1
|
Blair GA, Depman M, Adams WP, Maisonneuve RO, Hoeker GS, Weinberg SH, Poelzing S. Sequence-Dependent Repolarization Is Modulated by Endogenous Action Potential Duration Gradients Rather Than Electrical Coupling in Ventricular Myocardium. J Am Heart Assoc 2025; 14:e030433. [PMID: 39719415 PMCID: PMC12054505 DOI: 10.1161/jaha.123.030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity. METHODS AND RESULTS Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031. SD of APD and the AT-APD slope and coefficient of determination were quantified as metrics of APD heterogeneity. SD of APD increased with carbenoxolone, mannitol, and altered activation sequence. The AT-APD slope was insensitive to carbenoxolone, mannitol, dextran, flecainide, or E4031 but changed in response to activation sequence. The coefficient of determination did not change with carbenoxolone; decreased with mannitol, E4031, and activation sequence; but increased with dextran and flecainide. APD heterogeneity changes were dependent on whether the estimation used SD of APD or the AT-APD relationship. The pacing stimulus increased APD at the site of stimulation, revealing a confounding stimulus effect on APD within the measurement area. Simulations predict that the stimulus artifact and endogenous APD gradients are stronger determinants of APD heterogeneity than AT. CONCLUSIONS APD dependence on conduction is relatively small. Furthermore, APD heterogeneity within a mapping field of view is dependent on endogenous gradients, the stimulus artifact, and the experimental approach, rather than electrical coupling.
Collapse
Affiliation(s)
- Grace A. Blair
- Graduate Program in Translational BiologyMedicine and Health, Virginia TechRoanokeVAUSA
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Madeline Depman
- Graduate Program in Translational BiologyMedicine and Health, Virginia TechRoanokeVAUSA
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - William P. Adams
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Rowan O. Maisonneuve
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Gregory S. Hoeker
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Seth H. Weinberg
- Department of Biomedical EngineeringDavis Heart and Lung Research Institute, The Ohio State UniversityColumbusOHUSA
| | - Steve Poelzing
- Graduate Program in Translational BiologyMedicine and Health, Virginia TechRoanokeVAUSA
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
- Department of Biomedical Engineering and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| |
Collapse
|
2
|
Wells SP, O'Shea C, Hayes S, Weeks KL, Kirchhof P, Delbridge LM, Pavlovic D, Bell JR. Male and female atria exhibit distinct acute electrophysiological responses to sex steroids. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100079. [PMID: 39309304 PMCID: PMC11413518 DOI: 10.1016/j.jmccpl.2024.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 09/25/2024]
Abstract
The electrophysiological properties of the hearts of women and men are different. These differences are at least partly mediated by the actions of circulating estrogens and androgens on the cardiomyocytes. Experimentally, much of our understanding in this field is based on studies focusing on ventricular tissue, with considerably less known in the context of atrial electrophysiology. The aim of this investigation was to compare the electrophysiological properties of male and female atria and assess responses to acute sex steroid exposure. Age-matched adult male and female C57BL/6 mice were anesthetized (4 % isoflurane) and left atria isolated. Atria were loaded with Di-4-ANEPPS voltage sensitive dye and optical mapping performed to assess action potential duration (APD; at 10 %, 20 %, 30 %, 50 %, and 70 % repolarization) and conduction velocity in the presence of 1 nM and 100 nM 17β-estradiol or testosterone. Male and female left atria demonstrated similar baseline action potential duration and conduction velocity, with significantly greater APD70 spatial heterogeneity evident in females. 17β-estradiol prolonged action potential duration in both sexes - an effect that was augmented in females. Atrial conduction was slowed in the presence of 100 nM 17β-estradiol in both males and females. Testosterone prolonged action potential duration in males only and did not modulate conduction velocity in either sex. This study provides novel insights into male and female atrial electrophysiology and its regulation by sex steroids. As systemic sex steroid levels change and intra-cardiac estrogen synthesis capacity increases with aging, these actions may have an increasingly important role in determining atrial arrhythmia vulnerability.
Collapse
Affiliation(s)
- Simon P. Wells
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Hayes
- Centre for Cardiovascular Biology and Disease Research, Cardiac Disease Mechanisms Division, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Kate L. Weeks
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, University Heart and Vascular Center UKE, Hamburg, Hamburg, Germany
| | - Lea M.D. Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James R. Bell
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, Cardiac Disease Mechanisms Division, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
3
|
Marvin Tan XH, Wang Y, Zhu X, Mendes FN, Chung PS, Chow YT, Man T, Lan H, Lin YJ, Zhang X, Zhang X, Nguyen T, Ardehali R, Teitell MA, Deb A, Chiou PY. Massive field-of-view sub-cellular traction force videography enabled by Single-Pixel Optical Tracers (SPOT). Biosens Bioelectron 2024; 258:116318. [PMID: 38701538 DOI: 10.1016/j.bios.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
We report a massive field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13 mm2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction force into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave.
Collapse
Affiliation(s)
- Xing Haw Marvin Tan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Electronics and Photonics, Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, 138632, Singapore
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Xiongfeng Zhu
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Felipe Nanni Mendes
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Pei-Shan Chung
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Yu Ting Chow
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Hsin Lan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Yen-Ju Lin
- Department of Electrical and Computer Engineering, University of California at Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xiang Zhang
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xiaohe Zhang
- Department of Mathematics, University of California Los Angeles, 520 Portola Plaza, Los Angeles, CA, 90095, United States
| | - Thang Nguyen
- Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Michael A Teitell
- Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States.
| |
Collapse
|
4
|
Kiseleva DG, Dzhabrailov VD, Aitova AA, Turchaninova EA, Tsvelaya VA, Kazakova MA, Plyusnina TY, Markin AM. Arrhythmogenic Potential of Myocardial Edema: The Interstitial Osmolality Induces Spiral Waves and Multiple Excitation Wavelets. Biomedicines 2024; 12:1770. [PMID: 39200234 PMCID: PMC11351629 DOI: 10.3390/biomedicines12081770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Myocardial edema is a common symptom of pathological processes in the heart, causing aggravation of cardiovascular diseases and leading to irreversible myocardial remodeling. Patient-based studies show that myocardial edema is associated with arrhythmias. Currently, there are no studies that have examined how edema may influence changes in calcium dynamics in the functional syncytium. We performed optical mapping of calcium dynamics on a monolayer of neonatal rat cardiomyocytes with Fluo-4. The osmolality of the solutions was adjusted using the NaCl content. The initial Tyrode solution contained 140 mM NaCl (1T) and the hypoosmotic solutions contained 105 (0.75T) and 70 mM NaCl (0.5T). This study demonstrated a sharp decrease in the calcium wave propagation speed with a decrease in the solution osmolality. The successive decrease in osmolality also showed a transition from a normal wavefront to spiral wave and multiple wavelets of excitation with wave break. Our study demonstrated that, in a cellular model, hypoosmolality and, as a consequence, myocardial edema, could potentially lead to fatal ventricular arrhythmias, which to our knowledge has not been studied before. At 0.75T spiral waves appeared, whereas multiple wavelets of excitation occurred in 0.5T, which had not been recorded previously in a two-dimensional monolayer under conditions of cell edema without changes in the pacing protocol.
Collapse
Affiliation(s)
- Diana G. Kiseleva
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia;
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Vitalii D. Dzhabrailov
- ITMO University, 191002 Saint-Petersburg, Russia; (V.D.D.); (V.A.T.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aleria A. Aitova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
| | - Elena A. Turchaninova
- ITMO University, 191002 Saint-Petersburg, Russia; (V.D.D.); (V.A.T.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Valeriya A. Tsvelaya
- ITMO University, 191002 Saint-Petersburg, Russia; (V.D.D.); (V.A.T.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Maria A. Kazakova
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Tatiana Yu. Plyusnina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia;
- Medical Institute, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
5
|
Kanade PP, Oyunbaatar NE, Kim J, Lee BK, Kim ES, Lee DW. Cardiotoxicity Assessment through a Polymer-Based Cantilever Platform: An Integrated Electro-Mechanical Screening Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311274. [PMID: 38511575 DOI: 10.1002/smll.202311274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Preclinical drug screening for cardiac toxicity has traditionally relied on observing changes in cardiomyocytes' electrical activity, primarily through invasive patch clamp techniques or non-invasive microelectrode arrays (MEA). However, relying solely on field potential duration (FPD) measurements for electrophysiological assessment can miss the full spectrum of drug-induced toxicity, as different drugs affect cardiomyocytes through various mechanisms. A more comprehensive approach, combining field potential and contractility measurements, is essential for accurate toxicity profiling, particularly for drugs targeting contractile proteins without affecting electrophysiology. However, previously proposed platform has significant limitations in terms of simultaneous measurement. The novel platform addresses these issues, offering enhanced, non-invasive evaluation of drug-induced cardiotoxicity. It features eight cantilevers with patterned strain sensors and MEA, enabling real-time monitoring of both cardiomyocyte contraction force and field potential. This system can detect minimum cardiac contraction force of ≈2 µN and field potential signals with 50 µm MEA diameter, using the same cardiomyocytes in measurements of two parameters. Testing with six drugs of varied mechanisms of action, the platform successfully identifies these mechanisms and accurately assesses toxicity profiles, including drugs not inhibiting potassium channels. This innovative approach presents a comprehensive, non-invasive method for cardiac function assessment, poised to revolutionize preclinical cardiotoxicity screening.
Collapse
Affiliation(s)
- Pooja P Kanade
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nomin-Erdene Oyunbaatar
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jongyun Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bong-Kee Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dong-Weon Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
6
|
Martinez-Sielva A, Vicente M, Salgado-Almario J, Garcia-Blazquez A, Domingo B, Llopis J. Suppression of Contraction Raises Calcium Ion Levels in the Heart of Zebrafish Larvae. BIOSENSORS 2024; 14:219. [PMID: 38785693 PMCID: PMC11118826 DOI: 10.3390/bios14050219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish larvae have emerged as a valuable model for studying heart physiology and pathophysiology, as well as for drug discovery, in part thanks to its transparency, which simplifies microscopy. However, in fluorescence-based optical mapping, the beating of the heart results in motion artifacts. Two approaches have been employed to eliminate heart motion during calcium or voltage mapping in zebrafish larvae: the knockdown of cardiac troponin T2A and the use of myosin inhibitors. However, these methods disrupt the mechano-electric and mechano-mechanic coupling mechanisms. We have used ratiometric genetically encoded biosensors to image calcium in the beating heart of intact zebrafish larvae because ratiometric quantification corrects for motion artifacts. In this study, we found that halting heart motion by genetic means (injection of tnnt2a morpholino) or chemical tools (incubation with para-aminoblebbistatin) leads to bradycardia, and increases calcium levels and the size of the calcium transients, likely by abolishing a feedback mechanism that connects contraction with calcium regulation. These outcomes were not influenced by the calcium-binding domain of the gene-encoded biosensors employed, as biosensors with a modified troponin C (Twitch-4), calmodulin (mCyRFP1-GCaMP6f), or the photoprotein aequorin (GFP-aequorin) all yielded similar results. Cardiac contraction appears to be an important regulator of systolic and diastolic Ca2+ levels, and of the heart rate.
Collapse
Affiliation(s)
| | | | | | | | - Beatriz Domingo
- Physiology and Cell Dynamics Group, Instituto de Biomedicina de la Universidad de Castilla-La Mancha, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (A.M.-S.); (M.V.); (J.S.-A.); (A.G.-B.)
| | - Juan Llopis
- Physiology and Cell Dynamics Group, Instituto de Biomedicina de la Universidad de Castilla-La Mancha, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (A.M.-S.); (M.V.); (J.S.-A.); (A.G.-B.)
| |
Collapse
|
7
|
Blair GA, Wu X, Bain C, Warren M, Hoeker GS, Poelzing S. Mannitol and hyponatremia regulate cardiac ventricular conduction in the context of sodium channel loss of function. Am J Physiol Heart Circ Physiol 2024; 326:H724-H734. [PMID: 38214908 PMCID: PMC11221810 DOI: 10.1152/ajpheart.00211.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Scn5a heterozygous null (Scn5a+/-) mice have historically been used to investigate arrhythmogenic mechanisms of diseases such as Brugada syndrome (BrS) and Lev's disease. Previously, we demonstrated that reducing ephaptic coupling (EpC) in ex vivo hearts exacerbates pharmacological voltage-gated sodium channel (Nav)1.5 loss of function (LOF). Whether this effect is consistent in a genetic Nav1.5 LOF model is yet to be determined. We hypothesized that loss of EpC would result in greater reduction in conduction velocity (CV) for the Scn5a+/- mouse relative to wild type (WT). In vivo ECGs and ex vivo optical maps were recorded from Langendorff-perfused Scn5a+/- and WT mouse hearts. EpC was reduced with perfusion of a hyponatremic solution, the clinically relevant osmotic agent mannitol, or a combination of the two. Neither in vivo QRS duration nor ex vivo CV during normonatremia was significantly different between the two genotypes. In agreement with our hypothesis, we found that hyponatremia severely slowed CV and disrupted conduction for 4/5 Scn5a+/- mice, but 0/6 WT mice. In addition, treatment with mannitol slowed CV to a greater extent in Scn5a+/- relative to WT hearts. Unexpectedly, treatment with mannitol during hyponatremia did not further slow CV in either genotype, but resolved the disrupted conduction observed in Scn5a+/- hearts. Similar results in guinea pig hearts suggest the effects of mannitol and hyponatremia are not species specific. In conclusion, loss of EpC through either hyponatremia or mannitol alone results in slowed or disrupted conduction in a genetic model of Nav1.5 LOF. However, the combination of these interventions attenuates conduction slowing.NEW & NOTEWORTHY Cardiac sodium channel loss of function (LOF) diseases such as Brugada syndrome (BrS) are often concealed. We optically mapped mouse hearts with reduced sodium channel expression (Scn5a+/-) to evaluate whether reduced ephaptic coupling (EpC) can unmask conduction deficits. Data suggest that conduction deficits in the Scn5a+/- mouse may be unmasked by treatment with hyponatremia and perinexal widening via mannitol. These data support further investigation of hyponatremia and mannitol as novel diagnostics for sodium channel loss of function diseases.
Collapse
Affiliation(s)
- Grace A Blair
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, United States
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Xiaobo Wu
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Chandra Bain
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Mark Warren
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Gregory S Hoeker
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Steven Poelzing
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, United States
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
| |
Collapse
|
8
|
Baines O, Sha R, Kalla M, Holmes AP, Efimov IR, Pavlovic D, O’Shea C. Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review. Europace 2024; 26:euae017. [PMID: 38227822 PMCID: PMC10847904 DOI: 10.1093/europace/euae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.
Collapse
Affiliation(s)
- Olivia Baines
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Rina Sha
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Manish Kalla
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Cardiology, Northwestern University, Evanston, IL, USA
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Tolstik E, Lehnart SE, Soeller C, Lorenz K, Sacconi L. Cardiac multiscale bioimaging: from nano- through micro- to mesoscales. Trends Biotechnol 2024; 42:212-227. [PMID: 37806897 DOI: 10.1016/j.tibtech.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023]
Abstract
Cardiac multiscale bioimaging is an emerging field that aims to provide a comprehensive understanding of the heart and its functions at various levels, from the molecular to the entire organ. It combines both physiologically and clinically relevant dimensions: from nano- and micrometer resolution imaging based on vibrational spectroscopy and high-resolution microscopy to assess molecular processes in cardiac cells and myocardial tissue, to mesoscale structural investigations to improve the understanding of cardiac (patho)physiology. Tailored super-resolution deep microscopy with advanced proteomic methods and hands-on experience are thus strategically combined to improve the quality of cardiovascular research and support future medical decision-making by gaining additional biomolecular information for translational and diagnostic applications.
Collapse
Affiliation(s)
- Elen Tolstik
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany.
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Strasse 42a, 37075 Göttingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC2067), University of Göttingen, 37073 Göttingen, Germany; Collaborative Research Center SFB1190 Compartmental Gates and Contact Sites in Cells, University of Göttingen, 37073 Göttingen, Germany
| | - Christian Soeller
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Kristina Lorenz
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Leonardo Sacconi
- Institute of Clinical Physiology, National Research Council, Rome, Italy; Institute for Experimental Cardiovascular Medicine, University Freiburg, Elsässer Strasse 2q, 79110 Freiburg, Germany.
| |
Collapse
|
10
|
Iravanian S, Uzelac I, Shah AD, Toye MJ, Lloyd MS, Burke MA, Daneshmand MA, Attia TS, Vega JD, El-Chami MF, Merchant FM, Cherry EM, Bhatia NK, Fenton FH. Complex repolarization dynamics in ex vivo human ventricles are independent of the restitution properties. Europace 2023; 25:euad350. [PMID: 38006390 PMCID: PMC10751849 DOI: 10.1093/europace/euad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
AIMS The mechanisms of transition from regular rhythms to ventricular fibrillation (VF) are poorly understood. The concordant to discordant repolarization alternans pathway is extensively studied; however, despite its theoretical centrality, cannot guide ablation. We hypothesize that complex repolarization dynamics, i.e. oscillations in the repolarization phase of action potentials with periods over two of classic alternans, is a marker of electrically unstable substrate, and ablation of these areas has a stabilizing effect and may reduce the risk of VF. To prove the existence of higher-order periodicities in human hearts. METHODS AND RESULTS We performed optical mapping of explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Signals recorded from the right ventricle endocardial surface were processed to detect global and local repolarization dynamics during rapid pacing. A statistically significant global 1:4 peak was seen in three of six hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of Periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. CONCLUSION We present evidence of complex higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex vivo human hearts. We infer that the oscillation of the calcium cycling machinery is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability and may provide targets for substrate-based ablation of VF.
Collapse
Affiliation(s)
- Shahriar Iravanian
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Ilija Uzelac
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| | - Anand D Shah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Mikael J Toye
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| | - Michael S Lloyd
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Michael A Burke
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Mani A Daneshmand
- Department of Surgery, Division of Cardiovascular Surgery, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Tamer S Attia
- Department of Surgery, Division of Cardiovascular Surgery, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - John David Vega
- Department of Surgery, Division of Cardiovascular Surgery, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Mikhael F El-Chami
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Faisal M Merchant
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Elizabeth M Cherry
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| | - Neal K Bhatia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Flavio H Fenton
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| |
Collapse
|
11
|
Zhang H, Patton HN, Wood GA, Yan P, Loew LM, Acker CD, Walcott GP, Rogers JM. Optical mapping of cardiac electromechanics in beating in vivo hearts. Biophys J 2023; 122:4207-4219. [PMID: 37775969 PMCID: PMC10645561 DOI: 10.1016/j.bpj.2023.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Optical mapping has been widely used in the study of cardiac electrophysiology in motion-arrested, ex vivo heart preparations. Recent developments in motion artifact mitigation techniques have made it possible to optically map beating ex vivo hearts, enabling the study of cardiac electromechanics using optical mapping. However, the ex vivo setting imposes limitations on optical mapping such as altered metabolic states, oversimplified mechanical loads, and the absence of neurohormonal regulation. In this study, we demonstrate optical electromechanical mapping in an in vivo heart preparation. Swine hearts were exposed via median sternotomy. Voltage-sensitive dye, either di-4-ANEQ(F)PTEA or di-5-ANEQ(F)PTEA, was injected into the left anterior descending artery. Fluorescence was excited by alternating green and amber light for excitation ratiometry. Cardiac motion during sinus and paced rhythm was tracked using a marker-based method. Motion tracking and excitation ratiometry successfully corrected most motion artifact in the membrane potential signal. Marker-based motion tracking also allowed simultaneous measurement of epicardial deformation. Reconstructed membrane potential and mechanical deformation measurements were validated using monophasic action potentials and sonomicrometry, respectively. Di-5-ANEQ(F)PTEA produced longer working time and higher signal/noise ratio than di-4-ANEQ(F)PTEA. In addition, we demonstrate potential applications of the new optical mapping system including electromechanical mapping during vagal nerve stimulation, fibrillation/defibrillation. and acute regional ischemia. In conclusion, although some technical limitations remain, optical mapping experiments that simultaneously image electrical and mechanical function can be conducted in beating, in vivo hearts.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haley N Patton
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Garrett A Wood
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Corey D Acker
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Gregory P Walcott
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jack M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
12
|
Christoph J, Ripplinger CM. Paralysis by analysis: Overcoming cardiac contraction with computer vision. Proc Natl Acad Sci U S A 2023; 120:e2314448120. [PMID: 37792520 PMCID: PMC10589680 DOI: 10.1073/pnas.2314448120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Affiliation(s)
- Jan Christoph
- Cardiovascular Research Institute and Division of Cardiology, University of California, San Francisco, CA94158
| | | |
Collapse
|
13
|
Woodhams LG, Guo J, Schuftan D, Boyle JJ, Pryse KM, Elson EL, Huebsch N, Genin GM. Virtual blebbistatin: A robust and rapid software approach to motion artifact removal in optical mapping of cardiomyocytes. Proc Natl Acad Sci U S A 2023; 120:e2212949120. [PMID: 37695908 PMCID: PMC10515162 DOI: 10.1073/pnas.2212949120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/31/2023] [Indexed: 09/13/2023] Open
Abstract
Fluorescent reporters of cardiac electrophysiology provide valuable information on heart cell and tissue function. However, motion artifacts caused by cardiac muscle contraction interfere with accurate measurement of fluorescence signals. Although drugs such as blebbistatin can be applied to stop cardiac tissue from contracting by uncoupling calcium-contraction, their usage prevents the study of excitation-contraction coupling and, as we show, impacts cellular structure. We therefore developed a robust method to remove motion computationally from images of contracting cardiac muscle and to map fluorescent reporters of cardiac electrophysiological activity onto images of undeformed tissue. When validated on cardiomyocytes derived from human induced pluripotent stem cells (iPSCs), in both monolayers and engineered tissues, the method enabled efficient and robust reduction of motion artifact. As with pharmacologic approaches using blebbistatin for motion removal, our algorithm improved the accuracy of optical mapping, as demonstrated by spatial maps of calcium transient decay. However, unlike pharmacologic motion removal, our computational approach allowed direct analysis of calcium-contraction coupling. Results revealed calcium-contraction coupling to be more uniform across cells within engineered tissues than across cells in monolayer culture. The algorithm shows promise as a robust and accurate tool for optical mapping studies of excitation-contraction coupling in heart tissue.
Collapse
Affiliation(s)
- Louis G Woodhams
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
| | - Jingxuan Guo
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
| | - David Schuftan
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - John J Boyle
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Kenneth M Pryse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| | - Guy M Genin
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| |
Collapse
|
14
|
Marvin Tan XH, Wang Y, Zhu X, Mendes FN, Chung PS, Chow YT, Man T, Lan H, Lin YJ, Zhang X, Zhang X, Nguyen T, Ardehali R, Teitell MA, Deb A, Chiou PY. Massively Concurrent Sub-Cellular Traction Force Videography enabled by Single-Pixel Optical Tracers (SPOTs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550454. [PMID: 37546726 PMCID: PMC10402113 DOI: 10.1101/2023.07.25.550454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
We report a large field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13mm 2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction stress into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave. One-Sentence Summary An optical platform for fast, concurrent measurements of cell mechanics at 83 frames per second, over a large area of 13mm 2 .
Collapse
|
15
|
Kappadan V, Sohi A, Parlitz U, Luther S, Uzelac I, Fenton F, Peters NS, Christoph J, Ng FS. Optical mapping of contracting hearts. J Physiol 2023; 601:1353-1370. [PMID: 36866700 PMCID: PMC10952556 DOI: 10.1113/jp283683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Optical mapping is a widely used tool to record and visualize the electrophysiological properties in a variety of myocardial preparations such as Langendorff-perfused isolated hearts, coronary-perfused wedge preparations, and cell culture monolayers. Motion artifact originating from the mechanical contraction of the myocardium creates a significant challenge to performing optical mapping of contracting hearts. Hence, to minimize the motion artifact, cardiac optical mapping studies are mostly performed on non-contracting hearts, where the mechanical contraction is removed using pharmacological excitation-contraction uncouplers. However, such experimental preparations eliminate the possibility of electromechanical interaction, and effects such as mechano-electric feedback cannot be studied. Recent developments in computer vision algorithms and ratiometric techniques have opened the possibility of performing optical mapping studies on isolated contracting hearts. In this review, we discuss the existing techniques and challenges of optical mapping of contracting hearts.
Collapse
Affiliation(s)
- Vineesh Kappadan
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | - Anies Sohi
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | - Ulrich Parlitz
- Biomedical Physcis GroupMax Planck Institute for Dynamics and Self‐OrganizationGöttingenGermany
| | - Stefan Luther
- Biomedical Physcis GroupMax Planck Institute for Dynamics and Self‐OrganizationGöttingenGermany
| | - Ilija Uzelac
- School of PhysicsGeorgia Institute of TechnologyAtlantaGAUSA
| | - Flavio Fenton
- School of PhysicsGeorgia Institute of TechnologyAtlantaGAUSA
| | - Nicholas S Peters
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | - Jan Christoph
- Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoCAUSA
| | - Fu Siong Ng
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| |
Collapse
|
16
|
Amesz JH, Zhang L, Everts BR, De Groot NMS, Taverne YJHJ. Living myocardial slices: Advancing arrhythmia research. Front Physiol 2023; 14:1076261. [PMID: 36711023 PMCID: PMC9880234 DOI: 10.3389/fphys.2023.1076261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Living myocardial slices (LMS) are ultrathin (150-400 µm) sections of intact myocardium that can be used as a comprehensive model for cardiac arrhythmia research. The recent introduction of biomimetic electromechanical cultivation chambers enables long-term cultivation and easy control of living myocardial slices culture conditions. The aim of this review is to present the potential of this biomimetic interface using living myocardial slices in electrophysiological studies outlining advantages, disadvantages and future perspectives of the model. Furthermore, different electrophysiological techniques and their application on living myocardial slices will be discussed. The developments of living myocardial slices in electrophysiology research will hopefully lead to future breakthroughs in the understanding of cardiac arrhythmia mechanisms and the development of novel therapeutic options.
Collapse
Affiliation(s)
- Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lu Zhang
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bian R. Everts
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Natasja M. S. De Groot
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
Ezzeddine FM, Ward RC, Asirvatham SJ, DeSimone CV. Mapping and ablation of ventricular fibrillation substrate. J Interv Card Electrophysiol 2023:10.1007/s10840-022-01454-z. [PMID: 36598715 DOI: 10.1007/s10840-022-01454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Ventricular fibrillation (VF) is a life-threatening arrhythmia and a common cause of sudden cardiac death (SCD). A basic understanding of its mechanistic underpinning is crucial for enhancing our knowledge to develop innovative mapping and ablation techniques for this lethal rhythm. Significant advances in our understanding of VF have been made especially in the basic science and pre-clinical experimental realms. However, these studies have not yet translated into a robust clinical approach to identify and successfully ablate both the structural and functional substrate of VF. In this review, we aim to (1) provide a conceptual framework of VF and an overview of the data supporting the spatiotemporal dynamics of VF, (2) review experimental approaches to mapping VF to elucidate drivers and substrate for maintenance with a focus on the His-Purkinje system, (3) discuss current approaches using catheter ablation to treat VF, and (4) highlight current unknowns and gaps in the field where future work is necessary to transform the clinical landscape.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Robert Charles Ward
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Kohl P, Zgierski-Johnston CM. Assessment of Tissue Viability by Functional Imaging of Membrane Potential. Methods Mol Biol 2023; 2644:423-434. [PMID: 37142938 DOI: 10.1007/978-1-0716-3052-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Electrical activity plays a key role in physiology, in particular for signaling and coordination. Cellular electrophysiology is often studied with micropipette-based techniques such as patch clamp and sharp electrodes, but for measurements at the tissue or organ scale, more integrated approaches are needed. Epifluorescence imaging of voltage-sensitive dyes ("optical mapping") is a tissue non-destructive approach to obtain insight into electrophysiology with high spatiotemporal resolution. Optical mapping has primarily been applied to excitable organs, especially the heart and brain. Action potential durations, conduction patterns, and conduction velocities can be determined from the recordings, providing information about electrophysiological mechanisms, including factors such as effects of pharmacological interventions, ion channel mutations, or tissue remodeling. Here, we describe the process for optical mapping of Langendorff-perfused mouse hearts, highlighting potential issues and key considerations.
Collapse
Affiliation(s)
- Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
19
|
Crispino A, Loppini A, Uzelac I, Fenton FH, Gizzi A, Filippi S. Methodological analysis of dual voltage-calcium whole-heart optical signals during restitution pacing under different thermal states. ... CONFERENCE OF THE EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS (ESGCO). EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS. CONFERENCE 2022; 2022:10.1109/esgco55423.2022.9931366. [PMID: 40070816 PMCID: PMC11894611 DOI: 10.1109/esgco55423.2022.9931366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Dual voltage-calcium fluorescence optical recordings are increasingly appealing to characterize complex spatiotemporal cardiac dynamics within ex-vivo whole-heart experimental preparations. Synchrony among voltage and calcium signals allows us to unveil novel multi-scale and multi-physics couplings at the ventricular scale and quantify features that define the intrinsic nonlinearities of the observed phenomena. Within such a complex scenario, we propose a rigorous methodological analysis comparing and contrasting multiple cardiac alternans onset and evolution indicators for rabbit pacing-down restitution protocols. We introduce a novel integral index quantified upon voltage and calcium signals, validated against well-accepted post-processing analyses, and generalized in terms of statistical restitution curves obtained under four different thermal states. Our study suggests that such a novel indicator can further advance our predictability on alternans onset, linking the concurrent evolution to an innovative quantification of the characteristic length obtained for both voltage and calcium at different thermal states.
Collapse
Affiliation(s)
- Anna Crispino
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, IT
| | - Alessandro Loppini
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, IT
| | - Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alessio Gizzi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, IT
| | - Simonetta Filippi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, IT
- ICRANet, Piazza delle Repubblica 10, I-65122 Pescara, Italy
- CNR-INO, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Hörning M, Loppini A, Erhardt J, Fenton FH, Filippi S, Gizzi A. Optical Ultrastructure of Cardiac Tissue Helps to Reproduce Discordant Alternans by In Silico Data Assimilation. ... CONFERENCE OF THE EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS (ESGCO). EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS. CONFERENCE 2022; 2022:10.1109/esgco55423.2022.9931369. [PMID: 40070815 PMCID: PMC11894612 DOI: 10.1109/esgco55423.2022.9931369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A relevant issue in cardiology is represented by identifying valuable biomarkers of cardiac dysfunctions and by designing reliable computational models to predict transitions into pathological cardiac dynamics. In this context, alternans regimes have been proven to anticipate tachycardia and fibrillation. Still, an open problem is defining accurate and convenient methods to predict the onset and evolution of alternans patterns and formulate reliable models reproducing alternans features as observed in experiments. In this contribution, we present an FFT-based method on voltage mapping data, named FFI (Fast-Fourier-Imaging), which is able to early identify alternating cardiac dynamics and recover tissue structural information. Our results show that FFI identifies alternans patterns with great accuracy, avoiding excessive data preprocessing required by other methods. The extracted optical ultrastructural details of the tissue are used to inform computational parameters by accurate data assimilation, which enables the in-silico recovery of the experimental ex-vivo observations of a canine heart. Clinical Relevance— The application of FFI analysis enables the almost real-time detection of concordant and discordant alternans patterns in cardiac tissue and opens the way to new mathematical approaches with significant impacts on personalized modeling and whole organ simulations.
Collapse
Affiliation(s)
- Marcel Hörning
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alessandro Loppini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Julia Erhardt
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Simonetta Filippi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- ICRANet, Piazza delle Repubblica 10, I-65122 Pescara, Italy
- CNR-INO, I-50019 Sesto Fiorentino, Italy
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| |
Collapse
|
21
|
Shahi S, Fenton FH, Cherry EM. A machine-learning approach for long-term prediction of experimental cardiac action potential time series using an autoencoder and echo state networks. CHAOS (WOODBURY, N.Y.) 2022; 32:063117. [PMID: 35778132 PMCID: PMC9188460 DOI: 10.1063/5.0087812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 06/03/2023]
Abstract
Computational modeling and experimental/clinical prediction of the complex signals during cardiac arrhythmias have the potential to lead to new approaches for prevention and treatment. Machine-learning (ML) and deep-learning approaches can be used for time-series forecasting and have recently been applied to cardiac electrophysiology. While the high spatiotemporal nonlinearity of cardiac electrical dynamics has hindered application of these approaches, the fact that cardiac voltage time series are not random suggests that reliable and efficient ML methods have the potential to predict future action potentials. This work introduces and evaluates an integrated architecture in which a long short-term memory autoencoder (AE) is integrated into the echo state network (ESN) framework. In this approach, the AE learns a compressed representation of the input nonlinear time series. Then, the trained encoder serves as a feature-extraction component, feeding the learned features into the recurrent ESN reservoir. The proposed AE-ESN approach is evaluated using synthetic and experimental voltage time series from cardiac cells, which exhibit nonlinear and chaotic behavior. Compared to the baseline and physics-informed ESN approaches, the AE-ESN yields mean absolute errors in predicted voltage 6-14 times smaller when forecasting approximately 20 future action potentials for the datasets considered. The AE-ESN also demonstrates less sensitivity to algorithmic parameter settings. Furthermore, the representation provided by the feature-extraction component removes the requirement in previous work for explicitly introducing external stimulus currents, which may not be easily extracted from real-world datasets, as additional time series, thereby making the AE-ESN easier to apply to clinical data.
Collapse
Affiliation(s)
- Shahrokh Shahi
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Elizabeth M. Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
22
|
Lebert J, Ravi N, Kensah G, Christoph J. Real-Time Optical Mapping of Contracting Cardiac Tissues With GPU-Accelerated Numerical Motion Tracking. Front Cardiovasc Med 2022; 9:787627. [PMID: 35686036 PMCID: PMC9172765 DOI: 10.3389/fcvm.2022.787627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/12/2022] [Indexed: 11/15/2022] Open
Abstract
Optical mapping of action potentials or calcium transients in contracting cardiac tissues are challenging because of the severe sensitivity of the measurements to motion. The measurements rely on the accurate numerical tracking and analysis of fluorescence changes emitted by the tissue as it moves, and inaccurate or no tracking can produce motion artifacts and lead to imprecise measurements that can prohibit the analysis of the data. Recently, it was demonstrated that numerical motion-tracking and -stabilization can effectively inhibit motion artifacts, allowing highly detailed simultaneous measurements of electrophysiological phenomena and tissue mechanics. However, the field of electromechanical optical mapping is still young and under development. To date, the technique is only used by a few laboratories, the processing of the video data is time-consuming and performed offline post-acquisition as it is associated with a considerable demand for computing power. In addition, a systematic review of numerical motion tracking algorithms applicable to optical mapping data is lacking. To address these issues, we evaluated 5 open-source numerical motion-tracking algorithms implemented on a graphics processing unit (GPU) and compared their performance when tracking and compensating motion and measuring optical traces in voltage- or calcium-sensitive optical mapping videos of contracting cardiac tissues. Using GPU-accelerated numerical motion tracking, the processing times necessary to analyze optical mapping videos become substantially reduced. We demonstrate that it is possible to track and stabilize motion and create motion-compensated optical maps in real-time with low-resolution (128 x 128 pixels) and high resolution (800 x 800 pixels) optical mapping videos acquired at 500 and 40 fps, respectively. We evaluated the tracking accuracies and motion-stabilization capabilities of the GPU-based algorithms on synthetic optical mapping videos, determined their sensitivity to fluorescence signals and noise, and demonstrate the efficacy of the Farnebäck algorithm with recordings of contracting human cardiac cell cultures and beating hearts from 3 different species (mouse, rabbit, pig) imaged with 4 different high-speed cameras. GPU-accelerated processing provides a substantial increase in processing speed, which could open the path for more widespread use of numerical motion tracking and stabilization algorithms during routine optical mapping studies.
Collapse
Affiliation(s)
- Jan Lebert
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- German Center for Cardiovascular Research (DZHK e.V.), Göttingen, Germany
| | - Namita Ravi
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Yale School of Medicine, Yale University, New Haven, CT, United States
| | - George Kensah
- German Center for Cardiovascular Research (DZHK e.V.), Göttingen, Germany
- Department for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Christoph
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- German Center for Cardiovascular Research (DZHK e.V.), Göttingen, Germany
| |
Collapse
|
23
|
George SA, Lin Z, Efimov IR. Simultaneous triple-parametric optical mapping of transmembrane potential, intracellular calcium and NADH for cardiac physiology assessment. Commun Biol 2022; 5:319. [PMID: 35388167 PMCID: PMC8987030 DOI: 10.1038/s42003-022-03279-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
Investigation of the complex relationships and dependencies of multiple cellular processes that govern cardiac physiology and pathophysiology requires simultaneous dynamic assessment of multiple parameters. In this study, we introduce triple-parametric optical mapping to simultaneously image metabolism, electrical excitation, and calcium signaling from the same field of view and demonstrate its application in the field of drug testing and cardiovascular research. We applied this metabolism-excitation-contraction coupling (MECC) methodology to test the effects of blebbistatin, 4-aminopyridine and verapamil on cardiac physiology. While blebbistatin and 4-aminopyridine alter multiple aspects of cardiac function suggesting off-target effects, the effects of verapamil were on-target and it altered only one of ten tested parameters. Triple-parametric optical mapping was also applied during ischemia and reperfusion; and we identified that metabolic changes precede the effects of ischemia on cardiac electrophysiology.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.
| | - Zexu Lin
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
O'Shea C, Winter J, Kabir SN, O'Reilly M, Wells SP, Baines O, Sommerfeld LC, Correia J, Lei M, Kirchhof P, Holmes AP, Fabritz L, Rajpoot K, Pavlovic D. High resolution optical mapping of cardiac electrophysiology in pre-clinical models. Sci Data 2022; 9:135. [PMID: 35361792 PMCID: PMC8971487 DOI: 10.1038/s41597-022-01253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
Optical mapping of animal models is a widely used technique in pre-clinical cardiac research. It has several advantages over other methods, including higher spatial resolution, contactless recording and direct visualisation of action potentials and calcium transients. Optical mapping enables simultaneous study of action potential and calcium transient morphology, conduction dynamics, regional heterogeneity, restitution and arrhythmogenesis. In this dataset, we have optically mapped Langendorff perfused isolated whole hearts (mouse and guinea pig) and superfused isolated atria (mouse). Raw datasets (consisting of over 400 files) can be combined with open-source software for processing and analysis. We have generated a comprehensive post-processed dataset characterising the baseline cardiac electrophysiology in these widely used pre-clinical models. This dataset also provides reference information detailing the effect of heart rate, clinically used anti-arrhythmic drugs, ischaemia-reperfusion and sympathetic nervous stimulation on cardiac electrophysiology. The effects of these interventions can be studied in a global or regional manner, enabling new insights into the prevention and initiation of arrhythmia.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simon P Wells
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Olivia Baines
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Joao Correia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Heart and Vascular Centre, University Medical Center Hamburg-Eppendorf, Germany and German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lubeck, Lubeck, Germany
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Heart and Vascular Centre, University Medical Center Hamburg-Eppendorf, Germany and German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lubeck, Lubeck, Germany
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
de Groot NMS, Shah D, Boyle PM, Anter E, Clifford GD, Deisenhofer I, Deneke T, van Dessel P, Doessel O, Dilaveris P, Heinzel FR, Kapa S, Lambiase PD, Lumens J, Platonov PG, Ngarmukos T, Martinez JP, Sanchez AO, Takahashi Y, Valdigem BP, van der Veen AJ, Vernooy K, Casado-Arroyo R, De Potter T, Dinov B, Kosiuk J, Linz D, Neubeck L, Svennberg E, Kim YH, Wan E, Lopez-Cabanillas N, Locati ET, Macfarlane P. Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology. Europace 2022; 24:313-330. [PMID: 34878119 PMCID: PMC11636570 DOI: 10.1093/europace/euab254] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.
Collapse
Affiliation(s)
- Natasja M S de Groot
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Delft University of Technology, Delft the Netherlands
| | - Dipen Shah
- Cardiology Service, University Hospitals Geneva, Geneva, Switzerland
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Elad Anter
- Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich and Technical University of Munich, Munich, Germany
| | - Thomas Deneke
- Department of Cardiology, Rhon-klinikum Campus Bad Neustadt, Germany
| | - Pascal van Dessel
- Department of Cardiology, Medisch Spectrum Twente, Twente, the Netherlands
| | - Olaf Doessel
- Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| | - Polychronis Dilaveris
- 1st University Department of Cardiology, National & Kapodistrian University of Athens School of Medicine, Hippokration Hospital, Athens, Greece
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Suraj Kapa
- Department of Cardiology, Mayo Clinic, Rochester, USA
| | | | - Joost Lumens
- Cardiovascular Research Institute Maastricht (CARIM) Maastricht University, Maastricht, the Netherlands
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Tachapong Ngarmukos
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Juan Pablo Martinez
- Aragon Institute of Engineering Research/IIS-Aragon and University of Zaragoza, Zaragoza, Spain, CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Alejandro Olaya Sanchez
- Department of Cardiology, Hospital San José, Fundacion Universitaia de Ciencas de la Salud, Bogota, Colombia
| | - Yoshihide Takahashi
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bruno P Valdigem
- Department of Cardiology, Hospital Rede D’or São Luiz, hospital Albert einstein and Dante pazzanese heart institute, São Paulo, Brasil
| | - Alle-Jan van der Veen
- Department Circuits and Systems, Delft University of Technology, Delft, the Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ruben Casado-Arroyo
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Jedrzej Kosiuk
- Department of Electrophysiology, Helios Clinic Koethen, Koethen, Germany
| | - Dominik Linz
- MUMC, Maastricht Hart en Vaat Centrum, Maastricht, The Netherlands
| | | | - Emma Svennberg
- Cardiology Department, Karolinska University Hospital, Sweden
- Department of Clinical Sciences, Danderyd's Hospital, Danderyd, Sweden
| | - Young-Hoon Kim
- Cardiology Department, Korea University Medical Center, Seoul, Republic of Korea
| | | | - Nestor Lopez-Cabanillas
- Adventist Cardiovascular Institute of Buenos Aires, Argentina
- Medical School, 8 College Road, Singapore
| | - Emanuela T Locati
- Department of Arrhythmology and Electrophysiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Peter Macfarlane
- Electrocardiology Group, Institute of Health and Wellbeing, University of Glasgow, Level 1, New Lister Building, Royal Infirmary, Glasgow, UK
| |
Collapse
|
27
|
Diaz-Maue L, Steinebach J, Richter C. Patterned Illumination Techniques in Optogenetics: An Insight Into Decelerating Murine Hearts. Front Physiol 2022; 12:750535. [PMID: 35087413 PMCID: PMC8787046 DOI: 10.3389/fphys.2021.750535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Much has been reported about optogenetic based cardiac arrhythmia treatment and the corresponding characterization of photostimulation parameters, but still, our capacity to interact with the underlying spatiotemporal excitation patterns relies mainly on electrical and/or pharmacological approaches. However, these well-established treatments have always been an object of somehow heated discussions. Though being acutely life-saving, they often come with potential side-effects leading to a decreased functionality of the complex cardiac system. Recent optogenetic studies showed the feasibility of the usage of photostimulation as a defibrillation method with comparatively high success rates. Although, these studies mainly concentrated on the description as well as on the comparison of single photodefibrillation approaches, such as locally focused light application and global illumination, less effort was spent on the description of excitation patterns during actual photostimulation. In this study, the authors implemented a multi-site photodefibrillation technique in combination with Multi-Lead electrocardiograms (ECGs). The technical connection of real-time heart rhythm measurements and the arrhythmia counteracting light control provides a further step toward automated arrhythmia classification, which can lead to adaptive photodefibrillation methods. In order to show the power effectiveness of the new approach, transgenic murine hearts expressing channelrhodopsin-2 ex vivo were investigated using circumferential micro-LED and ECG arrays. Thus, combining the best of two methods by giving the possibility to illuminate either locally or globally with differing pulse parameters. The optical technique presented here addresses a number of challenges of technical cardiac optogenetics and is discussed in the context of arrhythmic development during photostimulation.
Collapse
Affiliation(s)
- Laura Diaz-Maue
- Department of Research Electronics, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany
| | - Janna Steinebach
- Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Claudia Richter
- German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany.,Laboratory Animal Science Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
28
|
The effective use of blebbistatin to study the action potential of cardiac pacemaker cells of zebrafish (Danio rerio) during incremental warming. Curr Res Physiol 2022; 5:48-54. [PMID: 35128467 PMCID: PMC8803472 DOI: 10.1016/j.crphys.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Blebbistatin potently inhibits actin-myosin interaction, preventing contractile activity of excitable cells including cardiac myocytes, despite electrical excitation of an action potential (AP). We collected intracellular microelectrode recordings of pacemaker cells located in the sinoatrial region (SAR) of the zebrafish heart at room temperature and during acute warming to investigate whether or not blebbistatin inhibition of contraction significantly alters pacemaker cell electrophysiology. Changes were evaluated based on 16 variables that characterized the AP waveform. None of these AP variables nor the spontaneous heart rate were significantly modified with the application of 10 μM blebbistatin when recordings were made at room temperature. Compared with the control group, the blebbistatin-treated group showed minor changes in the rate of spontaneous diastolic depolarization (P = 0.027) and the 50% and 80% repolarization (P = 0.008 and 0.010, respectively) in the 26°C–29°C temperature bin, but not at higher temperatures. These findings suggest that blebbistatin is an effective excitation-contraction uncoupler that does not appreciably affect APs generated in pacemaking cells of the SAR and can, therefore, be used in zebrafish cardiac studies. Blebbistatin uncouples excitation-contraction in zebrafish cardiomyocytes. Blebbistatin does not modify the pacemaker action potential variables. Temperature does not modify the effect of blebbistatin. First validation of the use of blebbistatin in adult fish. Methodology of intracellular microelectrode recording of zebrafish pacemaker cells.
Collapse
|
29
|
Swift LM, Kay MW, Ripplinger CM, Posnack NG. Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research. Am J Physiol Heart Circ Physiol 2021; 321:H1005-H1013. [PMID: 34623183 DOI: 10.1152/ajpheart.00477.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluorescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncoupling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac electrophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical mapping results. In this "Getting It Right" perspective, we briefly review the literature regarding the use of blebbistatin in cardiac optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping studies of cardiac tissue.
Collapse
Affiliation(s)
- Luther M Swift
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | | | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
30
|
Wu X, Hoeker GS, Blair GA, King DR, Gourdie RG, Weinberg SH, Poelzing S. Hypernatremia and intercalated disc edema synergistically exacerbate long-QT syndrome type 3 phenotype. Am J Physiol Heart Circ Physiol 2021; 321:H1042-H1055. [PMID: 34623182 DOI: 10.1152/ajpheart.00366.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac voltage-gated sodium channel gain-of-function prolongs repolarization in the long-QT syndrome type 3 (LQT3). Previous studies suggest that narrowing the perinexus within the intercalated disc, leading to rapid sodium depletion, attenuates LQT3-associated action potential duration (APD) prolongation. However, it remains unknown whether extracellular sodium concentration modulates APD prolongation during sodium channel gain-of-function. We hypothesized that elevated extracellular sodium concentration and widened perinexus synergistically prolong APD in LQT3. LQT3 was induced with sea anemone toxin (ATXII) in Langendorff-perfused guinea pig hearts (n = 34). Sodium concentration was increased from 145 to 160 mM. Perinexal expansion was induced with mannitol or the sodium channel β1-subunit adhesion domain antagonist (βadp1). Epicardial ventricular action potentials were optically mapped. Individual and combined effects of varying clefts and sodium concentrations were simulated in a computational model. With ATXII, both mannitol and βadp1 significantly widened the perinexus and prolonged APD, respectively. The elevated sodium concentration alone significantly prolonged APD as well. Importantly, the combination of elevated sodium concentration and perinexal widening synergistically prolonged APD. Computational modeling results were consistent with animal experiments. Concurrently elevating extracellular sodium and increasing intercalated disc edema prolongs repolarization more than the individual interventions alone in LQT3. This synergistic effect suggests an important clinical implication that hypernatremia in the presence of cardiac edema can markedly increase LQT3-associated APD prolongation. Therefore, to our knowledge, this is the first study to provide evidence of a tractable and effective strategy to mitigate LQT3 phenotype by means of managing sodium levels and preventing cardiac edema in patients.NEW & NOTEWORTHY This is the first study to demonstrate that the long-QT syndrome type 3 (LQT3) phenotype can be exacerbated or concealed by regulating extracellular sodium concentrations and/or the intercalated disc separation. The animal experiments and computational modeling in the current study reveal a critically important clinical implication: sodium dysregulation in the presence of edema within the intercalated disc can markedly increase the risk of arrhythmia in LQT3. These findings strongly suggest that maintaining extracellular sodium within normal physiological limits may be an effective and inexpensive therapeutic option for patients with congenital or acquired sodium channel gain-of-function diseases.
Collapse
Affiliation(s)
- Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Robert G Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Seth H Weinberg
- Department of Biomedical Engineering, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
31
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
32
|
Cooper BL, Gloschat C, Swift LM, Prudencio T, McCullough D, Jaimes R, Posnack NG. KairoSight: Open-Source Software for the Analysis of Cardiac Optical Data Collected From Multiple Species. Front Physiol 2021; 12:752940. [PMID: 34777017 PMCID: PMC8586513 DOI: 10.3389/fphys.2021.752940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac optical mapping, also known as optocardiography, employs parameter-sensitive fluorescence dye(s) to image cardiac tissue and resolve the electrical and calcium oscillations that underly cardiac function. This technique is increasingly being used in conjunction with, or even as a replacement for, traditional electrocardiography. Over the last several decades, optical mapping has matured into a “gold standard” for cardiac research applications, yet the analysis of optical signals can be challenging. Despite the refinement of software tools and algorithms, significant programming expertise is often required to analyze large optical data sets, and data analysis can be laborious and time-consuming. To address this challenge, we developed an accessible, open-source software script that is untethered from any subscription-based programming language. The described software, written in python, is aptly named “KairoSight” in reference to the Greek word for “opportune time” (Kairos) and the ability to “see” voltage and calcium signals acquired from cardiac tissue. To demonstrate analysis features and highlight species differences, we employed experimental datasets collected from mammalian hearts (Langendorff-perfused rat, guinea pig, and swine) dyed with RH237 (transmembrane voltage) and Rhod-2, AM (intracellular calcium), as well as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) dyed with FluoVolt (membrane potential), and Fluo-4, AM (calcium indicator). We also demonstrate cardiac responsiveness to ryanodine (ryanodine receptor modulator) and isoproterenol (beta-adrenergic agonist) and highlight regional differences after an ablation injury. KairoSight can be employed by both basic and clinical scientists to analyze complex cardiac optical mapping datasets without requiring dedicated computer science expertise or proprietary software.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States
| | - Chris Gloschat
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Tomas Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States.,Department of Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
33
|
Zaman MS, Dhamala J, Bajracharya P, Sapp JL, Horácek BM, Wu KC, Trayanova NA, Wang L. Fast Posterior Estimation of Cardiac Electrophysiological Model Parameters via Bayesian Active Learning. Front Physiol 2021; 12:740306. [PMID: 34759835 PMCID: PMC8573318 DOI: 10.3389/fphys.2021.740306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Probabilistic estimation of cardiac electrophysiological model parameters serves an important step toward model personalization and uncertain quantification. The expensive computation associated with these model simulations, however, makes direct Markov Chain Monte Carlo (MCMC) sampling of the posterior probability density function (pdf) of model parameters computationally intensive. Approximated posterior pdfs resulting from replacing the simulation model with a computationally efficient surrogate, on the other hand, have seen limited accuracy. In this study, we present a Bayesian active learning method to directly approximate the posterior pdf function of cardiac model parameters, in which we intelligently select training points to query the simulation model in order to learn the posterior pdf using a small number of samples. We integrate a generative model into Bayesian active learning to allow approximating posterior pdf of high-dimensional model parameters at the resolution of the cardiac mesh. We further introduce new acquisition functions to focus the selection of training points on better approximating the shape rather than the modes of the posterior pdf of interest. We evaluated the presented method in estimating tissue excitability in a 3D cardiac electrophysiological model in a range of synthetic and real-data experiments. We demonstrated its improved accuracy in approximating the posterior pdf compared to Bayesian active learning using regular acquisition functions, and substantially reduced computational cost in comparison to existing standard or accelerated MCMC sampling.
Collapse
Affiliation(s)
- Md Shakil Zaman
- Rochester Institute of Technology, Rochester, NY, United States
| | - Jwala Dhamala
- Rochester Institute of Technology, Rochester, NY, United States
| | | | - John L Sapp
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - B Milan Horácek
- Department of Electrical and Computer Engineering, Halifax, NS, Canada
| | - Katherine C Wu
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
34
|
Ultrafast four-dimensional imaging of cardiac mechanical wave propagation with sparse optoacoustic sensing. Proc Natl Acad Sci U S A 2021; 118:2103979118. [PMID: 34732573 DOI: 10.1073/pnas.2103979118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Propagation of electromechanical waves in excitable heart muscles follows complex spatiotemporal patterns holding the key to understanding life-threatening arrhythmias and other cardiac conditions. Accurate volumetric mapping of cardiac wave propagation is currently hampered by fast heart motion, particularly in small model organisms. Here we demonstrate that ultrafast four-dimensional imaging of cardiac mechanical wave propagation in entire beating murine heart can be accomplished by sparse optoacoustic sensing with high contrast, ∼115-µm spatial and submillisecond temporal resolution. We extract accurate dispersion and phase velocity maps of the cardiac waves and reveal vortex-like patterns associated with mechanical phase singularities that occur during arrhythmic events induced via burst ventricular electric stimulation. The newly introduced cardiac mapping approach is a bold step toward deciphering the complex mechanisms underlying cardiac arrhythmias and enabling precise therapeutic interventions.
Collapse
|
35
|
Han B, Trew ML, Zgierski-Johnston CM. Cardiac Conduction Velocity, Remodeling and Arrhythmogenesis. Cells 2021; 10:cells10112923. [PMID: 34831145 PMCID: PMC8616078 DOI: 10.3390/cells10112923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac electrophysiological disorders, in particular arrhythmias, are a key cause of morbidity and mortality throughout the world. There are two basic requirements for arrhythmogenesis: an underlying substrate and a trigger. Altered conduction velocity (CV) provides a key substrate for arrhythmogenesis, with slowed CV increasing the probability of re-entrant arrhythmias by reducing the length scale over which re-entry can occur. In this review, we examine methods to measure cardiac CV in vivo and ex vivo, discuss underlying determinants of CV, and address how pathological variations alter CV, potentially increasing arrhythmogenic risk. Finally, we will highlight future directions both for methodologies to measure CV and for possible treatments to restore normal CV.
Collapse
Affiliation(s)
- Bo Han
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Department of Cardiovascular Surgery, The Fourth People’s Hospital of Jinan, 250031 Jinan, China
| | - Mark L. Trew
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand;
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
36
|
Shahi S, Marcotte CD, Herndon CJ, Fenton FH, Shiferaw Y, Cherry EM. Long-Time Prediction of Arrhythmic Cardiac Action Potentials Using Recurrent Neural Networks and Reservoir Computing. Front Physiol 2021; 12:734178. [PMID: 34646159 PMCID: PMC8502981 DOI: 10.3389/fphys.2021.734178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The electrical signals triggering the heart's contraction are governed by non-linear processes that can produce complex irregular activity, especially during or preceding the onset of cardiac arrhythmias. Forecasts of cardiac voltage time series in such conditions could allow new opportunities for intervention and control but would require efficient computation of highly accurate predictions. Although machine-learning (ML) approaches hold promise for delivering such results, non-linear time-series forecasting poses significant challenges. In this manuscript, we study the performance of two recurrent neural network (RNN) approaches along with echo state networks (ESNs) from the reservoir computing (RC) paradigm in predicting cardiac voltage data in terms of accuracy, efficiency, and robustness. We show that these ML time-series prediction methods can forecast synthetic and experimental cardiac action potentials for at least 15–20 beats with a high degree of accuracy, with ESNs typically two orders of magnitude faster than RNN approaches for the same network size.
Collapse
Affiliation(s)
- Shahrokh Shahi
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Christopher D Marcotte
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Conner J Herndon
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Yohannes Shiferaw
- Department of Physics & Astronomy, California State University, Northridge, CA, United States
| | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
37
|
Marina-Breysse M, García-Escolano A, Vila-García J, Reale-Nosei G, Alfonso-Almazán JM, Yan P, Quintanilla JG, Loew LM, Lee P, Filgueiras-Rama D. A Complete and Low-Cost Cardiac Optical Mapping System in Translational Animal Models. Front Physiol 2021; 12:696270. [PMID: 34489722 PMCID: PMC8417781 DOI: 10.3389/fphys.2021.696270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Clinicians, biologists, physicists, engineers, and computer scientists are coming together to better understand heart disease, which is currently the leading cause of death globally. Optical mapping, a high-speed fluorescence imaging technique that visualizes and measures key cardiac parameters such as action potentials, cytosolic calcium transients, and fibrillation dynamics, is a core research tool that has arisen from such interdisciplinary collaborations. In an effort to broaden its use, especially among clinical scientists and students, we developed a complete and low-cost optical mapping system, including a constant-flow Langendorff perfusion system, which minimizes the economic threshold to widespread use of this powerful tool in cardiac electrophysiology research. The system described here provides high spatiotemporal resolution data about action potentials, intracellular calcium transients and fibrillation wave dynamics in isolated Langendorff-perfused hearts (pigs and rabbits), relevant for translational research. All system components and software elements are fully disclosed with the aim of increasing the use of this affordable and highly versatile tool among clinicians, basic scientists and students wishing to tackle their own research questions with their own customizable systems.
Collapse
Affiliation(s)
- Manuel Marina-Breysse
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alba García-Escolano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Joaquín Vila-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | - Gabriel Reale-Nosei
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | - José M Alfonso-Almazán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | - Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, United States
| | - Jorge G Quintanilla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, United States
| | - Peter Lee
- Essel Research and Development Inc., Toronto, ON, Canada
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
38
|
Uzelac I, Kaboudian A, Iravanian S, Siles-Paredes JG, Gumbart JC, Ashikaga H, Bhatia N, Gilmour RF, Cherry EM, Fenton FH. Quantifying arrhythmic long QT effects of hydroxychloroquine and azithromycin with whole-heart optical mapping and simulations. Heart Rhythm O2 2021; 2:394-404. [PMID: 34430945 PMCID: PMC8369304 DOI: 10.1016/j.hroo.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background In March 2020, hydroxychloroquine (HCQ) alone or combined with azithromycin (AZM) was authorized as a treatment for COVID-19 in many countries. The therapy proved ineffective with long QT and deadly cardiac arrhythmia risks, illustrating challenges to determine the new safety profile of repurposed drugs. Objective To investigate proarrhythmic effects and mechanism of HCQ and AZM (combined and alone) with high doses of HCQ as in the COVID-19 clinical trials. Methods Proarrhythmic effects of HCQ and AZM are quantified using optical mapping with voltage-sensitive dyes in ex vivo Langendorff-perfused guinea pig (GP) hearts and with numerical simulations of a GP Luo-Rudy and a human O’Hara-Virag-Varro-Rudy models, for Epi, Endo, and M cells, in cell and tissue, incorporating the drug’s effect on cell membrane ionic currents. Results Experimentally, HCQ alone and combined with AZM leads to long QT intervals by prolonging the action potential duration and increased spatial dispersion of action potential (AP) repolarization across the heart, leading to proarrhythmic discordant alternans. AZM alone had a lesser arrhythmic effect with less triangulation of the AP shape. Mathematical cardiac models fail to reproduce most of the arrhythmic effects observed experimentally. Conclusions During public health crises, the risks and benefits of new and repurposed drugs could be better assessed with alternative experimental and computational approaches to identify proarrhythmic mechanisms. Optical mapping is an effective framework suitable to investigate the drug’s adverse effects on cardiac cell membrane ionic channels at the cellular level and arrhythmia mechanisms at the tissue and whole-organ level.
Collapse
Affiliation(s)
- Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Abouzar Kaboudian
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Shahriar Iravanian
- Division of Cardiology, Section of Electrophysiology, Emory University Hospital, Atlanta, Georgia
| | | | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Hiroshi Ashikaga
- Cardiac Arrhythmia Service, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neal Bhatia
- Division of Cardiology, Section of Electrophysiology, Emory University Hospital, Atlanta, Georgia
| | - Robert F Gilmour
- Biomedical Sciences, University of Prince Edward Island, Charlottetown, Canada
| | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
39
|
Ronzhina M, Stracina T, Lacinova L, Ondacova K, Pavlovicova M, Marsanova L, Smisek R, Janousek O, Fialova K, Kolarova J, Novakova M, Provaznik I. Di-4-ANEPPS Modulates Electrical Activity and Progress of Myocardial Ischemia in Rabbit Isolated Heart. Front Physiol 2021; 12:667065. [PMID: 34177617 PMCID: PMC8222999 DOI: 10.3389/fphys.2021.667065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Aims Although voltage-sensitive dye di-4-ANEPPS is a common tool for mapping cardiac electrical activity, reported effects on electrophysiological parameters are rather. The main goals of the study were to reveal effects of the dye on rabbit isolated heart and to verify, whether rabbit isolated heart stained with di-4-ANEPPS is a suitable tool for myocardial ischemia investigation. Methods and Results Study involved experiments on stained (n = 9) and non-stained (n = 11) Langendorff perfused rabbit isolated hearts. Electrophysiological effects of the dye were evaluated by analysis of various electrogram (EG) parameters using common paired and unpaired statistical tests. It was shown that staining the hearts with di-4-ANEPPS leads to only short-term sporadic prolongation of impulse conduction through atria and atrioventricular node. On the other hand, significant irreversible slowing of heart rate and ventricular conduction were found in stained hearts as compared to controls. In patch clamp experiments, significant inhibition of sodium current density was observed in differentiated NG108-15 cells stained by the dye. Although no significant differences in mean number of ventricular premature beats were found between the stained and the non-stained hearts in ischemia as well as in reperfusion, all abovementioned results indicate increased arrhythmogenicity. In isolated hearts during ischemia, prominent ischemic patterns appeared in the stained hearts with 3–4 min delay as compared to the non-stained ones. Moreover, the ischemic changes did not achieve the same magnitude as in controls even after 10 min of ischemia. It resulted in poor performance of ischemia detection by proposed EG parameters, as was quantified by receiver operating characteristics analysis. Conclusion Our results demonstrate significant direct irreversible effect of di-4-ANEPPS on spontaneous heart rate and ventricular impulse conduction in rabbit isolated heart model. Particularly, this should be considered when di-4-ANEPPS is used in ischemia studies in rabbit. Delayed attenuated response of such hearts to ischemia might lead to misinterpretation of obtained results.
Collapse
Affiliation(s)
- Marina Ronzhina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Tibor Stracina
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lubica Lacinova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Ondacova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Pavlovicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucie Marsanova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Radovan Smisek
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Oto Janousek
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Katerina Fialova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Kolarova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Marie Novakova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| |
Collapse
|
40
|
Li J, Li H, Rao P, Luo J, Wang X, Wang L. Shining light on cardiac electrophysiology: From detection to intervention, from basic research to translational applications. Life Sci 2021; 274:119357. [PMID: 33737082 DOI: 10.1016/j.lfs.2021.119357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Cardiac arrhythmias are an important group of cardiovascular diseases, which can occur alone or in association with other cardiovascular diseases. The development of cardiac arrhythmias cannot be separated from changes in cardiac electrophysiology, and the investigation and clarification of cardiac electrophysiological changes are beneficial for the treatment of cardiac arrhythmias. However, electrical energy-based pacemakers and defibrillators, which are widely used to treat arrhythmias, still have certain disadvantages. Thereby, optics promises to be used for optical manipulation and its use in biomedicine is increasing. Since visible light is readily absorbed and scattered in living tissues and tissue penetration is shallow, optical modulation for cells and tissues requires conversion media that convert light energy into bioelectrical activity. In this regard, fluorescent dyes, light-sensitive ion channels, and optical nanomaterials can assume this role, the corresponding optical mapping technology, optogenetics technology, and optical systems based on luminescent nanomaterials have been introduced into the research in cardiovascular field and are expected to be new tools for the study and treatment of cardiac arrhythmias. In addition, infrared and near-infrared light has strong tissue penetration, which is one of the excellent options of external trigger for achieving optical modulation, and is also widely used in the study of optical modulation of biological activities. Here, the advantages of optical applications are summarized, the research progresses and emerging applications of optical-based technologies as detection and intervention tools for cardiac electrophysiological are highlighted. Moreover, the prospects for future applications of optics in clinical diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, PR China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Junmiao Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
41
|
Offerhaus JA, Snelderwaard PC, Algül S, Faber JW, Riebel K, Jensen B, Boukens BJ. High heart rate associated early repolarization causes J-waves in both zebra finch and mouse. Physiol Rep 2021; 9:e14775. [PMID: 33709567 PMCID: PMC7953022 DOI: 10.14814/phy2.14775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
High heart rates are a feature of small endothermic—or warm‐blooded—mammals and birds. In small mammals, the QT interval is short, and local ventricular recordings reveal early repolarization that coincides with the J‐wave on the ECG, a positive deflection following the QRS complex. Early repolarization contributes to short QT‐intervals thereby enabling brief cardiac cycles and high heart rates. We therefore hypothesized high hearts rates associate with early repolarization and J‐waves on the ECG of endothermic birds. We tested this hypothesis by comparing isolated hearts of zebra finches and mice and recorded pseudo‐ECGs and optical action potentials (zebra finch, n = 8; mouse, n = 8). In both species, heart rate exceeded 300 beats per min, and total ventricular activation was fast (QRS < 10 ms). Ventricular activation progressed from the left to the right ventricle in zebra finch, whereas it progressed from apex‐to‐base in mouse. In both species, the early repolarization front followed the activation front, causing a positive J‐wave in the pseudo‐ECG. Inhibition of early repolarization by 4‐aminopyridine reduced J‐wave amplitude in both species. Action potential duration was similar between ventricles in zebra finch, whereas in mouse the left ventricular action potential was longer. Accordingly, late repolarization had opposite directions in zebra finch (left‐right) and mouse (right‐left). This caused a similar direction for the zebra finch J‐wave and T‐wave, whereas in the mouse they were discordant. Our findings demonstrate that early repolarization and the associated J‐wave may have evolved by convergence in association with high heart rates.
Collapse
Affiliation(s)
- Joost A Offerhaus
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | - Sila Algül
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jaeike W Faber
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Katharina Riebel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
42
|
A three-compartment non-linear model of myocardial cell conduction block during photosensitization. Med Biol Eng Comput 2021; 59:703-710. [PMID: 33608842 DOI: 10.1007/s11517-021-02329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
This study constructed a new non-linear model of myocardial electrical conduction block during photosensitization reaction to identify the vulnerable cell population and generate an index for recurrent risk following catheter ablation for tachyarrhythmia. A three-compartment model of conductive, vulnerable, and blocked cells was proposed. To determine the non-linearity of the rate parameter for the change from vulnerable cells to conductive cells, we compared a previously reported non-linear model and our newly proposed model with non-linear rate parameters in the modeling of myocardial cell electrical conduction block during photosensitization reaction. The rate parameters were optimized via a bi-nested structure using measured synchronicity data during the photosensitization reaction of myocardial cell wires. The newly proposed model had a better fit to the measured data than the conventional model. The sum of the error until the time where the measured value was higher than 0.6, was 0.22 in the conventional model and 0.07 in our new model. The non-linear rate parameter from the vulnerable cell to the conductive cell compartment may be the preferred structure of the electrical conduction block model induced by photosensitization reaction. This simulation model provides an index to evaluate recurrent risk after tachyarrhythmia catheter ablation by photosensitization reaction. A three-compartment non-linear model of myocardial cell conduction block during photosensitization.
Collapse
|
43
|
Abstract
Inherited cardiac arrhythmias contribute substantially to sudden cardiac death in the young. The underlying pathophysiology remains incompletely understood because of the lack of representative study models and the labour-intensive nature of electrophysiological patch clamp experiments. Whereas patch clamp is still considered the gold standard for investigating electrical properties in a cell, optical mapping of voltage and calcium transients has paved the way for high-throughput studies. Moreover, the development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has enabled the study of patient specific cell lines capturing the full genomic background. Nevertheless, hiPSC-CMs do not fully address the complex interactions between various cell types in the heart. Studies using in vivo models, are therefore necessary. Given the analogies between the human and zebrafish cardiovascular system, zebrafish has emerged as a cost-efficient model for arrhythmogenic diseases. In this review, we describe how hiPSC-CM and zebrafish are employed as models to study primary electrical disorders. We provide an overview of the contemporary electrophysiological phenotyping tools and discuss in more depth the different strategies available for optical mapping. We consider the current advantages and disadvantages of both hiPSC-CM and zebrafish as a model and optical mapping as phenotyping tool and propose strategies for further improvement. Overall, the combination of experimental readouts at cellular (hiPSC-CM) and whole organ (zebrafish) level can raise our understanding of the complexity of inherited cardiac arrhythmia disorders to the next level.
Collapse
|
44
|
Jeong DU, Lim KM. Prediction of Cardiac Mechanical Performance From Electrical Features During Ventricular Tachyarrhythmia Simulation Using Machine Learning Algorithms. Front Physiol 2020; 11:591681. [PMID: 33329041 PMCID: PMC7732497 DOI: 10.3389/fphys.2020.591681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
In ventricular tachyarrhythmia, electrical instability features including action potential duration, dominant frequency, phase singularity, and filaments are associated with mechanical contractility. However, there are insufficient studies on estimated mechanical contractility based on electrical features during ventricular tachyarrhythmia using a stochastic model. In this study, we predicted cardiac mechanical performance from features of electrical instability during ventricular tachyarrhythmia simulation using machine learning algorithms, including support vector regression (SVR) and artificial neural network (ANN) models. We performed an electromechanical tachyarrhythmia simulation and extracted 12 electrical instability features and two mechanical properties, including stroke volume and the amplitude of myocardial tension (ampTens). We compared predictive performance according to kernel types of the SVR model and the number of hidden layers of the ANN model. In the SVR model, the prediction accuracies of stroke volume and ampTens were the highest when using the polynomial kernel and linear kernel, respectively. The predictive performance of the ANN model was better than that of the SVR model. The prediction accuracies were the highest when the ANN model consisted of three hidden layers. Accordingly, we propose the ANN model with three hidden layers as an optimal model for predicting cardiac mechanical contractility in ventricular tachyarrhythmia. The results of this study are expected to be used to indirectly estimate the hemodynamic response from the electrical cardiac map measured by the optical mapping system during cardiac surgery, as well as cardiac contractility under normal sinus rhythm conditions.
Collapse
Affiliation(s)
- Da Un Jeong
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Ki Moo Lim
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea.,Computational Medicine Lab, Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| |
Collapse
|
45
|
Martišienė I, Mačianskienė R, Benetis R, Jurevičius J. Cardiac Optical Mapping in Situ in Swine Models: A View of the Current Situation. MEDICINA-LITHUANIA 2020; 56:medicina56110620. [PMID: 33217906 PMCID: PMC7698624 DOI: 10.3390/medicina56110620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
Optical mapping is recognized as a promising tool for the registration of electrical activity in the heart. Most cardiac optical mapping experiments are performed in ex vivo isolated heart models. However, the electrophysiological properties of the heart are highly influenced by the autonomic nervous system as well as humoral regulation; therefore, in vivo investigations of heart activity in large animals are definitely preferred. Furthermore, such investigations can be considered the last step before clinical application. Recently, two comprehensive studies have examined optical mapping approaches for pig hearts in situ (in vivo), likely advancing the methodological capacity to perform complex electrophysiological investigations of the heart. Both studies had the same aim, i.e., to develop high-spatiotemporal-resolution optical mapping suitable for registration of electrical activity of pig heart in situ, but the methods chosen were different. In this brief review, we analyse and compare the results of recent studies and discuss their translational potential for in situ cardiac optical mapping applications in large animals. We focus on the modes of blood circulation that are employed, the use of different voltage-sensitive dyes and their loading procedures, and ways of eliminating contraction artefacts. Finally, we evaluate the possible scenarios for optical mapping (OM) application in large animals in situ and infer which scenario is optimal.
Collapse
Affiliation(s)
- Irma Martišienė
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.M.); (R.M.); (R.B.)
| | - Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.M.); (R.M.); (R.B.)
| | - Rimantas Benetis
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.M.); (R.M.); (R.B.)
- Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.M.); (R.M.); (R.B.)
- Correspondence:
| |
Collapse
|
46
|
O'Shea C, Kabir SN, Holmes AP, Lei M, Fabritz L, Rajpoot K, Pavlovic D. Cardiac optical mapping - State-of-the-art and future challenges. Int J Biochem Cell Biol 2020; 126:105804. [PMID: 32681973 PMCID: PMC7456775 DOI: 10.1016/j.biocel.2020.105804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/06/2022]
Abstract
Cardiac optical mapping is a fluorescent imaging method to study electrical behaviour and calcium handling in the heart. Optical mapping provides higher spatio-temporal resolution than electrode techniques, allowing unique insights into cardiac electrophysiology in health and disease from a variety of pre-clinical models. Both transmembrane voltage and intracellular calcium dynamics can be studied with the use of appropriate fluorescent dyes. Optical mapping has traditionally required the use of mechanical uncouplers, however computational and technical developments have lessened the requirement for these agents. Novel fluorescent dyes have been developed to optimise spectral properties, experimental timescales, biological compatibility and fluorescence output. The combination of these developments has made possible novel mapping experiments, including recent in vivo application of the technique.
Cardiac optical mapping utilises fluorescent dyes to directly image the electrical function of the heart at a high spatio-temporal resolution which far exceeds electrode techniques. It has therefore become an invaluable tool in cardiac electrophysiological research to map the propagation of heterogeneous electrical signals across the myocardium. In this review, we introduce the principles behind cardiac optical mapping and discuss some of the challenges and state of the art in the field. Key advancements discussed include newly developed fluorescent indicators, tools for the analysis of complex datasets, panoramic imaging systems and technical and computational approaches to realise optical mapping in freely beating hearts.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK; Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK; Department Cardiology, University Hospital Birmingham, Birmingham, UK
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|