1
|
Bu Y, Li S, Ye T, Wang Y, Song M, Chen J. Volatile oil of Acori tatarinowii rhizoma: potential candidate drugs for mitigating dementia. Front Pharmacol 2025; 16:1552801. [PMID: 40337511 PMCID: PMC12055781 DOI: 10.3389/fphar.2025.1552801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Objective This study aims to elucidate the mitigating effects of the volatile oil of Acori tatarinowii rhizoma (ATR) on dementia, in order to provide a reference for future research and applications of the volatile oil of ATR in the field of dementia. Materials and methods A search strategy was developed using terms such as "Acori tatarinowii rhizoma," "Acorus tatarinowii Schott," "Asarone," and "Dementia." The literature search was conducted in PubMed, Web of Science, and Google Scholar, and studies not meeting the inclusion criteria were excluded. This study summarizes the main metabolites, active ingredients, toxicological properties, and pharmacokinetic characteristics of the volatile oil from ATR in mitigating dementia, with a particular focus on its potential mechanisms of action. Furthermore, the study highlights the limitations of existing research and offers insights into future research directions. Results The volatile oil of ATR mitigates dementia through multiple pathways, including reducing abnormal protein aggregation, promoting neurogenesis, inhibiting neuronal apoptosis, regulating neurotransmitters, improving synaptic function, modulating autophagy, countering cellular stress, reducing neuroinflammation, and alleviating vascular risk factors. Conclusion The multi-pathway pharmacological effects of the volatile oil of ATR are well-aligned with the complex mechanisms of dementia progression, highlighting its significant therapeutic potential for anti-dementia applications. This provides new perspectives for the development of more effective anti-dementia drugs. Nonetheless, further rigorous and high-quality preclinical and clinical investigations are required to address key issues, including the chemical characterization of the volatile oil of ATR, potential synergistic effects among active ingredients, toxicity profiles, and definitive clinical efficacy.
Collapse
Affiliation(s)
- Yifan Bu
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songzhe Li
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqing Wang
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingrong Song
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
McGill Percy KC, Liu Z, Qi X. Mitochondrial dysfunction in Alzheimer's disease: Guiding the path to targeted therapies. Neurotherapeutics 2025; 22:e00525. [PMID: 39827052 PMCID: PMC12047401 DOI: 10.1016/j.neurot.2025.e00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, marked by the accumulation of amyloid-β (Aβ) plaques and tau tangles. Emerging evidence suggests that mitochondrial dysfunction plays a pivotal role in AD pathogenesis, driven by impairments in mitochondrial quality control (MQC) mechanisms. MQC is crucial for maintaining mitochondrial integrity through processes such as proteostasis, mitochondrial dynamics, mitophagy, and precise communication with other subcellular organelles. In AD, disruptions in these processes lead to bioenergetic failure, gene dysregulation, the accumulation of damaged mitochondria, neuroinflammation, and lipid homeostasis impairment, further exacerbating neurodegeneration. This review elucidates the molecular pathways involved in MQC and their pathological relevance in AD, highlighting recent discoveries related to mitochondrial mechanisms underlying neurodegeneration. Furthermore, we explore potential therapeutic strategies targeting mitochondrial dysfunction, including gene therapy and pharmacological interventions, offering new avenues for slowing AD progression. The complex interplay between mitochondrial health and neurodegeneration underscores the need for innovative approaches to restore mitochondrial function and mitigate the onset and progression of AD.
Collapse
Affiliation(s)
- Kyle C McGill Percy
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zunren Liu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Wang W, Li T, Wu K. Cell death in tumor microenvironment: an insight for exploiting novel therapeutic approaches. Cell Death Discov 2025; 11:93. [PMID: 40064873 PMCID: PMC11894105 DOI: 10.1038/s41420-025-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cell death is critical in tumor biology. The common cancer therapies can cause cell death and alleviate tumor, while the cancer cells can develop a resistance to cell death and survive from the therapies. Thus, not only observing the alternative mechanisms of tumor cells resistant to cell death, but also understanding the intricate dynamics of cell death processes within the tumor microenvironment (TME), are essential for tailoring effective therapeutic strategies. High-throughput sequencing technologies have revolutionized cancer research by enabling comprehensive molecular profiling. Recent advances in single cell sequencing have unraveled the heterogeneity of TME components, shedding light on their complex interactions. In this review, we explored the interplay between cell death signaling and the TME, summarised the potential drugs inducing cell death in pre-clinical stage, reviewed some studies applying next-generation sequencing technologies in cancer death research, and discussed the future utilization of updated sequencing platforms in screening novel treatment methods targeted cell death. In conclusion, leveraging multi-omics technologies to dissect cell death signaling in the context of the TME holds great promise for advancing cancer research and therapy development.
Collapse
Affiliation(s)
- Wenxin Wang
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Tong Li
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Kui Wu
- BGI Genomics, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China.
| |
Collapse
|
4
|
Lin L, Li J, Yu Z, He J, Li Y, Jiang J, Xia Y. Nrf2 activator tertiary butylhydroquinone enhances neural stem cell differentiation and implantation in Alzheimer's disease by boosting mitochondrial function. Brain Res 2025; 1849:149341. [PMID: 39566569 DOI: 10.1016/j.brainres.2024.149341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
AIMS To investigate the effects of Nrf2 agonist tertiary butylhydroquinone (TBHQ)-stimulated neural stem cells (NSCs) transplantation (NSC(TBHQ)) on neuronal damage and cognitive deficits in an AD model and its underlying principles. METHODS BHQ-treated NSCs were examined with or without Aβ1-42 to investigate the effects of TBHQ on the proliferation and differentiation functions. The mitophagy inhibitor Cyclosporine A (CSA) was used to explore the regulation of mitophagy by TBHQ. The no-, ethanol-, and TBHQ-treated NSCs were transplanted into the bilateral hippocampal region of model mice to explore the effects of NSC(TBHQ) on neuronal, cognitive, and mitochondrial functional impairments in mice. RESULTS TBHQ reversed the Aβ1-42-caused inhibition on NSC proliferation and differentiation, as well as on levels of mitochondrial membrane potential, adenosine triphosphate (ATP), and mitochondrial fusion-associated proteins. TBHQ alleviated the Aβ1-42-induced increase in apoptosis, mitochondrial damage, mitochondria-derived reactive oxygen species (mtROS), and mitochondrial fission-related proteins. TBHQ activated the Parkin, Beclin, LC3II/I, and COXIV expression, while inhibiting the p62 expression. CSA reversed the effects of TBHQ on NSC proliferation and differentiation. After NSC(TBHQ) transplantation, it not only further extended the dwell time in the target quadrant and shorten the time and distance for finding the hidden platform, but also further decreased the Aβ and p-Tau/Tau levels, while increasing the expression of NeuN. The effects of NSC(TBHQ) transplantation on mitochondrial function were consistent with the in vitro experiments. CONCLUSIONS The study shows that NSC(TBHQ) intensifies the beneficial impact of NSCs transplantation on cognitive impairment and neuronal damage in AD models, likely due to TBHQ's role in promoting NSCs growth and differentiation via mitophagy, thus laying a theoretical foundation for improving NSCs transplantation for AD.
Collapse
Affiliation(s)
- Long Lin
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Jiameng Li
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Zhengtao Yu
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Jun He
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - You Li
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Junwen Jiang
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Ying Xia
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China.
| |
Collapse
|
5
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
6
|
Anchimowicz J, Zielonka P, Jakiela S. Plant Secondary Metabolites as Modulators of Mitochondrial Health: An Overview of Their Anti-Oxidant, Anti-Apoptotic, and Mitophagic Mechanisms. Int J Mol Sci 2025; 26:380. [PMID: 39796234 PMCID: PMC11720160 DOI: 10.3390/ijms26010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy. Mitochondrial dysfunction, a hallmark of many pathologies, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndrome, has been shown to benefit from the protective effects of PSMs. Recent studies show that PSMs can improve mitochondrial dynamics, stabilise mitochondrial membranes, and enhance bioenergetics, offering significant promise for the prevention and treatment of mitochondrial-related diseases. The molecular mechanisms underlying these effects, including modulation of key signalling pathways and direct interactions with mitochondrial proteins, are discussed. The integration of PSMs into therapeutic strategies is highlighted as a promising avenue for improving treatment efficacy while minimising the side effects commonly associated with synthetic drugs. This review also highlights the need for future research to elucidate the specific roles of individual PSMs and their synergistic interactions within complex plant matrices, which may further optimise their therapeutic utility. Overall, this work provides valuable insights into the complex role of PSMs in mitochondrial health and their potential as natural therapeutic agents targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.A.); (P.Z.)
| |
Collapse
|
7
|
Farahani N, Alimohammadi M, Raei M, Nabavi N, Aref AR, Hushmandi K, Daneshi S, Razzaghi A, Taheriazam A, Hashemi M. Exploring the dual role of endoplasmic reticulum stress in urological cancers: Implications for tumor progression and cell death interactions. J Cell Commun Signal 2024; 18:e12054. [PMID: 39691874 PMCID: PMC11647052 DOI: 10.1002/ccs3.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024] Open
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mina Alimohammadi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Raei
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kiavash Hushmandi
- Nephrology and Urology Research CenterClinical Sciences InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Salman Daneshi
- Department of Public HealthSchool of HealthJiroft University of Medical SciencesJiroftIran
| | - Alireza Razzaghi
- Social Determinants of Health Research CenterResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of OrthopedicsFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
8
|
Yan C, Yang S, Shao S, Zu R, Lu H, Chen Y, Zhou Y, Ying X, Xiang S, Zhang P, Li Z, Yuan Y, Zhang Z, Wang P, Xie Z, Wang W, Ma H, Sun Y. Exploring the anti-ferroptosis mechanism of Kai-Xin-San against Alzheimer's disease through integrating network pharmacology, bioinformatics, and experimental validation strategy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117915. [PMID: 38360383 DOI: 10.1016/j.jep.2024.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai Xin San (KXS), first proposed by Sun Simiao during the Tang Dynasty, has been utilized to treat dementia by tonifying qi and dispersing phlegm. AIM OF THE STUDY This study aimed to elucidate the mechanism by which KXS exerts its therapeutic effects on Alzheimer's disease (AD) by targeting ferroptosis, using a combination of network pharmacology, bioinformatics, and experimental validation strategies. MATERIALS AND METHODS The active target sites and the further potential mechanisms of KXS in protecting against AD were investigated through molecular docking, molecular dynamics simulation, and network pharmacology, and combined with the validation of animal experiments. RESULTS Computational and experimental findings provide the first indication that KXS significantly improves learning and memory defects and inhibits neuronal ferroptosis by repairing mitochondria damage and upregulating the protein expression of ferroptosis suppressor protein 1 (FSP1) in vivo APP/PS1 mice AD model. According to bioinformatics analysis, the mechanism by which KXS inhibits ferroptosis may involve SIRT1. KXS notably upregulated the mRNA and protein expression of SIRT1 in both vivo APP/PS1 mice and in vitro APP-overexpressed HT22 cells. Additionally, KXS inhibited ferroptosis induced by APP-overexpression in HT22 cells through activating the SIRT1-FSP1 signal pathway. CONCLUSIONS Collectively, our findings suggest that KXS may inhibit neuronal ferroptosis through activating the SIRT1/FSP1 signaling pathway. This study reveals the scientific basis and underlying modern theory of replenishing qi and eliminating phlegm, which involves the inhibition of ferroptosis. Moreover, it highlights the potential application of SIRT1 or FSP1 activators in the treatment of AD and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Simai Shao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Runru Zu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Hao Lu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yangang Zhou
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xiran Ying
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Peixu Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang, 330052, Jiangxi, PR China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
| |
Collapse
|
9
|
Preethy H A, Venkatakrishnan YB, Ramakrishnan V, Krishnan UM. A network pharmacological approach for the identification of potential therapeutic targets of Brahmi Nei - a complex traditional Siddha formulation. J Biomol Struct Dyn 2024:1-24. [PMID: 38459935 DOI: 10.1080/07391102.2024.2322612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
Brahmi Nei (BN), a traditional Indian polyherbal formulation has been described in classical texts for the treatment of anxiety and depression, as well as to fortify the immune system. The individual herbs of BN have been used for treatment of wide range of disorders including cognition, inflammation, skin ailments and cancer etc., This diverse basket of therapeutic activity suggests that BN may possess therapeutic benefits to other disorders. So, the present study aims to identify the potential therapeutic targets of BN using a network pharmacological approach to comprehend the multi target action of its multiple phytoconstituents. We have employed Randić Index for the first time to calculate the contribution score of module segregated targets towards diseases. Our results suggests that BN targets could also be effective in other diseases such as lysosomal storage disorders, respiratory disorders etc., apart from neurological disorders. The key targets with highest topological measures of Targets-(Pathway)-Targets network were identified as potential therapeutic targets of BN. And the top hit target PTGS2, a gene encoding for cyclooxygenase-2 was further evaluated using molecular docking, molecular dynamic simulation and in vitro studies. Our findings open up new therapeutic facets for BN that can be explored systematically in future.
Collapse
Affiliation(s)
- Agnes Preethy H
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, India
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| | | | | | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, India
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
- School of Arts, Sciences, Humanities & Education (SASHE), SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
10
|
Liu L, Zhang CS, Zhang AL, Cai Y, Xue CC. The efficacy and safety of Chinese herbal medicine for mild cognitive impairment: a systematic review and meta-analysis of randomized placebo-controlled trials. Front Pharmacol 2024; 15:1341074. [PMID: 38425647 PMCID: PMC10902497 DOI: 10.3389/fphar.2024.1341074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Objective: Effective and safe treatments for mild cognitive impairment (MCI) are limited. Chinese herbal medicine (CHM) is commonly used in China to manage MCI. However, its efficacy and safety remain uncertain. This review aims to evaluate the efficacy and safety of CHM for MCI. Methods: Nine databases were searched from their inceptions to January 2023. Randomized, placebo-controlled trials of oral CHM for MCI were included. Study quality was assessed using the Cochrane risk-of-bias tool 2.0, and the certainty of evidence was evaluated via the GRADE approach. Results: Thirteen studies, involving 1,043 participants, were analyzed. Most of the studies (10 out of 13) were associated with "some concerns" regarding the overall risk of bias. Meta-analyses results indicated that CHM significantly improved cognitive function compared to placebo in terms of Mini-Mental State Examination (MMSE) (MD: 1.90 [1.22, 2.58], I2 = 87%, 11 studies, 823 participants) and Montreal Cognitive Assessment (MoCA) (MD: 2.88 [1.69, 4.06], I2 = 81%, 3 studies, 241 participants). The certainty of evidence for MMSE was assessed as "moderate", while it was "low" for MoCA. One study did not report adverse events (AEs), one study reported no statistical difference between the groups in terms of AEs, and 11 studies provided detailed numbers of AE cases where gastrointestinal symptoms were the most commonly reported AEs. Two studies reported no SAEs among participants and one study found no significant difference in SAEs proportions between groups. The meta-analysis revealed no significant difference in AEs between the two groups (RR: 1.31 [0.92, 1.87), I2 = 0%, 11 studies, 839 participants). The cognitive-enhancing function of commonly used herbs (Panax ginseng C.A.Mey., Acorus calamus var. angustatus Besser, and Polygala tenuifolia Willd.) may be attributed to mechanisms including antioxidant, anti-apoptotic, anti-neurotoxic, anti-cytotoxic, and anti-inflammatory actions. Conclusion: Chinese herbal medicine holds potential as an effective intervention to improve cognitive function in MCI patients, supported by meta-analyses evidence of low to moderate certainty. Although current data suggests CHM is generally safe, caution is advised due to the lack of AE reporting or detailed information in some instances. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=400292, identifier [CRD42023400292].
Collapse
Affiliation(s)
- Lingling Liu
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Claire Shuiqing Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Anthony Lin Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Yefeng Cai
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Charlie Changli Xue
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
He YJ, Liu JS, Zhang L, Yan JW. A quinolinium-based dual-functional NIR fluorescent probe for the imaging of Aβ aggregation and mitochondrial pH. Talanta 2024; 268:125362. [PMID: 37918242 DOI: 10.1016/j.talanta.2023.125362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Mitochondria are the most important energy supply centers in the cell, the changes in function and structure are implicated in many diseases. Among them, Aβ peptide, one of the targets of Alzheimer's disease, is closely related to mitochondrial autophagy, during the process of mitochondrial autophagy, the mitochondrial matrix will undergo acidification and the pH will be obviously reduced. Herein, a quinolinium-based NIR fluorescent probe QM12 was rationally designed and synthesized for the simultaneous imaging of Aβ aggregates and mitochondrial pH with different emission readout. The probe QM12 exhibited excellent selective toward Aβ aggregates, and can also trace the real-time changes of mitochondrial pH, which could serve as a promising tool for the pathological study of Alzheimer's disease, especially the cross talk between different biomarkers of Alzheimer's disease.
Collapse
Affiliation(s)
- Yi-Jiao He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Jin-Sheng Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| | - Jin-Wu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
12
|
Hu M, Ying X, Zheng M, Wang C, Li Q, Gu L, Zhang X. Therapeutic potential of natural products against Alzheimer's disease via autophagic removal of Aβ. Brain Res Bull 2024; 206:110835. [PMID: 38043648 DOI: 10.1016/j.brainresbull.2023.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
The pathological features of Alzheimer's disease (AD), a progressive neurodegenerative disorder, include the deposition of extracellular amyloid beta (Aβ) plaques and intracellular tau neurofibrillary tangles. A decline in cognitive ability is related to the accumulation of Aβ in patients with AD. Autophagy, which is a primary intracellular mechanism for degrading aggregated proteins and damaged organelles, plays a crucial role in AD. In this review, we summarize the most recent research progress regarding the process of autophagy and the effect of autophagy on Aβ. We further discuss some typical monomers of natural products that contribute to the clearance of Aβ by autophagy, which can alleviate AD. This provides a new perspective for the application of autophagy modulation in natural product therapy for AD.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Xinyi Ying
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
13
|
Ma J, Zheng M, Zhang X, Lu J, Gu L. Ethanol extract of Andrographis paniculata alleviates aluminum-induced neurotoxicity and cognitive impairment through regulating the p62-keap1-Nrf2 pathway. BMC Complement Med Ther 2023; 23:441. [PMID: 38057817 PMCID: PMC10698961 DOI: 10.1186/s12906-023-04290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative and remains incurable. Aluminum is a potent neurotoxin associated with AD. The main pathological features of AD are extracellular amyloid-β protein deposition and intracellular hyperphosphorylated Tau protein. A body of evidence suggest that oxidative stress and autophagy are involved in the pathogenesis of AD. Andrographis paniculata (AP) is a native plant with anti-inflammatory, anti-oxidative stress, and regulation of autophagy properties. AP significantly alleviated cognitive impairments, reduced Aβ deposition and has neuroprotective effect. However, its effects on aluminum-induced AD model have not been studied much. In this study, we investigated whether AP protect against aluminum-induced neurotoxicity through regulation of p62-Kelch-like ECH-associated protein 1(Keap1)-Nuclear factor E2 related factor 2 (Nrf2) pathway and activation autophagy in vivo and in vitro. METHODS UPLC-ESI-qTOF-MS/MS was used to identify the chemical constituents of AP ethanol extract. The mice with cognitive deficit were established by injecting aluminum chloride and D-galactose, and treated with either AP extract (200, 400, or 600 mg/kg/d) or andrographolide (2 mg/kg/2d).The spatial memory ability was detected by Morris water maze, HE staining were used to detect in brain tissue,Oxidative stress indexs and SOD activity in both serum and brain tissue were detected by kit.The expression of p62-Nrf2 pathway proteins were measured via western blotting. Furthermore, the neurotoxicity model was induced by aluminum maltolate (700 µM) in PC12 cells. Following AP and andrographolide treatment, the cell viability was detected. The relevant mRNA and protein expressions were detected in cells transfected with the p62 siRNA. RESULTS The main active components of AP included andrographolide, neoandrographolide and deoxyandrographolide as identified. AP and andrographolide significantly improved the spatial memory ability of mice, attenuated pathological changes of hippocampal cells, reduced the level of malondialdehyde, and increased superoxide dismutase activity in serum or brain tissue as compared to model control. In addition, the Nrf2, p62 and LC3B-II proteins expression were increased, and p-Tau and Keap1 proteins were decreased in the hippocampus after AP and andrographolide treatment.Furthermore, AP increased aluminum maltolate-induced cell viability in PC12 cells. Silencing p62 could reverse the upregulation expression of Nrf2 and downregulation of Keap1 and Tau proteins induced by AP in aluminum maltolate-treated cells. CONCLUSIONS AP had neuroprotective effects against aluminum -induced cognitive dysfunction or cytotoxicity, which was involved in the activation of the p62-keap1-Nrf2 pathway and may develop as therapeutic drugs for the treatment of AD. However, this study has certain limitations, further optimize the protocol or model and study the molecular mechanism of AP improving AD.
Collapse
Affiliation(s)
- Jianping Ma
- Department of Pharmacy, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy (Institute of Materia Medica), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy (Institute of Materia Medica), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Jiaqi Lu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy (Institute of Materia Medica), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy (Institute of Materia Medica), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.
| |
Collapse
|
14
|
Zhao Y, Li J, Cao G, Zhao D, Li G, Zhang H, Yan M. Ethnic, Botanic, Phytochemistry and Pharmacology of the Acorus L. Genus: A Review. Molecules 2023; 28:7117. [PMID: 37894595 PMCID: PMC10609487 DOI: 10.3390/molecules28207117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The genus Acorus, a perennial monocotyledonous-class herb and part of the Acoraceae family, is widely distributed in the temperate and subtropical zones of the Northern and Southern Hemispheres. Acorus is rich in biological activities and can be used to treat various diseases of the nervous system, cardiovascular system, and digestive system, including Alzheimer's disease, depression, epilepsy, hyperlipidemia, and indigestion. Recently, it has been widely used to improve eutrophic water and control heavy-metal-polluted water. Thus far, only three species of Acorus have been reported in terms of chemical components and pharmacological activities. Previously published reviews have not further distinguished or comprehensively expounded the chemical components and pharmacological activities of Acorus plants. By carrying out a literature search, we collected documents closely related to Acorus published from 1956 to 2022. We then performed a comprehensive and systematic review of the genus Acorus from different perspectives, including botanical aspects, ethnic applications, phytochemistry aspects, and pharmacological aspects. Our aim was to provide a basis for further research and the development of new concepts.
Collapse
Affiliation(s)
- Yu Zhao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia Li
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guoshi Cao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guangzhe Li
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hongyin Zhang
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingming Yan
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
15
|
Duan F, Ju T, Song C, Liu M, Xiong Y, Han X, Lu W. Synergetic effect of β-asarone and cannabidiol against Aβ aggregation in vitro and in vivo. Comput Struct Biotechnol J 2023; 21:3875-3884. [PMID: 37602231 PMCID: PMC10432915 DOI: 10.1016/j.csbj.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disorder, and it is unlikely that any single drug or intervention will be very successful. The pathophysiology of Alzheimer's disease involves a range of complicated biological processes, including the accumulation of beta-amyloid protein and tau protein. Given the complexity of AD and amyloid accumulation, a combination of interventions remains to be further explored. Here, we investigated the potential of combining β-asarone and cannabidiol (CBD) as a treatment for AD. The study analyzed the combined effects of these two phytochemicals on beta-amyloid (Aβ) protein aggregation and toxicity in bulk solution, in cells as well as in C.elegans. We detailed the morphological and size changes of Aβ40 aggregates in the presence of β-asarone and cannabidiol. More importantly, the presence of both compounds synergistically inhibited apoptosis and downregulated relative gene expression in cells, and that it may also slow aging, decrease the rate of paralysis, enhance learning capacity, and boost autophagy activity in C.elegans. Our studies suggest that multiple drugs, like β-asarone and CBD, may be potentially developed as a medicinal adjunct in the treatment of AD, although further clinical trials are needed to determine the efficacy and safety of this combination treatment in humans.
Collapse
Affiliation(s)
- Fangyuan Duan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Chen Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Mengyao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Xue Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT. Harbin Institute of Technology, Chongqing 401120, China
| |
Collapse
|
16
|
Wang M, Tang HP, Wang S, Hu WJ, Li JY, Yu AQ, Bai QX, Yang BY, Kuang HX. Acorus tatarinowii Schott: A Review of Its Botany, Traditional Uses, Phytochemistry, and Pharmacology. Molecules 2023; 28:molecules28114525. [PMID: 37299001 DOI: 10.3390/molecules28114525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Acorus tatarinowii Schott (A. tatarinowii) is a natural medicinal plant. It plays an indispensable role in the treatment of diseases by the empirical medicine system and has achieved remarkable curative effects. A. tatarinowii is often used to treat various diseases, such as depression, epilepsy, fever, dizziness, heartache, stomachache, etc. More than 160 compounds of different structural types have been identified in A. tatarinowii, including phenylpropanoids, terpenoids, lignans, flavonoids, alkaloids, amides, and organic acids. These bioactive ingredients make A. tatarinowii remarkable for its pharmacological effects, including antidepressant, antiepileptic, anticonvulsant, antianxiety, neuroprotective, antifatigue, and antifungal effects, improving Alzheimer's disease, and so on. It is noteworthy that A. tatarinowii has been widely used in the treatment of brain diseases and nervous system diseases and has achieved satisfactory therapeutic effects. This review focused on the research publications of A. tatarinowii and aimed to summarize the advances in the botany, traditional uses, phytochemistry, and pharmacology, which will provide a reference for further studies and applications of A. tatarinowii.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jia-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
17
|
He X, Chen X, Yang Y, Liu Y, Xie Y. Acorus calamus var. angustatus Besser: Insight into current research on ethnopharmacological use, phytochemistry, pharmacology, toxicology, and pharmacokinetics. PHYTOCHEMISTRY 2023; 210:113626. [PMID: 36871902 DOI: 10.1016/j.phytochem.2023.113626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 05/09/2023]
Abstract
A. calamus var. angustatus Besser is an important traditional medicinal herb commonly used in China and other Asian countries. This study is the first systematic review of the literature to thoroughly analyze the ethnopharmacological application, phytochemistry, pharmacology, toxicology and pharmacokinetic properties of A. calamus var. angustatus Besser and provides a rationale for future research and prospects for application in clinical treatment. Information on relevant studies investigating A. calamus var. angustatus Besser was collected from SciFinder, the Web of Science, PubMed, CNKI, Elsevier, ResearchGate, ACS, Flora of China, and Baidu Scholar, etc. up to December 2022. In addition, information was also obtained from Pharmacopeias, books on Chinese herbal classics, local books, as well as PhD and MS dissertations. A. calamus var. angustatus Besser has played an important role in the herbal treatment of coma, convulsion, amnesia, and dementia for thousands of years. Studies investigating the chemical constituents of A. calamus var. angustatus Besser have isolated and identified 234 small-molecule compounds and a few polysaccharides. Among them, simple phenylpropanoids represented by asarone analogues and lignans are the two main active ingredients, which can be considered characteristic chemotaxonomic markers of this herb. In vitro and in vivo pharmacological studies indicated that crude extracts and active compounds from A. calamus var. angustatus Besser display a wide range of pharmacological activities, especially as treatment for Alzheimer's disease (AD), and anticonvulsant, antidepressant-like, anxiolytic-like, anti-fatigue, anti-Parkinson, neuroprotection, and brain protection properties, providing more evidence to explain the traditional medicinal uses and ethnopharmacology. The clinical therapeutic dose of A. calamus var. angustatus Besser does not present any toxic effects, but its main active ingredients α-asarone and β-asarone at excessive dose may lead to toxicity, and in particular, their respective epoxide metabolites may exert potential toxicity to the liver. This review provides a reference and further information for the future development and clinical application of A. calamus var. angustatus Besser.
Collapse
Affiliation(s)
- Xirui He
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China.
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Yan Yang
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yujie Liu
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yulu Xie
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
18
|
Liu H, Zhou R, Yin L, Si N, Yang C, Huang C, Wang R, Chen X. β-asarone prolongs sleep via regulating the level of glutamate in the PVN. Biochem Biophys Res Commun 2023; 665:71-77. [PMID: 37149985 DOI: 10.1016/j.bbrc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
People of all ages could suffer from sleep disorders, which are increasingly recognized as common manifestations of neurologic disease. Acorus tatarinowii is a herb that has been used in traditional medicine to promote sleep. β-asarone, as the main component of volatile oil obtained from Acorus tatarinowii, may be the main contributor to the sleeping-promoting efficacy of Acorus tatarinowii. In the study, adult male C57BL/6 mice were administered β-asarone at 12.5 mg/kg, 25 mg/kg, and 50 mg/kg. Behavioral experiments showed that β-asarone at 25 mg/kg could significantly improve sleep duration. It was also observed that the proportion of NREM (Non-Rapid Eye Movement) sleep increased considerably after administration of β-asarone. In the PVN (paraventricular nucleus of hypothalamus) region of the hypothalamus, it was observed that the glutamate content decreased after β-asarone treatment. At the same time, the expression of VGLUT2 (vesicular glutamate transporters 2) decreased while the expression of GAD65 (glutamic acid decarboxylase 65) and GABARAP (GABA Type A Receptor-Associated Protein) increased in the hypothalamus, suggesting that β-asarone may suppress arousal by reducing glutamate and promoting transformation of glutamate to the inhibitory neurotransmitter GABA (γ-aminobutyric acid). This study is the first to focus on the association between β-asarone and sleep, shedding perspectives for pharmacological applications of β-asarone and providing a new direction for future research.
Collapse
Affiliation(s)
- Haoyu Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ruiqing Zhou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lanxiang Yin
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Nana Si
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chenglin Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chengqing Huang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rongrong Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangtao Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Ma Y, Li Y, Yin R, Guo P, Lei N, Li G, Xiong L, Xie Y. Therapeutic potential of aromatic plant extracts in Alzheimer's disease: Comprehensive review of their underlying mechanisms. CNS Neurosci Ther 2023. [PMID: 37122144 DOI: 10.1111/cns.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/31/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
AIMS The aim of this review is to outline recent advancements in the application and mechanistic studies of aromatic plant extracts in Alzhermer`s disease (AD) to demonstrate their value in the management of this disease. BACKGROUND AD is a neurodegenerative disease with a complex pathogenesis characterized by severe cognitive impairment. Currently, there are very few drugs available for the treatment of AD, and treatments are primarily focused on symptom relief. Aromatherapy is a traditional complementary alternative therapy that focuses on the prevention and treatment of the disease through the inhalation or transdermal administration of aromatic plant extracts. Over the past few years, studies on the use of aromatic plant extracts for the treatment of AD have been increasing and have demonstrated a definitive therapeutic effect. METHODS We systematically summarized in vitro, in vivo, and clinical studies focusing on the potential use of aromatic plant extracts in the treatment of AD in PubMed, ScienceDirect, Google Scholar, and the Chinese National Knowledge Infrastructure from 2000 to 2022. RESULTS Our literature survey indicates that aromatic plant extracts exert anti-AD effects by modulating pathological changes through anti-amyloid, anti-tau phosphorylation, anti-cholinesterase, anti-inflammation, and anti-oxidative stress mechanisms (Figure 1). CONCLUSION This review provides a future strategy for the research of novel anti-AD drugs from aromatic plant extracts.
Collapse
Affiliation(s)
- Yue Ma
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Yingming Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Run Yin
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Peixin Guo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
| | - Nai Lei
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Gang Li
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
| | - Lei Xiong
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Yuhuan Xie
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| |
Collapse
|
20
|
Farsi RM. The Role of Mitochondrial Dysfunction in Alzheimer's: Molecular Defects and Mitophagy-Enhancing Approaches. Life (Basel) 2023; 13:life13040970. [PMID: 37109499 PMCID: PMC10142261 DOI: 10.3390/life13040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD), a progressive and chronic neurodegenerative syndrome, is categorized by cognitive and memory damage caused by the aggregations of abnormal proteins, specifically including Tau proteins and β-amyloid in brain tissue. Moreover, mitochondrial dysfunctions are the principal causes of AD, which is associated with mitophagy impairment. Investigations exploring pharmacological therapies alongside AD have explicitly concentrated on molecules accomplished in preventing/abolishing the gatherings of the abovementioned proteins and mitochondria damages. Mitophagy is the removal of dead mitochondria by the autophagy process. Damages in mitophagy, the manner of diversified mitochondrial degeneracy by autophagy resulting in an ongoing aggregation of malfunctioning mitochondria, were also suggested to support AD. Recently, plentiful reports have suggested a link between defective mitophagy and AD. This treaty highlights updated outlines of modern innovations and developments on mitophagy machinery dysfunctions in AD brains. Moreover, therapeutic and nanotherapeutic strategies targeting mitochondrial dysfunction are also presented in this review. Based on the significant role of diminished mitophagy in AD, we suggest that the application of different therapeutic approaches aimed at stimulating mitophagy in AD would be beneficial for targeting or reducing the mitochondrial dysfunction induced by AD.
Collapse
Affiliation(s)
- Reem M Farsi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21462, Saudi Arabia
| |
Collapse
|
21
|
Taban Akça K, Çınar Ayan İ, Çetinkaya S, Miser Salihoğlu E, Süntar İ. Autophagic mechanisms in longevity intervention: role of natural active compounds. Expert Rev Mol Med 2023; 25:e13. [PMID: 36994671 PMCID: PMC10407225 DOI: 10.1017/erm.2023.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The term 'autophagy' literally translates to 'self-eating' and alterations to autophagy have been identified as one of the several molecular changes that occur with aging in a variety of species. Autophagy and aging, have a complicated and multifaceted relationship that has recently come to light thanks to breakthroughs in our understanding of the various substrates of autophagy on tissue homoeostasis. Several studies have been conducted to reveal the relationship between autophagy and age-related diseases. The present review looks at a few new aspects of autophagy and speculates on how they might be connected to both aging and the onset and progression of disease. Additionally, we go over the most recent preclinical data supporting the use of autophagy modulators as age-related illnesses including cancer, cardiovascular and neurodegenerative diseases, and metabolic dysfunction. It is crucial to discover important targets in the autophagy pathway in order to create innovative therapies that effectively target autophagy. Natural products have pharmacological properties that can be therapeutically advantageous for the treatment of several diseases and they also serve as valuable sources of inspiration for the development of possible new small-molecule drugs. Indeed, recent scientific studies have shown that several natural products including alkaloids, terpenoids, steroids, and phenolics, have the ability to alter a number of important autophagic signalling pathways and exert therapeutic effects, thus, a wide range of potential targets in various stages of autophagy have been discovered. In this review, we summarised the naturally occurring active compounds that may control the autophagic signalling pathways.
Collapse
Affiliation(s)
- Kevser Taban Akça
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İlknur Çınar Ayan
- Department of Medical Biology, Medical Faculty, Necmettin Erbakan University, Meram, Konya, Türkiye
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara, Türkiye
| | - Ece Miser Salihoğlu
- Biochemistry Department, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İpek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
22
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
23
|
Zhang W, Geng X, Dong Q, Li X, Ye P, Lin M, Xu B, Jiang H. Crosstalk between autophagy and the Keap1-Nrf2-ARE pathway regulates realgar-induced neurotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115776. [PMID: 36191662 DOI: 10.1016/j.jep.2022.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Realgar, the main component of which is As2S2 or As4S4 (≥90%), is a traditional Chinese natural medicine that has been used to treat carbuncles, furuncles, snake and insect bites, abdominal pain caused by parasitic worms, and epilepsy in China for many years. Because realgar contains arsenic, chronic or excessive use of single-flavor realgar and realgar-containing Chinese patent medicine can lead to drug-induced arsenic poisoning, but the exact mechanism underlying its toxicity to the central nervous system is unclear. AIM OF THE STUDY The aim of this study was to clarify the mechanism of realgar-induced neurotoxicity and to investigate the effects of realgar on autophagy and the Keap1-Nrf2-ARE pathway. MATERIALS AND METHODS We used rats treated with the autophagy inhibitor 3-methyladenine (3-MA) or adeno-associated virus (AAV2/9-r-shRNA-Sqstm1, sh-p62) to investigate realgar-induced neurotoxicity and explore the specific relationship between autophagy and the Keap1-Nrf2-ARE pathway (the Nrf2 pathway) in the cerebral cortex. Molecular docking analysis was used to assess the interactions among the Nrf2, p62 and Keap1 proteins. RESULTS Our results showed that arsenic from realgar accumulated in the brain and blood to cause neuronal and synaptic damage, decrease exploratory behavior and spontaneous movement, and impair memory ability in rats. The mechanism may have involved realgar-mediated autophagy impairment and continuous activation of the Nrf2 pathway via the LC3-p62-Keap1-Nrf2 axis. However, because this activation of the Nrf2 pathway was not sufficient to counteract oxidative damage, apoptosis was aggravated in the cerebral cortex. CONCLUSIONS This study revealed that autophagy, the Nrf2 pathway, and apoptosis are involved in realgar-induced central nervous system toxicity and identified p62 as the hub of the LC3-p62-Keap1-Nrf2 axis in the regulation of autophagy, the Nrf2 pathway, and apoptosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| | - Xu Geng
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Qing Dong
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Xiuhan Li
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Ping Ye
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Mengyuan Lin
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Bin Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Hong Jiang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| |
Collapse
|
24
|
Mitophagy in Alzheimer's disease: Molecular defects and therapeutic approaches. Mol Psychiatry 2023; 28:202-216. [PMID: 35665766 PMCID: PMC9812780 DOI: 10.1038/s41380-022-01631-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunctions are central players in Alzheimer's disease (AD). In addition, impairments in mitophagy, the process of selective mitochondrial degradation by autophagy leading to a gradual accumulation of defective mitochondria, have also been reported to occur in AD. We provide an updated overview of the recent discoveries and advancements on mitophagic molecular dysfunctions in AD-derived fluids and cells as well as in AD brains. We discuss studies using AD cellular and animal models that have unraveled the contribution of relevant AD-related proteins (Tau, Aβ, APP-derived fragments and APOE) in mitophagy failure. In accordance with the important role of impaired mitophagy in AD, we report on various therapeutic strategies aiming at stimulating mitophagy in AD and we summarize the benefits of these potential therapeutic strategies in human clinical trials.
Collapse
|
25
|
Kim CJ, Kwak TY, Bae MH, Shin HK, Choi BT. Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine. J Pharmacopuncture 2022; 25:326-343. [PMID: 36628348 PMCID: PMC9806153 DOI: 10.3831/kpi.2022.25.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.
Collapse
Affiliation(s)
- Cheol Ju Kim
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Tae Young Kwak
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Hyeok Bae
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| |
Collapse
|
26
|
Subramanian A, Tamilanban T, Alsayari A, Ramachawolran G, Wong LS, Sekar M, Gan SH, Subramaniyan V, Chinni SV, Izzati Mat Rani NN, Suryadevara N, Wahab S. Trilateral association of autophagy, mTOR and Alzheimer's disease: Potential pathway in the development for Alzheimer's disease therapy. Front Pharmacol 2022; 13:1094351. [PMID: 36618946 PMCID: PMC9817151 DOI: 10.3389/fphar.2022.1094351] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The primary and considerable weakening event affecting elderly individuals is age-dependent cognitive decline and dementia. Alzheimer's disease (AD) is the chief cause of progressive dementia, and it is characterized by irreparable loss of cognitive abilities, forming senile plaques having Amyloid Beta (Aβ) aggregates and neurofibrillary tangles with considerable amounts of tau in affected hippocampus and cortex regions of human brains. AD affects millions of people worldwide, and the count is showing an increasing trend. Therefore, it is crucial to understand the underlying mechanisms at molecular levels to generate novel insights into the pathogenesis of AD and other cognitive deficits. A growing body of evidence elicits the regulatory relationship between the mammalian target of rapamycin (mTOR) signaling pathway and AD. In addition, the role of autophagy, a systematic degradation, and recycling of cellular components like accumulated proteins and damaged organelles in AD, is also pivotal. The present review describes different mechanisms and signaling regulations highlighting the trilateral association of autophagy, the mTOR pathway, and AD with a description of inhibiting drugs/molecules of mTOR, a strategic target in AD. Downregulation of mTOR signaling triggers autophagy activation, degrading the misfolded proteins and preventing the further accumulation of misfolded proteins that inhibit the progression of AD. Other target mechanisms such as autophagosome maturation, and autophagy-lysosomal pathway, may initiate a faulty autophagy process resulting in senile plaques due to defective lysosomal acidification and alteration in lysosomal pH. Hence, the strong link between mTOR and autophagy can be explored further as a potential mechanism for AD therapy.
Collapse
Affiliation(s)
- Arunkumar Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamilnadu, India
| | - T. Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamilnadu, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University, Abha, Saudi Arabia
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, Georgetown, Pulau Pinang, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Nagaraja Suryadevara
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
27
|
Wu X, Yu J, Tan B, Chen Z. Research progress on mechanism of Chinese Kaiqiao herbs in management of neuropathic pain. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:523-533. [PMID: 36581573 PMCID: PMC10264986 DOI: 10.3724/zdxbyxb-2022-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
Abstract
The Chinese herbal medicine for Kaiqiao, such as borneol, musk, grassleaf sweetflag rhizome, storax and camphor, have been prescribed in traditional Chinese medicine for thousands of years and now are widely used for neuropathic pain, the main components of which are annular compounds. Studies have shown that their analgesic mechanisms include regulating the expression of γ-aminobutyric acid, N-methyl- D-aspartic acid and other receptors; regulating ion channel function; inhibiting inflammatory response, oxidative stress and apoptosis; regulating neurotransmission and neuronal excitability; and participating in neuroprotection and neurological repair. It is suggested that the mechanisms of action of Kaiqiao herbs in central nervous system analgesia should be further explored; high-quality rapid screening of drug targets may be used, and the targeted agents using the characteristics of Kaiqiao herbs would be developed. This article reviews the research progress on the effect mechanism of traditional Kaiqiao herbs in the treatment of neuropathic pain to provide further research directions.
Collapse
|
28
|
Tan W, Qi L, Hu X, Tan Z. Research progress in traditional Chinese medicine in the treatment of Alzheimer's disease and related dementias. Front Pharmacol 2022; 13:921794. [PMID: 36506569 PMCID: PMC9729772 DOI: 10.3389/fphar.2022.921794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the world's leading cause of dementia and has become a huge economic burden on nations and families. However, the exact etiology of AD is still unknown, and there are no efficient medicines or methods to prevent the deterioration of cognition. Traditional Chinese medicine (TCM) has made important contributions in the battle against AD based on the characteristics of multiple targets of TCM. This study reviewed the treatment strategies and new discoveries of traditional Chinese medicine in current research, which may be beneficial to new drug researchers.
Collapse
Affiliation(s)
- Wanying Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingjun Qi
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghuai Tan
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
Wu Q, Li X, Jiang XW, Yao D, Zhou LJ, Xu ZH, Wang N, Zhao QC, Zhang Z. Yuan-Zhi decoction in the treatment of Alzheimer’s disease: An integrated approach based on chemical profiling, network pharmacology, molecular docking and experimental evaluation. Front Pharmacol 2022; 13:893244. [PMID: 36091836 PMCID: PMC9451491 DOI: 10.3389/fphar.2022.893244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Yuan-Zhi Decoction (YZD) is a traditional Chinese medical formulation with demonstrated clinical benefits in Alzheimer’s disease (AD). We used liquid chromatography coupled with mass spectrometry to identify 27 unique chemical components of YZD. Analyzing these using network pharmacology and molecular docking models identified 34 potential interacting molecular targets involved in 26 biochemical pathways. When tested in an animal model of AD, the APP/PS1 transgenic mice showed measurable improvements in spatial orientation and memory after the administration of YZD. These improvements coincided with significantly reduced deposition of Aβ plaques and tau protein in the hippocampi in the treated animals. In addition, a decreased BACE1 and beta-amyloid levels, a downregulation of the p-GSK-3β/GSK-3β, and an upregulation of the PI3K and p-AKT/AKT pathway was seen in YZD treated animals. These in vivo changes validated the involvement of molecular targets and pathways predicted in silico analysis of the chemical components of YZD. This study provides scientific support for the clinical use of YZD and justifies further investigations into its effects in AD. Furthermore, it demonstrates the utility of network pharmacology in elucidating the biochemical mechanisms underlying the beneficial effects of traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Qiong Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Yao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li-Jun Zhou
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Zi-Hua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Nan Wang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
- *Correspondence: Zhou Zhang, ; Qing-Chun Zhao,
| | - Zhou Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Zhou Zhang, ; Qing-Chun Zhao,
| |
Collapse
|
30
|
Cai Y, Liu J, Wang B, Sun M, Yang H. Microglia in the Neuroinflammatory Pathogenesis of Alzheimer's Disease and Related Therapeutic Targets. Front Immunol 2022; 13:856376. [PMID: 35558075 PMCID: PMC9086828 DOI: 10.3389/fimmu.2022.856376] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, characterized by progressive neuron degeneration or loss due to excessive accumulation of β-amyloid (Aβ) peptides, formation of neurofibrillary tangles (NFTs), and hyperphosphorylated tau. The treatment of AD has been only partially successful as the majority of the pharmacotherapies on the market may alleviate some of the symptoms. In the occurrence of AD, increasing attention has been paid to neurodegeneration, while the resident glial cells, like microglia are also observed. Microglia, a kind of crucial glial cells associated with the innate immune response, functions as double-edge sword role in CNS. They exert a beneficial or detrimental influence on the adjacent neurons through secretion of both pro-inflammatory cytokines as well as neurotrophic factors. In addition, their endocytosis of debris and toxic protein like Aβ and tau ensures homeostasis of the neuronal microenvironment. In this review, we will systematically summarize recent research regarding the roles of microglia in AD pathology and latest microglia-associated therapeutic targets mainly including pro-inflammatory genes, anti-inflammatory genes and phagocytosis at length, some of which are contradictory and controversial and warrant to further be investigated.
Collapse
Affiliation(s)
| | | | | | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Elghazawy NH, Zaafar D, Hassan RR, Mahmoud MY, Bedda L, Bakr AF, Arafa RK. Discovery of New 1,3,4-Oxadiazoles with Dual Activity Targeting the Cholinergic Pathway as Effective Anti-Alzheimer Agents. ACS Chem Neurosci 2022; 13:1187-1205. [PMID: 35377601 DOI: 10.1021/acschemneuro.1c00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Finding an effective anti-Alzheimer agent is quite challenging due to its multifactorial nature. As such, multitarget directed ligands (MTDLs) could be a promising paradigm for finding potential therapeutically effective new small-molecule bioactive agents against Alzheimer's disease (AD). We herein present the design, synthesis, and biological evaluation of a new series of compounds based on a 5-pyrid-3-yl-1,3,4-oxadiazole scaffold. Our synthesized compounds displayed excellent in vitro enzyme inhibitory activity at nanomolar (nM) concentrations against two major AD disease-modifying targets, i.e., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Among our compounds, 5e was considered the best dual inhibitor of both AChE (IC50 = 50.87 nM) and BuChE (IC50 = 4.77 nM), where these values surpassed those of rivastagmine (the only FDA-approved dual AChE and BuChE inhibitor) in our study. Furthermore, in vivo and ex vivo testing of the hit compound 5e highlighted its significant AD-biotargeting effects including reducing the elevated levels of lipid peroxidation and glutathione (GSH), normalizing levels of 8-OHdG, and, most importantly, decreasing the levels of the well-known AD hallmark β-amyloid protein. Finally, the binding ability of 5e to each of our targets, AChE and BuChE, was confirmed through additional molecular docking and molecular dynamics (MD) simulations that reflected good interactions of 5e to the active site of both targets. Hence, we herein present a series of new 1,3,4-oxadiazoles that are promising leads for the development of dual-acting AChE and BuChE inhibitors for the management of AD.
Collapse
Affiliation(s)
- Nehal H Elghazawy
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 12055, Egypt
| | - Reham R Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Mohamed Y Mahmoud
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Loay Bedda
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| |
Collapse
|
32
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
33
|
Cai J, Cai M, Xia W, Jiang L, Song H, Chen X. Explore the Mechanism of β-Asarone on Improving Cognitive Dysfunction in Rats with Diabetic Encephalopathy. J Alzheimers Dis Rep 2022; 6:195-206. [PMID: 35591951 PMCID: PMC9108628 DOI: 10.3233/adr-220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background: The number of people with diabetes is increasing, and many patients have significantly impaired cognitive function. For patients with diabetic encephalopathy (DE), simply lowering blood sugar does not improve learning and memory. Studies have shown that β-asarone can significantly improve cognitive impairment in patients with DE, but the specific mechanism of action is unclear. Objective: This experiment hopes to use a variety of experimental methods to clarify the protective effect and mechanism of β-asarone on brain neurons during the development of DE disease. Methods: A high-sugar and high-fat diet and streptozotocin injection-induced DE rat model was used. β-asarone was administered for four weeks. The experiment used the Morris water maze test, biochemical index detection, and many methods to evaluate the neuroprotective effect of β-asarone on DE rats from various aspects and understand its mechanism. Results: β-asarone reduced neuronal cell damage and significantly improved the learning and memory ability of DE rats. In addition, β-asarone can reduce the oxidative stress response and amyloid-β accumulation in the brain of DE model rats and increase the content of brain-derived neurotrophic factor (BDNF) in the brain tissue, thereby reducing neuronal cell apoptosis and playing a protective role. Conclusion: β-asarone can reduce the accumulation of oxidative stress and amyloid-β in the brain, increase the content of BDNF, reduce the apoptosis of neuronal cells, and exert neuronal protection, thereby improving the learning and memory ability of DE model rats.
Collapse
Affiliation(s)
- Jingwen Cai
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ming Cai
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenwen Xia
- Lu’an City Hospital of Traditional Chinese Medicine, Lu’an, Anhui, China
| | - Lanlan Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangtao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
34
|
Lee J, Kwon S, Jin C, Cho SY, Park SU, Jung WS, Moon SK, Park JM, Ko CN, Cho KH. Traditional East Asian Herbal Medicine Treatment for Alzheimer's Disease: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2022; 15:174. [PMID: 35215287 PMCID: PMC8874541 DOI: 10.3390/ph15020174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a leading progressive neurodegenerative disease worldwide, and its treatment is a challenging clinical problem. This review was conducted to evaluate the efficacy and safety of herbal medicine for AD treatment. The PubMed, CENTRAL, EMBASE, CNKI, OASIS, KTKP, and CiNii databases were searched until June 2020 for randomized controlled trials (RCTs) on herbal medicine for AD, and a meta-analysis of 57 RCTs was conducted. For cognitive function, herbal medicine significantly improved the Mini-Mental State Examination (MMSE) and AD Assessment Scale-Cognitive Subscale (ADAS-cog) scores compared with conventional medicine. The MMSE scores showed no significant difference between the groups treated with herbal medicine and donepezil; however, herbal medicine significantly lowered the ADAS-cog score. Acori Graminei Rhizoma-containing and Cnidii Rhizoma-containing herbal medicine significantly improved the MMSE and ADAS-cog scores compared with conventional medicine. Ginseng Radix-containing herbal medicine showed a positive, but not statistically significant, tendency toward improving the MMSE score compared with conventional medicine. Herbal medicine with conventional medicine significantly improved the MMSE, ADAS-cog, and Montreal Cognitive Assessment (MoCA) scores compared with conventional medicine, and herbal medicine with donepezil also significantly improved these scores compared with donepezil. Acori Graminei Rhizoma or Cnidii Rhizoma-containing herbal medicine with conventional medicine significantly improved the MMSE and ADAS-cog scores compared with conventional medicine. Ginseng Radix-containing herbal medicine + conventional medicine significantly improved the MMSE score, but not the ADAS-cog score, compared with conventional medicine. For behavioral and psychological symptoms of dementia, the Neuropsychiatry Inventory (NPI) score was not significantly different between herbal and conventional medicines. Herbal medicine with conventional medicine significantly improved the NPI and Behavioral Pathology in Alzheimer's Disease Rating Scale scores compared with conventional medicine. The NPI score showed no significant difference between the groups treated with herbal medicine and placebo. Furthermore, herbal medicine with conventional medicine significantly lowered plasma amyloid beta levels compared with conventional medicine alone. Herbal medicine, whether used alone or as an adjuvant, may have beneficial effects on AD treatment. However, owing to the methodological limitations and high heterogeneity of the included studies, concrete conclusions cannot be made.
Collapse
Affiliation(s)
- JiEun Lee
- Department of Korean Medicine Cardiology and Neurology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.L.); (C.J.)
| | - Seungwon Kwon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Chul Jin
- Department of Korean Medicine Cardiology and Neurology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.L.); (C.J.)
| | - Seung-Yeon Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Seong-Uk Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Jung-Mi Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Chang-Nam Ko
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Ki-Ho Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| |
Collapse
|
35
|
Molecular Mechanisms and Therapeutic Potential of α- and β-Asarone in the Treatment of Neurological Disorders. Antioxidants (Basel) 2022; 11:antiox11020281. [PMID: 35204164 PMCID: PMC8868500 DOI: 10.3390/antiox11020281] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological disorders are important causes of morbidity and mortality around the world. The increasing prevalence of neurological disorders, associated with an aging population, has intensified the societal burden associated with these diseases, for which no effective treatment strategies currently exist. Therefore, the identification and development of novel therapeutic approaches, able to halt or reverse neuronal loss by targeting the underlying causal factors that lead to neurodegeneration and neuronal cell death, are urgently necessary. Plants and other natural products have been explored as sources of safe, naturally occurring secondary metabolites with potential neuroprotective properties. The secondary metabolites α- and β-asarone can be found in high levels in the rhizomes of the medicinal plant Acorus calamus (L.). α- and β-asarone exhibit multiple pharmacological properties including antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. This paper aims to provide an overview of the current research on the therapeutic potential of α- and β-asarone in the treatment of neurological disorders, particularly neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), as well as cerebral ischemic disease, and epilepsy. Current research indicates that α- and β-asarone exert neuroprotective effects by mitigating oxidative stress, abnormal protein accumulation, neuroinflammation, neurotrophic factor deficit, and promoting neuronal cell survival, as well as activating various neuroprotective signalling pathways. Although the beneficial effects exerted by α- and β-asarone have been demonstrated through in vitro and in vivo animal studies, additional research is required to translate laboratory results into safe and effective therapies for patients with AD, PD, and other neurological and neurodegenerative diseases.
Collapse
|
36
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|
37
|
Lu J, Gu L, Li Q, Wu N, Li H, Zhang X. Andrographolide emeliorates maltol aluminium-induced neurotoxicity via regulating p62-mediated Keap1-Nrf2 pathways in PC12 cells. PHARMACEUTICAL BIOLOGY 2021; 59:232-241. [PMID: 33632062 PMCID: PMC7919883 DOI: 10.1080/13880209.2021.1883678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 06/08/2023]
Abstract
CONTEXT Andrographolide (Andro) has a neuroprotective effect and a potential for treating Alzheimer's disease (AD), but the mechanism has not been elucidated. OBJECTIVE The efficacy of Andro on p62-mediated Kelch-like ECH-associated protein 1(Keap1)-Nuclear factor E2 related factor 2 (Nrf2) pathways in the aluminium maltolate (Al(mal)3)-induced neurotoxicity in PC12 cell was explored. MATERIALS AND METHODS PC12 cells were induced by Al(mal)3 (700 μM) to establish a neurotoxicity model. Following Andro (1.25, 2.5, 5, 10, 20, 40 μM) co-treatment with Al(Mal)3, cell viability was detected with MTT, protein expression levels of β-amyloid precursor protein (APP), β-site APP cleaving enzyme 1 (BACE1), Tau, Nrf2, Keap1, p62 and LC3 were measured via western blotting or immunofluorescence analyses. Nrf2, Keap1, p62 and LC3 mRNA, were detected by reverse transcription-quantitative PCR. RESULTS Compared with the 700 μM Al(mal)3 group, Andro (5, 10 μM) significantly increased Al(mal)3-induced cell viability from 67.4% to 91.9% and 91.2%, respectively, and decreased the expression of APP, BACE1 and Keap1 proteins and the ratio of P-Tau to Tau (from 2.75- fold to 1.94- and 1.70-fold, 2.12-fold to 1.77- and 1.56-fold, 0.68-fold to 0.51- and 0.55-fold, 1.45-fold to 0.82- and 0.91-fold, respectively), increased the protein expression of Nrf2, p62 and the ratio of LC3-II/LC3-I (from 0.67-fold to 0.93- and 0.94-fold, 0.64-fold to 0.88- and 0.87-fold, 0.51-fold to 0.63- and 0.79-fold, respectively), as well as the mRNA expression of Nrf2, p62 and LC3 (from 0.48-fold to 0.92-fold, 0.49-fold to 0.92-fold, 0.25-fold to 0.38-fold). Furthermore, Nrf2 and p62 nuclear translocation were increased and keap1 in the cytoplasm was decreased in the presence of Andro. Silencing p62 or Nrf2 can significantly reduce the protein and mRNA expression of Nrf2 and p62 under co-treatment with Andro and Al(mal)3. DISCUSSION AND CONCLUSIONS Our results suggested that Andro could be a promising therapeutic lead against Al-induced neurotoxicity by regulating p62-mediated keap1-Nrf2 pathways.
Collapse
Affiliation(s)
- Jiaqi Lu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Lili Gu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Qin Li
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Ningzi Wu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Hongxing Li
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Xinyue Zhang
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| |
Collapse
|
38
|
Shi J, Li R, Yang Y, Ji L, Li C. Protective effect of α-asarone and β-asarone on Aβ -induced inflammatory response in PC12 cells and its. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:591-600. [PMID: 34986541 PMCID: PMC8732252 DOI: 10.3724/zdxbyxb-2021-0162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/18/2021] [Indexed: 11/25/2022]
Abstract
To investigate effects of α-asarone and β-asarone on induced PC12 cell injury and related mechanisms. Aβ toxic injury cell model was induced by Aβ in PC12 cells. PC12 cells were divided into blank control group, model control group, α-asarone group (0.5, 1.0, β-asarone group (6.3, 12.5, vasoactive intestinal peptide (VIP) group, and VIP antagonist control group. Cell survival rate was detected by CCK-8 kit; cell apoptosis rate was detected by flow cytometry. The levels of inflammatory cytokines interleukin (IL)-1, , tumor necrosis factor (TNF)-α, oxidation-related inducible nitric oxide synthase (iNOS), nitric oxide (NO), apoptosis factors caspase-3 and p53 were detected by ELISA method. The expressions of C-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK) were detected by Western blotting. Compared with model control group, cell survival rates of group, β-asarone group and VIP group increased; the cell apoptosis rate decreased; levels of apoptosis-related factors caspase-3, p53, inflammatory factors IL-1, TNF-α decreased; IL-10 level increased; levels of oxidization-related factors iNOS and NO decreased; the expression of JNK and p38MAPK protein decreased (all <0.05). After VIP antagonist intervention, the survival rate of β-asarone group decreased; apoptosis rate increased; apoptosis related factors caspase-3, p53, inflammatory factors IL-1, TNF-α increased; IL-10 decreased; oxidation related factors iNOS and NO increased; the expression of JNK and p38MAPK protein increased (all <0.05); while there were no significant changes in these indicators of α-asarone group (all >0.05). α-asarone and β-asarone have protective effects on PC12 cell injury induced by Aβ. β-asarone may inhibit inflammatory factors and oxidation-related factors through promoting VIP secretion, regulating JNK/MAPK pathway, and reducing PC12 cell apoptosis; however, the effect of α-asarone may be not related to VIP secretion.
Collapse
Affiliation(s)
- Jianhong Shi
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| | - Ruizhi Li
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| | - Yuanxiao Yang
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| | - Liting Ji
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| | - Changyu Li
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
39
|
Li Z, Ma J, Kuang Z, Jiang Y. β-Asarone Attenuates Aβ-Induced Neuronal Damage in PC12 Cells Overexpressing APPswe by Restoring Autophagic Flux. Front Pharmacol 2021; 12:701635. [PMID: 34393783 PMCID: PMC8355419 DOI: 10.3389/fphar.2021.701635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory damage and cognitive dysfunction. Studies have shown that defective autophagic flux is associated with neuronal dysfunction. Modulating autophagic activity represents a potential method of combating AD. In Chinese medicine, Acori Tatarinowii Rhizoma is used to treat dementia and amnesia. β-Asarone, an active component of this rhizome can protect PC12 cells from Aβ-induced injury and modulate expression of autophagy factors. However, its cytoprotective mechanisms have yet to be discerned. It is unclear whether β-asarone affects autophagic flux and, if it does, whether this effect can alleviate Aβ cell damage. In the present study, we constructed APPswe-overexpressing PC12 cell line as a cell model of Aβ-induced damage and assessed expression of autophagic flux-related proteins as well as the number and morphology of autophagosomes and autolysosomes. Our results show that β-asarone decreases the expression levels of Beclin-1, p62, LC3-Ⅱ, and Aβ1-42. β-Asarone reduced the number of autophagosomes and increased the number of autolysosomes, as determined by confocal laser scanning microscopy and transmission electron microscopy. Our results suggest that β-asarone can protect PC12 cells from Aβ-induced damage by promoting autophagic flux, which may be achieved by enhancing autophagosome-lysosome fusion and/or lysosome function.
Collapse
Affiliation(s)
- Zhenwan Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Ma
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongsheng Kuang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
40
|
Ajoolabady A, Aslkhodapasandhokmabad H, Henninger N, Demillard LJ, Nikanfar M, Nourazarian A, Ren J. Targeting autophagy in neurodegenerative diseases: From molecular mechanisms to clinical therapeutics. Clin Exp Pharmacol Physiol 2021; 48:943-953. [PMID: 33752254 PMCID: PMC8204470 DOI: 10.1111/1440-1681.13500] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Many neurodegenerative diseases are associated with pathological aggregation of proteins in neurons. Autophagy is a natural self-cannibalization process that can act as a powerful mechanism to remove aged and damaged organelles as well as protein aggregates. It has been shown that promoting autophagy can attenuate or delay neurodegeneration by removing protein aggregates. In this paper, we will review the role of autophagy in Alzheimer's disease (AD), Parkinson's Disease (PD), and Huntington's Disease (HD) and discuss opportunities and challenges of targeting autophagy as a potential therapeutic avenue for treatment of these common neurodegenerative diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, MA 01655, USA
- Department of Psychiatry, University of Massachusetts, Worcester, MA 01655, USA
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Masoud Nikanfar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
41
|
Firdaus Z, Singh TD. An Insight in Pathophysiological Mechanism of Alzheimer's Disease and its Management Using Plant Natural Products. Mini Rev Med Chem 2021; 21:35-57. [PMID: 32744972 DOI: 10.2174/1389557520666200730155928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically, it is described by cognitive impairment and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of AD in the recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment, namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities, such as anti-amyloidogenic, anticholinesterase, and antioxidants. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| |
Collapse
|
42
|
Chen M, Zhuang YW, Wu CE, Peng HY, Qian J, Zhou JY. β-asarone suppresses HCT116 colon cancer cell proliferation and liver metastasis in part by activating the innate immune system. Oncol Lett 2021; 21:435. [PMID: 33868473 PMCID: PMC8045167 DOI: 10.3892/ol.2021.12696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
Studies have revealed that β-asarone exerts a powerful inhibitory effect on the proliferation of human cancer cells. The authors' previous study demonstrated that β-asarone could induce LoVo colon cancer cell apoptosis in vitro and in vivo, indicating its anticancer properties. The present study aimed to determine the antineoplastic effect of β-asarone in HCT116 colon cancer cells. An in vitro proliferation assay using a real time cell analyzer demonstrated that β-asarone effectively decreased HCT116 cell proliferation in a dose-dependent manner. Bioinformatics analysis revealed that differentially expressed genes following β-asarone inhibition were involved in the 'cell cycle', 'cell division', 'cell proliferation' and 'apoptosis'. Subsequently, a xenograft assay evidenced the inhibitory effect of β-asarone on the growth of HCT116 tumors in vivo. Further detection of immune-associated cytokines and cells suggested that β-asarone might be involved in the antitumor immune response by stimulating granulocyte-colony stimulating factor and increasing the number of macrophage cells in the spleen. Additionally, a murine model of splenic-transplantation verified the strong suppressive role of β-asarone in colon cancer liver metastasis in vivo. Taken together, the results of the current study revealed that β-asarone decreased HCT116 colon cancer cell proliferation and liver metastasis potentially by activating the innate immune system, supporting the multi-system regulation theory and providing a basis for further mechanistic studies on colon cancer.
Collapse
Affiliation(s)
- Min Chen
- General Internal Medicine Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Wen Zhuang
- Traditional Chinese Medicine Department, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
- Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Cun-En Wu
- Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Hai-Yan Peng
- Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Qian
- Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jin-Yong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
43
|
Meng M, Zhang L, Ai D, Wu H, Peng W. β-Asarone Ameliorates β-Amyloid-Induced Neurotoxicity in PC12 Cells by Activating P13K/Akt/Nrf2 Signaling Pathway. Front Pharmacol 2021; 12:659955. [PMID: 34040526 PMCID: PMC8141729 DOI: 10.3389/fphar.2021.659955] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
Accumulation of β-amyloid (Aβ) causes oxidative stress, which is the major pathological mechanism in Alzheimer's disease (AD). β-asarone could reduce Aβ-induced oxidative stress and neuronal damage, but the molecular mechanism remains elusive. In this study, we used an Aβ-stimulated PC12 cell model to explore the neuroprotective effects and potential mechanisms of β-asarone. The results showed that β-asarone could improve cell viability and weaken cell damage and apoptosis. β-asarone could also decrease the level of ROS and MDA; increase the level of SOD, CAT, and GSH-PX; and ameliorate the mitochondrial membrane potential. Furthermore, β-asarone could promote the expression of Nrf2 and HO-1 by upregulating the level of PI3K/Akt phosphorylation. In conclusion, β-asarone could exert neuroprotective effects by modulating the P13K/Akt/Nrf2 signaling pathway. β-asarone might be a promising therapy for AD.
Collapse
Affiliation(s)
- Miaomiao Meng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Zhang
- Department of Clinical Education Management, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Ai
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyun Wu
- Department of Neurology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- Department of Neurology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
44
|
Dhage PA, Sharbidre AA, Dakua SP, Balakrishnan S. Leveraging hallmark Alzheimer's molecular targets using phytoconstituents: Current perspective and emerging trends. Biomed Pharmacother 2021; 139:111634. [PMID: 33965726 DOI: 10.1016/j.biopha.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD), a type of dementia, severely distresses different brain regions. Characterized by various neuropathologies, it interferes with cognitive functions and neuropsychiatrical controls. This progressive deterioration has negative impacts not only on an individual's daily activity but also on social and occupational life. The pharmacological approach has always remained in the limelight for the treatment of AD. However, this approach is condemned with several side effects. Henceforth, a change in treatment approach has become crucial. Plant-based natural products are garnering special attention due to lesser side effects associated with their use. The current review emphasizes the anti-AD properties of phytoconstituents, throws light on those under clinical trials, and compiles information on their specific mode of actions against AD-related different neuropathologies. The phytoconstituents alone or in combinations will surely help discover new potent drugs for the effective treatment of AD with lesser side effects than the currently available pharmacological treatment.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sarada P Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
45
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
46
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
47
|
Ramesh M, Rajasekhar K, Gupta K, Babagond V, Saini DK, Govindaraju T. A matrix targeted fluorescent probe to monitor mitochondrial dynamics. Org Biomol Chem 2021; 19:801-808. [PMID: 33410855 DOI: 10.1039/d0ob02128h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mitochondria are an indispensable organelle for energy production and regulation of cellular metabolism. The structural and functional alterations to mitochondria instigate pathological conditions of cancer, and aging-associated and neurodegenerative disorders. The normal functioning of mitochondria is maintained by quality control mechanisms involving dynamic fission, fusion, biogenesis and mitophagy. Under conditions of mitophagy and neurodegenerative diseases, mitochondria are exposed to different acidic environments and high levels of reactive oxygen species (ROS). Therefore stable molecular tools and methods are required to monitor the pathways linked to mitochondrial dysfunction and disease conditions. Herein, we report a far-red fluorescent probe (Mito-TG) with excellent biocompatibility, biostability, photostability, chemical stability and turn on emission for selective targeting of the mitochondrial matrix in different live cells. The probe was successfully employed for monitoring dynamic processes of mitophagy and amyloid beta (Aβ) induced mitochondrial structural changes.
Collapse
Affiliation(s)
- Madhu Ramesh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Kolla Rajasekhar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Vardhaman Babagond
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Thimmaiah Govindaraju
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India. and VNIR Biotechnologies Pvt. Ltd, Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
48
|
Zeng L, Zhang D, Liu Q, Zhang J, Mu K, Gao X, Zhang K, Li H, Wang Q, Zheng Y, Mao S. Alpha-asarone Improves Cognitive Function of APP/PS1 Mice and Reducing Aβ 42, P-tau and Neuroinflammation, and Promoting Neuron Survival in the Hippocampus. Neuroscience 2021; 458:141-152. [PMID: 33412244 DOI: 10.1016/j.neuroscience.2020.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease most often characterized by memory impairment and cognitive decline. Alpha-asarone has been reported to have the potential to treat AD. Our previous studies have found that alpha-asarone improves aged rats' cognitive function by alleviating neuronal excitotoxicity via type A gamma-aminobutyric acid (GABA) receptors. GABA level's change, neuroinflammation, and dysfunctional autophagy are found to be associated with AD. However, the effect of alpha-asarone on cognitive function of APP/PS1 transgenic mice and its underlying mechanism in terms of aggregation of amyloid-β42 (Aβ42) and phosphorylated tau (p-tau), glutamic acid decarboxylase (GAD) level, neuroinflammation, and autophagy are unclear. Accordingly, we attempted to explore whether alpha-asarone improves AD mice's cognitive function and alleviates pathological symptoms by regulating GAD level, inhibiting neuroinflammation, or restore autophagy. We found that alpha-asarone enhanced spatial learning memory and decreased Aβ42 and p-tau levels without influencing the GAD level in APP/PS1 transgenic mice. Also, it decreased the GFAP expression and reduced pro-inflammatory cytokines levels, thus alleviating neuroinflammation. Furthermore, alpha-asarone decreased the excess number of autophagosomes and promoted hippocampal neurons' survival. In conclusion, the results confirmed the therapeutic effect of alpha-asarone on AD-related astrogliosis, dysfunctional autophagy, and neuronal damage, which indicates its great potential to treat AD.
Collapse
Affiliation(s)
- Lili Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Keman Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongxiang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Wang Y, Shi M, Hong Z, Kang J, Pan H, Yan C. MiR-130a-3p Has Protective Effects in Alzheimer's Disease via Targeting DAPK1. Am J Alzheimers Dis Other Demen 2021; 36:15333175211020572. [PMID: 34128388 PMCID: PMC10581145 DOI: 10.1177/15333175211020572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present study investigated the role and potential mechanisms of miR-130a-3p in AD. SH-SY5Y cells were treated with Aβ 1-42 to construct AD cell models. APP/PS1 mice were used for the animal experiments. MiR-130a-3p was downregulated in Aβ-induced SH-SY5Y cells. Overexpression of miR-130a-3p attenuates Aβ induced SH-SY5Y cell apoptosis. Low miR-130a-3p expression was detected in the hippocampus tissues of AD mice. The Morris water maze (MWM) results indicated that miR-130a-3p upregulation reduced the escape latency time and increased the time of AD mice spent in the target quadrant. DAPK1 was the target gene of miR-130a-3p. High DAPK1 mRNA level was detected in Aβ treated PC 12 cells and in the hippocampus tissues of AD mice. It was concluded that overexpression of miR-130a-3p may attenuate Aβ-induced neurotoxicity and improve the cognitive function of AD mice via targeting DAPK1.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Min Shi
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Zhenmei Hong
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Haiyan Pan
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Ci Yan
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
50
|
Zhang W, Feng C, Jiang H. Novel target for treating Alzheimer's Diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev 2021; 65:101207. [PMID: 33144123 DOI: 10.1016/j.arr.2020.101207] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/02/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
In mammals, the Keap1-Nrf2-ARE pathway (henceforth, "the Nrf2 pathway") and autophagy are major intracellular defence systems that combat oxidative damage and maintain homeostasis. p62/SQSTM1, a ubiquitin-binding autophagy receptor protein, links the Nrf2 pathway and autophagy. Phosphorylation of p62 dramatically enhances its affinity for Keap1, which induces Keap1 to release Nrf2, and the p62-Keap1 heterodimer recruits LC3 and mediates the permanent degradation of Keap1 in the selective autophagy pathway. Eventually, Nrf2 accumulates in the cytoplasm and then translocates into the nucleus to activate the transcription of downstream genes that encode antioxidant enzymes, which protect cells from oxidative damage. Since Nrf2 also upregulates the expression of the p62 gene, a p62-Keap1-Nrf2 positive feedback loop is created that further enhances the protective effect on cells. Studies have shown that the p62-activated noncanonical Nrf2 pathway is an important marker of neurodegenerative diseases. The p62-Keap1-Nrf2 positive feedback loop and the Nrf2 pathway are involved in eliminating the ROS and protein aggregates induced by AD. Therefore, maintaining the homeostasis of the p62-Keap1-Nrf2 positive feedback loop, which is a bridge between the Nrf2 pathway and autophagy, may be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|