1
|
Kumar R, Igwegbe CA, Khandel SK. Nanotherapeutic and Nano-Bio Interface for Regeneration and Healing. Biomedicines 2024; 12:2927. [PMID: 39767834 PMCID: PMC11673698 DOI: 10.3390/biomedicines12122927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Wound and injury healing processes are intricate and multifaceted, involving a sequence of events from coagulation to scar tissue formation. Effective wound management is crucial for achieving favorable clinical outcomes. Understanding the cellular and molecular mechanisms underlying wound healing, inflammation, and regeneration is essential for developing innovative therapeutics. This review explored the interplay of cellular and molecular processes contributing to wound healing, focusing on inflammation, innervation, angiogenesis, and the role of cell surface adhesion molecules. Additionally, it delved into the significance of calcium signaling in skeletal muscle regeneration and its implications for regenerative medicine. Furthermore, the therapeutic targeting of cellular senescence for long-term wound healing was discussed. The integration of cutting-edge technologies, such as quantitative imaging and computational modeling, has revolutionized the current approach of wound healing dynamics. The review also highlighted the role of nanotechnology in tissue engineering and regenerative medicine, particularly in the development of nanomaterials and nano-bio tools for promoting wound regeneration. Moreover, emerging nano-bio interfaces facilitate the efficient transport of biomolecules crucial for regeneration. Overall, this review provided insights into the cellular and molecular mechanisms of wound healing and regeneration, emphasizing the significance of interdisciplinary approaches and innovative technologies in advancing regenerative therapies. Through harnessing the potential of nanoparticles, bio-mimetic matrices, and scaffolds, regenerative medicine offers promising avenues for restoring damaged tissues with unparalleled precision and efficacy. This pursuit marks a significant departure from traditional approaches, offering promising avenues for addressing longstanding challenges in cellular and tissue repair, thereby significantly contributing to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Rajiv Kumar
- Faculty of Science, University of Delhi, Delhi 110007, India
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka 420218, Nigeria;
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Shri Krishna Khandel
- Clinical Diagnosis and Investigation (Rognidan), National Institute of Ayurveda, Jaipur 302002, India;
| |
Collapse
|
2
|
Krishna RH, Chandraprabha MN, Monika P, Br T, Chaudhary V, Manjunatha C. Biomolecule conjugated inorganic nanoparticles for biomedical applications: A review. Biotechnol Genet Eng Rev 2024; 40:3611-3652. [PMID: 36424727 DOI: 10.1080/02648725.2022.2147678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/29/2022] [Indexed: 11/27/2022]
Abstract
Last decade has witnessed impressive progress in the fields of medicine and bioengineering with the aid of nanomaterials. Nanomaterials are favoured for their improved bio-chemical as well as mechanical properties with tremendous applications in biomedical domains such as disease diagnosis, targeted drug delivery, medical imaging, in vitro diagnostics, designing innovatory cross-functional implants and regenerative tissue engineering. The current situation insists upon crafting nanotools that are capable of catering to biological needs and construct more efficient biomedical strategies. In the recent years, surface functionalization and capping with biomolecules has initiated substantial interest towards research. In this regard, search of suitable biofunctionalized nanoparticles seem to be like finding pearls from ocean. Conjugating biological molecules with inorganic materials has paved the way for unravelling innovative functional materials with dramatically improved properties and a wide range of uses. Inorganic nanoparticles such as metals, metal oxides, as well as quantum dots have been hybridised or conjugated with biomolecules such as proteins, peptides, carbohydrates, and nucleic acids. The present review reports on various biomolecule functionalized inorganic nanomaterials highlighting the biomolecule-inorganic nanoparticle interaction studies, the mechanism of functionalization, antimicrobial efficacy of the functionalised nanoconjugates and its use in various biomedical applications.
Collapse
Affiliation(s)
- R Hari Krishna
- Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore, India
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - M N Chandraprabha
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Tanuja Br
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - C Manjunatha
- Center for Nanomaterials and devices, Department of Chemistry, RV College of Engineering, Bangalore, India
| |
Collapse
|
3
|
Döring K, Sperling S, Ninkovic M, Lanfermann H, Streit F, Fischer A, Rohde V, Malinova V. Ultrasound-Induced Release Profile of Nimodipine from Drug-Loaded Block Copolymers after Singular vs. Repeated Sonication: In Vitro Analysis in Artificial Cerebrospinal Fluid. Brain Sci 2024; 14:912. [PMID: 39335407 PMCID: PMC11430527 DOI: 10.3390/brainsci14090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE Nimodipine still represents a unique selling point in the prevention of delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH). Its intrathecal effect is limited by a low oral bioavailability, leading to the development of nanocarrier systems to overcome this limitation. This study investigated the ultrasound-induced release profile of nimodipine from drug-loaded copolymers in artificial cerebrospinal fluid (CSF) within 72 h after a singular versus repeated sonication. METHODS Pluronic® F127 copolymers (Sigma-Aldrich, Taufkirchen, Germany)were loaded with nimodipine by direct dissolution. Spontaneous and on-demand drug release by ultrasound (1 MHz at 1.7 W/cm2) was determined in artificial cerebrospinal fluid using the dialysis bag method. Nimodipine concentrations were measured at predefined time points within 72 h of sonication. RESULTS Spontaneous release of nimodipine was enhanced by ultrasound application with significantly increased nimodipine concentrations two hours after a repeated sonication compared to a singular sonication (median 1.62 vs. 17.48 µg/µL, p = 0.04). A further trend was observed after four hours (median 1.82 vs. 22.09 µg/µL, p = 0.06). There was no difference in the overall nimodipine concentrations between the groups with a singular versus repeated sonication (357.2 vs. 540.3 µg/µL, p = 0.60) after 72 h. CONCLUSIONS Repeated sonication resulted in an acceleration of nimodipine release from the drug-loaded copolymer in a CSF medium. These findings confirm the proof of principle of an on-demand guidance of nimodipine release from nimodipine-loaded nanodrugs by means of ultrasound, which suggests that evaluating the concept in an animal model may be appropriate.
Collapse
Affiliation(s)
- Katja Döring
- Department of Neurosurgery, University Medical Center Göttingen, 37075 Göttingen, Germany; (K.D.); (S.S.); (M.N.); (V.R.)
- Department of Interventional and Diagnostic Neuroradiology, Hannover Medical School, 30625 Hannover, Germany;
| | - Swetlana Sperling
- Department of Neurosurgery, University Medical Center Göttingen, 37075 Göttingen, Germany; (K.D.); (S.S.); (M.N.); (V.R.)
| | - Milena Ninkovic
- Department of Neurosurgery, University Medical Center Göttingen, 37075 Göttingen, Germany; (K.D.); (S.S.); (M.N.); (V.R.)
| | - Heinrich Lanfermann
- Department of Interventional and Diagnostic Neuroradiology, Hannover Medical School, 30625 Hannover, Germany;
| | - Frank Streit
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.S.); (A.F.)
| | - Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.S.); (A.F.)
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, 37075 Göttingen, Germany; (K.D.); (S.S.); (M.N.); (V.R.)
| | - Vesna Malinova
- Department of Neurosurgery, University Medical Center Göttingen, 37075 Göttingen, Germany; (K.D.); (S.S.); (M.N.); (V.R.)
- Department of Neurosurgery, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Zhang K, Deng Y, Liu Y, Luo J, Glidle A, Cooper JM, Xu S, Yang Y, Lv S, Xu Z, Wu Y, Sha L, Xu Q, Yin H, Cai X. Investigating Communication Dynamics in Neuronal Network using 3D Gold Microelectrode Arrays. ACS NANO 2024; 18:17162-17174. [PMID: 38902594 PMCID: PMC11349149 DOI: 10.1021/acsnano.4c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Although in vitro neuronal network models hold great potential for advancing neuroscience research, with the capacity to provide fundamental insights into mechanisms underlying neuronal functions, the dynamics of cell communication within such networks remain poorly understood. Here, we develop a customizable, polymer modified three-dimensional gold microelectrode array with sufficient stability for high signal-to-noise, long-term, neuronal recording of cultured networks. By using directed spatial and temporal patterns of electrical stimulation of cells to explore synaptic-based communication, we monitored cell network dynamics over 3 weeks, quantifying communication capability using correlation heatmaps and mutual information networks. Analysis of synaptic delay and signal speed between cells enabled us to establish a communication connectivity model. We anticipate that our discoveries of the dynamic changes in communication across the neuronal network will provide a valuable tool for future studies in understanding health and disease as well as in developing effective platforms for evaluating therapies.
Collapse
Affiliation(s)
- Kui Zhang
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute,, Chinese Academy of Sciences, Beijing 100190, China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Deng
- State
Key Laboratory of Medical Molecular Biology, Institute of Basic Medical
Sciences, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing 100005, China
| | - Yaoyao Liu
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute,, Chinese Academy of Sciences, Beijing 100190, China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute,, Chinese Academy of Sciences, Beijing 100190, China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew Glidle
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8LT, United Kingdom
| | - Jonathan M. Cooper
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8LT, United Kingdom
| | - Shihong Xu
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute,, Chinese Academy of Sciences, Beijing 100190, China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute,, Chinese Academy of Sciences, Beijing 100190, China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute,, Chinese Academy of Sciences, Beijing 100190, China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute,, Chinese Academy of Sciences, Beijing 100190, China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute,, Chinese Academy of Sciences, Beijing 100190, China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longzhe Sha
- State
Key Laboratory of Medical Molecular Biology, Institute of Basic Medical
Sciences, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing 100005, China
| | - Qi Xu
- State
Key Laboratory of Medical Molecular Biology, Institute of Basic Medical
Sciences, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing 100005, China
| | - Huabing Yin
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8LT, United Kingdom
| | - Xinxia Cai
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute,, Chinese Academy of Sciences, Beijing 100190, China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Kong F, Xu Z, Yang G, Jia Q, Mo F, Jing L, Luo J, Jin H, Cai X. Microelectrode Arrays for Detection of Neural Activity in Depressed Rats: Enhanced Theta Activity in the Basolateral Amygdala. CYBORG AND BIONIC SYSTEMS 2024; 5:0125. [PMID: 38841725 PMCID: PMC11151173 DOI: 10.34133/cbsystems.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
Depression is a common and severely debilitating neuropsychiatric disorder. Multiple studies indicate a strong correlation between the occurrence of immunological inflammation and the presence of depression. The basolateral amygdala (BLA) is crucial in the cognitive and physiological processing and control of emotion. However, due to the lack of detection tools, the neural activity of the BLA during depression is not well understood. In this study, a microelectrode array (MEA) based on the shape and anatomical location of the BLA in the brain was designed and manufactured. Rats were injected with lipopolysaccharide (LPS) for 7 consecutive days to induce depressive behavior. We used the MEA to detect neural activity in the BLA before modeling, during modeling, and after LPS administration on 7 consecutive days. The results showed that after LPS treatment, the spike firing of neurons in the BLA region of rats gradually became more intense, and the local field potential power also increased progressively. Further analysis revealed that after LPS administration, the spike firing of BLA neurons was predominantly in the theta rhythm, with obvious periodic firing characteristics appearing after the 7 d of LPS administration, and the relative power of the local field potential in the theta band also significantly increased. In summary, our results suggest that the enhanced activity of BLA neurons in the theta band is related to the depressive state of rats, providing valuable guidance for research into the neural mechanisms of depression.
Collapse
Affiliation(s)
- Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department,
Peking University First Hospital, Beijing 100034, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Yang S, Baeg E, Kim K, Kim D, Xu D, Ahn JH, Yang S. Neurodiagnostic and neurotherapeutic potential of graphene nanomaterials. Biosens Bioelectron 2024; 247:115906. [PMID: 38101185 DOI: 10.1016/j.bios.2023.115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Graphene has emerged as a highly promising nanomaterial for a variety of advanced technologies, including batteries, energy, electronics, and biotechnologies. Its recent contribution to neurotechnology is particularly noteworthy because its superior conductivity, chemical resilience, biocompatibility, thermal stability, and scalable nature make it well-suited for measuring brain activity and plasticity in health and disease. Graphene-mediated compounds are microfabricated in two central methods: chemical processes with natural graphite and chemical vapor deposition of graphene in a film form. They are widely used as biosensors and bioelectronics for neurodiagnostic and neurotherapeutic purposes in several brain disorders, such as Parkinson's disease, stroke, glioma, epilepsy, tinnitus, and Alzheimer's disease. This review provides an overview of studies that have demonstrated the technical advances of graphene nanomaterials in neuroscientific and clinical applications. We also discuss current limitations and future demands in relation to the clinical application of graphene, highlighting its potential technological and clinical significance for treating brain disorders. Our review underscores the potential of graphene nanomaterials as powerful tools for advancing the understanding of the brain and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sunggu Yang
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea; gBrain Inc., Incheon, 21984, Republic of Korea.
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kyungtae Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Donggue Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Duo Xu
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Sisubalan N, Shalini R, Ramya S, Sivamaruthi BS, Chaiyasut C. Recent advances in nanomaterials for neural applications: opportunities and challenges. Nanomedicine (Lond) 2023; 18:1979-1994. [PMID: 38078433 DOI: 10.2217/nnm-2023-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Nanomedicines are promising for delivering drugs to the central nervous system, though their precision is still being improved. Fortifying nanoparticles with vital molecules can interact with the blood-brain barrier, enabling access to brain tissue. This study summarizes recent advances in nanomedicine to treat neurological complications. The integration of nanotechnology into cell biology aids in the study of brain cells' interactions. Magnetic microhydrogels have exhibited superior neuron activation compared with superparamagnetic iron oxide nanoparticles and hold promise for neuropsychiatric disorders. Nanomaterials have shown notable results, such as tackling neurodegenerative diseases by hindering harmful protein buildup and regulating cellular processes. However, further studies of the safety and effectiveness of nanoparticles in managing neurological diseases and disorders are still required.
Collapse
Affiliation(s)
- Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ramadoss Shalini
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Sakthivel Ramya
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
8
|
Karikari E, Koshechkin KA. Review on brain-computer interface technologies in healthcare. Biophys Rev 2023; 15:1351-1358. [PMID: 37974976 PMCID: PMC10643750 DOI: 10.1007/s12551-023-01138-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Brain-computer interface (BCI) technologies have developed as a game changer, altering how humans interact with computers and opening up new avenues for understanding and utilizing the power of the human brain. The goal of this research study is to assess recent breakthroughs in BCI technologies and their future prospects. The paper starts with an outline of the fundamental concepts and principles that underpin BCI technologies. It examines the many forms of BCIs, including as invasive, partially invasive, and non-invasive interfaces, emphasizing their advantages and disadvantages. The progress of BCI hardware and signal processing techniques is investigated, with a focus on the shift from bulky and invasive systems to more portable and user-friendly options. Following that, the article delves into the important advances in BCI applications across several fields. It investigates the use of BCIs in healthcare, particularly in neurorehabilitation, assistive technology, and cognitive enhancement. BCIs' potential for boosting human capacities such as communication, motor control, and sensory perception is being thoroughly researched. Furthermore, the article investigates developing BCI applications in gaming, entertainment, and virtual reality, demonstrating how BCI technologies are growing outside medical and therapeutic settings. The study also gives light on the problems and limits that prevent BCIs from being widely adopted. Ethical concerns about privacy, data security, and informed permission are addressed, highlighting the importance of strong legislative frameworks to enable responsible and ethical usage of BCI technologies. Furthermore, the study delves into technological issues such as increasing signal resolution and precision, increasing system reliability, and enabling smooth connection with existing technology. Finally, this study paper gives an in-depth examination of the advances and future possibilities of BCI technologies. It emphasizes the transformative influence of BCIs on human-computer interaction and their potential to alter healthcare, gaming, and other industries. This research intends to stimulate further innovation and progress in the field of brain-computer interfaces by addressing problems and imagining future possibilities.
Collapse
Affiliation(s)
- Evelyn Karikari
- Department of Public Health and Healthcare, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Konstantin A. Koshechkin
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Prado CM, Burgos Ferreira PA, Alves de Lima L, Gomes Trindade EK, Fireman Dutra R. A Methylene Blue-Enhanced Nanostructured Electrochemical Immunosensor for H-FABP Myocardial Injury Biomarker. BIOSENSORS 2023; 13:873. [PMID: 37754107 PMCID: PMC10526172 DOI: 10.3390/bios13090873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
A sensitive electrochemical immunosensor for the detection of the heart-type fatty acid binding protein (HFABP), an earlier biomarker for acute myocardial infarction than Troponins, is described. The sensing platform was enhanced with methylene blue (MB) redox coupled to carbon nanotubes (CNT) assembled on a polymer film of polythionine (PTh). For this strategy, monomers of thionine rich in amine groups were electrosynthesized by cyclic voltammetry on the immunosensor's gold surface, forming an electroactive film with excellent electron transfer capacity. Stepwise sensor surface preparation was electrochemically characterized at each step and scanning electronic microscopy was carried out showing all the preparation steps. The assembled sensor platform combines MB and PTh in a synergism, allowing sensitive detection of the H-FABP in a linear response from 3.0 to 25.0 ng∙mL-1 with a limit of detection of 1.47 ng∙mL-1 HFABP that is similar to the clinical level range for diagnostics. H-FABP is a newer powerful biomarker for distinguishing between unstable angina and acute myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | - Rosa Fireman Dutra
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-90, Brazil
| |
Collapse
|
10
|
Cortés-Llanos B, Rauti R, Ayuso-Sacido Á, Pérez L, Ballerini L. Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks. Biomolecules 2023; 13:biom13050783. [PMID: 37238653 DOI: 10.3390/biom13050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Nanomaterials design, synthesis, and characterization are ever-expanding approaches toward developing biodevices or neural interfaces to treat neurological diseases. The ability of nanomaterials features to tune neuronal networks' morphology or functionality is still under study. In this work, we unveil how interfacing mammalian brain cultured neurons and iron oxide nanowires' (NWs) orientation affect neuronal and glial densities and network activity. Iron oxide NWs were synthesized by electrodeposition, fixing the diameter to 100 nm and the length to 1 µm. Scanning electron microscopy, Raman, and contact angle measurements were performed to characterize the NWs' morphology, chemical composition, and hydrophilicity. Hippocampal cultures were seeded on NWs devices, and after 14 days, the cell morphology was studied by immunocytochemistry and confocal microscopy. Live calcium imaging was performed to study neuronal activity. Using random nanowires (R-NWs), higher neuronal and glial cell densities were obtained compared with the control and vertical nanowires (V-NWs), while using V-NWs, more stellate glial cells were found. R-NWs produced a reduction in neuronal activity, while V-NWs increased the neuronal network activity, possibly due to a higher neuronal maturity and a lower number of GABAergic neurons, respectively. These results highlight the potential of NWs manipulations to design ad hoc regenerative interfaces.
Collapse
Affiliation(s)
- Belén Cortés-Llanos
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Rossana Rauti
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
- Deparment of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy
| | - Ángel Ayuso-Sacido
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Experimental Science and Faculty of Medicine, University of Francisco de Vitoria, 28223 Madrid, Spain
| | - Lucas Pérez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
| | - Laura Ballerini
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
| |
Collapse
|
11
|
Upconverting Nanoparticles as a New Bio-Imaging Strategy-Investigating Intracellular Trafficking of Endogenous Processes in Neural Tissue. Int J Mol Sci 2023; 24:ijms24021122. [PMID: 36674638 PMCID: PMC9866400 DOI: 10.3390/ijms24021122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In recent years, rare-earth-doped upconverting nanoparticles (UCNPs) have been widely used in different life sciences due to their unique properties. Nanoparticles have become a multifunctional and promising new approach to neurobiological disorders and have shown extraordinary application potential to overcome the problems related to conventional treatment strategies. This study evaluated the internalization mechanisms, bio-distribution, and neurotoxicity of NaYF4:20%Yb3+,2%Er3+ UCNPs in rat organotypic hippocampal slices. TEM results showed that UCNPs were easily internalized by hippocampal cells and co-localized with selected organelles inside neurons and astrocytes. Moreover, the UCNPs were taken into the neurons via clathrin- and caveolae-mediated endocytosis. Propidium iodide staining and TEM analysis did not confirm the adverse effects of UCNPs on hippocampal slice viability and morphology. Therefore, UCNPs may be a potent tool for bio-imaging and testing new therapeutic strategies for brain diseases in the future.
Collapse
|
12
|
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22:1. [PMID: 36593487 PMCID: PMC9809121 DOI: 10.1186/s12938-022-01062-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.
Collapse
Affiliation(s)
- Leili Shabani
- grid.412571.40000 0000 8819 4698Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Azarnew
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- grid.412571.40000 0000 8819 4698Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
No Y, Kim NH, Zafar MS, Park SH, Lee J, Chae H, Yun WS, Kim YD, Kim YH. Effect of Secondary Structures on the Adsorption of Peptides onto Hydrophobic Solid Surfaces Revealed by SALDI-TOF and MD Simulations. ACS OMEGA 2022; 7:43492-43498. [PMID: 36506148 PMCID: PMC9730778 DOI: 10.1021/acsomega.2c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
The adsorption of peptides and proteins on hydrophobic solid surfaces has received considerable research attention owing to their wide applications to biocompatible nanomaterials and nanodevices, such as biosensors and cell adhesion materials with reduced nanomaterial toxicity. However, fundamental understandings about physicochemical hydrophobic interactions between peptides and hydrophobic solid surfaces are still unknown. In this study, we investigate the effect of secondary structures on adsorption energies between peptides and hydrophobic solid surfaces via experimental and theoretical analyses using surface-assisted laser desorption/ionization-time-of-flight (SALDI-TOF) and molecular dynamics (MD) simulations. The hydrophobic interactions between peptides and hydrophobic solid surfaces measured via SALDI-TOF and MD simulations indicate that the hydrophobic interaction of peptides with random coil structures increased more than that of peptides with an α-helix structure when polar amino acids are replaced with hydrophobic amino acids. Additionally, our study sheds new light on the fundamental understanding of the hydrophobic interaction between hydrophobic solid surfaces and peptides that have diverse secondary structures.
Collapse
Affiliation(s)
- Young
Hyun No
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Muhammad Shahzad Zafar
- School
of Chemical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department
of Chemical Engineering, University of Engineering
and Technology (Faisalabad Campus), Lahore54890, Pakistan
| | - Seon Hwa Park
- Department
of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jaecheol Lee
- School
of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
- Biomedical
Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon16419, Republic of Korea
- Imnewrun
Inc., Suwon16419, Republic of Korea
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon16419, Republic of Korea
| | - Heeyeop Chae
- School
of Chemical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Wan Soo Yun
- Department
of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Young Dok Kim
- Department
of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yong Ho Kim
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Department
of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
- Imnewrun
Inc., Suwon16419, Republic of Korea
- Department
of Nano Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
14
|
Calero M, Moleiro LH, Sayd A, Dorca Y, Miquel-Rio L, Paz V, Robledo-Montaña J, Enciso E, Acción F, Herráez-Aguilar D, Hellweg T, Sánchez L, Bortolozzi A, Leza JC, García-Bueno B, Monroy F. Lipid nanoparticles for antisense oligonucleotide gene interference into brain border-associated macrophages. Front Mol Biosci 2022; 9:887678. [PMID: 36406277 PMCID: PMC9671215 DOI: 10.3389/fmolb.2022.887678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
A colloidal synthesis’ proof-of-concept based on the Bligh–Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia. The GR@LNPs are expected to demonstrate a bio-orthogonal genetic activity reacting with L-PGDS gene transcripts inside the living system without interfering with other genetic or biochemical circuitries. To facilitate selective BAM phagocytosis and avoid subsidiary absorption by other cells, they were functionalized with a mannosylated lipid as a specific MAN ligand for the mannose receptor presented by the macrophage surface. The GR@LNPs showed a high GR-packing density in a compact multilamellar configuration as structurally characterized by light scattering, zeta potential, and transmission electronic microscopy. As a preliminary biological evaluation of the mannosylated GR@LNP nanovectors into specifically targeted BAMs, we detected in vivo gene interference after brain delivery by intracerebroventricular injection (ICV) in Wistar rats subjected to gene therapy protocol. The results pave the way towards novel gene therapy platforms for advanced treatment of neuroinflammation-related pathologies with ASO@LNP nanovectors.
Collapse
Affiliation(s)
- Macarena Calero
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Lara H. Moleiro
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Aline Sayd
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Yeray Dorca
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Lluis Miquel-Rio
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Verónica Paz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Robledo-Montaña
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Eduardo Enciso
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Fernando Acción
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Diego Herráez-Aguilar
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Madrid, Spain
| | - Thomas Hellweg
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Luis Sánchez
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Analía Bortolozzi
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan C. Leza
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Borja García-Bueno
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- *Correspondence: Borja García-Bueno, ; Francisco Monroy,
| | - Francisco Monroy
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- *Correspondence: Borja García-Bueno, ; Francisco Monroy,
| |
Collapse
|
15
|
Chaudhary V. Prospects of green nanotechnology for efficient management of neurodegenerative diseases. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1055708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current theranostics for neurodegenerative diseases (NDD) management are majorly symptomatic due to a lack of identification of early-stage biomarkers and the inefficiency of drugs to penetrate through the blood-brain barrier. Recently, the Neuro-nanotechnology interface has emerged as a potential strategy for diagnosis, monitoring, and treatment of NDDs owing to smaller particle size, high specific surface area, tunable physicochemical attributes and rich surface functionalities. However, toxicity and biocompatibility are two significant challenges restricting their commercial prospect in NDD management. On the contrary, green nanosystems fabricated using plant extracts, microorganisms, biome-based precursors, repurposed-byproducts, exosomes, and protein-based bio-nanomaterials are economical, eco-friendly, biocompatible and renewable due to the abundance of biodiversity. This prospect explores the novel and cutting-edge interface of green nanosystems and NDDs for developing diagnostic and implantable devices, targeted drug delivery strategies, surgical prostheses, therapeutics, treatment, nanoscaffolds for neurogeneration, and immunity development. Besides, it discusses the challenges, alternate solutions and advanced prospects of green nanosystems with the integration of modern-age technologies for the development of sustainable green Neuro-nanotechnology for efficient management of NDDs.
Collapse
|
16
|
Döring K, Sperling S, Ninkovic M, Schroeder H, Fischer A, Stadelmann C, Streit F, Binder L, Mielke D, Rohde V, Malinova V. Ultrasound-Induced Release of Nimodipine from Drug-Loaded Block Copolymer Micelles: In Vivo Analysis. Transl Stroke Res 2022; 13:792-800. [PMID: 34988870 PMCID: PMC9391244 DOI: 10.1007/s12975-021-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022]
Abstract
Nimodipine prevents cerebral vasospasm and improves functional outcome after aneurysmal subarachnoid hemorrhage (aSAH). The beneficial effect is limited by low oral bioavailability of nimodipine, which resulted in an increasing use of nanocarriers with sustained intrathecal drug release in order to overcome this limitation. However, this approach facilitates only a continuous and not an on-demand nimodipine release during the peak time of vasospasm development. In this study, we aimed to assess the concept of controlled drug release from nimodipine-loaded copolymers by ultrasound application in the chicken chorioallantoic membrane (CAM) model. Nimodipine-loaded copolymers were produced with the direct dissolution method. Vasospasm of the CAM vessels was induced by means of ultrasound (Physiomed, continuous wave, 3 MHz, 1.0 W/cm2). The ultrasound-mediated nimodipine release (Physiomed, continuous wave, 1 MHz, 1.7 W/cm2) and its effect on the CAM vessels were evaluated. Measurements of vessel diameter before and after ultrasound-induced nimodipine release were performed using ImageJ. The CAM model could be successfully carried out in all 25 eggs. After vasospasm induction and before drug release, the mean vessel diameter was at 57% (range 44-61%) compared to the baseline diameter (set at 100%). After ultrasound-induced drug release, the mean vessel diameter of spastic vessels increased again to 89% (range 83-91%) of their baseline diameter, which was significant (p = 0.0002). We were able to provide a proof of concept for in vivo vasospasm induction by ultrasound application in the CAM model and subsequent resolution by ultrasound-mediated nimodipine release from nanocarriers. This concept merits further evaluation in a rat SAH model.
Collapse
Affiliation(s)
- Katja Döring
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
- Department of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Swetlana Sperling
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Milena Ninkovic
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Schroeder
- Department for Epigenetics and System Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - André Fischer
- Department for Epigenetics and System Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Streit
- Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Lutz Binder
- Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Vesna Malinova
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
17
|
Abstract
Neurogenesis encompasses the formation and development of neurons in the mammalian brain, mainly occurring in hippocampus and the olfactory system. This process is rapid, accurate, and very sensitive to the external stressors including environment, diet, age, anxiety, stress, depression, diet, and hormones. The range of stressors is big and directly impacts the generation, maturation and migration, efficacy, and myelination of the neuronal cells. The field of regenerative medicine focuses on combating the direct or indirect effects of these stressors on the process of neurogenesis, and ensures increased general and neuronal communications and functioning. Understanding the deep secrets of brain signaling and devising ways to increase drug availability is tough, considering the complexity and intricate details of the neuronal networks and signaling in the CNS. It is imperative to understand this complexity and introduce potent and efficacious ways to combat diseases. This perspective offers an insight into how neurogenesis could be aided by nanotechnology and what plausible nanomaterials are available to culminate neurogenesis-related neurological disorders. The nanomaterials are promising as they are minute, robust, and effective and help in diagnostics and therapeutics such as drug delivery, maturation and neuroprotection, neurogenesis, imaging, and neurosurgery.
Collapse
|
18
|
Wang B, Huang M, Dang P, Xie J, Zhang X, Yan X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers (Basel) 2022; 14:polym14122323. [PMID: 35745900 PMCID: PMC9228596 DOI: 10.3390/polym14122323] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Polyetheretherketone (PEEK) has been widely applied in fixed dental prostheses, comprising crowns, fixed partial dentures, and post-and-core. PEEK’s excellent mechanical properties facilitate better stress distribution than conventional materials, protecting the abutment teeth. However, the stiffness of PEEK is not sufficient, which can be improved via fiber reinforcement. PEEK is biocompatible. It is nonmutagenic, noncytotoxic, and nonallergenic. However, the chemical stability of PEEK is a double-edged sword. On the one hand, PEEK is nondegradable and intraoral corrosion is minimized. On the other hand, the inert surface makes adhesive bonding difficult. Numerous strategies for improving the adhesive properties of PEEK have been explored, including acid etching, plasma treatment, airborne particle abrasion, laser treatment, and adhesive systems.
Collapse
Affiliation(s)
- Biyao Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
| | - Minghao Huang
- Liaoning Provincial Key Laboratory of Oral Diseases, Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China;
| | - Pengrui Dang
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
| | - Jiahui Xie
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
| | - Xinwen Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China;
- Correspondence: (X.Z.); (X.Y.); Tel.: +86-024-31927731 (X.Z.); +86-024-31927715 (X.Y.)
| | - Xu Yan
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
- Correspondence: (X.Z.); (X.Y.); Tel.: +86-024-31927731 (X.Z.); +86-024-31927715 (X.Y.)
| |
Collapse
|
19
|
Xu S, Deng Y, Luo J, He E, Liu Y, Zhang K, Yang Y, Xu S, Sha L, Song Y, Xu Q, Cai X. High-Throughput PEDOT:PSS/PtNPs-Modified Microelectrode Array for Simultaneous Recording and Stimulation of Hippocampal Neuronal Networks in Gradual Learning Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15736-15746. [PMID: 35294190 DOI: 10.1021/acsami.1c23170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When it comes to mechanisms of brain functions such as learning and memory mediated by neural networks, existing multichannel electrophysiological detection and regulation technology at the cellular level does not suffice. To address this challenge, a 128-channel microelectrode array (MEA) was fabricated for electrical stimulation (ES) training and electrophysiological recording of the hippocampal neurons in vitro. The PEDOT:PSS/PtNPs-coated microelectrodes dramatically promote the recording and electrical stimulation performance. The MEA exhibited low impedance (10.94 ± 0.49 kohm), small phase delay (-12.54 ± 0.51°), high charge storage capacity (14.84 ± 2.72 mC/cm2), and high maximum safe injection charge density (4.37 ± 0.22 mC/cm2), meeting the specific requirements for training neural networks in vitro. A series of ESs at various frequencies was applied to the neuronal cultures in vitro, seeking the optimum training mode that enables the neuron to display the most obvious plasticity, and 1 Hz ES was determined. The network learning process, including three consecutive trainings, affected the original random spontaneous activity. Along with that, the firing pattern gradually changed to burst and the correlation and synchrony of the neuronal activity in the network have progressively improved, increasing by 314% and 240%, respectively. The neurons remembered these changes for at least 4 h. Collectively, ES activates the learning and memory functions of neurons, which is manifested in transformations in the discharge pattern and the improvement of network correlation and synchrony. This study offers a high-performance MEA revealing the underlying learning and memory functions of the brain and therefore serves as a useful tool for the development of brain functions in the future.
Collapse
Affiliation(s)
- Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Sharma KD, Alghazali KM, Hamzah RN, Pandanaboina SC, Nima Alsudani ZA, Muhi M, Watanabe F, Zhou GL, Biris AS, Xie JY. Gold Nanorod Substrate for Rat Fetal Neural Stem Cell Differentiation into Oligodendrocytes. NANOMATERIALS 2022; 12:nano12060929. [PMID: 35335742 PMCID: PMC8953860 DOI: 10.3390/nano12060929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Gold nanorods (AuNRs) have been proposed to promote stem cell differentiation in vitro and in vivo. In this study, we examined a particular type of AuNR in supporting the differentiation of rat fetal neural stem cells (NSCs) into oligodendrocytes (ODCs). AuNRs were synthesized according to the seed-mediated method resulting in nanorods with an aspect ratio of around 3 (~12 nm diameter, 36 nm length) and plasmon resonance at 520 and 780 nm, as confirmed by transmission electron microscopy (TEM) and UV-vis spectroscopy, respectively. A layer-by-layer approach was used to fabricate the AuNR substrate on the functionalized glass coverslips. NSCs were propagated for 10 days using fibroblast growth factor, platelet-derived growth-factor-supplemented culture media, and differentiated on an AuNR or poly-D-lysine (PDL)-coated surface using differentiation media containing triiodothyronine for three weeks. Results showed that NSCs survived better and differentiated faster on the AuNRs compared to the PDL surface. By week 1, almost all cells had differentiated on the AuNR substrate, whereas only ~60% differentiated on the PDL surface, with similar percentages of ODCs and astrocytes. This study indicates that functionalized AuNR substrate does promote NSC differentiation and could be a viable tool for tissue engineering to support the differentiation of stem cells.
Collapse
Affiliation(s)
- Krishna Deo Sharma
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA; (K.D.S.); (G.-L.Z.)
| | - Karrer M. Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
- NuShores BioSciences LLC, Little Rock, AR 72211, USA
| | - Rabab N. Hamzah
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | | | - Zeid A. Nima Alsudani
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | - Malek Muhi
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | - Guo-Lei Zhou
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA; (K.D.S.); (G.-L.Z.)
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
- Correspondence: (A.S.B.); (J.Y.X.); Tel.: +1-501-916-3456 (A.S.B.); +1-870-680-8877 (J.Y.X.); Fax: +1-501-916-3601 (A.S.B.); +1-870-680-8845 (J.Y.X.)
| | - Jennifer Yanhua Xie
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA; (K.D.S.); (G.-L.Z.)
- Department of Basic Sciences, New York Institute of Technology College of Osteopathic Medicine, Arkansas State University, Jonesboro, AR 72401, USA
- Correspondence: (A.S.B.); (J.Y.X.); Tel.: +1-501-916-3456 (A.S.B.); +1-870-680-8877 (J.Y.X.); Fax: +1-501-916-3601 (A.S.B.); +1-870-680-8845 (J.Y.X.)
| |
Collapse
|
21
|
Döring K, Sperling S, Ninkovic M, Gasimov T, Stadelmann C, Streit F, Binder L, Rohde V, Malinova V. Ultrasound-induced release of nimodipine from drug-loaded block copolymers: In vitro analysis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Tringides CM, Vachicouras N, de Lázaro I, Wang H, Trouillet A, Seo BR, Elosegui-Artola A, Fallegger F, Shin Y, Casiraghi C, Kostarelos K, Lacour SP, Mooney DJ. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. NATURE NANOTECHNOLOGY 2021; 16:1019-1029. [PMID: 34140673 PMCID: PMC9233755 DOI: 10.1038/s41565-021-00926-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/05/2021] [Indexed: 05/10/2023]
Abstract
Living tissues are non-linearly elastic materials that exhibit viscoelasticity and plasticity. Man-made, implantable bioelectronic arrays mainly rely on rigid or elastic encapsulation materials and stiff films of ductile metals that can be manipulated with microscopic precision to offer reliable electrical properties. In this study, we have engineered a surface microelectrode array that replaces the traditional encapsulation and conductive components with viscoelastic materials. Our array overcomes previous limitations in matching the stiffness and relaxation behaviour of soft biological tissues by using hydrogels as the outer layers. We have introduced a hydrogel-based conductor made from an ionically conductive alginate matrix enhanced with carbon nanomaterials, which provide electrical percolation even at low loading fractions. Our combination of conducting and insulating viscoelastic materials, with top-down manufacturing, allows for the fabrication of electrode arrays compatible with standard electrophysiology platforms. Our arrays intimately conform to the convoluted surface of the heart or brain cortex and offer promising bioengineering applications for recording and stimulation.
Collapse
Affiliation(s)
- Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Nicolas Vachicouras
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Irene de Lázaro
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Hua Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Alix Trouillet
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Bo Ri Seo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Alberto Elosegui-Artola
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Florian Fallegger
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Yuyoung Shin
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Cinzia Casiraghi
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Bellaterra, Barcelona, Spain
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
23
|
Lebovka NI, Tatochenko MO, Vygornitskii NV, Eserkepov AV, Akhunzhanov RK, Tarasevich YY. Connectedness percolation in the random sequential adsorption packings of elongated particles. Phys Rev E 2021; 103:042113. [PMID: 34005923 DOI: 10.1103/physreve.103.042113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
Connectedness percolation phenomena in the two-dimensional packing of elongated particles (discorectangles) were studied numerically. The packings were produced using random sequential adsorption off-lattice models with preferential orientations of the particles along a given direction. The partial ordering was characterized by the order parameter S, with S=0 for completely disordered films (random orientation of particles) and S=1 for completely aligned particles along the horizontal direction x. The aspect ratio (length-to-width ratio) of the particles was varied within the range ɛ∈[1;100]. Analysis of connectivity was performed assuming a core-shell structure of the particles. The value of S affected the structure of the packings, the formation of long-range connectivity, and the behavior of the electrical conductivity. The effects can be explained by taking accounting of the competition between the particles' orientational degrees of freedom and excluded volume effects. For aligned deposition, anisotropy in the electrical conductivity was observed with the values along the alignment direction σ_{x} being larger than the values in the perpendicular direction σ_{y}. Anisotropy in the localization of the percolation threshold was also observed in finite-sized packings, but it disappeared in the limit of infinitely large systems.
Collapse
Affiliation(s)
- Nikolai I Lebovka
- Laboratory of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kyiv 03142, Ukraine.,Department of Physics, Taras Shevchenko Kiev National University, Kyiv 01033, Ukraine
| | - Mykhailo O Tatochenko
- Laboratory of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kyiv 03142, Ukraine
| | - Nikolai V Vygornitskii
- Laboratory of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kyiv 03142, Ukraine
| | - Andrei V Eserkepov
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| | - Renat K Akhunzhanov
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| | - Yuri Yu Tarasevich
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| |
Collapse
|
24
|
Hivare P, Panda C, Gupta S, Bhatia D. Programmable DNA Nanodevices for Applications in Neuroscience. ACS Chem Neurosci 2021; 12:363-377. [PMID: 33433192 DOI: 10.1021/acschemneuro.0c00723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The broad area of neuroscience has witnessed an increasing exploitation of a variety of synthetic biomaterials with controlled nanosized features. Different bionanomaterials offer very peculiar physicochemical and biochemcial properties contributing to the development of novel imaging devices toward imaging the brain, or as smartly functionalized scaffolds, or diverse tools contributing toward a better understanding of nervous tissue and its functions. DNA nanotechnology-based devices and scaffolds have emerged as ideal materials for cellular and tissue engineering due to their very biocompatible properties, robust adaptation with diverse biological systems, and biosafety in terms of reduced immune response triggering. Here we present technologies with respect to DNA nanodevices that are designed to better interact with nervous systems like neural cells, advanced molecular imaging technologies for imaging brain, biomaterials in neural regeneration, neuroprotection, and targeted delivery of drugs and small molecules across the blood-brain barrier. Along with comments regarding the progress of DNA nanotechnology in neuroscience, we also present a perspective on challenges and opportunities for applying DNA nanotechnology in applications pertaining to neurosciences.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Chinmaya Panda
- Biological Engineering discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Sharad Gupta
- Biological Engineering discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Dhiraj Bhatia
- Biological Engineering discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
25
|
Maiolo L, Guarino V, Saracino E, Convertino A, Melucci M, Muccini M, Ambrosio L, Zamboni R, Benfenati V. Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Adv Healthc Mater 2021; 10:e2001268. [PMID: 33103375 DOI: 10.1002/adhm.202001268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Research over the past four decades has highlighted the importance of certain brain cells, called glial cells, and has moved the neurocentric vision of structure, function, and pathology of the nervous system toward a more holistic perspective. In this view, the demand for technologies that are able to target and both selectively monitor and control glial cells is emerging as a challenge across neuroscience, engineering, chemistry, and material science. Frequently neglected or marginally considered as a barrier to be overcome between neural implants and neuronal targets, glial cells, and in particular astrocytes, are increasingly considered as active players in determining the outcomes of device implantation. This review provides a concise overview not only of the previously established but also of the emerging physiological and pathological roles of astrocytes. It also critically discusses the most recent advances in biomaterial interfaces and devices that interact with glial cells and thus have enabled scientists to reach unprecedented insights into the role of astroglial cells in brain function and dysfunction. This work proposes glial interfaces and glial engineering as multidisciplinary fields that have the potential to enable significant advancement of knowledge surrounding cognitive function and acute and chronic neuropathologies.
Collapse
Affiliation(s)
- Luca Maiolo
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Via del Fosso del Cavaliere n.100 Roma 00133 Italy
| | - Vincenzo Guarino
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri Compositi e Biomateriali Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20 Napoli 80125 Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Annalisa Convertino
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Via del Fosso del Cavaliere n.100 Roma 00133 Italy
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche Istituto per la Studio dei Materiali Nanostrutturati via P. Gobetti 101 Bologna 40129 Italy
| | - Luigi Ambrosio
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri Compositi e Biomateriali Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20 Napoli 80125 Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| |
Collapse
|
26
|
Liu S, Zhao Y, Hao W, Zhang XD, Ming D. Micro- and nanotechnology for neural electrode-tissue interfaces. Biosens Bioelectron 2020; 170:112645. [DOI: 10.1016/j.bios.2020.112645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/14/2023]
|
27
|
Liao C, Li Y, Tjong SC. Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers (Basel) 2020; 12:E2858. [PMID: 33260490 PMCID: PMC7760052 DOI: 10.3390/polym12122858] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
In this article, recent advances in the development, preparation, biocompatibility and mechanical properties of polyetheretherketone (PEEK) and its composites for hard and soft tissue engineering are reviewed. PEEK has been widely employed for fabricating spinal fusions due to its radiolucency, chemical stability and superior sterilization resistance at high temperatures. PEEK can also be tailored into patient-specific implants for treating orbital and craniofacial defects in combination with additive manufacturing process. However, PEEK is bioinert, lacking osseointegration after implantation. Accordingly, several approaches including surface roughening, thin film coating technology, and addition of bioactive hydroxyapatite (HA) micro-/nanofillers have been adopted to improve osseointegration performance. The elastic modulus of PEEK is 3.7-4.0 GPa, being considerably lower than that of human cortical bone ranging from 7-30 GPa. Thus, PEEK is not stiff enough to sustain applied stress in load-bearing orthopedic implants. Therefore, HA micro-/nanofillers, continuous and discontinuous carbon fibers are incorporated into PEEK for enhancing its stiffness for load-bearing applications. Among these, carbon fibers are more effective than HA micro-/nanofillers in providing additional stiffness and load-bearing capabilities. In particular, the tensile properties of PEEK composite with 30wt% short carbon fibers resemble those of cortical bone. Hydrophobic PEEK shows no degradation behavior, thus hampering its use for making porous bone scaffolds. PEEK can be blended with hydrophilic polymers such as polyglycolic acid and polyvinyl alcohol to produce biodegradable scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
28
|
Hurmach Y, Rudyk M, Prylutska S, Hurmach V, Prylutskyy YI, Ritter U, Scharff P, Skivka L. C 60 Fullerene Governs Doxorubicin Effect on Metabolic Profile of Rat Microglial Cells In Vitro. Mol Pharm 2020; 17:3622-3632. [PMID: 32673486 DOI: 10.1021/acs.molpharmaceut.0c00691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: C60 fullerenes and their derivatives are actively investigated for the use in neuroscience. Applications of these nanoscale materials require the examination of their interaction with different neural cells, especially with microglia, because these cells, like other tissue resident phagocytes, are the earliest and most sensitive responders to nanoparticles. The aim of this study was to investigate the effect of C60 fullerene and its nanocomplex with doxorubicin (Dox) on the metabolic profile of brain-resident phagocytes-microglia-in vitro. Methods: Resting microglial cells from adult male Wistar rats were used in experiments. Potential C60 fullerene targets in microglial cells were studied by computer simulation. Microglia oxidative metabolism and phagocytic activity were examined by flow cytometry. Griess reaction and arginase activity colorimetric assay were used to explore arginine metabolism. Results: C60 fullerene when used alone did not influence microglia oxidative metabolism and phagocytic activity but shifted arginine metabolism toward the decrease of NO generation. Complexation of C60 fullerene with Dox (C60-Dox) potentiated the ability of the latter to stimulate NO generation. Conclusion: The capability of C60 fullerenes used alone to cause anti-inflammatory shift of microglia arginine metabolism makes them a promising agent for the correction of neuroinflammatory processes involved in neurodegeneration. The potentiating action of C60 fullerene on the immunomodulatory effect of Dox allows us to consider the C60 molecule as an attractive vehicle for this antitumor agent.
Collapse
Affiliation(s)
- Yevheniia Hurmach
- Bogomolets National Medical University, 13, T. Shevchenko blvd, 01601 Kyiv, Ukraine
| | - Mariia Rudyk
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| | - Vasyl Hurmach
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| | - Yuriy I Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Str., 25, 98693 Ilmenau, Germany
| | - Peter Scharff
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Str., 25, 98693 Ilmenau, Germany
| | - Larysa Skivka
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| |
Collapse
|
29
|
Lebovka NI, Vygornitskii NV, Tarasevich YY. Random sequential adsorption of partially ordered discorectangles onto a continuous plane. Phys Rev E 2020; 102:022133. [PMID: 32942432 DOI: 10.1103/physreve.102.022133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
A computer simulation was used to study the random sequential adsorption of identical discorectangles onto a continuous plane. The problem was analyzed for a wide range of discorectangle aspect ratios (ɛ∈[1;100]). We studied the anisotropic deposition, i.e., the orientations of the deposited particles were uniformly distributed within some interval such that the particles were preferentially aligned along a given direction. The kinetics of the changes in the packing fraction found at different values of such the alignment are discussed. Partial ordering of the discorectangles significantly affected the packing fraction at the jamming state, φ_{j}, and shifted the cusps in the φ_{j}(ɛ) dependencies. The structure of the jammed state was analyzed using the adsorption of disks of different diameters into the porous space between the deposited discorectangles. The analysis of the connectivity between the discorectangles was performed assuming a core-shell structure of particles.
Collapse
Affiliation(s)
- Nikolai I Lebovka
- Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kyiv 03142, Ukraine
- Department of Physics, Taras Shevchenko Kyiv National University, Kyiv 01033, Ukraine
| | - Nikolai V Vygornitskii
- Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kyiv 03142, Ukraine
| | - Yuri Yu Tarasevich
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| |
Collapse
|
30
|
Mostafavi E, Medina-Cruz D, Kalantari K, Taymoori A, Soltantabar P, Webster TJ. Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine. Bioelectricity 2020; 2:120-149. [PMID: 34471843 PMCID: PMC8370325 DOI: 10.1089/bioe.2020.0021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine aims to engineer tissue constructs that can recapitulate the functional and structural properties of native organs. Most novel regenerative therapies are based on the recreation of a three-dimensional environment that can provide essential guidance for cell organization, survival, and function, which leads to adequate tissue growth. The primary motivation in the use of conductive nanomaterials in tissue engineering has been to develop biomimetic scaffolds to recapitulate the electrical properties of the natural extracellular matrix, something often overlooked in numerous tissue engineering materials to date. In this review article, we focus on the use of electroconductive nanobiomaterials for different biomedical applications, particularly, very recent advancements for cardiovascular, neural, bone, and muscle tissue regeneration. Moreover, this review highlights how electroconductive nanobiomaterials can facilitate cell to cell crosstalk (i.e., for cell growth, migration, proliferation, and differentiation) in different tissues. Thoughts on what the field needs for future growth are also provided.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ada Taymoori
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Pooneh Soltantabar
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Boehler C, Vieira DM, Egert U, Asplund M. NanoPt-A Nanostructured Electrode Coating for Neural Recording and Microstimulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14855-14865. [PMID: 32162910 DOI: 10.1021/acsami.9b22798] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioelectronic devices, interfacing neural tissue for therapeutic, diagnostic, or rehabilitation purposes, rely on small electrode contacts in order to achieve highly sophisticated communication at the neural interface. Reliable recording and safe stimulation with small electrodes, however, are limited when conventional electrode metallizations are used, demanding the development of new materials to enable future progress within bioelectronics. In this study, we present a versatile process for the realization of nanostructured platinum (nanoPt) coatings with a high electrochemically active surface area, showing promising biocompatibility and providing low impedance, high charge injection capacity, and outstanding long-term stability both for recording and stimulation. The proposed electrochemical fabrication process offers exceptional control over the nanoPt deposition, allowing the realization of specific coating morphologies such as small grains, pyramids, or nanoflakes, and can moreover be scaled up to wafer level or batch fabrication under economic process conditions. The suitability of nanoPt as a coating for neural interfaces is here demonstrated, in vitro and in vivo, revealing superior stimulation performance under chronic conditions. Thus, nanoPt offers promising qualities as an advanced neural interface coating which moreover extends to the numerous application fields where a large (electro)chemically active surface area contributes to increased efficiency.
Collapse
Affiliation(s)
- Christian Boehler
- Department of Microsystems Engineering (IMTEK)-ElectroActive Coatings Group, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
| | - Diego M Vieira
- BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
- Department of Microsystems Engineering (IMTEK)-Laboratory for Biomicrotechnology, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
- Bernstein Center Freiburg (BCF), University of Freiburg, 79110 Freiburg, Germany
| | - Ulrich Egert
- BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
- Department of Microsystems Engineering (IMTEK)-Laboratory for Biomicrotechnology, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
- Bernstein Center Freiburg (BCF), University of Freiburg, 79110 Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK)-ElectroActive Coatings Group, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
32
|
Joshi S, Sharma P, Siddiqui R, Kaushal K, Sharma S, Verma G, Saini A. A review on peptide functionalized graphene derivatives as nanotools for biosensing. Mikrochim Acta 2019; 187:27. [PMID: 31811393 DOI: 10.1007/s00604-019-3989-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
Peptides exhibit unique binding behavior with graphene and its derivatives by forming bonds on its edges and planes. This makes them useful for sensing and imaging applications. This review with (155 refs.) summarizes the advances made in the last decade in the field of peptide-GO bioconjugation, and the use of these conjugates in analytical sciences and imaging. The introduction emphasizes the need for understanding the biotic-abiotic interactions in order to construct controllable peptide-functionalized graphitic material-based nanotools. The next section covers covalent and non-covalent interactions between peptide and oxidized graphene derivatives along with a discussion of the adsorption events during interfacing. We then describe applications of peptide-graphene conjugates in bioassays, with subsections on (a) detection of cancer cells, (b) monitoring protease activity, (c) determination of environmental pollutants and (d) determination of pathogenic microorganisms. The concluding section describes the current status of peptide functionalized graphitic bioconjugates and addresses future perspectives. Graphical abstractSchematic representation depicting biosensing applications of peptide functionalized graphene oxide.
Collapse
Affiliation(s)
- Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Pratibha Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ruby Siddiqui
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kanica Kaushal
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014, India
| | - Gaurav Verma
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology (Dr.SSBUICET), Panjab University, Sector 14, Chandigarh, 160014, India
- Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|