studies will need to be done to track the incidence of MS in EBV-vaccinated and unvaccinated people to see an effect of the vaccine on MS. Assessment of vaccine efficacy with MS being a delayed consequence of EBV infection with the average age of onset being approximately 30 years of age represents multiple challenges.
Collapse
Affiliation(s)
- Peter A. Maple
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, United Kingdom,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alberto Ascherio
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States,Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gary Cutter
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| | - Radu Tanasescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom,Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom,Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom,*Correspondence: Bruno Gran
| |
Collapse
|
33
|
Optimizing EEG Source Reconstruction with Concurrent fMRI-Derived Spatial Priors. Brain Topogr 2022; 35:282-301. [PMID: 35142957 PMCID: PMC9098592 DOI: 10.1007/s10548-022-00891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
Reconstructing EEG sources involves a complex pipeline, with the inverse problem being the most challenging. Multiple inversion algorithms are being continuously developed, aiming to tackle the non-uniqueness of this problem, which has been shown to be partially circumvented by including prior information in the inverse models. Despite a few efforts, there are still current and persistent controversies regarding the inversion algorithm of choice and the optimal set of spatial priors to be included in the inversion models. The use of simultaneous EEG-fMRI data is one approach to tackle this problem. The spatial resolution of fMRI makes fMRI derived spatial priors very convenient for EEG reconstruction, however, only task activation maps and resting-state networks (RSNs) have been explored so far, overlooking the recent, but already accepted, notion that brain networks exhibit dynamic functional connectivity fluctuations. The lack of a systematic comparison between different source reconstruction algorithms, considering potentially more brain-informative priors such as fMRI, motivates the search for better reconstruction models. Using simultaneous EEG-fMRI data, here we compared four different inversion algorithms (minimum norm, MN; low resolution electromagnetic tomography, LORETA; empirical Bayes beamformer, EBB; and multiple sparse priors, MSP) under a Bayesian framework (as implemented in SPM), each with three different sets of priors consisting of: (1) those specific to the algorithm; (2) those specific to the algorithm plus fMRI task activation maps and RSNs; and (3) those specific to the algorithm plus fMRI task activation maps and RSNs and network modules of task-related dFC states estimated from the dFC fluctuations. The quality of the reconstructed EEG sources was quantified in terms of model-based metrics, namely the expectation of the posterior probability P(model|data) and variance explained of the inversion models, and the overlap/proportion of brain regions known to be involved in the visual perception tasks that the participants were submitted to, and RSN templates, with/within EEG source components. Model-based metrics suggested that model parsimony is preferred, with the combination MSP and priors specific to this algorithm exhibiting the best performance. However, optimal overlap/proportion values were found using EBB and priors specific to this algorithm and fMRI task activation maps and RSNs or MSP and considering all the priors (algorithm priors, fMRI task activation maps and RSNs and dFC state modules), respectively, indicating that fMRI spatial priors, including dFC state modules, might contain useful information to recover EEG source components reflecting neuronal activity of interest. Our main results show that providing fMRI spatial derived priors that reflect the dynamics of the brain might be useful to map neuronal activity more accurately from EEG-fMRI. Furthermore, this work paves the way towards a more informative selection of the optimal EEG source reconstruction approach, which may be critical in future studies.
Collapse
|
34
|
Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Yeh EA, Gold J. Is EBV the cause of multiple sclerosis? Mult Scler Relat Disord 2022; 58:103636. [PMID: 35114510 DOI: 10.1016/j.msard.2022.103636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Christopher H Hawkes
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeannette Lechner-Scott
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Levy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E Ann Yeh
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julian Gold
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; The Albion Centre, The University of Sydney School of Medicine, Sydney, NSW, Australia
| |
Collapse
|
35
|
Roehri N, Bréchet L, Seeber M, Pascual-Leone A, Michel CM. Phase-Amplitude Coupling and Phase Synchronization Between Medial Temporal, Frontal and Posterior Brain Regions Support Episodic Autobiographical Memory Recall. Brain Topogr 2022; 35:191-206. [PMID: 35080692 PMCID: PMC8860804 DOI: 10.1007/s10548-022-00890-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023]
Abstract
Episodic autobiographical memory (EAM) is a complex cognitive function that emerges from the coordination of specific and distant brain regions. Specific brain rhythms, namely theta and gamma oscillations and their synchronization, are thought of as putative mechanisms enabling EAM. Yet, the mechanisms of inter-regional interaction in the EAM network remain unclear in humans at the whole brain level. To investigate this, we analyzed EEG recordings of participants instructed to retrieve autobiographical episodes. EEG recordings were projected in the source space, and time-courses of atlas-based brain regions-of-interest (ROIs) were derived. Directed phase synchrony in high theta (7–10 Hz) and gamma (30–80 Hz) bands and high theta-gamma phase-amplitude coupling were computed between each pair of ROIs. Using network-based statistics, a graph-theory method, we found statistically significant networks for each investigated mechanism. In the gamma band, two sub-networks were found, one between the posterior cingulate cortex (PCC) and the medial temporal lobe (MTL) and another within the medial frontal areas. In the high theta band, we found a PCC to ventromedial prefrontal cortex (vmPFC) network. In phase-amplitude coupling, we found the high theta phase of the left MTL biasing the gamma amplitude of posterior regions and the vmPFC. Other regions of the temporal lobe and the insula were also phase biasing the vmPFC. These findings suggest that EAM, rather than emerging from a single mechanism at a single frequency, involves precise spatio-temporal signatures mapping on distinct memory processes. We propose that the MTL orchestrates activity in vmPFC and PCC via precise phase-amplitude coupling, with vmPFC and PCC interaction via high theta phase synchrony and gamma synchronization contributing to bind information within the PCC-MTL sub-network or valuate the candidate memory within the medial frontal sub-network.
Collapse
Affiliation(s)
- Nicolas Roehri
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, 9 chemin des Mines, 1211, Geneva, Switzerland
| | - Lucie Bréchet
- Center for Biomedical Imaging (CIBM), Lausanne and Geneva, 1015, Lausanne, Switzerland.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, 9 chemin des Mines, 1211, Geneva, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Guttmann Brain Health Institute, Institut Guttman de Neurorehabilitació, Barcelona, Spain
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, 9 chemin des Mines, 1211, Geneva, Switzerland. .,Center for Biomedical Imaging (CIBM), Lausanne and Geneva, 1015, Lausanne, Switzerland.
| |
Collapse
|
36
|
Docampo MJ, Lutterotti A, Sospedra M, Martin R. Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Front Immunol 2022; 12:787498. [PMID: 35069562 PMCID: PMC8766750 DOI: 10.3389/fimmu.2021.787498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
The induction of specific immunological tolerance represents an important therapeutic goal for multiple sclerosis and other autoimmune diseases. Sound knowledge of the target antigens, the underlying pathomechanisms of the disease and the presumed mechanisms of action of the respective tolerance-inducing approach are essential for successful translation. Furthermore, suitable tools and assays to evaluate the induction of immune tolerance are key aspects for the development of such treatments. However, investigation of the mechanisms of action underlying tolerance induction poses several challenges. The optimization of sensitive, robust methods which allow the assessment of low frequency autoreactive T cells and the long-term reduction or change of their responses, the detection of regulatory cell populations and their immune mediators, as well as the validation of specific biomarkers indicating reduction of inflammation and damage, are needed to develop tolerance-inducing approaches successfully to patients. This short review focuses on how to demonstrate mechanistic proof-of-concept in antigen-specific tolerance-inducing therapies in MS.
Collapse
Affiliation(s)
| | | | | | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Michaličková D, Kübra Ö, Das D, Osama B, Slanař O. Molecular biomarkers in multiple sclerosis. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Multiple sclerosis (MS) is a highly heterogenous disease regarding radiological, pathological, and clinical characteristics and therapeutic response, including both the efficacy and safety profile of treatments. Accordingly, there is a high demand for biomarkers that sensitively and specifically apprehend the distinctive aspects of the MS heterogeneity, and that can aid in better understanding of the disease diagnosis, prognosis, prediction of the treatment response, and, finally, in the development of new treatments. Currently, clinical characteristics (e.g., relapse rate and disease progression) and magnetic resonance imaging play the most important role in the clinical classification of MS and assessment of its course. Molecular biomarkers (e.g., immunoglobulin G (IgG) oligoclonal bands, IgG index, anti-aquaporin-4 antibodies, neutralizing antibodies against interferon-beta and natalizumab, anti-varicella zoster virus and anti-John Cunningham (JC) virus antibodies) complement these markers excellently. This review provides an overview of exploratory, validated and clinically useful molecular biomarkers in MS which are used for prediction, diagnosis, disease activity and treatment response.
Collapse
|
38
|
Hassani A, Reguraman N, Shehab S, Khan G. Primary Peripheral Epstein-Barr Virus Infection Can Lead to CNS Infection and Neuroinflammation in a Rabbit Model: Implications for Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:764937. [PMID: 34899715 PMCID: PMC8656284 DOI: 10.3389/fimmu.2021.764937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Epstein-Barr virus (EBV) is a common herpesvirus associated with malignant and non-malignant conditions. An accumulating body of evidence supports a role for EBV in the pathogenesis of multiple sclerosis (MS), a demyelinating disease of the CNS. However, little is known about the details of the link between EBV and MS. One obstacle which has hindered research in this area has been the lack of a suitable animal model recapitulating natural infection in humans. We have recently shown that healthy rabbits are susceptible to EBV infection, and viral persistence in these animals mimics latent infection in humans. We used the rabbit model to investigate if peripheral EBV infection can lead to infection of the CNS and its potential consequences. We injected EBV intravenously in one group of animals, and phosphate-buffered saline (PBS) in another, with and without immunosuppression. Histopathological changes and viral dynamics were examined in peripheral blood, spleen, brain, and spinal cord, using a range of molecular and histopathology techniques. Our investigations uncovered important findings that could not be previously addressed. We showed that primary peripheral EBV infection can lead to the virus traversing the CNS. Cell associated, but not free virus in the plasma, correlated with CNS infection. The infected cells within the brain were found to be B-lymphocytes. Most notably, animals injected with EBV, but not PBS, developed inflammatory cellular aggregates in the CNS. The incidence of these aggregates increased in the immunosuppressed animals. The cellular aggregates contained compact clusters of macrophages surrounded by reactive astrocytes and dispersed B and T lymphocytes, but not myelinated nerve fibers. Moreover, studying EBV infection over a span of 28 days, revealed that the peak point for viral load in the periphery and CNS coincides with increased occurrence of cellular aggregates in the brain. Finally, peripheral EBV infection triggered temporal changes in the expression of latent viral transcripts and cytokines in the brain. The present study provides the first direct in vivo evidence for the role of peripheral EBV infection in CNS pathology, and highlights a unique model to dissect viral mechanisms contributing to the development of MS.
Collapse
Affiliation(s)
- Asma Hassani
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Narendran Reguraman
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
39
|
Hedström AK, Olsson T, Alfredsson L. The increased risk of multiple sclerosis associated with HLA-DRB1*15:01 and smoking is modified by alcohol consumption. Sci Rep 2021; 11:21237. [PMID: 34707149 PMCID: PMC8551162 DOI: 10.1038/s41598-021-00578-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Previous studies have observed an inverse association between alcohol consumption and multiple sclerosis (MS) risk. We aimed to investigate possible interactions between alcohol consumption, MS-associated human leukocyte antigen (HLA) genes and smoking regarding MS risk. We used a Swedish population-based case-control study (2059 incident cases, 2887 controls) matched by age, sex, and residential area. Subjects with different genotypes and alcohol consumption habits were compared regarding MS risk, by calculating odds ratios with 95% confidence intervals using logistic regression models. Interaction on the additive scale between non-drinking and both genotype and smoking were assessed by calculating the attributable proportion due to interaction (AP). There was a dose-dependent inverse association between alcohol consumption and MS risk (p for trend < 0.0001). A potentiating effect was observed between non-drinking and presence of DRB1*15:01 (AP 0.3, 95% CI 0.2-0.5) which was of similar magnitude irrespective of smoking habits. Non-drinking also interacted with smoking to increase MS risk (AP 0.2, 95% CI 0.06-0.4). Non-drinking interacts with DRB1*15:01 and smoking to increase the risk of MS. Better understanding of the mechanisms behind our findings may help to define ways to achieve protection against MS by other means than alcohol consumption.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Department of Clinical Neuroscience, K8, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Solna, Sweden
| | - Lars Alfredsson
- Department of Clinical Neuroscience and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Xu Y, Hiyoshi A, Smith KA, Piehl F, Olsson T, Fall K, Montgomery S. Association of Infectious Mononucleosis in Childhood and Adolescence With Risk for a Subsequent Multiple Sclerosis Diagnosis Among Siblings. JAMA Netw Open 2021; 4:e2124932. [PMID: 34633426 PMCID: PMC8506233 DOI: 10.1001/jamanetworkopen.2021.24932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE Epstein-Barr virus and its acute manifestation, infectious mononucleosis (IM), are associated with an increased risk of multiple sclerosis (MS). Whether this association is confounded by susceptibility to infection is still debated. OBJECTIVE To assess whether hospital-diagnosed IM during childhood, adolescence, or young adulthood is associated with subsequent MS diagnosis independent of shared familial factors. DESIGN, SETTING, AND PARTICIPANTS This population-based cohort study used the Swedish Total Population Register to identify individuals born in Sweden from January 1, 1958, to December 31, 1994. Participants aged 20 years were followed up from January 1, 1978, to December 31, 2018, with a median follow-up of 15.38 (IQR, 8.68-23.55; range, 0.01-40.96) years. Data were analyzed from October 2020 to July 2021. EXPOSURE Hospital-diagnosed IM before 25 years of age. MAIN OUTCOMES AND MEASURES Diagnoses of MS from 20 years of age were identified. Risk of an MS diagnosis associated with IM in childhood (birth to 10 years of age), adolescence (11-19 years of age), and early adulthood (20-24 years of age [time-dependent variable]) were estimated using conventional and stratified (to address familial environmental or genetic confounding) Cox proportional hazards regression. RESULTS Of the 2 492 980 individuals (1 312 119 men [52.63%] and 1 180 861 women [47.37%]) included, 5867 (0.24%) had an MS diagnosis from 20 years of age (median age, 31.50 [IQR, 26.78-37.54] years). Infectious mononucleosis in childhood (hazard ratio [HR], 1.98; 95% CI, 1.21-3.23) and adolescence (HR, 3.00; 95% CI, 2.48-3.63) was associated with an increased risk of an MS diagnosis that remained significant after controlling for shared familial factors in stratified Cox proportional hazards regression (HRs, 2.87 [95% CI, 1.44-5.74] and 3.19 [95% CI, 2.29-4.46], respectively). Infectious mononucleosis in early adulthood was also associated with risk of a subsequent MS diagnosis (HR, 1.89; 95% CI, 1.18-3.05), but this risk was attenuated and was not significant after controlling for shared familial factors (HR, 1.51; 95% CI, 0.82-2.76). CONCLUSIONS AND RELEVANCE These findings suggest that IM in childhood and particularly adolescence is a risk factor associated with a diagnosis of MS, independent of shared familial factors.
Collapse
Affiliation(s)
- Yin Xu
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ayako Hiyoshi
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Kelsi A. Smith
- Clinical Epidemiology Division, Karolinska Institute, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Scott Montgomery
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
- Clinical Epidemiology Division, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
41
|
Jons D, Persson Berg L, Sundström P, Haghighi S, Axelsson M, Thulin M, Bergström T, Andersen O. Follow-up after infectious mononucleosis in search of serological similarities with presymptomatic multiple sclerosis. Mult Scler Relat Disord 2021; 56:103288. [PMID: 34634626 DOI: 10.1016/j.msard.2021.103288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND A two- to three-fold increase in the risk of multiple sclerosis (MS) after infectious mononucleosis (IM) has been observed in cohort and case control studies. However, this association has not been investigated prospectively from IM. It remains to be determined whether long-term immunospecific sequelae with features consistent with presymptomatic MS occur after IM. METHODS Sera were obtained from individuals with acute IM from 2003-2007 (n = 42) and from the same individuals at a follow-up (FU) study approximately 10 years after IM. These were assayed for antibodies against a variety of Epstein-Barr virus (EBV) antigens, including gp350, a novel recombinant glycoprotein from the EBV envelope. Similarly, single-protein antigens were used to assess measles and varicella-zoster reactivity (Ncore and varicella-zoster glycoprotein E [VZVgE]). The FU study also included cerebrospinal fluid (CSF) samples from 21 of these individuals to test for IgG antibodies against the same viral antigens. As controls, CSF and serum samples were obtained from 15 EBV-seropositive volunteers who denied a history of IM, and serum samples were obtained from 24 EBV-seropositive blood donors. Anti-gp350, anti-Ncore and anti-VZVgE IgG levels were also analysed in sera and CSF samples from 22 persons with MS. RESULTS The FU assays showed higher anti-gp350 IgG (p = 0.007, univariate) than among healthy controls, with no difference in serum anti-VCA or anti-EBNA1 IgG levels and no difference in anti-gp350 in the CSF samples. Anti-Ncore IgG and anti-VZVgE were higher in acute IM samples (p < 0.001 and p < 0.0001, respectively) than at FU, although anti-Ncore remained heightened in an age-adjusted analysis at FU (p = 0.014) compared to the control group. In the MS group, the serum anti-gp350 and anti-Ncore IgG levels were significantly higher than among the control group, but the anti-VZVgE levels were not. The CSF anti-gp350 and VZVgE levels were slightly higher among persons with MS than among the control group, whereas anti-Ncore IgG was markedly higher in persons with MS than in the control group. CONCLUSION In the present study IM showed certain similarities with MS. Increased anti-gp350 reactivity persisted more than a decade after IM, reminiscent of the established increased anti-EBV reactivity in presymptomatic MS. Acute IM was associated with increased anti-measles and anti-VZV immunoreactivity, similar to the MRZ reaction in MS, with some evidence suggesting that this measles reactivity persisted after a decade.
Collapse
Affiliation(s)
- Daniel Jons
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gröna Stråket 11, 3tr, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linn Persson Berg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, the Sahlgrenska Academy, Gothenburg, Sweden and Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Sara Haghighi
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden and Department of Medical Specialists, Institute of Neurology, Motala Hospital, Motala, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Måns Thulin
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, UK
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, the Sahlgrenska Academy, Gothenburg, Sweden and Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gröna Stråket 11, 3tr, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
42
|
Potential Biomarkers Associated with Multiple Sclerosis Pathology. Int J Mol Sci 2021; 22:ijms221910323. [PMID: 34638664 PMCID: PMC8508638 DOI: 10.3390/ijms221910323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS) that involves an intricate and aberrant interaction of immune cells leading to inflammation, demyelination, and neurodegeneration. Due to the heterogeneity of clinical subtypes, their diagnosis becomes challenging and the best treatment cannot be easily provided to patients. Biomarkers have been used to simplify the diagnosis and prognosis of MS, as well as to evaluate the results of clinical treatments. In recent years, research on biomarkers has advanced rapidly due to their ability to be easily and promptly measured, their specificity, and their reproducibility. Biomarkers are classified into several categories depending on whether they address personal or predictive susceptibility, diagnosis, prognosis, disease activity, or response to treatment in different clinical courses of MS. The identified members indicate a variety of pathological processes of MS, such as neuroaxonal damage, gliosis, demyelination, progression of disability, and remyelination, among others. The present review analyzes biomarkers in cerebrospinal fluid (CSF) and blood serum, the most promising imaging biomarkers used in clinical practice. Furthermore, it aims to shed light on the criteria and challenges that a biomarker must face to be considered as a standard in daily clinical practice.
Collapse
|
43
|
Zarghami A, Li Y, Claflin SB, van der Mei I, Taylor BV. Role of environmental factors in multiple sclerosis. Expert Rev Neurother 2021; 21:1389-1408. [PMID: 34494502 DOI: 10.1080/14737175.2021.1978843] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Environmental factors play a significant role in the pathogenesis and progression of multiple sclerosis (MS), either acting alone or by interacting with other environmental or genetic factors. This cumulative exposure to external risk factors is highly complex and highly variable between individuals. AREAS COVERED We narratively review the current evidence on the role of environment-specific risk factors in MS onset and progression, as well as the effect of gene-environment interactions and the timing of exposure We have reviewed the latest literature, by Ovid Medline, retrieving the most recently published systematic reviews and/or meta-analyses and more recent studies not previously included in meta-analyses or systematic reviews. EXPERT OPINION There is some good evidence supporting the impact of some environmental risk factors in increasing the risk of developing MS. Tobacco smoking, low vitamin D levels and/or low sun exposure, Epstein Barr Virus (EBV) seropositivity and a history of infectious mononucleosis may increase the risk of developing MS. Additionally, there is some evidence that gene-smoking, gene-EBV, and smoking-EBV interactions additively affect the risk of MS onset. However, the evidence for a role of other environmental factors in MS progression is limited. Finally, there is some evidence that tobacco smoking, insufficient vitamin D levels and/or sun exposure have impacts on MS phenotypes and various markers of disease activity including relapse, disability progression and MRI findings. Clearly the effect of environmental factors on MS disease course is an area that requires significantly more research.
Collapse
Affiliation(s)
- Amin Zarghami
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ying Li
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Suzi B Claflin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
44
|
de Mol CL, Looman KIM, van Luijn MM, Kreft KL, Jansen PR, van Zelm MC, Smolders JJFM, White TJH, Moll HA, Neuteboom RF. T cell composition and polygenic multiple sclerosis risk: A population-based study in children. Eur J Neurol 2021; 28:3731-3741. [PMID: 34251726 PMCID: PMC8596816 DOI: 10.1111/ene.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 12/04/2022]
Abstract
Background and purpose Patients with multiple sclerosis (MS) have altered T cell function and composition. Common genetic risk variants for MS affect proteins that function in the immune system. It is currently unclear to what extent T cell composition is affected by genetic risk factors for MS, and how this may precede a possible disease onset. Here, we aim to assess whether an MS polygenic risk score (PRS) is associated with an altered T cell composition in a large cohort of children from the general population. Methods We included genotyped participants from the population‐based Generation R study in whom immunophenotyping of blood T cells was performed at the age of 6 years. Analyses of variance were used to determine the impact of MS‐PRSs on total T cell numbers (n = 1261), CD4+ and CD8+ lineages, and subsets therein (n= 675). In addition, T‐cell‐specific PRSs were constructed based on functional pathway data. Results The MS‐PRS negatively correlated with CD8+ T cell frequencies (p = 2.92 × 10−3), which resulted in a positive association with CD4+/CD8+ T cell ratios (p = 8.27 × 10−9). These associations were mainly driven by two of 195 genome‐wide significant MS risk variants: the main genetic risk variant for MS, HLA‐DRB1*15:01 and an HLA‐B risk variant. We observed no significant associations for the T‐cell‐specific PRSs. Conclusions Our results suggest that MS‐associated genetic variants affect T cell composition during childhood in the general population.
Collapse
Affiliation(s)
- Casper L de Mol
- Department of Neurology, MS Center ErasMS, Erasmus University Medical Center, Rotterdam, the Netherlands.,Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kirsten I M Looman
- Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karim L Kreft
- Department of Neurology, MS Center ErasMS, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Philip R Jansen
- Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| | - Joost J F M Smolders
- Department of Neurology, MS Center ErasMS, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tonya J H White
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henriette A Moll
- Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rinze F Neuteboom
- Department of Neurology, MS Center ErasMS, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
45
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
46
|
Hedström AK, Hillert J, Brenner N, Butt J, Waterboer T, Strid P, Kockum I, Olsson T, Alfredsson L. DRB1-environment interactions in multiple sclerosis etiology: results from two Swedish case-control studies. J Neurol Neurosurg Psychiatry 2021; 92:717-722. [PMID: 33687974 PMCID: PMC8223646 DOI: 10.1136/jnnp-2020-325676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We aimed to investigate the influence of environmental risk factors for multiple sclerosis (MS) in different genetic contexts, and study if interactions between environmental factors and human leucocyte antigen (HLA) genes differ in magnitude according to heterozygocity and homozygocity for HLA-DRB1*15:01. METHODS Using population-based case-control studies (6985 cases, 6569 controls), subjects with different genotypes and smoking, EBNA-1 status and adolescent Body Mass status, were compared regarding MS risk, by calculating OR with 95% CI employing logistic regression. The interaction between different genotypes and each environmental factor was evaluated on the additive scale. RESULTS The effect of each DRB1*15:01 allele on MS risk was additive on the log-odds scale for each additional allele. Interaction between DRB1*15:01 and each assessed environmental factor was of similar magnitude regardless of the number of DRB1*15:01 alleles, although ORs were affected. When any of the environmental factors were present in DRB1*15:01 carriers without the protective A*02:01 allele, a three-way interaction occurred and rendered high ORs, especially among DRB1*15:01 homozygotes (OR 20.0, 95% CI 13.1 to 30.5 among smokers, OR 21.9, 95% CI 15.0 to 31.8 among those with elevated EBNA-1 antibody levels, and OR 44.3, 95% CI 13.5 to 145 among those who reported adolescent overweight/obesity). CONCLUSIONS The strikingly increased MS risk among DRB*15:01 homozygotes exposed to any of the environmental factors is a further argument in favour of these factors acting on immune-related mechanisms. The data further reinforce the importance of preventive measures, in particular for those with a genetic susceptibility to MS.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | - Julia Butt
- German Cancer Research Centre, Heidelberg, Germany
| | | | - Pernilla Strid
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
47
|
Hedström AK, Brenner N, Butt J, Hillert J, Waterboer T, Olsson T, Alfredsson L. Overweight/obesity in young adulthood interacts with aspects of EBV infection in MS etiology. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/1/e912. [PMID: 33465039 PMCID: PMC7803338 DOI: 10.1212/nxi.0000000000000912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022]
Abstract
Objective Because obesity affects the cellular immune response to infections, we aimed to investigate whether high body mass index (BMI) in young adulthood and high Epstein-Barr nuclear antigen 1 (EBNA-1) antibody levels interact with regard to MS risk. We also aimed at exploring potential 3-way interactions between BMI at age 20 years, aspects of Epstein-Barr virus (EBV) infection (high EBNA-1 antibody levels and infectious mononucleosis [IM] history, respectively) and the human leukocyte antigen (HLA)-DRB1*15:01 allele. Methods Using Swedish population-based case-control studies (5,460 cases and 7,275 controls), we assessed MS risk in relation to interactions between overweight/obesity at age 20 years, IM history, EBNA-1 levels, and HLA-DRB1*15:01 status by calculating ORs with 95% CIs using logistic regression. Potential interactions were evaluated on the additive scale. Results Overweight/obesity, compared with normal weight, interacted significantly with high (>50th percentile) EBNA-1 antibody levels (attributable proportion due to interaction 0.2, 95% CI 0.1–0.4). The strength of the interaction increased with higher category of EBNA-1 antibody levels. Furthermore, 3-way interactions were present between HLA-DRB1*15:01, overweight/obesity at age 20 years, and each aspect of EBV infection. Conclusions With regard to MS risk, overweight/obesity in young adulthood acts synergistically with both aspects of EBV infection, predominantly among those with a genetic susceptibility to the disease. The obese state both induces a chronic immune-mediated inflammation and affects the cellular immune response to infections, which may contribute to explain our findings.
Collapse
Affiliation(s)
- Anna Karin Hedström
- From the Department of Clinical Neuroscience (A.K.H., J.H., T.O., L.A.), Karolinska Institutet, Stockholm, Sweden; Infections and Cancer Epidemiology (N.B., J.B., T.W.), German Cancer Research Center (DKFZ), Heidelberg; Center for Molecular Medicine (J.H., T.O.), Karolinska Institutet at Karolinska University Hospital, Solna, Sweden; and Institute of Environmental Medicine (L.A.), Karolinska Institutet, Stockholm, Sweden.
| | - Nicole Brenner
- From the Department of Clinical Neuroscience (A.K.H., J.H., T.O., L.A.), Karolinska Institutet, Stockholm, Sweden; Infections and Cancer Epidemiology (N.B., J.B., T.W.), German Cancer Research Center (DKFZ), Heidelberg; Center for Molecular Medicine (J.H., T.O.), Karolinska Institutet at Karolinska University Hospital, Solna, Sweden; and Institute of Environmental Medicine (L.A.), Karolinska Institutet, Stockholm, Sweden
| | - Julia Butt
- From the Department of Clinical Neuroscience (A.K.H., J.H., T.O., L.A.), Karolinska Institutet, Stockholm, Sweden; Infections and Cancer Epidemiology (N.B., J.B., T.W.), German Cancer Research Center (DKFZ), Heidelberg; Center for Molecular Medicine (J.H., T.O.), Karolinska Institutet at Karolinska University Hospital, Solna, Sweden; and Institute of Environmental Medicine (L.A.), Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- From the Department of Clinical Neuroscience (A.K.H., J.H., T.O., L.A.), Karolinska Institutet, Stockholm, Sweden; Infections and Cancer Epidemiology (N.B., J.B., T.W.), German Cancer Research Center (DKFZ), Heidelberg; Center for Molecular Medicine (J.H., T.O.), Karolinska Institutet at Karolinska University Hospital, Solna, Sweden; and Institute of Environmental Medicine (L.A.), Karolinska Institutet, Stockholm, Sweden
| | - Tim Waterboer
- From the Department of Clinical Neuroscience (A.K.H., J.H., T.O., L.A.), Karolinska Institutet, Stockholm, Sweden; Infections and Cancer Epidemiology (N.B., J.B., T.W.), German Cancer Research Center (DKFZ), Heidelberg; Center for Molecular Medicine (J.H., T.O.), Karolinska Institutet at Karolinska University Hospital, Solna, Sweden; and Institute of Environmental Medicine (L.A.), Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- From the Department of Clinical Neuroscience (A.K.H., J.H., T.O., L.A.), Karolinska Institutet, Stockholm, Sweden; Infections and Cancer Epidemiology (N.B., J.B., T.W.), German Cancer Research Center (DKFZ), Heidelberg; Center for Molecular Medicine (J.H., T.O.), Karolinska Institutet at Karolinska University Hospital, Solna, Sweden; and Institute of Environmental Medicine (L.A.), Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- From the Department of Clinical Neuroscience (A.K.H., J.H., T.O., L.A.), Karolinska Institutet, Stockholm, Sweden; Infections and Cancer Epidemiology (N.B., J.B., T.W.), German Cancer Research Center (DKFZ), Heidelberg; Center for Molecular Medicine (J.H., T.O.), Karolinska Institutet at Karolinska University Hospital, Solna, Sweden; and Institute of Environmental Medicine (L.A.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Trend S, Leffler J, Teige I, Frendéus B, Kermode AG, French MA, Hart PH. FcγRIIb Expression Is Decreased on Naive and Marginal Zone-Like B Cells From Females With Multiple Sclerosis. Front Immunol 2021; 11:614492. [PMID: 33505402 PMCID: PMC7832177 DOI: 10.3389/fimmu.2020.614492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
B cells are critical to the development of multiple sclerosis (MS), but the mechanisms by which they contribute to the disease are poorly defined. We hypothesised that the expression of CD32b (FcγRIIb), a receptor for the Fc region of IgG with inhibitory activities in B cells, is lower on B cell subsets from people with clinically isolated syndrome (CIS) or MS. CD32b expression was highest on post-naive IgM+ B cell subsets in healthy controls. For females with MS or CIS, significantly lower CD32b expression was identified on IgM+ B cell subsets, including naive and IgMhi MZ-like B cells, when compared with control females. Lower CD32b expression on these B cell subsets was associated with detectable anti-Epstein Barr Virus viral capsid antigen IgM antibodies, and higher serum levels of B cell activating factor. To investigate the effects of lower CD32b expression, B cells were polyclonally activated in the presence of IgG immune complexes, with or without a CD32b blocking antibody, and the expression of TNF and IL-10 in B cell subsets was assessed. The reduction of TNF but not IL-10 expression in controls mediated by IgG immune complexes was reversed by CD32b blockade in naive and IgMhi MZ-like B cells only. However, no consequence of lower CD32b expression on these cells from females with CIS or MS was detected. Our findings highlight a potential role for naive and marginal zone-like B cells in the immunopathogenesis of MS in females, which requires further investigation.
Collapse
Affiliation(s)
- Stephanie Trend
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Jonatan Leffler
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid Teige
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Björn Frendéus
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- Medical School and School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Prue H Hart
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
49
|
Völker JM, Arguissain FG, Manresa JB, Andersen OK. Characterization of Source-Localized EEG Activity During Sustained Deep-Tissue Pain. Brain Topogr 2021; 34:192-206. [PMID: 33403561 DOI: 10.1007/s10548-020-00815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Musculoskeletal pain is a clinical condition that is characterized by ongoing pain and discomfort in the deep tissues such as muscle, bones, ligaments, nerves, and tendons. In the last decades, it was subject to extensive research due to its high prevalence. Still, a quantitative description of the electrical brain activity during musculoskeletal pain is lacking. This study aimed to characterize intracranial current source density (CSD) estimations during sustained deep-tissue experimental pain. Twenty-three healthy volunteers received three types of tonic stimuli for three minutes each: computer-controlled cuff pressure (1) below pain threshold (sustained deep-tissue no-pain, SDTnP), (2) above pain threshold (sustained deep-tissue pain, SDTP) and (3) vibrotactile stimulation (VT). The CSD in response to these stimuli was calculated in seven regions of interest (ROIs) likely involved in pain processing: contralateral anterior cingulate cortex, contralateral primary somatosensory cortex, bilateral anterior insula, contralateral dorsolateral prefrontal cortex, posterior parietal cortex and contralateral premotor cortex. Results showed that participants exhibited an overall increase in spectral power during SDTP in all seven ROIs compared to both SDTnP and VT, likely reflecting the differences in the salience of these stimuli. Moreover, we observed a difference is CSD due to the type of stimulus, likely reflecting somatosensory discrimination of stimulus intensity. These results describe the different contributions of neural oscillations within these brain regions in the processing of sustained deep-tissue pain.
Collapse
Affiliation(s)
- Juan Manuel Völker
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark.
| | - Federico Gabriel Arguissain
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - José Biurrun Manresa
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark.,Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina
| | - Ole Kæseler Andersen
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| |
Collapse
|
50
|
Olsson T. Epstein Barr virus infection and immune defense related to HLA-DR15: consequences for multiple sclerosis. Eur J Immunol 2020; 51:56-59. [PMID: 33350470 PMCID: PMC7839707 DOI: 10.1002/eji.202049030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
MS is a multifactorial disease in which a series of genetic and non‐genetic, environmental factors plays a role in its etiology. In particular, HLA class II alleles, mainly HLADRB1*15:01 (HLA‐DR15), increase the risk for this disease. Out of several environmental factors, and with regard to infections, EBV remains to be a strong candidate, and may synergize with HLA‐DR15 thus increasing the risk for MS. In this issue of the European Journal of Immunology, Zdimerova et al. present highly interesting experimental data using EBV infection in immune‐deficient mice engrafted with human immune cells, either HLA‐DR15+ or HLA‐DRB1*04:01 (HLA DR4), here after denoted as HLA‐DR15−. As a result of EBV infection, the viral load and CD8+ cell expansion were conspicuously higher in mice engrafted with HLA‐DR15+ compared to HLA‐DR15− mice; and myelin basic protein specific T cells emerged in mice engrafted with HLA‐DR15 bearing cells. This study sheds light on how EBV and the class II DR15 haplotype may jointly predispose and synergize in the etiology of MS.
Collapse
Affiliation(s)
- Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|