1
|
Kovacevic D, Velikic G, Maric DM, Maric DL, Puletic M, Gvozdenovic L, Vojvodic D, Supic G. Parkinson's Spectrum Mechanisms in Pregnancy: Exploring Hypothetical Scenarios for MSA in the Era of ART. Int J Mol Sci 2025; 26:3348. [PMID: 40244235 PMCID: PMC11989403 DOI: 10.3390/ijms26073348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Multiple System Atrophy (MSA) is a rare, rapidly progressive neurodegenerative disorder marked by autonomic dysfunction, parkinsonism, and cerebellar ataxia. While predominantly affecting individuals in their fifth or sixth decade, advancements in assisted reproductive technologies (ART) have created new clinical scenarios involving pregnancies in women within MSA's typical onset range. Given the scarcity of documented MSA pregnancies, this review leverages insights from related Parkinson's spectrum mechanisms to explore hypothetical scenarios for how pregnancy-induced physiological changes might influence MSA progression. Pregnancy-induced hormonal fluctuations, including elevated estrogen and progesterone levels, may modulate α-synuclein aggregation and neuroinflammatory pathways. Immune adaptations, such as fetal microchimerism and Th2-biased immune profiles, introduce additional complexities, particularly in donor embryo pregnancies involving complex microchimerism. Metabolic demands and oxidative stress further intersect with these mechanisms, potentially accelerating disease progression. We analyze existing literature and theoretical models, emphasizing the need for interdisciplinary research. Clinical implications are discussed to propose evidence-based strategies for optimizing maternal-fetal outcomes. This paper identifies critical knowledge gaps and proposes avenues for future investigation to optimize maternal-fetal outcomes in this unique and underexplored clinical intersection.
Collapse
Affiliation(s)
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia
| | - Ljiljana Gvozdenovic
- Department of Anesthesia, and Intensive Care, Clinical Center Vojvodina, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Shin DW, Cho YA, Moon SH, Kim TH, Park JW, Lee JW, Choe JY, Kim MJ, Kim SE. High cellular prion protein expression in cholangiocarcinoma: A marker for early postoperative recurrence and unfavorable prognosis. World J Gastrointest Surg 2025; 17:101940. [PMID: 40162420 PMCID: PMC11948104 DOI: 10.4240/wjgs.v17.i3.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The cellular prion protein (PrPC), traditionally associated with neurodegenerative disorders, plays an important role in cancer progression and metastasis by inhibiting apoptosis. AIM To investigate the influence of PrPC expression in cholangiocarcinoma (CCA) on patient outcomes following surgical resection. METHODS Patients who underwent curative surgical resection for either intrahepatic or hilar CCA were enrolled in this retrospective study. Based on the immunohistochemical staining results of the surgical specimens, patients were categorized into two groups: The low PrPC group (negative or 1+) and the high PrPC group (2+ or 3+). Survival analyses, including overall survival and recurrence-free survival, were conducted using the Kaplan-Meier method and compared using the log-rank test. RESULTS In total, seventy-six patients diagnosed with CCA (39 with intrahepatic and 37 with hilar CCA) underwent curative hepatectomy from January 2011 to November 2021. Among these patients, 38 (50%) demonstrated high PrPC expression, whereas the remaining 38 (50%) showed low expression of PrPC. During a median follow-up period of 31.2 months (range: 1 to 137 months), the high PrPC group had a significantly shorter median overall survival than the low PrPC group (40.4 months vs 137.9 months, respectively; P = 0.041). Moreover, the high PrPC group had a significantly shorter median recurrence-free survival than the low PrPC group (13.3 months vs 23.8 months, respectively; P = 0.026). CONCLUSION PrPC expression is significantly associated with early recurrence and decreased survival period in CCA patients following surgical resection. Thus, PrPC may be used as a prognostic factor in treatment planning.
Collapse
Affiliation(s)
- Dong Woo Shin
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Yoon Ah Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Sung-Hoon Moon
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Tae Hyung Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Ji-Won Park
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Jung-Woo Lee
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, South Korea
| | - Ji-Young Choe
- Anatomic Pathology Reference Lab, Seegene Medical Foundation, Seoul 04805, South Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, South Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| |
Collapse
|
3
|
Viramontes KM, Thone MN, DeRogatis JM, Neubert EN, Henriquez ML, De La Torre JJ, Tinoco R. Prion protein modulation of virus-specific T cell differentiation and function during acute viral infection. Immunohorizons 2025; 9:vlae002. [PMID: 39846843 PMCID: PMC11841969 DOI: 10.1093/immhor/vlae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/11/2024] [Indexed: 01/24/2025] Open
Abstract
The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model. Our findings reveal that Prnp-/- mice exhibit a robust expansion of virus-specific CD8+ T cells, with similar activation profiles as wild-type mice during the early stages of infection. However, Prnp-/- mice had higher frequencies and numbers of virus-specific memory CD8+ T cells, along with altered differentiation profiles characterized by increased central and effector memory subsets. Despite similar proliferation rates early during infection, Prnp-/- memory CD8+ T cells had decreased proliferation compared with their wild-type counterparts. Additionally, Prnp-/- mice had higher numbers of cytokine-producing memory CD8+ T cells, indicating a more robust functional response. Furthermore, Prnp-/- mice had increased virus-specific CD4+ T cell responses, suggesting a broader impact of PrPc deficiency on T cell immunity. These results unveil a previously unrecognized role for PrPc in regulating the differentiation, proliferation, and functionality of virus-specific T cells, providing valuable insights into immune system regulation by prion proteins during viral infections.
Collapse
Affiliation(s)
- Karla M Viramontes
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Melissa N Thone
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Julia M DeRogatis
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Emily N Neubert
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Monique L Henriquez
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jamie-Jean De La Torre
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Roberto Tinoco
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Prado MB, Coelho BP, Iglesia RP, Alves RN, Boccacino JM, Fernandes CFL, Melo-Escobar MI, Ayyadhury S, Cruz MC, Santos TG, Beraldo FH, Fan J, Ferreira FM, Nakaya HI, Prado MAM, Prado VF, Duennwald ML, Lopes MH. Prion protein regulates invasiveness in glioblastoma stem cells. BMC Cancer 2024; 24:1539. [PMID: 39695426 DOI: 10.1186/s12885-024-13285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive brain tumor driven by glioblastoma stem cells (GSCs), which represent an appealing target for therapeutic interventions. The cellular prion protein (PrPC), a scaffold protein involved in diverse cellular processes, interacts with various membrane and extracellular matrix molecules, influencing tumor biology. Herein, we investigate the impact of PrPC expression on GBM. METHODS To address this goal, we employed CRISPR-Cas9 technology to generate PrPC knockout (KO) glioblastoma cell lines, enabling detailed loss-of-function studies. Bulk RNA sequencing followed by differentially expressed gene and pathway enrichment analyses between U87 or U251 PrPC-wild-type (WT) cells and PrPC-knockout (KO) cells were used to identify pathways regulated by PrPC. Immunofluorescence assays were used to evaluate cellular morphology and protein distribution. For assessment of protein levels, Western blot and flow cytometry assays were employed. Transwell and growth curve assays were used to determine the impact of loss-of-PrPC in GBM invasiveness and proliferation, respectively. Single-cell RNA sequencing analysis of data from patient tumors from The Cancer Genome Atlas (TCGA) and the Broad Institute of Single-Cell Data Portal were used to evaluate the correspondence between our in vitro results and patient samples. RESULTS Transcriptome analysis of PrPC-KO GBM cell lines revealed altered expression of genes associated with crucial tumor progression pathways, including migration, proliferation, and stemness. These findings were corroborated by assays that revealed impaired invasion, migration, proliferation, and self-renewal in PrPC-KO GBM cells, highlighting its critical role in sustaining tumor growth. Notably, loss-of-PrPC disrupted the expression and localization of key stemness markers, particularly CD44. Additionally, the modulation of PrPC levels through CD44 overexpression further emphasizes their regulatory role in these processes. CONCLUSIONS These findings establish PrPC as a modulator of essential molecules on the cell surface of GSCs, highlighting its potential as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Mariana B Prado
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bárbara P Coelho
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rebeca P Iglesia
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rodrigo N Alves
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Jacqueline M Boccacino
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Camila F L Fernandes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Isabel Melo-Escobar
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mario C Cruz
- Core Facility to Support Research - Institute of Biomedical Sciences (CEFAP), Sao Paulo, Brazil
| | - Tiago G Santos
- Laboratory of Cell and Molecular Biology, International Research Center, A.C. Camargo Cancer Center, Sao Paulo, SP, Brazil
| | - Flávio H Beraldo
- Robarts Research Institute, Departments of Physiology and Pharmacology, Anatomy and Cell Biology, and Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine & Dentistry, Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Jue Fan
- Robarts Research Institute, Departments of Physiology and Pharmacology, Anatomy and Cell Biology, and Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Frederico M Ferreira
- LIM50, Division of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marco A M Prado
- Robarts Research Institute, Departments of Physiology and Pharmacology, Anatomy and Cell Biology, and Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine & Dentistry, Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Departments of Physiology and Pharmacology, Anatomy and Cell Biology, and Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine & Dentistry, Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Martin L Duennwald
- Schulich School of Medicine & Dentistry, Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Marilene H Lopes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
5
|
Casey C, Sleator RD. Prions: structure, function, evolution, and disease. Arch Microbiol 2024; 207:1. [PMID: 39572454 DOI: 10.1007/s00203-024-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Prions are proteinaceous infectious particles implicated in fatal neurodegenerative disorders known as prion diseases. Herein, we provide an overview of prion biology, emphasizing the structural, functional, and evolutionary aspects of prions, along with their potential applications in protein engineering. Understanding the structure-function relationships of both healthy and disease-associated prion proteins enables a deeper understanding of the mechanisms of prion-induced neurotoxicity. Furthermore, we describe how insights into prion evolution have begun to shed light on their ancient origins and evolutionary resilience, offering deeper insights into the potential roles of prions in primordial chemical processes.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland.
| |
Collapse
|
6
|
Pehar M, Hewitt M, Wagner A, Sandhu JK, Khalili A, Wang X, Cho JY, Sim VL, Kulka M. Histamine stimulates human microglia to alter cellular prion protein expression via the HRH2 histamine receptor. Sci Rep 2024; 14:25519. [PMID: 39462031 PMCID: PMC11513956 DOI: 10.1038/s41598-024-75982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Although the cellular prion protein (PrPC) has been evolutionarily conserved, the role of this protein remains elusive. Recent evidence indicates that PrPC may be involved in neuroinflammation and the immune response in the brain, and its expression may be modified via various mechanisms. Histamine is a proinflammatory mediator and neurotransmitter that stimulates numerous cells via interactions with histamine receptors 1-4 (HRH1-4). Since microglia are the innate immune cells of the central nervous system, we hypothesized that histamine-induced stimulation regulates the expression of PrPC in human-derived microglia. The human microglial clone 3 (HMC3) cell line was treated with histamine, and intracellular calcium levels were measured via a calcium flux assay. Cytokine production was monitored by enzyme-linked immunosorbent assay (ELISA). Western blotting and quantitative reverse transcription-polymerase chain reaction were used to determine protein and gene expression of HRH1-4. Flow cytometry and western blotting were used to measure PrPC expression levels. Fluorescence microscopy was used to examine Iba-1 and PrPC localization. HMC3 cells stimulated by histamine exhibited increased intracellular calcium levels and increased release of IL-6 and IL-8, while also modifying PrPC localization. HMC3 stimulated with histamine for 6 and 24 hours exhibited increased surface PrPC expression. Specifically, we found that stimulation of the HRH2 receptor was responsible for changes in surface PrPC. Histamine-induced increases in surface PrPC were attenuated following inhibition of the HRH2 receptor via the HRH2 antagonist ranitidine. These changes were unique to HRH2 activation, as stimulation of HRH1, HRH3, or HRH4 did not alter surface PrPC. Prolonged stimulation of HMC3 decreased PrPC expression following 48 and 72 hours of histamine stimulation. HMC3 cells can be stimulated by histamine to undergo intracellular calcium influx. Surface expression levels of PrPC on HMC3 cells are altered by histamine exposure, primarily mediated by HRH2. While histamine exposure also increases release of IL-6 and IL-8 in these cells, this cytokine release is not fully dependent on PrPC levels, as IL-6 release is only partially reduced and IL-8 release is unchanged under the conditions of HRH2 blockade that prevent PrPC changes. Overall, this suggests that PrPC may play a role in modulating microglial responses.
Collapse
Affiliation(s)
- Marcus Pehar
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Ashley Wagner
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aria Khalili
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Xinyu Wang
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Jae-Young Cho
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Valerie L Sim
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Striebel JF, Carroll JA, Race B, Leung JM, Schwartz C, Reese ED, Bowes Rickman C, Chesebro B, Klingeborn M. The prion protein is required for normal responses to light stimuli by photoreceptors and bipolar cells. iScience 2024; 27:110954. [PMID: 39381753 PMCID: PMC11460503 DOI: 10.1016/j.isci.2024.110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
The prion protein, PrPC, is well known as an essential susceptibility factor for neurodegenerative prion diseases, yet its function in normal, healthy cells remains uncertain. A role in synaptic function has been proposed for PrPC, supported by its cell surface expression in neurons and glia. Here, in mouse retina, we localized PrPC to the junctions between photoreceptors and bipolar cells using synaptic proteins EAAT5, CtBP2, and PSD-95. PrPC localized most densely with bipolar cell dendrites synapsing with cone photoreceptors. In two coisogenic mouse strains, deletion of the gene encoding PrPC, Prnp, significantly altered the scotopic and/or photopic electroretinographic (ERG) responses of photoreceptors and bipolar cells. Cone-dominant pathways showed the most significant ERG changes. Retinal thickness, quantitated by high-resolution optical coherence tomography (OCT), and ribbon synapse morphology were not altered upon deletion of PrPC, suggesting that the ERG changes were driven by functional rather than structural alterations.
Collapse
Affiliation(s)
- James F. Striebel
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - James A. Carroll
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jacqueline M. Leung
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Cindi Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Emily D. Reese
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bruce Chesebro
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| |
Collapse
|
8
|
Willows SD, Vliagoftis H, Sim VL, Kulka M. PrP is cleaved from the surface of mast cells by ADAM10 and proteases released during degranulation. J Leukoc Biol 2024; 116:838-853. [PMID: 38725289 DOI: 10.1093/jleuko/qiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 10/03/2024] Open
Abstract
While several functions of the endogenous prion protein have been studied, the homeostatic function of prion protein is still debated. Notably, prion protein is highly expressed on mast cells, granular immune cells that regulate inflammation. When activated, mast cells shed prion protein, although the mechanism and consequences of this are not yet understood. First, we tested several mast cell lines and found that, while prion protein was almost always present, the total amount differed greatly. Activation of mast cells induced a cleavage of the N-terminal region of prion protein, and this was reduced by protease inhibitors. Exogenous mast cell proteases caused a similar loss of the prion protein N-terminus. Additionally, mast cells shed prion protein in an ADAM10-dependent fashion, even in the absence of activation. Our results suggest that prion protein is cleaved from resting mast cells by ADAM10 and from activated mast cells by mast cell proteases. Prion protein also appears to affect mast cell function, as Prnp-/- bone marrow-derived mast cells showed lower levels of degranulation and cytokine release, as well as lower levels of both FcεRI and CD117. Finally, we sought to provide clinical relevance by measuring the levels of prion protein in bodily fluids of asthmatic patients, a disease that involves the activation of mast cells. We found an N-terminal fragment of prion protein could be detected in human sputum and serum, and the amount of this prion protein fragment was decreased in the serum of patients with asthma.
Collapse
Affiliation(s)
- Steven D Willows
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, Alberta, T6G 2M9, Canada
| | - Harissios Vliagoftis
- Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, 11350 83rd Ave, T6G 2G3, Canada
| | - Valerie L Sim
- Department of Medicine, and Neurosciences and Mental Health Institute, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, Alberta, T6G 2E1, Canada
- Centre for Prions & Protein Folding Diseases, University of Alberta, 8710 - 112 St NW, Edmonton, Alberta, T6G 2M8, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, Alberta, T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
9
|
Liu Y, Zhang J, Zhai Z, Liu C, Yang S, Zhou Y, Zeng X, Liu J, Zhang X, Nie X, Xu J, Huang J, Liu C, Liu Z, Guo M, Sun G. Upregulated PrP C by HBx enhances NF-κB signal via liquid-liquid phase separation to advance liver cancer. NPJ Precis Oncol 2024; 8:211. [PMID: 39333690 PMCID: PMC11437096 DOI: 10.1038/s41698-024-00697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Cellular prion protein (PrPC) has been implicated in carcinogenic through the activation of various signal pathways, however, the precise mechanisms remain elusive. In vitro studies have shown that PrPC is prone to undergo liquid-liquid phase separation (LLPS). However, it remains unknown whether PrPC contributes to LLPS-inducing cancer development. Herein, we observed an upregulation of PrPC expression in hepatitis B virus-positive hepatocellular carcinoma (HCC). Subsequent investigation revealed that HBx of HBV enhances PrPC expression in a dose-dependent manner by binding to CREB1. Furthermore, we demonstrated that PrPC undergoes LLPS and recruits TRAF2/6, TAB2/3, and TAK1 protein, thereby activating the NF-κB signaling pathway and promoting tumor progression. Notably, although unable to undergo LLPS itself, the α3 helix of PrPC is essential for its activation of the NF-κB signaling pathway during the LLPS process. Further analysis unveiled that disulfide bond formation within the C-terminal domain of PrPC is necessary for its LLPS and subsequent activation of the NF-κB signaling pathway. Additionally, our findings indicate that NF-κB activation by PrPC condensates leads to increased IL-8 expression which further promotes tumor development.
Collapse
Affiliation(s)
- Yang Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jing Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zixu Zhai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chenyi Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Siqi Yang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ying Zhou
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jiaqi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiaoyu Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xinqi Nie
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jiaqi Xu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Junsong Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chaozhi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhepeng Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
- School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet, People's Republic of China.
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
10
|
Karner D, Kvestak D, Kucan Brlic P, Cokaric Brdovcak M, Lisnic B, Brizic I, Juranic Lisnic V, Golemac M, Tomac J, Krmpotic A, Karkeni E, Libri V, Mella S, Legname G, Altmeppen HC, Hasan M, Jonjic S, Lenac Rovis T. Prion protein alters viral control and enhances pathology after perinatal cytomegalovirus infection. Nat Commun 2024; 15:7754. [PMID: 39237588 PMCID: PMC11377837 DOI: 10.1038/s41467-024-51931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Cytomegalovirus (CMV) infection poses risks to newborns, necessitating effective therapies. Given that the damage includes both viral infection of brain cells and immune system-related damage, here we investigate the involvement of cellular prion protein (PrP), which plays vital roles in neuroprotection and immune regulation. Using a murine model, we show the role of PrP in tempering neonatal T cell immunity during CMV infection. PrP-null mice exhibit enhanced viral control through elevated virus-specific CD8 T cell responses, leading to reduced viral titers and pathology. We further unravel the molecular mechanisms by showing CMV-induced upregulation followed by release of PrP via the metalloproteinase ADAM10, impairing CD8 T cell response specifically in neonates. Additionally, we confirm PrP downregulation in human CMV (HCMV)-infected fibroblasts, underscoring the broader relevance of our observations beyond the murine model. Furthermore, our study highlights how PrP, under the stress of viral pathogenesis, reveals its impact on neonatal immune modulation.
Collapse
Affiliation(s)
- Dubravka Karner
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Daria Kvestak
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Paola Kucan Brlic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | | | - Berislav Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Ilija Brizic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Vanda Juranic Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Tomac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotic
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Esma Karkeni
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Giuseppe Legname
- Department of Neuroscience, Prion Biology Laboratory, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Stipan Jonjic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
11
|
Ziaunys M, Sulskis D, Mikalauskaite K, Sakalauskas A, Snieckute R, Smirnovas V. S100A9 inhibits and redirects prion protein 89-230 fragment amyloid aggregation. Arch Biochem Biophys 2024; 758:110087. [PMID: 38977154 DOI: 10.1016/j.abb.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Protein aggregation in the form of amyloid fibrils has long been associated with the onset and development of various amyloidoses, including Alzheimer's, Parkinson's or prion diseases. Recent studies of their fibril formation process have revealed that amyloidogenic protein cross-interactions may impact aggregation pathways and kinetic parameters, as well as the structure of the resulting aggregates. Despite a growing number of reports exploring this type of interaction, they only cover just a small number of possible amyloidogenic protein pairings. One such pair is between two neurodegeneration-associated proteins: the pro-inflammatory S100A9 and prion protein, which are known to co-localize in vivo. In this study, we examined their cross-interaction in vitro and discovered that the fibrillar form of S100A9 modulated the aggregation pathway of mouse prion protein 89-230 fragment, while non-aggregated S100A9 also significantly inhibited its primary nucleation process. These results complement previous observations of the pro-inflammatory protein's role in amyloid aggregation and highlight its potential role against neurodegenerative disorders.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania.
| | - Darius Sulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Kamile Mikalauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Ruta Snieckute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| |
Collapse
|
12
|
Medd MM, Cao Q. Perspectives on CRISPR Genome Editing to Prevent Prion Diseases in High-Risk Individuals. Biomedicines 2024; 12:1725. [PMID: 39200190 PMCID: PMC11352000 DOI: 10.3390/biomedicines12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Prion diseases are neurodegenerative disorders caused by misfolded prion proteins. Although rare, the said diseases are always fatal; they commonly cause death within months of developing clinical symptoms, and their diagnosis is exceptionally difficult pre-mortem. There are no known cures or treatments other than symptomatic care. Given the aggressiveness of prion diseases on onset, therapies after disease onset could be challenging. Prevention to reduce the incidence or to delay the disease onset has been suggested to be a more feasible approach. In this perspective article, we summarize our current understandings of the origin, risk factors, and clinical manifestations of prion diseases. We propose a PCR testing of the blood to identify PRNP gene polymorphisms at codons 129 and 127 in individuals with familial PRNP mutations to assess the risk. We further present the CRISPR/Cas9 gene editing strategy as a perspective preventative approach for these high-risk individuals to induce a polymorphic change at codon 127 of the PRNP gene, granting immunity to prion diseases in selected high-risk individuals, in particular, in individuals with familial PRNP mutations.
Collapse
Affiliation(s)
- Milan M. Medd
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qi Cao
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Myers C, Cornwall GA. Host defense amyloids: Biosensors of the immune system? Andrology 2024; 12:973-980. [PMID: 37963844 DOI: 10.1111/andr.13555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
There is considerable evidence showing that highly ordered aggregate structures known as amyloids carry out essential biological roles in species ranging from bacteria to humans. Indeed, many antimicrobial peptides/proteins form amyloids to carry out their host defense functions and many amyloids are antimicrobial. The similarity of host defense amyloids from bacterial biofilms to the mammalian epididymal amyloid matrix implies highly conserved host defense structures/functions. With an emphasis on the epididymal amyloid matrix, here we review the common properties of host defense amyloids including unique traits that would allow them to function as powerful biosensors of the immune system.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
14
|
Aktaş E, Özdemir Özgentürk N. A comprehensive examination of ACE2 receptor and prediction of spike glycoprotein and ACE2 interaction based on in silico analysis of ACE2 receptor. J Biomol Struct Dyn 2024; 42:4412-4428. [PMID: 37349943 DOI: 10.1080/07391102.2023.2220814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023]
Abstract
The ACE2 receptor plays a vital role not only in the SARS-CoV-induced epidemic but also in various other diseases, including cardiovascular diseases and ARDS. While studies have explored the interactions between ACE2 and SARS-CoV proteins, comprehensive research utilizing bioinformatic tools on the ACE2 protein has been lacking. The one aim of present study was to extensively analyze the regions of the ACE2 protein. After utilizing all bioinformatics tools especially G104 and L108 regions on ACE2 were come forward. The results of our analysis revealed that possible mutations or deletions in the G104 and L108 regions play a critical role in both the biological functioning and the determination of the chemical-physical properties of ACE2. Additionally, these regions were found to be more susceptible to mutations or deletions compared to other regions of the ACE2 protein. Notably, the randomly selected peptide, LQQNGSSVLS (100-109), which includes G104 and L108, exhibited a crucial role in binding the RBD of the spike protein, as supported by docking scores. Furthermore, both MDs and iMODs results provided evidence that G104 and L108 influence the dynamics of ACE2-spike complexes. This study is expected to offer a new perspective on the ACE2-SARS-CoV interaction and other research areas where ACE2 plays a significant role, such as biotechnology (protein engineering, enzyme optimization), medicine (RAS, pulmonary and cardiac diseases), and basic research (structural motifs, stabilizing protein folds, or facilitating important inter molecular contacts, protein's proper structure and function).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emre Aktaş
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - Nehir Özdemir Özgentürk
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
15
|
Svedružić ŽM, Ryou C, Choi D, Lee SH, Cheon YP. Physiology of Cellular Prion Proteins in Reproduction. Dev Reprod 2024; 28:29-36. [PMID: 39055100 PMCID: PMC11268893 DOI: 10.12717/dr.2024.28.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 07/27/2024]
Abstract
Cellular prion protein (PrPC) encoded at Prnp gene is well-known to form a misfolded isoform, termed scrapie PrP (PrPSC) that cause transmissible degenerative diseases in central nervous system. The physiological role of PrPC has been proposed by many studies, showing that PrPC interacts with various intracellular, membrane, and extracellular molecules including mitochondrial inner membrane as a scaffold. PrPC is expressed in most cell types including reproductive organs. Numerous studies using PrPC knockout rodent models found no obvious phenotypic changes, in particular the clear phenotypes in development and reproduction have not demonstrated in these knockout models. However, various roles of PrPC have been evaluated at the cellular levels. In this review, we summarized the known roles of PrPC in various cell types and tissues with a special emphasis on those involved in reproduction.
Collapse
Affiliation(s)
| | - Chongsuk Ryou
- Department of Pharmacy, College of
Pharmacy, Hanyang University ERICA, Ansan 15588,
Korea
| | - Donchan Choi
- Department Life Science, College of
Health Science and Welfare, Yong-In University,
Yongin 17092, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung
University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and
Physiology, Department of Biotechnology, Institute for Basic Sciences,
Sungshin University, Seoul 02844,
Korea
| |
Collapse
|
16
|
Litberg TJ, Horowitz S. Roles of Nucleic Acids in Protein Folding, Aggregation, and Disease. ACS Chem Biol 2024; 19:809-823. [PMID: 38477936 PMCID: PMC11149768 DOI: 10.1021/acschembio.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The role of nucleic acids in protein folding and aggregation is an area of continued research, with relevance to understanding both basic biological processes and disease. In this review, we provide an overview of the trajectory of research on both nucleic acids as chaperones and their roles in several protein misfolding diseases. We highlight key questions that remain on the biophysical and biochemical specifics of how nucleic acids have large effects on multiple proteins' folding and aggregation behavior and how this pertains to multiple protein misfolding diseases.
Collapse
Affiliation(s)
- Theodore J. Litberg
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
| |
Collapse
|
17
|
Benarroch E. What Are the Roles of Cellular Prion Protein in Normal and Pathologic Conditions? Neurology 2024; 102:e209272. [PMID: 38484222 DOI: 10.1212/wnl.0000000000209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
|
18
|
Anand C, Torok J, Abdelnour F, Maia PD, Raj A. Selective vulnerability and resilience to Alzheimer's disease tauopathy as a function of genes and the connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583403. [PMID: 38496606 PMCID: PMC10942335 DOI: 10.1101/2024.03.04.583403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain regions in Alzheimer's (AD) exhibit distinct vulnerability to the disease's hallmark pathology, with the entorhinal cortex and hippocampus succumbing early to tau tangles while others like primary sensory cortices remain resilient. The quest to understand how local/regional genetic factors, pathogenesis, and network-mediated spread of pathology together govern this selective vulnerability (SV) or resilience (SR) is ongoing. Although many risk genes in AD are known from gene association and transgenic studies, it is still not known whether and how their baseline expression signatures confer SV or SR to brain structures. Prior analyses have yielded conflicting results, pointing to a disconnect between the location of genetic risk factors and downstream tau pathology. We hypothesize that a full accounting of genes' role in mediating SV/SR would require the modeling of network-based vulnerability, whereby tau misfolds, aggregates, and propagates along fiber projections. We therefore employed an extended network diffusion model (eNDM) and tested it on tau pathology PET data from 196 AD patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Thus the fitted eNDM model becomes a reference process from which to assess the role of innate genetic factors. Using the residual (observed - model-predicted) tau as a novel target outcome, we obtained its association with 100 top AD risk-genes, whose baseline spatial transcriptional profiles were obtained from the Allen Human Brain Atlas (AHBA). We found that while many risk genes at baseline showed a strong association with regional tau, many more showed a stronger association with residual tau. This suggests that both direct vulnerability, related to the network, as well as network-independent vulnerability, are conferred by risk genes. We then classified risk genes into four classes: network-related SV (SV-NR), network-independent SV (SV-NI), network-related SR (SR-NR), and network-independent SR (SR-NI). Each class has a distinct spatial signature and associated vulnerability to tau. Remarkably, we found from gene-ontology analyses, that genes in these classes were enriched in distinct functional processes and encompassed different functional networks. These findings offer new insights into the factors governing innate vulnerability or resilience in AD pathophysiology and may prove helpful in identifying potential intervention targets.
Collapse
|
19
|
Boccacino JM, Dos Santos Peixoto R, Fernandes CFDL, Cangiano G, Sola PR, Coelho BP, Prado MB, Melo-Escobar MI, de Sousa BP, Ayyadhury S, Bader GD, Shinjo SMO, Marie SKN, da Rocha EL, Lopes MH. Integrated transcriptomics uncovers an enhanced association between the prion protein gene expression and vesicle dynamics signatures in glioblastomas. BMC Cancer 2024; 24:199. [PMID: 38347462 PMCID: PMC10863147 DOI: 10.1186/s12885-024-11914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.
Collapse
Affiliation(s)
- Jacqueline Marcia Boccacino
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Rafael Dos Santos Peixoto
- Department of Automation and Systems, Technological Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Camila Felix de Lima Fernandes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Giovanni Cangiano
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Paula Rodrigues Sola
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Bárbara Paranhos Coelho
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Mariana Brandão Prado
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Maria Isabel Melo-Escobar
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Breno Pereira de Sousa
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Shamini Ayyadhury
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Sueli Mieko Oba Shinjo
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil.
| |
Collapse
|
20
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
21
|
Odabasi Y, Yanasik S, Saglam-Metiner P, Kaymaz Y, Yesil-Celiktas O. Comprehensive Transcriptomic Investigation of Rett Syndrome Reveals Increasing Complexity Trends from Induced Pluripotent Stem Cells to Neurons with Implications for Enriched Pathways. ACS OMEGA 2023; 8:44148-44162. [PMID: 38027357 PMCID: PMC10666228 DOI: 10.1021/acsomega.3c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Rett syndrome (RTT) is a rare genetic neurodevelopmental disorder that has no cure apart from symptomatic treatments. While intense research efforts are required to fulfill this unmet need, the fundamental challenge is to obtain sufficient patient data. In this study, we used human transcriptomic data of four different sample types from RTT patients including induced pluripotent stem cells, differentiated neural progenitor cells, differentiated neurons, and postmortem brain tissues with an increasing in vivo-like complexity to unveil specific trends in gene expressions across the samples. Based on DEG analysis, we identified F8A3, CNTN6, RPE65, and COL19A1 to have differential expression levels in three sample types and also observed previously reported genes such as MECP2, FOXG1, CACNA1G, SATB2, GABBR2, MEF2C, KCNJ10, and CUX2 in our study. Considering the significantly enriched pathways for each sample type, we observed a consistent increase in numbers from iPSCs to NEUs where MECP2 displayed profound effects. We also validated our GSEA results by using single-cell RNA-seq data. In WGCNA, we elicited a connection among MECP2, TNRC6A, and HOXA5. Our findings highlight the utility of transcriptomic analyses to determine genes that might lead to therapeutic strategies.
Collapse
Affiliation(s)
- Yusuf
Caglar Odabasi
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Sena Yanasik
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Yasin Kaymaz
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| |
Collapse
|
22
|
Silva De Castro I, Granato A, Mariante RM, Lima MA, Leite ACC, Espindola ODM, Pise-Masison CA, Franchini G, Linden R, Echevarria-Lima J. HTLV-1 p12 modulates the levels of prion protein (PrP C) in CD4 + T cells. Front Microbiol 2023; 14:1175679. [PMID: 37637115 PMCID: PMC10449582 DOI: 10.3389/fmicb.2023.1175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Infection with human T cell lymphotropic virus type 1 (HTLV-1) is endemic in Brazil and is linked with pro-inflammatory conditions including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neuroinflammatory incapacitating disease that culminates in loss of motor functions. The mechanisms underlying the onset and progression of HAM/TSP are incompletely understood. Previous studies have demonstrated that inflammation and infectious agents can affect the expression of cellular prion protein (PrPC) in immune cells. Methods Here, we investigated whether HTLV-1 infection affected PrPC content in cell lines and primary CD4+cells in vitro using flow cytometry and western blot assays. Results We found that HTLV-1 infection decreased the expression levels of PrPC and HTLV-1 Orf I encoded p12, an endoplasmic reticulum resident protein also known to affect post-transcriptionally cellular proteins such as MHC-class I and the IL-2 receptor. In addition, we observed a reduced percentage of CD4+ T cells from infected individuals expressing PrPC, which was reflected by IFN type II but not IL-17 expression. Discussion These results suggested that PrPC downregulation, linked to both HTLV-1 p12 and IFN-γ expression in CD4+ cells, may play a role in the neuropathogenesis of HTLV-1 infection.
Collapse
Affiliation(s)
- Isabela Silva De Castro
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Alessandra Granato
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Meyer Mariante
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marco Antonio Lima
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Leite
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Otávio de Melo Espindola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Rafael Linden
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Cordeiro Y, Freire MHO, Wiecikowski AF, do Amaral MJ. (Dys)functional insights into nucleic acids and RNA-binding proteins modulation of the prion protein and α-synuclein phase separation. Biophys Rev 2023; 15:577-589. [PMID: 37681103 PMCID: PMC10480379 DOI: 10.1007/s12551-023-01067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 09/09/2023] Open
Abstract
Prion diseases are prototype of infectious diseases transmitted by a protein, the prion protein (PrP), and are still not understandable at the molecular level. Heterogenous species of aggregated PrP can be generated from its monomer. α-synuclein (αSyn), related to Parkinson's disease, has also shown a prion-like pathogenic character, and likewise PrP interacts with nucleic acids (NAs), which in turn modulate their aggregation. Recently, our group and others have characterized that NAs and/or RNA-binding proteins (RBPs) modulate recombinant PrP and/or αSyn condensates formation, and uncontrolled condensation might precede pathological aggregation. Tackling abnormal phase separation of neurodegenerative disease-related proteins has been proposed as a promising therapeutic target. Therefore, understanding the mechanism by which polyanions, like NAs, modulate phase transitions intracellularly, is key to assess their role on toxicity promotion and neuronal death. Herein we discuss data on the nucleic acids binding properties and phase separation ability of PrP and αSyn with a special focus on their modulation by NAs and RBPs. Furthermore, we provide insights into condensation of PrP and/or αSyn in the light of non-trivial subcellular locations such as the nuclear and cytosolic environments.
Collapse
Affiliation(s)
- Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Maria Heloisa O. Freire
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Adalgisa Felippe Wiecikowski
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| |
Collapse
|
24
|
Li J, Li S, Yu S, Yang J, Ke J, Li H, Chen H, Lu M, Sy MS, Gao Z, Li C. Persistent ER stress causes GPI anchor deficit to convert a GPI-anchored prion protein into pro-PrP via the ATF6-miR449c-5p-PIGV axis. J Biol Chem 2023; 299:104982. [PMID: 37390992 PMCID: PMC10388210 DOI: 10.1016/j.jbc.2023.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response are cells' survival strategies to thwart disruption of proteostasis. Tumor cells are continuously being challenged by ER stress. The prion protein, PrP, normally a glycosylphosphatidylinositol (GPI)-anchored protein exists as a pro-PrP retaining its GPI-peptide signal sequence in human pancreatic ductal cell adenocarcinoma (PDAC). Higher abundance of pro-PrP indicates poorer prognosis in PDAC patients. The reason why PDAC cells express pro-PrP is unknown. Here, we report that persistent ER stress causes conversion of GPI-anchored PrP to pro-PrP via a conserved ATF6-miRNA449c-5p-PIGV axis. Mouse neurons and AsPC-1, a PDAC cell line, express GPI-anchored PrP. However, continuous culture of these cells with the ER stress inducers thapsigargin or brefeldin A results in the conversion of a GPI-anchored PrP to pro-PrP. Such a conversion is reversible; removal of the inducers allows the cells to re-express a GPI-anchored PrP. Mechanistically, persistent ER stress increases the abundance of an active ATF6, which increases the level of miRNA449c-5p (miR449c-5p). By binding the mRNA of PIGV at its 3'-UTRs, miR449c-5p suppresses the level of PIGV, a mannosyltransferase pivotal in the synthesis of the GPI anchor. Reduction of PIGV leads to disruption of the GPI anchor assembly, causing pro-PrP accumulation and enhancing cancer cell migration and invasion. The importance of ATF6-miR449c-5p-PIGV axis is recapitulated in PDAC biopsies as the higher levels of ATF6 and miR449c-5p and lower levels of PIGV are markers of poorer outcome for patients with PDAC. Drugs targeting this axis may prevent PDAC progression.
Collapse
Affiliation(s)
- JingFeng Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - SaSa Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - ShuPei Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Jie Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - JingRu Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Heng Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - MingJian Lu
- Department of Interventional Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - ZhenXing Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| | - Chaoyang Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| |
Collapse
|
25
|
Ziaunys M, Mikalauskaite K, Krasauskas L, Smirnovas V. Conformation-Specific Association of Prion Protein Amyloid Aggregates with Tau Protein Monomers. Int J Mol Sci 2023; 24:ijms24119277. [PMID: 37298227 DOI: 10.3390/ijms24119277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Protein aggregation into amyloid fibrils is associated with several amyloidoses, including neurodegenerative Alzheimer's and Parkinson's diseases. Despite years of research and numerous studies, the process is still not fully understood, which significantly impedes the search for cures of amyloid-related disorders. Recently, there has been an increase in reports of amyloidogenic protein cross-interactions during the fibril formation process, which further complicates the already intricate process of amyloid aggregation. One of these reports displayed an interaction involving Tau and prion proteins, which prompted a need for further investigation into the matter. In this work, we generated five populations of conformationally distinct prion protein amyloid fibrils and examined their interaction with Tau proteins. We observed that there was a conformation-specific association between Tau monomers and prion protein fibrils, which increased the aggregate self-association and amyloidophilic dye binding capacity. We also determined that the interaction did not induce the formation of Tau protein amyloid aggregates, but rather caused their electrostatic adsorption to the prion protein fibril surface.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Kamile Mikalauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Lukas Krasauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
26
|
Foliaki ST, Wood A, Williams K, Smith A, Walters RO, Baune C, Groveman BR, Haigh CL. Temporary alteration of neuronal network communication is a protective response to redox imbalance that requires GPI-anchored prion protein. Redox Biol 2023; 63:102733. [PMID: 37172395 DOI: 10.1016/j.redox.2023.102733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cellular prion protein (PrPC) protects neurons against oxidative stress damage. This role is lost upon its misfolding into insoluble prions in prion diseases, and correlated with cytoskeletal breakdown and neurophysiological deficits. Here we used mouse neuronal models to assess how PrPC protects the neuronal cytoskeleton, and its role in network communication, from oxidative stress damage. Oxidative stress was induced extrinsically by potassium superoxide (KO2) or intrinsically by Mito-Paraquat (MtPQ), targeting the mitochondria. In mouse neural lineage cells, KO2 was damaging to the cytoskeleton, with cells lacking PrPC (PrP-/-) damaged more than wild-type (WT) cells. In hippocampal slices, KO2 acutely inhibited neuronal communication in WT controls without damaging the cytoskeleton. This inhibition was not observed in PrP-/- slices. Neuronal communication and the cytoskeleton of PrP-/- slices became progressively disrupted and degenerated post-recovery, whereas the dysfunction in WT slices recovered in 5 days. This suggests that the acute inhibition of neuronal activity in WT slices in response to KO2 was a neuroprotective role of PrPC, which PrP-/- slices lacked. Heterozygous expression of PrPC was sufficient for this neuroprotection. Further, hippocampal slices from mice expressing PrPC without its GPI anchor (PrPGPI-/-) displayed acute inhibition of neuronal activity by KO2. However, they failed to restore normal activity and cytoskeletal formation post-recovery. This suggests that PrPC facilitates the depressive response to KO2 and its GPI anchoring is required to restore KO2-induced damages. Immuno spin-trapping showed increased radicals formed on the filamentous actin of PrP-/- and PrPGPI-/- slices, but not WT and PrP+/- slices, post-recovery suggesting ongoing dysregulation of redox balance in the slices lacking GPI-anchored PrPC. The MtPQ treatment of hippocampal slices temporarily inhibited neuronal communication independent of PrPC expression. Overall, GPI-anchored PrPC alters synapses and neurotransmission to protect and repair the neuronal cytoskeleton, and neuronal communication, from extrinsically induced oxidative stress damages.
Collapse
Affiliation(s)
- Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Aleksandar Wood
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Anna Smith
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Ryan O Walters
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Chase Baune
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
27
|
Walters RO, Haigh CL. Organoids for modeling prion diseases. Cell Tissue Res 2023; 392:97-111. [PMID: 35088182 PMCID: PMC9329493 DOI: 10.1007/s00441-022-03589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Human cerebral organoids are an exciting and novel model system emerging in the field of neurobiology. Cerebral organoids are spheres of self-organizing, neuronal lineage tissue that can be differentiated from human pluripotent stem cells and that present the possibility of on-demand human neuronal cultures that can be used for non-invasively investigating diseases affecting the brain. Compared with existing humanized cell models, they provide a more comprehensive replication of the human cerebral environment. The potential of the human cerebral organoid model is only just beginning to be elucidated, but initial studies have indicated that they could prove to be a valuable model for neurodegenerative diseases such as prion disease. The application of the cerebral organoid model to prion disease, what has been learned so far and the future potential of this model are discussed in this review.
Collapse
Affiliation(s)
- Ryan O Walters
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
28
|
Cook M, Hensley-McBain T, Grindeland A. Mouse models of chronic wasting disease: A review. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1055487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Animal models are essential tools for investigating and understanding complex prion diseases like chronic wasting disease (CWD), an infectious prion disease of cervids (elk, deer, moose, and reindeer). Over the past several decades, numerous mouse models have been generated to aid in the advancement of CWD knowledge and comprehension. These models have facilitated the investigation of pathogenesis, transmission, and potential therapies for CWD. Findings have impacted CWD management and disease outcomes, though much remains unknown, and a cure has yet to be discovered. Studying wildlife for CWD effects is singularly difficult due to the long incubation time, subtle clinical signs at early stages, lack of convenient in-the-field live testing methods, and lack of reproducibility of a controlled laboratory setting. Mouse models in many cases is the first step to understanding the mechanisms of disease in a shortened time frame. Here, we provide a comprehensive review of studies with mouse models in CWD research. We begin by reviewing studies that examined the use of mouse models for bioassays for tissues, bodily fluids, and excreta that spread disease, then address routes of infectivity and infectious load. Next, we delve into studies of genetic factors that influence protein structure. We then move on to immune factors, possible transmission through environmental contamination, and species barriers and differing prion strains. We conclude with studies that make use of cervidized mouse models in the search for therapies for CWD.
Collapse
|
29
|
Tranulis MA, Tryland M. The Zoonotic Potential of Chronic Wasting Disease-A Review. Foods 2023; 12:foods12040824. [PMID: 36832899 PMCID: PMC9955994 DOI: 10.3390/foods12040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders that affect humans and ruminant species consumed by humans. Ruminant prion diseases include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. In 1996, prions causing BSE were identified as the cause of a new prion disease in humans; variant Creutzfeldt-Jakob disease (vCJD). This sparked a food safety crisis and unprecedented protective measures to reduce human exposure to livestock prions. CWD continues to spread in North America, and now affects free-ranging and/or farmed cervids in 30 US states and four Canadian provinces. The recent discovery in Europe of previously unrecognized CWD strains has further heightened concerns about CWD as a food pathogen. The escalating CWD prevalence in enzootic areas and its appearance in a new species (reindeer) and new geographical locations, increase human exposure and the risk of CWD strain adaptation to humans. No cases of human prion disease caused by CWD have been recorded, and most experimental data suggest that the zoonotic risk of CWD is very low. However, the understanding of these diseases is still incomplete (e.g., origin, transmission properties and ecology), suggesting that precautionary measures should be implemented to minimize human exposure.
Collapse
Affiliation(s)
- Michael A. Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 5003 As, Norway
- Correspondence: ; Tel.: +47-67232040
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| |
Collapse
|
30
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
31
|
Ray A, Bonorden MJL, Pandit R, Nkhata KJ, Bishayee A. Infections and immunity: associations with obesity and related metabolic disorders. J Pathol Transl Med 2023; 57:28-42. [PMID: 36647284 PMCID: PMC9846011 DOI: 10.4132/jptm.2022.11.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/14/2022] [Indexed: 01/18/2023] Open
Abstract
About one-fourth of the global population is either overweight or obese, both of which increase the risk of insulin resistance, cardiovascular diseases, and infections. In obesity, both immune cells and adipocytes produce an excess of pro-inflammatory cytokines that may play a significant role in disease progression. In the recent coronavirus disease 2019 (COVID-19) pandemic, important pathological characteristics such as involvement of the renin-angiotensin-aldosterone system, endothelial injury, and pro-inflammatory cytokine release have been shown to be connected with obesity and associated sequelae such as insulin resistance/type 2 diabetes and hypertension. This pathological connection may explain the severity of COVID-19 in patients with metabolic disorders. Many studies have also reported an association between type 2 diabetes and persistent viral infections. Similarly, diabetes favors the growth of various microorganisms including protozoal pathogens as well as opportunistic bacteria and fungi. Furthermore, diabetes is a risk factor for a number of prion-like diseases. There is also an interesting relationship between helminths and type 2 diabetes; helminthiasis may reduce the pro-inflammatory state, but is also associated with type 2 diabetes or even neoplastic processes. Several studies have also documented altered circulating levels of neutrophils, lymphocytes, and monocytes in obesity, which likely modifies vaccine effectiveness. Timely monitoring of inflammatory markers (e.g., C-reactive protein) and energy homeostasis markers (e.g., leptin) could be helpful in preventing many obesity-related diseases.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, Philippi, WV, USA,Corresponding Author: Amitabha Ray, MD, PhD, College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA Tel: +1-304-457-6587, Fax: +1-304-457-6308, E-mail:
| | | | - Rajashree Pandit
- Division of Medical & Behavioral Health, Pueblo Community College, Pueblo, CO, USA
| | | | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
32
|
Yousaf S, Ahmad M, Wu S, Zia MA, Ahmed I, Iqbal HMN, Liu Q, Rehman SU. Cellular Prion Protein Role in Cancer Biology: Is It A Potential Therapeutic Target? Biomedicines 2022; 10:2833. [PMID: 36359353 PMCID: PMC9687521 DOI: 10.3390/biomedicines10112833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Cancers are worldwide health concerns, whether they are sporadic or hereditary. The fundamental mechanism that causes somatic or oncogenic mutations and ultimately aids cancer development is still unknown. However, mammalian cells with protein-only somatic inheritance may also contribute to cancerous malignancies. Emerging data from a recent study show that prion-like proteins and prions (PrPC) are crucial entities that have a functional role in developing neurological disorders and cancer. Furthermore, excessive PrPC expression profiling has also been detected in non-neuronal tissues, such as the lymphoid cells, kidney, GIT, lung, muscle, and mammary glands. PrPC expression is strongly linked with the proliferation and metastasis of pancreatic, prostate, colorectal, and breast malignancies. Similarly, experimental investigation presented that the PrPC expression, including the prion protein-coding gene (PRNP) and p53 ag are directly associated with tumorigenicity and metastasis (tumor suppressor gene). The ERK2 (extracellular signal-regulated kinase) pathway also confers a robust metastatic capability for PrPC-induced epithelial to mesenchymal transition. Additionally, prions could alter the epigenetic regulation of genes and overactive the mitogen-activated protein kinase (MAPK) signaling pathway, which promotes the development of cancer in humans. Protein overexpression or suppression caused by a prion and prion-like proteins has also been linked to oncogenesis and metastasis. Meanwhile, additional studies have discovered resistance to therapeutic targets, highlighting the significance of protein expression levels as potential diagnostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Saba Yousaf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources of Guangxi University, Nanning 530005, China
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Ahmad
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences (SBBUVAS), Sakrand 67210, Pakistan
| | - Siwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources of Guangxi University, Nanning 530005, China
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, VIC 3689, Australia
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources of Guangxi University, Nanning 530005, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources of Guangxi University, Nanning 530005, China
| |
Collapse
|
33
|
Grimaldi I, Leser FS, Janeiro JM, da Rosa BG, Campanelli AC, Romão L, Lima FRS. The multiple functions of PrP C in physiological, cancer, and neurodegenerative contexts. J Mol Med (Berl) 2022; 100:1405-1425. [PMID: 36056255 DOI: 10.1007/s00109-022-02245-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Cellular prion protein (PrPC) is a highly conserved glycoprotein, present both anchored in the cell membrane and soluble in the extracellular medium. It has a diversity of ligands and is variably expressed in numerous tissues and cell subtypes, most notably in the central nervous system (CNS). Its importance has been brought to light over the years both under physiological conditions, such as embryogenesis and immune system homeostasis, and in pathologies, such as cancer and neurodegenerative diseases. During development, PrPC plays an important role in CNS, participating in axonal growth and guidance and differentiation of glial cells, but also in other organs such as the heart, lung, and digestive system. In diseases, PrPC has been related to several types of tumors, modulating cancer stem cells, enhancing malignant properties, and inducing drug resistance. Also, in non-neoplastic diseases, such as Alzheimer's and Parkinson's diseases, PrPC seems to alter the dynamics of neurotoxic aggregate formation and, consequently, the progression of the disease. In this review, we explore in detail the multiple functions of this protein, which proved to be relevant for understanding the dynamics of organism homeostasis, as well as a promising target in the treatment of both neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bárbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Clara Campanelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luciana Romão
- Cell Morphogenesis Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
34
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
Affiliation(s)
- Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
35
|
Shafiq M, Da Vela S, Amin L, Younas N, Harris DA, Zerr I, Altmeppen HC, Svergun D, Glatzel M. The prion protein and its ligands: Insights into structure-function relationships. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119240. [PMID: 35192891 DOI: 10.1016/j.bbamcr.2022.119240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The prion protein is a multifunctional protein that exists in at least two different folding states. It is subject to diverse proteolytic processing steps that lead to prion protein fragments some of which are membrane-bound whereas others are soluble. A multitude of ligands bind to the prion protein and besides proteinaceous binding partners, interaction with metal ions and nucleic acids occurs. Although of great importance, information on structural and functional consequences of prion protein binding to its partners is limited. Here, we will reflect on the structure-function relationship of the prion protein and its binding partners considering the different folding states and prion protein fragments.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Neelam Younas
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
36
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
37
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
38
|
Abstract
Copper ions bind to biomolecules (e.g., peptides and proteins) playing an essential role in many biological and physiological pathways in the human body. The resulting complexes may contribute to the initiation of neurodegenerative diseases, cancer, and bacterial and viral diseases, or act as therapeutics. Some compounds can chemically damage biological macromolecules and initiate the development of pathogenic states. Conversely, a number of these compounds may have antibacterial, antiviral, and even anticancer properties. One of the most significant current discussions in Cu biochemistry relates to the mechanisms of the positive and negative actions of Cu ions based on the generation of reactive oxygen species, including radicals that can interact with DNA molecules. This review aims to analyze various peptide–copper complexes and the mechanism of their action.
Collapse
|
39
|
Aguilar G, Pagano N, Manuelidis L. Reduced Expression of Prion Protein With Increased Interferon-β Fail to Limit Creutzfeldt-Jakob Disease Agent Replication in Differentiating Neuronal Cells. Front Physiol 2022; 13:837662. [PMID: 35250638 PMCID: PMC8895124 DOI: 10.3389/fphys.2022.837662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Immortalized uninfected septal (SEP) neurons proliferate but after physiological mitotic arrest they express differentiated neuronal characteristics including enhanced cell-to-cell membrane contacts and ≥ 8 fold increases in host prion protein (PrP). We compared proliferating uninfected and Creutzfeldt-Jakob Disease (CJD) agent infected cells with their arrested counterparts over 33 days by quantitative mRNA and protein blot analyses. Surprisingly, uninfected arrested cells increased interferon-β (IFN-β) mRNA by 2.5–8 fold; IFN-β mRNA elevations were not previously associated with neuronal differentiation. SEP cells with high CJD infectivity titers produced a much larger 40–68-fold increase in IFN-β mRNA, a classic host anti-viral response that is virucidal for RNA but not DNA viruses. High titers of CJD agent also induced dramatic decreases in host PrP, a protein needed for productive agent replication. Uninfected arrested cells produced large sustained 20–30-fold increases in PrP mRNA and protein, whereas CJD arrested cells showed only transient small 5-fold increases in PrP. A > 10-fold increase in infectivity, but not PrP misfolding, induced host PrP reductions that can limit CJD agent replication. In contrast to neuronal lineage cells, functionally distinct migratory microglia with high titers of CJD agent do not induce an IFN-β mRNA response. Because they have 1/50th of PrP of an average brain cell, microglia would be unable to produce the many new infectious particles needed to induce a large IFN-β response by host cells. Instead, microglia and related cells can be persistent reservoirs of infection and spread. Phase separations of agent-associated molecules in neurons, microglia and other cell types can yield new insights into the molecular structure, persistent, and evasive behavior of CJD-type agents.
Collapse
|
40
|
do Amaral MJ, Freire MHO, Almeida MS, Pinheiro AS, Cordeiro Y. Phase separation of the mammalian prion protein: physiological and pathological perspectives. J Neurochem 2022. [PMID: 35149997 DOI: 10.1111/jnc.15586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Abnormal phase transitions have been implicated in the occurrence of proteinopathies. Disordered proteins with nucleic acid binding ability drive the formation of reversible micron-sized condensates capable of controlling nucleic acid processing/transport. This mechanism, achieved via liquid-liquid phase separation (LLPS), underlies the formation of long-studied membraneless organelles (e.g., nucleolus) and various transient condensates formed by driver proteins. The prion protein (PrP) is not a classical nucleic acid-binding protein. However, it binds nucleic acids with high affinity, undergoes nucleocytoplasmic shuttling, contains a long intrinsically disordered region rich in glycines and evenly spaced aromatic residues, among other biochemical/biophysical properties of bona fide drivers of phase transitions. Because of this, our group and others have characterized LLPS of recombinant PrP. In vitro phase separation of PrP is modulated by nucleic acid aptamers, and, depending on the aptamer conformation, the liquid droplets evolve to solid-like species. Herein we discuss recent studies and previous evidence supporting PrP phase transitions. We focus on the central role of LLPS related to PrP physiology and pathology, with a special emphasis on the interaction of PrP with different ligands, such as proteins and nucleic acids, which can play a role in prion disease pathogenesis. Finally, we comment on therapeutic strategies directed at the nonfunctional phase separation that could potentially tackle prion diseases or other protein misfolding disorders.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
41
|
Dematteis G, Restelli E, Vanella VV, Manfredi M, Marengo E, Corazzari M, Genazzani AA, Chiesa R, Lim D, Tapella L. Calcineurin Controls Cellular Prion Protein Expression in Mouse Astrocytes. Cells 2022; 11:cells11040609. [PMID: 35203261 PMCID: PMC8870693 DOI: 10.3390/cells11040609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Prion diseases arise from the conformational conversion of the cellular prion protein (PrPC) into a self-replicating prion isoform (PrPSc). Although this process has been studied mostly in neurons, a growing body of evidence suggests that astrocytes express PrPC and are able to replicate and accumulate PrPSc. Currently, prion diseases remain incurable, while downregulation of PrPC represents the most promising therapy due to the reduction of the substrate for prion conversion. Here we show that the astrocyte-specific genetic ablation or pharmacological inhibition of the calcium-activated phosphatase calcineurin (CaN) reduces PrPC expression in astrocytes. Immunocytochemical analysis of cultured CaN-KO astrocytes and isolation of synaptosomal compartments from the hippocampi of astrocyte-specific CaN-KO (ACN-KO) mice suggest that PrPC is downregulated both in vitro and in vivo. The downregulation occurs without affecting the glycosylation of PrPC and without alteration of its proteasomal or lysosomal degradation. Direct assessment of the protein synthesis rate and shotgun mass spectrometry proteomics analysis suggest that the reduction of PrPC is related to the impairment of global protein synthesis in CaN-KO astrocytes. When WT-PrP and PrP-D177N, a mouse homologue of a human mutation associated with the inherited prion disease fatal familial insomnia, were expressed in astrocytes, CaN-KO astrocytes showed an aberrant localization of both WT-PrP and PrP-D177N variants with predominant localization to the Golgi apparatus, suggesting that ablation of CaN affects both WT and mutant PrP proteins. These results provide new mechanistic details in relation to the regulation of PrP expression in astrocytes, suggesting the therapeutic potential of astroglial cells.
Collapse
Affiliation(s)
- Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
| | - Elena Restelli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.R.); (R.C.)
| | - Virginia Vita Vanella
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (V.V.V.); (M.M.)
| | - Marcello Manfredi
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (V.V.V.); (M.M.)
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy;
| | - Marco Corazzari
- Department of Health Science (DSS), Center for Translational Research on Autoimmune and Allergic Disease (CAAD) & Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy;
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.R.); (R.C.)
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
- Correspondence: (D.L.); (L.T.); Tel.: +39-0321-375822 (L.T.)
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
- Correspondence: (D.L.); (L.T.); Tel.: +39-0321-375822 (L.T.)
| |
Collapse
|
42
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
43
|
Group I Metabotropic Glutamate Receptors and Interacting Partners: An Update. Int J Mol Sci 2022; 23:ijms23020840. [PMID: 35055030 PMCID: PMC8778124 DOI: 10.3390/ijms23020840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are G protein-coupled receptors and are broadly expressed in the mammalian brain. These receptors play key roles in the modulation of normal glutamatergic transmission and synaptic plasticity, and abnormal mGlu1/5 signaling is linked to the pathogenesis and symptomatology of various mental and neurological disorders. Group I mGlu receptors are noticeably regulated via a mechanism involving dynamic protein-protein interactions. Several synaptic protein kinases were recently found to directly bind to the intracellular domains of mGlu1/5 receptors and phosphorylate the receptors at distinct amino acid residues. A variety of scaffolding and adaptor proteins also interact with mGlu1/5. Constitutive or activity-dependent interactions between mGlu1/5 and their interacting partners modulate trafficking, anchoring, and expression of the receptors. The mGlu1/5-associated proteins also finetune the efficacy of mGlu1/5 postreceptor signaling and mGlu1/5-mediated synaptic plasticity. This review analyzes the data from recent studies and provides an update on the biochemical and physiological properties of a set of proteins or molecules that interact with and thus regulate mGlu1/5 receptors.
Collapse
|
44
|
APP deficiency and HTRA2 modulates PrPc proteostasis in human cancer cells. BBA ADVANCES 2022; 2:100035. [PMID: 37082595 PMCID: PMC10074928 DOI: 10.1016/j.bbadva.2021.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Cellular protein homeostasis (proteostasis) requires an accurate balance between protein biosynthesis, folding, and degradation, and its instability is causally related to human diseases and cancers. Here, we created numerous engineered cancer cell lines targeting APP (amyloid ß precursor protein) and/or PRNP (cellular prion) genes and we showed that APP knocking-down impaired PRNP mRNA level and vice versa, suggesting a link between their gene regulation. PRNPKD, APPKD and PRNPKD/APPKD HeLa cells encountered major difficulties to grow in a 3D tissue-like environment. Unexpectedly, we found a cytoplasmic accumulation of the PrPc protein without PRNP gene up regulation, in both APPKD and APPKO HeLa cells. Interestingly, APP and/or PRNP gene ablation enhanced the chaperone/serine protease HTRA2 gene expression, which is a protein processing quality factor involved in Alzheimer's disease. Importantly, HTRA2 gene silencing decreased PRNP mRNA level and lowered PrPc protein amounts, and conversely, HTRA2 overexpression increased PRNP gene regulation and enhanced membrane-anchored and cytoplasmic PrPc fractions. PrPc, APP and HTRA2 destabilized membrane-associated CD24 protein, suggesting changes in the lipid raft structure. Our data show for the first time that APP and the dual chaperone/serine protease HTRA2 protein could modulate PrPc proteostasis hampering cancer cell behavior.
Collapse
|
45
|
Membrane Domain Localization and Interaction of the Prion-Family Proteins, Prion and Shadoo with Calnexin. MEMBRANES 2021; 11:membranes11120978. [PMID: 34940479 PMCID: PMC8704586 DOI: 10.3390/membranes11120978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
The cellular prion protein (PrPC) is renowned for its infectious conformational isoform PrPSc, capable of templating subsequent conversions of healthy PrPCs and thus triggering the group of incurable diseases known as transmissible spongiform encephalopathies. Besides this mechanism not being fully uncovered, the protein’s physiological role is also elusive. PrPC and its newest, less understood paralog Shadoo are glycosylphosphatidylinositol-anchored proteins highly expressed in the central nervous system. While they share some attributes and neuroprotective actions, opposing roles have also been reported for the two; however, the amount of data about their exact functions is lacking. Protein–protein interactions and membrane microdomain localizations are key determinants of protein function. Accurate identification of these functions for a membrane protein, however, can become biased due to interactions occurring during sample processing. To avoid such artifacts, we apply a non-detergent-based membrane-fractionation approach to study the prion protein and Shadoo. We show that the two proteins occupy similarly raft and non-raft membrane fractions when expressed in N2a cells and that both proteins pull down the chaperone calnexin in both rafts and non-rafts. These indicate their possible binding to calnexin in both types of membrane domains, which might be a necessary requisite to aid the inherently unstable native conformation during their lifetime.
Collapse
|
46
|
Panes JD, Saavedra P, Pineda B, Escobar K, Cuevas ME, Moraga-Cid G, Fuentealba J, Rivas CI, Rezaei H, Muñoz-Montesino C. PrP C as a Transducer of Physiological and Pathological Signals. Front Mol Neurosci 2021; 14:762918. [PMID: 34880726 PMCID: PMC8648500 DOI: 10.3389/fnmol.2021.762918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
After the discovery of prion phenomenon, the physiological role of the cellular prion protein (PrP C ) remained elusive. In the past decades, molecular and cellular analysis has shed some light regarding interactions and functions of PrP C in health and disease. PrP C , which is located mainly at the plasma membrane of neuronal cells attached by a glycosylphosphatidylinositol (GPI) anchor, can act as a receptor or transducer from external signaling. Although the precise role of PrP C remains elusive, a variety of functions have been proposed for this protein, namely, neuronal excitability and viability. Although many issues must be solved to clearly define the role of PrP C , its connection to the central nervous system (CNS) and to several misfolding-associated diseases makes PrP C an interesting pharmacological target. In a physiological context, several reports have proposed that PrP C modulates synaptic transmission, interacting with various proteins, namely, ion pumps, channels, and metabotropic receptors. PrP C has also been implicated in the pathophysiological cell signaling induced by β-amyloid peptide that leads to synaptic dysfunction in the context of Alzheimer's disease (AD), as a mediator of Aβ-induced cell toxicity. Additionally, it has been implicated in other proteinopathies as well. In this review, we aimed to analyze the role of PrP C as a transducer of physiological and pathological signaling.
Collapse
Affiliation(s)
- Jessica D Panes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paulina Saavedra
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Benjamin Pineda
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kathleen Escobar
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Magdalena E Cuevas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Human Rezaei
- Virologie et Immunologie Moléculaires (VIM), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Jouy-en-Josas, France.,Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France.,Université Paris-Saclay, Jouy-en-Josas, France
| | - Carola Muñoz-Montesino
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
47
|
Membrane trafficking and positioning of mGluRs at presynaptic and postsynaptic sites of excitatory synapses. Neuropharmacology 2021; 200:108799. [PMID: 34592242 DOI: 10.1016/j.neuropharm.2021.108799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The plethora of functions of glutamate in the brain are mediated by the complementary actions of ionotropic and metabotropic glutamate receptors (mGluRs). The ionotropic glutamate receptors carry most of the fast excitatory transmission, while mGluRs modulate transmission on longer timescales by triggering multiple intracellular signaling pathways. As such, mGluRs mediate critical aspects of synaptic transmission and plasticity. Interestingly, at synapses, mGluRs operate at both sides of the cleft, and thus bidirectionally exert the effects of glutamate. At postsynaptic sites, group I mGluRs act to modulate excitability and plasticity. At presynaptic sites, group II and III mGluRs act as auto-receptors, modulating release properties in an activity-dependent manner. Thus, synaptic mGluRs are essential signal integrators that functionally couple presynaptic and postsynaptic mechanisms of transmission and plasticity. Understanding how these receptors reach the membrane and are positioned relative to the presynaptic glutamate release site are therefore important aspects of synapse biology. In this review, we will discuss the currently known mechanisms underlying the trafficking and positioning of mGluRs at and around synapses, and how these mechanisms contribute to synaptic functioning. We will highlight outstanding questions and present an outlook on how recent technological developments will move this exciting research field forward.
Collapse
|
48
|
Crestini A, Santilli F, Martellucci S, Carbone E, Sorice M, Piscopo P, Mattei V. Prions and Neurodegenerative Diseases: A Focus on Alzheimer's Disease. J Alzheimers Dis 2021; 85:503-518. [PMID: 34864675 DOI: 10.3233/jad-215171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Specific protein misfolding and aggregation are mechanisms underlying various neurodegenerative diseases such as prion disease and Alzheimer's disease (AD). The misfolded proteins are involved in prions, amyloid-β (Aβ), tau, and α-synuclein disorders; they share common structural, biological, and biochemical characteristics, as well as similar mechanisms of aggregation and self-propagation. Pathological features of AD include the appearance of plaques consisting of deposition of protein Aβ and neurofibrillary tangles formed by the hyperphosphorylated tau protein. Although it is not clear how protein aggregation leads to AD, we are learning that the cellular prion protein (PrPC) plays an important role in the pathogenesis of AD. Herein, we first examined the pathogenesis of prion and AD with a focus on the contribution of PrPC to the development of AD. We analyzed the mechanisms that lead to the formation of a high affinity bond between Aβ oligomers (AβOs) and PrPC. Also, we studied the role of PrPC as an AβO receptor that initiates an AβO-induced signal cascade involving mGluR5, Fyn, Pyk2, and eEF2K linking Aβ and tau pathologies, resulting in the death of neurons in the central nervous system. Finally, we have described how the PrPC-AβOs interaction can be used as a new potential therapeutic target for the treatment of PrPC-dependent AD.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy
| | - Elena Carbone
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| |
Collapse
|
49
|
Linsenmeier L, Mohammadi B, Shafiq M, Frontzek K, Bär J, Shrivastava AN, Damme M, Song F, Schwarz A, Da Vela S, Massignan T, Jung S, Correia A, Schmitz M, Puig B, Hornemann S, Zerr I, Tatzelt J, Biasini E, Saftig P, Schweizer M, Svergun D, Amin L, Mazzola F, Varani L, Thapa S, Gilch S, Schätzl H, Harris DA, Triller A, Mikhaylova M, Aguzzi A, Altmeppen HC, Glatzel M. Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. SCIENCE ADVANCES 2021; 7:eabj1826. [PMID: 34818048 PMCID: PMC8612689 DOI: 10.1126/sciadv.abj1826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 05/07/2023]
Abstract
The prion protein (PrPC) is a central player in neurodegenerative diseases, such as prion diseases or Alzheimer’s disease. In contrast to disease-promoting cell surface PrPC, extracellular fragments act neuroprotective by blocking neurotoxic disease-associated protein conformers. Fittingly, PrPC release by the metalloprotease ADAM10 represents a protective mechanism. We used biochemical, cell biological, morphological, and structural methods to investigate mechanisms stimulating this proteolytic shedding. Shed PrP negatively correlates with prion conversion and is markedly redistributed in murine brain in the presence of prion deposits or amyloid plaques, indicating a sequestrating activity. PrP-directed ligands cause structural changes in PrPC and increased shedding in cells and organotypic brain slice cultures. As an exception, some PrP-directed antibodies targeting repetitive epitopes do not cause shedding but surface clustering, endocytosis, and degradation of PrPC. Both mechanisms may contribute to beneficial actions described for PrP-directed ligands and pave the way for new therapeutic strategies against currently incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Julia Bär
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Amulya N. Shrivastava
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Markus Damme
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander Schwarz
- Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Sebastian Jung
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Angela Correia
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation, UKE, Hamburg, Germany
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | | | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Federica Mazzola
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Hermann Schätzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Marina Mikhaylova
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
50
|
Posadas Y, López-Guerrero VE, Segovia J, Perez-Cruz C, Quintanar L. Dissecting the copper bioinorganic chemistry of the functional and pathological roles of the prion protein: Relevance in Alzheimer's disease and cancer. Curr Opin Chem Biol 2021; 66:102098. [PMID: 34768088 DOI: 10.1016/j.cbpa.2021.102098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/11/2023]
Abstract
The cellular prion protein (PrPC) is a metal-binding biomolecule that can interact with different protein partners involved in pivotal physiological processes, such as neurogenesis and neuronal plasticity. Recent studies profile copper and PrPC as important players in the pathological mechanisms of Alzheimer's disease and cancer. Although the copper-PrPC interaction has been characterized extensively, the role of the metal ion in the physiological and pathological roles of PrPC has been barely explored. In this article, we discuss how copper binding and proteolytic processing may impact the ability of PrPC to recruit protein partners for its functional roles. The importance to dissect the role of copper-PrPC interactions in health and disease is also underscored.
Collapse
Affiliation(s)
- Yanahi Posadas
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico; Department of Pharmacology, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico
| | - Victor E López-Guerrero
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico; Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico
| | - José Segovia
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico
| | - Claudia Perez-Cruz
- Department of Pharmacology, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico
| | - Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico.
| |
Collapse
|