1
|
Bodur M, Yilmaz B, Ağagündüz D, Ozogul Y. Immunomodulatory Effects of Omega-3 Fatty Acids: Mechanistic Insights and Health Implications. Mol Nutr Food Res 2025; 69:e202400752. [PMID: 40159804 PMCID: PMC12087734 DOI: 10.1002/mnfr.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 04/02/2025]
Abstract
Omega-3 fatty acids play a significant role in immunomodulation, with nutrigenomic approaches highlighting their impact on gene expression related to immune responses. Research indicates that omega-3 fatty acids can modulate inflammatory pathways, potentially reducing chronic inflammation and enhancing immune function. This review discusses the intersection of nutrigenomics and nutriepigenomics, focusing on how omega-3 fatty acids influence gene expression, immune function, and overall health. The immune system is a complex network responsible for defending the body against pathogens and maintaining internal balance. Comprised of innate and adaptive immunity, the system involves various cells, tissues, and organs working together to combat infections and prevent diseases. Omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a significant role in modulating the immune system. These fatty acids influence immune cell function, membrane fluidity, and signaling processes, enhancing immune responses and reducing inflammation. Furthermore, EPA and DHA affect several signaling pathways, reducing the expression of proinflammatory cytokines and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, a critical transcription factor in the inflammatory response. Additionally, they activate PPAR-γ, further diminishing inflammatory gene expression. As precursors to specialized proresolving lipid mediators, EPA and DHA help shift the lipid mediator profile from proinflammatory to antiinflammatory derivatives, thus aiding in the resolution of inflammation.
Collapse
Affiliation(s)
- Mahmut Bodur
- Faculty of Health SciencesDepartment of Nutrition and DieteticsAnkara UniversityAnkaraTurkey
| | - Birsen Yilmaz
- Department of Biological SciencesTata Institute of Fundamental ResearchHyderabadIndia
- Faculty of Health SciencesDepartment of Nutrition and DieteticsCukurova UniversityAdanaTurkey
| | - Duygu Ağagündüz
- Faculty of Health SciencesDepartment of Nutrition and DieteticsGazi UniversityAnkaraTurkey
| | - Yeşim Ozogul
- Faculty of FisheriesDepartment of Seafood Processing TechnologyCukurova UniversityAdanaTurkey
| |
Collapse
|
2
|
Crome SQ, Tsai S. The art of war: burning stores to fuel anti-viral immunity. Nat Metab 2025; 7:862-863. [PMID: 40217116 DOI: 10.1038/s42255-025-01257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Affiliation(s)
- Sarah Q Crome
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Frazzini S, Turin L, Vanosi G, Rossi L, Hejna M. Seaweed-derived mixed extracts exhibit immunomodulatory properties on porcine alveolar macrophages. Vet J 2025; 312:106358. [PMID: 40246016 DOI: 10.1016/j.tvjl.2025.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
Antimicrobial resistance is a growing global concern, prompting for antibiotic alternatives in animal production. Seaweed, abundant in bioactive compounds with anti-inflammatory properties, offers a natural substitute to synthetic compounds. Considering this, the objective of the present study was to evaluate the anti-inflammatory bioactivity of three seaweeds 1:1 combination of Ascophyllum nodosum, Palmaria palmata, and Ulva lactuca. Initially, polyphenol, flavonoid, and total phlorotannin content of the three seaweed species were assessed through colorimetric assays. Subsequently, the anti-inflammatory bioactivity was first evaluated through an inhibition protein precipitation assay and then confirmed in vitro through gene expression assays in LPS-stimulated porcine alveolar macrophages (PAMs). The evaluation of the bioactive molecules revealed a high content of TPC (1487.67 ± 40.39 and 1763.57 ± 69.01 mg TAE/100 mg of sample, respectively), as well as of TFC (95.68 ± 3.62 and 126.09 ± 7.34 mg CE/100 mg of sample) and TPhC (0.167 ± 0.02 and 0.23 ± 0.01 mg PGE/100 mg) for AN and UL, respectively. The assay for inhibiting protein precipitation disclosed that the extracts combining two algae species (ANUL, ANPP, PPUL) were more effective than the effect exhibited by each single extract. The assessment of anti-inflammatory bioactivity revealed a significant down-regulation of IL-1β and TNF-α in the algae combination extracts. In contrast, TGF-β showed an increasing trend. These findings, along with confirmation of the high content of bioactive molecules, highlight the algae's anti-inflammatory potential, making them suitable as natural alternatives to antibiotics for disease prevention in the livestock sector. Therefore, future research should explore the specific bioactive compounds and validate their efficacy in vivo to confirm their potential use in animal production.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy
| | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy
| | - Graziella Vanosi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy.
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, Jastrzębiec 05-552, Poland
| |
Collapse
|
4
|
Bogdan RG, Boicean A, Anderco P, Ichim C, Iliescu-Glaja M, Todor SB, Leonte E, Bloanca VA, Crainiceanu ZP, Popa ML. From Liver to Kidney: The Overlooked Burden of Nonalcoholic Fatty Liver Disease in Chronic Kidney Disease. J Clin Med 2025; 14:2486. [PMID: 40217935 PMCID: PMC11989420 DOI: 10.3390/jcm14072486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a contributor to chronic kidney disease (CKD), yet its impact remains underappreciated in clinical practice. Recent studies reveal a strong association between NAFLD and CKD progression, with evidence linking hepatic dysfunction to renal impairment through metabolic and inflammatory pathways. NAFLD not only increases the risk of CKD but also accelerates its progression, leading to worse cardiovascular outcomes and higher mortality, particularly in patients with advanced fibrosis. Despite this growing evidence, NAFLD often goes undiagnosed in CKD patients and routine hepatic evaluation is rarely integrated into nephrology care. Emerging diagnostic tools, including noninvasive biomarkers and imaging techniques, offer potential for earlier detection, yet their clinical implementation remains inconsistent. Although lifestyle modifications remain the foundation of treatment, pharmacotherapeutic strategies, including SGLT2 inhibitors and GLP-1 receptor agonists, have demonstrated potential in mitigating both hepatic and renal impairment. Recognizing the interplay between NAFLD and CKD is essential for improving patient outcomes. A multidisciplinary approach, integrating hepatology and nephrology expertise, is crucial to refining screening strategies, optimizing treatment, and reducing the long-term burden of these coexisting conditions.
Collapse
Affiliation(s)
- Razvan George Bogdan
- Plastic Surgery Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.G.B.); (M.I.-G.); (E.L.); (V.A.B.); (Z.P.C.)
| | - Adrian Boicean
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania; (C.I.); (S.B.T.); (M.L.P.)
| | - Paula Anderco
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania; (C.I.); (S.B.T.); (M.L.P.)
| | - Cristian Ichim
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania; (C.I.); (S.B.T.); (M.L.P.)
| | - Mihai Iliescu-Glaja
- Plastic Surgery Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.G.B.); (M.I.-G.); (E.L.); (V.A.B.); (Z.P.C.)
| | - Samuel Bogdan Todor
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania; (C.I.); (S.B.T.); (M.L.P.)
| | - Elisa Leonte
- Plastic Surgery Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.G.B.); (M.I.-G.); (E.L.); (V.A.B.); (Z.P.C.)
| | - Vlad Adam Bloanca
- Plastic Surgery Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.G.B.); (M.I.-G.); (E.L.); (V.A.B.); (Z.P.C.)
| | - Zorin Petrisor Crainiceanu
- Plastic Surgery Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.G.B.); (M.I.-G.); (E.L.); (V.A.B.); (Z.P.C.)
| | - Mirela Livia Popa
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania; (C.I.); (S.B.T.); (M.L.P.)
| |
Collapse
|
5
|
Berbudi A, Khairani S, Tjahjadi AI. Interplay Between Insulin Resistance and Immune Dysregulation in Type 2 Diabetes Mellitus: Implications for Therapeutic Interventions. Immunotargets Ther 2025; 14:359-382. [PMID: 40196377 PMCID: PMC11974557 DOI: 10.2147/itt.s499605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a rapidly growing global health issue characterized by insulin resistance and chronic inflammation. Beyond regulating glucose homeostasis, insulin plays a pivotal role in modulating immune cell function, linking metabolic dysregulation with immune responses. This review examines the intricate relationship between insulin resistance and immune dysfunction in T2DM, focusing on how impaired insulin signaling pathways, particularly PI3K/Akt and MAPK, contribute to immune cell activation, proliferation, and chronic inflammation. Insulin resistance impacts immune cells such as T cells, B cells, macrophages, and neutrophils, leading to an imbalance between pro-inflammatory and anti-inflammatory responses. Elevated pro-inflammatory cytokines (eg, TNF-α, IL-6) and adipokines (eg, leptin, resistin) exacerbate insulin resistance, promoting a vicious cycle of metabolic and immune dysregulation. This interplay contributes to the chronic low-grade inflammation that underlies T2DM pathogenesis, further impairing insulin signaling and glucose metabolism. Restoration of insulin sensitivity is, therefore, a critical step toward correcting immune imbalance in insulin-resistant states like T2DM. Therapeutic approaches that reduce inflammation could also support improvements in insulin sensitivity, addressing both metabolic and immune disturbances simultaneously. The review also explores therapeutic strategies, including insulin therapy, targeting insulin signaling pathways, and lifestyle interventions. Insulin therapy can reduce pro-inflammatory cytokine production and enhance anti-inflammatory responses, although challenges such as potential immune suppression and hyperinsulinemia remain. Targeting key signaling pathways and transcription factors offers promising avenues for modulating immune responses, while lifestyle interventions, such as dietary modifications, physical activity, and weight management, can improve insulin sensitivity and reduce inflammation. By understanding the dual role of insulin in regulating both metabolic and immune functions, this review underscores the importance of addressing immune dysfunction as part of comprehensive T2DM management. Targeting the interconnected pathways of insulin signaling and immune regulation could lead to more effective therapeutic approaches, ultimately improving patient outcomes and reducing disease complications.
Collapse
Affiliation(s)
- Afiat Berbudi
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Universitas Padjadjaran Hospital, Sumedang, Indonesia
| | - Shafia Khairani
- Department of Biomedical Sciences, Cell Biology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Adi Imam Tjahjadi
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Universitas Padjadjaran Hospital, Sumedang, Indonesia
- Department of Biomedical Sciences, Microbiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Reinalda L, van der Stelt M, van Kasteren SI. Lipid Metabolism and Immune Function: Chemical Tools for Insights into T-Cell Biology. Chembiochem 2025:e2400980. [PMID: 40162512 DOI: 10.1002/cbic.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Lipids are essential biomolecules playing critical roles in cellular processes, including energy storage, membrane structure, and signaling. This review highlights the chemical tools that have been developed to study the role of lipid metabolism in immune function, focusing on T-cell biology. Fatty acids (FAs), as core lipid components, influence immune responses through structural, signaling, and metabolic roles. Recent studies reveal how specific FAs modulate T-cell activation, proliferation, and function, with implications for regulatory and effector subsets. Emerging tools, such as fluorescence-based lipids and click chemistry, enable precise tracking of lipid uptake and metabolism at the single-cell level, addressing limitations of traditional bulk methods. Advances in metabolomics and proteomics offer further insights into lipid-mediated immune regulation. Understanding these mechanisms provides opportunities to target lipid metabolism in therapeutic strategies for cancer and other immune-related diseases. The integration of lipidomic technologies into immunology uncovers novel perspectives on how lipids shape immune responses at cellular and molecular scales.
Collapse
Affiliation(s)
- Luuk Reinalda
- Department of Chemical Biology and Immunology, Leiden Institute of Chemistry, Einsteinweg 33, 2333 CC, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Einsteinweg 33, 2333 CC, Leiden, The Netherlands
| | - Sander Izaak van Kasteren
- Department of Chemical Biology and Immunology, Leiden Institute of Chemistry, Einsteinweg 33, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
7
|
Kim HB, Alexander H, Um JY, Chung BY, Park CW, Flohr C, Kim HO. Skin Microbiome Dynamics in Atopic Dermatitis: Understanding Host-Microbiome Interactions. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2025; 17:165-180. [PMID: 40204503 PMCID: PMC11982640 DOI: 10.4168/aair.2025.17.2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/23/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder affecting both children and adults, characterized by pruritus, eczematous lesions, and compromised skin barrier function. A key feature of AD is dysbiosis of the skin microbiome, marked by reduced microbial diversity and the overgrowth of Staphylococcus aureus in lesional skin. S. aureus exacerbates skin barrier dysfunction and immune dysregulation, leading to recurrent infections and disease flares. In contrast, commensal bacteria such as Staphylococcus epidermidis and Roseomonas mucosa may exert protective effects by inhibiting S. aureus colonization and modulating immune responses. Beyond microbial composition, microbial metabolites play a crucial role in AD pathophysiology. Short-chain fatty acids, indole derivatives, and other bacterial metabolites influence cutaneous immune responses, lipid metabolism, and skin barrier integrity. Altered metabolite profiles, including reduced levels of beneficial microbial metabolites, are associated with AD severity and disease progression. Notably, S. aureus overabundance correlates with disruption in lipid metabolism, further compromising the skin barrier. This review explores recent advances in understanding the relationship between microbial metabolites and AD pathogenesis and examines the therapeutic potential of microbiome-targeted interventions. Strategies such as probiotics, prebiotics, and topical microbiome transplantation aim to restore microbial diversity and rebalance metabolite production, ultimately improving clinical outcomes in AD patients. Future therapeutic approaches focusing on commensal-derived metabolites offer promising avenues for alleviating symptoms and modulating disease severity in AD.
Collapse
Affiliation(s)
- Han Bi Kim
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Helen Alexander
- Dermatology & Population Health Science, St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Ji Young Um
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Carsten Flohr
- Dermatology & Population Health Science, St John's Institute of Dermatology, King's College London, London, United Kingdom.
| | - Hye One Kim
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Elhassan E, Omolo CA, Gafar MA, Ismail EA, Ibrahim UH, Khan R, Lesouhaitier M, Kubes P, Govender T. Multifunctional hyaluronic acid-based biomimetic/pH-responsive hybrid nanostructured lipid carriers for treating bacterial sepsis. J Biomed Sci 2025; 32:19. [PMID: 39930418 PMCID: PMC11812216 DOI: 10.1186/s12929-024-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION The application of biomimetic and stimuli-responsive nanocarriers displays considerable promise in improving the management of bacterial sepsis and overcoming antimicrobial resistance. Therefore, the study aimed to synthesize a novel hyaluronic acid-lysine conjugate (HA-Lys) and to utilize the attributes of the synthesized HA-Lys with Tocopherol succinate (TS) and Oleylamine (OLA) in the formulation of multifunctional biomimetic pH-responsive HNLCs loaded with vancomycin (VCM-HNLCs), to combat bacterial sepsis. METHODS A novel hyaluronic acid-lysine conjugate (HA-Lys) was synthesized and characterized using FTIR and 1H NMR spectroscopy. Vancomycin-loaded hybrid nanosystems (VCM-HNLCs) were prepared through hot homogenization ultrasonication and evaluated for particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%). In vitro biocompatibility was assessed via MTT assay and red blood cell hemolysis test. The binding affinity to TLR2 and TLR4 was measured using microscale thermophoresis (MST). Drug release was evaluated using the dialysis bag method. Antimicrobial activity against MRSA and efflux pump inhibition were also determined. Efficacy was demonstrated in an MRSA-induced sepsis mice model. RESULTS The VCM-HNLCs, produced via hot homogenization ultrasonication, exhibited particle size (PS), polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%) of 110.77 ± 1.692 nm, 0.113 ± 0.022, - 2.92 ± 0.210 mV, and 76.27 ± 1.200%, respectively. In vitro, biocompatibility was proven by hemolysis and cytotoxicity studies. The VCM-HNLCs demonstrated targetability to human Toll-like receptors (TLR 2 and 4) as validated by microscale thermophoresis (MST). VCM-HNLCs showed a twofold reduction in MIC values at physiological pH compared to the bare VCM against S. aureus and MRSA for 48 h. While at pH 6.0, MIC values were reduced by fourfold in the first 24 h and by eightfold in the subsequent 48 and 72 h against tested strains. Furthermore, VCM-HNLCs showed inhibitory effects against MRSA efflux pumps, reactive oxygen species (ROS), and lipopolysaccharide (LPS)-induced hyperinflammation. In an MRSA-induced sepsis mice model, VCM-HNLCs demonstrated superior efficacy compared to free VCM, significantly eliminated bacteria and improved survival rates. CONCLUSIONS Overall, these results highlight the potential of VCM-HNLCs as novel multifunctional nanocarriers to combat antimicrobial resistance (AMR) and enhance sepsis outcomes.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Mathieu Lesouhaitier
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
9
|
Xiao Y, Gao Y, Hu Y, Zhang X, Wang L, Li H, Yu L, Ma Q, Dai J, Ning Z, Liu J, Zhang L, Yang Y, Xiong H, Dong G. FASN contributes to the pathogenesis of lupus by promoting TLR-mediated activation of macrophages and dendritic cells. Int Immunopharmacol 2024; 142:113136. [PMID: 39293316 DOI: 10.1016/j.intimp.2024.113136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Hyper-activations of monocytes/macrophages and dendritic cells (DCs) contribute to the pathogenesis of various autoimmune diseases, such as systemic lupus erythematosus (SLE). Fatty acid synthase (FASN) is essential for the de novo synthesis of long-chain fatty acids, which play a key role in controlling the activation, differentiation, and function of immune cells. However, the role of FASN in regulating the activations of monocytes/macrophages and DCs has not been studied. In this study, we investigated the involvement of the FASN in modulating the activations of macrophages and DCs, as well as the pathogenesis of SLE. Importantly, we observed a significant upregulation of FASN expression in monocytes and DCs from patients with SLE. This increase is strongly correlated with disease severity and activation status of the immune cells. Furthermore, overexpression of FASN significantly boosts the TLR4/7/9-mediated activation of macrophages and DCs, while knockdown of FASN markedly inhibits this activation. Notably, knockdown of FASN alleviates TLR7 agonist imiquimod (IMQ)-induced lupus in mice and the activation of macrophages and DCs. It makes more sense that pharmaceutical targeting of FASN by using TVB-2640 significantly alleviates IMQ-induced lupus in mice and the activation of macrophages and DCs, as well as in spontaneous lupus MRL/lpr mice. Thus, FASN contributes to the TLRs-mediated activation of macrophages and DCs, as well as the pathogenesis of SLE. More importantly, FASN inhibitor TVB-2640 is expected to be an effective drug in the treatment of SLE.
Collapse
Affiliation(s)
- Yucai Xiao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Haochen Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lu Yu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jiakun Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lili Zhang
- Department of Rheumatology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
10
|
Natnan ME, Low CF, Chong CM, Jasmany MSM, Baharum SN. Oleic acid enriched diet affects the metabolome composition of the hybrid grouper infected with vibriosis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2327-2342. [PMID: 39102011 DOI: 10.1007/s10695-024-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
This study focuses in investigating the fatty acid contents of surviving infected hybrid grouper fed with oleic acid immunostimulant. After a 6-week feeding trial, Epinephelus fuscoguttatus × Epinephelus lanceolatus fingerlings were infected with Vibrio vulnificus. One week after bacterial challenge, fish oil was extracted from body tissue of surviving infected fingerlings using the Soxhlet extraction method. The extracted samples were then sent for GC-MS analysis. The raw GC-MS data were analyzed using software programs and databases (i.e., MetaboAnalyst, SIMCA-P, NIST Library, and KEGG). A total of 39 metabolites were putatively identified, with 18 metabolites derived from the fatty acid group. Our further analysis revealed that most metabolites were highly abundant in the oleic acid dietary samples, including oleic acid (4.56%), 5,8,11-eicosatrienoic acid (3.45%), n-hexadecenoic acid (3.34%), cis-erucic acid (2.76%), and 9-octadecenoic acid (2.5%). Worthy of note, we observed a greater abundance of α-linoleic acid (15.57%) in the control diet samples than in the oleic acid diet samples (14.59%) with no significant difference in their results. The results obtained from this study revealed that surviving infected hybrid grouper expressed more immune-related fatty acids due to the effect of oleic acid immunostimulant. Therefore, in this study, we propose oleic acid as a potential immunostimulant in enhancing fish immunity in aquaculture industry.
Collapse
Affiliation(s)
- Maya Erna Natnan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chen-Fei Low
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chou-Min Chong
- Laboratory of Immunogenomics, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Muhammad Shuhaily Mohd Jasmany
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
11
|
Peña-Vázquez GI, Serrano-Sandoval SN, Rodríguez-Rodríguez J, Antunes-Ricardo M, Guajardo-Flores D. Anti-inflammatory and antioxidant activity of functional lipids extracted through sustainable technologies from Mexican Opuntia ficus-indica seeds. Food Chem 2024; 467:142258. [PMID: 39637671 DOI: 10.1016/j.foodchem.2024.142258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Opuntia ficus-indica (OFI) seeds are a rich source of functional lipids, yet research on Mexican cultivars remains limited. This study evaluated the antioxidant and anti-inflammatory properties of lipids extracted through subcritical fluid and supercritical fluid extraction with carbon dioxide (SCE-CO₂ and SFE-CO₂) from Mexican OFI Villanueva and Rojo Vigor seeds with and without enzymatic pretreatment. SCE OFI Villanueva oil showed higher extraction efficiency of linoleic (45.86 mg/g), and oleic (9.86 mg/g) acids purified more than 5.47 and 1.18 times, respectively. Additionally, SCE oils exhibited the highest antioxidant potential (68 %) and anti-inflammatory activity (45 %) at the evaluated doses. In conclusion, SCE-CO₂ enhanced the extraction efficiency of unsaturated fatty acids, improving their potential biological effects, while enzymatic pretreatment did not positively impact on results, suggesting reduced extraction efficiency and bioactivity. These findings suggest that OFI seeds can serve as a valuable source of functional ingredients for the development of value-added food products.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| |
Collapse
|
12
|
Frasca D, Romero M, Blomberg BB. Similarities in B Cell Defects between Aging and Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1407-1413. [PMID: 39495900 DOI: 10.4049/jimmunol.2300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
The aging population is increasing worldwide, and there is also an increase in the aging population living with overweight and obesity, due to changes in lifestyle and in dietary patterns that elderly individuals experience later in life. Both aging and obesity are conditions of accelerated metabolic dysfunction and dysregulated immune responses. In this review, we summarize published findings showing that obesity induces changes in humoral immunity similar to those induced by aging and that the age-associated B cell defects are mainly due to metabolic changes. We discuss the role of the obese adipose tissue in inducing dysfunctional humoral responses and autoimmune Ab secretion.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
13
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
14
|
Benito-Vázquez I, Garrido-Romero M, Hontoria-Caballo G, García-García C, Díez-Municio M, Moreno FJ. Carob ( Ceratonia siliqua) Flour as Source of Bioactive Compounds: Production, Characterization and Nutraceutical Value. Foods 2024; 13:3024. [PMID: 39410059 PMCID: PMC11475722 DOI: 10.3390/foods13193024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Carob (Ceratonia siliqua) seeds are rich in diverse bioactive compounds, including galactomannan, β-sitosterol, unsaturated fatty acids and proteins with bioactive peptides in their sequence. This study delineates the compositional characterization of six carob seed flour types derived from different production processes, providing valuable insights for designing tailored nutraceutical products based on desired bioactive compound profiles. Our analysis indicated that a higher purity of galactomannan resulted in a greater mannose/galactose ratio, which increased the linearity of the galactomannan polymer and could enhance interchain interaction, thereby increasing aggregation capacity. A higher viscosity could potentially increase the capacity of galactomannan to create satiety and lower cholesterol levels. Among the different tested flours, those whose main compound was the endosperm were optimal for containing high galactomannan content, whereas those derived from the germ were ideal for having high concentrations of fatty acids (i.e., oleic and linoleic acids) and β-sitosterol. The presence of these lipids in carob flours could offer cardiovascular and metabolic health benefits, contributing synergistically. Additionally, flours that contain the germ have beneficial peptides included in proteins like glycinin and conglutin with potential anticholesterolemic and antidiabetic properties. This work provides different methods for obtaining carob flours rich in bioactive compounds, offering the nutraceutical industry a framework to select the best option for industrial-scale production.
Collapse
Affiliation(s)
- Iván Benito-Vázquez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.B.-V.); (M.G.-R.)
- Pharmactive Biotech Products SLU, Faraday 7, 28049 Madrid, Spain; (G.H.-C.); (M.D.-M.)
| | - Manuel Garrido-Romero
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.B.-V.); (M.G.-R.)
- Pharmactive Biotech Products SLU, Faraday 7, 28049 Madrid, Spain; (G.H.-C.); (M.D.-M.)
| | - Gema Hontoria-Caballo
- Pharmactive Biotech Products SLU, Faraday 7, 28049 Madrid, Spain; (G.H.-C.); (M.D.-M.)
| | - Carlos García-García
- Centro de Biología Molecular Severo Ochoa, CBM (CSIC-UAM), Nicolás Cabrera, 1, 28049 Madrid, Spain;
| | - Marina Díez-Municio
- Pharmactive Biotech Products SLU, Faraday 7, 28049 Madrid, Spain; (G.H.-C.); (M.D.-M.)
| | - F. Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.B.-V.); (M.G.-R.)
| |
Collapse
|
15
|
Laranjeira AC, Berger S, Kohlbrenner T, Greter NR, Hajnal A. Nutritional vitamin B12 regulates RAS/MAPK-mediated cell fate decisions through one-carbon metabolism. Nat Commun 2024; 15:8178. [PMID: 39289374 PMCID: PMC11408588 DOI: 10.1038/s41467-024-52556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Vitamin B12 is an essential nutritional co-factor for the folate and methionine cycles, which together constitute one-carbon metabolism. Here, we show that dietary uptake of vitamin B12 modulates cell fate decisions controlled by the conserved RAS/MAPK signaling pathway in C. elegans. A bacterial diet rich in vitamin B12 increases vulval induction, germ cell apoptosis and oocyte differentiation. These effects are mediated by different one-carbon metabolites in a tissue-specific manner. Vitamin B12 enhances via the choline/phosphatidylcholine metabolism vulval induction by down-regulating fat biosynthesis genes and increasing H3K4 tri-methylation, which results in increased expression of RAS/MAPK target genes. Furthermore, the nucleoside metabolism and H3K4 tri-methylation positively regulate germ cell apoptosis and oocyte production. Using mammalian cells carrying different activated KRAS and BRAF alleles, we show that the effects of methionine on RAS/MAPK-regulated phenotype are conserved in mammals. Our findings suggest that the vitamin B12-dependent one-carbon metabolism is a limiting factor for diverse RAS/MAPK-induced cellular responses.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nadja R Greter
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Li M, Hou Y, Chen Y, Sun C, Liang M, Chu X, Wen X, Yuan F, Peng C, Wang C, Xie J, Zhang J. Palmitic acid promotes miRNA release from adipocyte exosomes by activating NF-κB/ER stress. Nutr Diabetes 2024; 14:75. [PMID: 39271650 PMCID: PMC11399118 DOI: 10.1038/s41387-024-00334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVE The release of adipose tissue-derived miRNAs is increased under conditions of obesity, but the exact molecular mechanisms involved have not been elucidated. This study investigated whether obesity-induced increases in palmitic acid (PA) content could activate the NF-κB/endoplasmic reticulum stress (ER stress) pathway and promote the expression and release of exosomal miRNAs in adipocytes. METHODS Abdominal adipose tissue and serum samples were collected from normal weight individuals and people with obesity to clarify the correlation of serum PA content with NF-κB/ER stress and the release of exosomal miRNAs. NF-κB and ER stress were blocked in obese mice and in vitro cultured adipocytes to demonstrate the molecular mechanisms by which PA promotes the release of exosomal miRNAs.The morphology, particle size and distribution of the exosomes were observed via transmission electron microscopy and NTA. RESULTS Accompanied by increased serum PA levels, the NF-κB/ER stress pathway was activated in the adipose tissue of people with obesity and in high-fat diet (HFD)-induced obese mice; moreover, the levels of miRNAs in both adipose tissue and serum were increased. P-p65 (Bay11-7082) and ER stress (TUDCA) blockers significantly reduced the levels of miRNAs in abdominal adipose tissue and serum, decreased blood glucose levels, and improved glucose tolerance and insulin sensitivity in obese mice. In 3T3-L1 adipocytes, high concentrations of PA activated the NF-κB/ER stress pathway and increased the expression and release of miRNAs in exosomes. P-p65 (Bay11-7082) and ER stress (TUDCA) blockers significantly reversed the increased release exosomal miRNAs cause by PA. CONCLUSIONS Obesity-induced increases in PA content increase the expression and release of miRNAs in adipocyte exosomes by activating the NF-κB/ER stress pathway.
Collapse
Affiliation(s)
- Menghuan Li
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Chaoyue Sun
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Xiaolong Chu
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
- Medical College of Tarim University, Tarim Road, Alaer, Xinjiang, China
| | - Xin Wen
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Fangyuan Yuan
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Chaoling Peng
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China.
| | - Jianxin Xie
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China.
| |
Collapse
|
17
|
Meeson KE, Schwartz JM. Constraint-based modelling predicts metabolic signatures of low and high-grade serous ovarian cancer. NPJ Syst Biol Appl 2024; 10:96. [PMID: 39181893 PMCID: PMC11344801 DOI: 10.1038/s41540-024-00418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer is an aggressive, heterogeneous disease, burdened with late diagnosis and resistance to chemotherapy. Clinical features of ovarian cancer could be explained by investigating its metabolism, and how the regulation of specific pathways links to individual phenotypes. Ovarian cancer is of particular interest for metabolic research due to its heterogeneous nature, with five distinct subtypes having been identified, each of which may display a unique metabolic signature. To elucidate metabolic differences, constraint-based modelling (CBM) represents a powerful technology, inviting the integration of 'omics' data, such as transcriptomics. However, many CBM methods have not prioritised accurate growth rate predictions, and there are very few ovarian cancer genome-scale studies. Here, a novel method for CBM has been developed, employing the genome-scale model Human1 and flux balance analysis, enabling the integration of in vitro growth rates, transcriptomics data and media conditions to predict the metabolic behaviour of cells. Using low- and high-grade ovarian cancer, subtype-specific metabolic differences have been predicted, which have been supported by publicly available CRISPR-Cas9 data from the Cancer Cell Line Encyclopaedia and an extensive literature review. Metabolic drivers of aggressive, invasive phenotypes, as well as pathways responsible for increased chemoresistance in low-grade cell lines have been suggested. Experimental gene dependency data has been used to validate areas of the pentose phosphate pathway as essential for low-grade cellular growth, highlighting potential vulnerabilities for this ovarian cancer subtype.
Collapse
Affiliation(s)
- Kate E Meeson
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
18
|
Mi B, Xiong Y, Knoedler S, Alfertshofer M, Panayi AC, Wang H, Lin S, Li G, Liu G. Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system. Bone Res 2024; 12:42. [PMID: 39103328 PMCID: PMC11300832 DOI: 10.1038/s41413-024-00346-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
19
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
20
|
Cooper PO, Kleb SS, Noonepalle SK, Amuso VM, Varshney R, Rudolph MC, Dhaliwal TK, Nguyen DV, Mazumder MF, Babirye NS, Gupta R, Nguyen BN, Shook BA. G-protein-coupled receptor 84 regulates acute inflammation in normal and diabetic skin wounds. Cell Rep 2024; 43:114288. [PMID: 38814782 PMCID: PMC11247419 DOI: 10.1016/j.celrep.2024.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Lipids have emerged as potent regulators of immune cell function. In the skin, adipocyte lipolysis increases the local pool of free fatty acids and is essential for coordinating early macrophage inflammation following injury. Here, we investigate G-protein-coupled receptor 84 (GPR84), a medium-chain fatty acid (MCFA) receptor, for its potential to propagate pro-inflammatory signaling after skin injury. GPR84 signaling was identified as a key component of regulating myeloid cell numbers and subsequent tissue repair through in vivo administration of a pharmacological antagonist and the MCFA decanoic acid. We found that impaired injury-induced dermal adipocyte lipolysis is a hallmark of diabetes, and lipidomic analysis demonstrated that MCFAs are significantly reduced in diabetic murine wounds. Furthermore, local administration of decanoic acid rescued myeloid cell numbers and tissue repair during diabetic wound healing. Thus, GPR84 is a readily targetable lipid signaling pathway for manipulating injury-induced tissue inflammation with beneficial effects on acute diabetic healing.
Collapse
Affiliation(s)
- Paula O Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Sarah S Kleb
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Satish K Noonepalle
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Veronica M Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanvir K Dhaliwal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Darlene V Nguyen
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Miguel F Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Najuma S Babirye
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Ruchi Gupta
- Department of Surgery, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Bao-Ngoc Nguyen
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; Department of Surgery, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Brett A Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
21
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
22
|
Michler S, Schöffmann FA, Robaa D, Volmer J, Hinderberger D. Fatty acid binding to the human transport proteins FABP3, FABP4, and FABP5 from a Ligand's perspective. J Biol Chem 2024; 300:107396. [PMID: 38777142 PMCID: PMC11231610 DOI: 10.1016/j.jbc.2024.107396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of amphiphilic transport proteins with high diversity in terms of their amino acid sequences and binding preferences. Beyond their main biological role as cytosolic fatty acid transporters, many aspects regarding their binding mechanism and functional specializations in human cells remain unclear. In this work, the binding properties and thermodynamics of FABP3, FABP4, and FABP5 were analyzed under various physical conditions. For this purpose, the FABPs were loaded with fatty acids bearing fluorescence or spin probes as model ligands, comparing their binding affinities via microscale thermophoresis (MST) and continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy. The CW EPR spectra of non-covalently bound 5- and 16-DOXYL stearic acid (5/16-DSA) deliver in-depth information about the dynamics and chemical environments of ligands inside the binding pockets of the FABPs. EPR spectral simulations allow the construction of binding curves, revealing two different binding states ('intermediately' and 'strongly' bound). The proportion of bound 5/16-DSA depends strongly on the FABP concentration and the temperature but with remarkable differences between the three isoforms. Additionally, the more dynamic state ('intermediately bound') seems to dominate at body temperature with thermodynamic preference. The ligand binding studies were supplemented by aggregation studies via dynamic light scattering and bioinformatic analyses. Beyond the remarkably fine-tuned binding properties exhibited by each FABP, which were discernible with our EPR-centered approach, the results of this work attest to the power of simple spectroscopic experiments to provide new insights into the ligand binding mechanisms of proteins in general on a molecular level.
Collapse
Affiliation(s)
- Sebastian Michler
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Florian Arndt Schöffmann
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jonas Volmer
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dariush Hinderberger
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
23
|
Koganesawa M, Dwyer D, Alhallak K, Nagai J, Zaleski K, Samuchiwal S, Hiroaki H, Nishida A, Hirsch TI, Brennan PJ, Puder M, Balestrieri B. Pla2g5 contributes to viral-like-induced lung inflammation through macrophage proliferation and LA/Ffar1 lung cell recruitment. Immunology 2024; 172:144-162. [PMID: 38361249 PMCID: PMC11057362 DOI: 10.1111/imm.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Macrophages expressing group V phospholipase A2 (Pla2g5) release the free fatty acid (FFA) linoleic acid (LA), potentiating lung type 2 inflammation. Although Pla2g5 and LA increase in viral infections, their role remains obscure. We generated Pla2g5flox/flox mice, deleted Pla2g5 by using the Cx3cr1cre transgene, and activated bone marrow-derived macrophages (BM-Macs) with poly:IC, a synthetic double-stranded RNA that triggers a viral-like immune response, known Pla2g5-dependent stimuli (IL-4, LPS + IFNγ, IL-33 + IL-4 + GM-CSF) and poly:IC + LA followed by lipidomic and transcriptomic analysis. Poly:IC-activated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs had downregulation of major bioactive lipids and critical enzymes producing those bioactive lipids. In addition, AKT phosphorylation was lower in poly:IC-stimulated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs, which was not restored by adding LA to poly:IC-stimulated BM-Macs. Consistently, Pla2g5flox/flox;Cx3cr1cre/+ mice had diminished poly:IC-induced lung inflammation, including inflammatory macrophage proliferation, while challenging Pla2g5flox/flox;Cx3cr1cre/+ mice with poly:IC + LA partially restored lung inflammation and inflammatory macrophage proliferation. Finally, mice lacking FFA receptor-1 (Ffar1)-null mice had reduced poly:IC-induced lung cell recruitment and tissue macrophage proliferation, not corrected by LA. Thus, Pla2g5 contributes to poly:IC-induced lung inflammation by regulating inflammatory macrophage proliferation and LA/Ffar1-mediated lung cell recruitment and tissue macrophage proliferation.
Collapse
Affiliation(s)
- Masaya Koganesawa
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Daniel Dwyer
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Kinan Alhallak
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Jun Nagai
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Kendall Zaleski
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Sachin Samuchiwal
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Hayashi Hiroaki
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Airi Nishida
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Thomas I. Hirsch
- Department of Surgery and Vascular Biology Program Boston Children’s Hospital, Boston, MA
| | - Patrick J. Brennan
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Mark Puder
- Department of Surgery and Vascular Biology Program Boston Children’s Hospital, Boston, MA
| | - Barbara Balestrieri
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
24
|
Beton-Mysur K, Kopec M, Brozek-Pluska B. Raman Imaging-A Valuable Tool for Tracking Fatty Acid Metabolism-Normal and Cancer Human Colon Single-Cell Study. Int J Mol Sci 2024; 25:4508. [PMID: 38674093 PMCID: PMC11050638 DOI: 10.3390/ijms25084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Altered metabolism of lipids is a key factor in many diseases including cancer. Therefore, investigations into the impact of unsaturated and saturated fatty acids (FAs) on human body homeostasis are crucial for understanding the development of lifestyle diseases. In this paper, we focus on the impact of palmitic (PA), linoleic (LA), and eicosapentaenoic (EPA) acids on human colon normal (CCD-18 Co) and cancer (Caco-2) single cells using Raman imaging and spectroscopy. The label-free nature of Raman imaging allowed us to evaluate FAs dynamics without modifying endogenous cellular metabolism. Thanks to the ability of Raman imaging to visualize single-cell substructures, we have analyzed the changes in chemical composition of endoplasmic reticulum (ER), mitochondria, lipid droplets (LDs), and nucleus upon FA supplementation. Analysis of Raman band intensity ratios typical for lipids, proteins, and nucleic acids (I1656/I1444, I1444/I1256, I1444/I750, I1304/I1256) proved that, using Raman mapping, we can observe the metabolic pathways of FAs in ER, which is responsible for the uptake of exogenous FAs, de novo synthesis, elongation, and desaturation of FAs, in mitochondria responsible for energy production via FA oxidation, in LDs specialized in cellular fat storage, and in the nucleus, where FAs are transported via fatty-acid-binding proteins, biomarkers of human colon cancerogenesis. Analysis for membranes showed that the uptake of FAs effectively changed the chemical composition of this organelle, and the strongest effect was noticed for LA. The spectroscopy studies have been completed using XTT tests, which showed that the addition of LA or EPA for Caco-2 cells decreases their viability with a stronger effect observed for LA and the opposite effect observed for PA. For normal cells, CCD-18 Co supplementation using LA or EPA stimulated cells for growing, while PA had the opposite impact.
Collapse
Affiliation(s)
| | | | - Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (K.B.-M.); (M.K.)
| |
Collapse
|
25
|
Lonardo A. Association of NAFLD/NASH, and MAFLD/MASLD with chronic kidney disease: an updated narrative review. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chronic kidney disease (CKD) and nonalcoholic fatty liver disease (NAFLD), metabolic dysfunction-associated fatty liver disease (MAFLD) and metabolic dysfunction-associated steatotic liver disease (MASLD) account for substantial financial burden worldwide. These alarming features call for enhanced efforts to prevent and manage the development and progression of CKD. Accumulating evidence supporting a causal role of NAFLD/MAFLD/MASLD-in CKD opens new horizons to achieve this aim. Recent epidemiological studies and meta-analyses exploring the association of NAFLD/MAFLD/MASLD with CKD and the characteristics of NAFLD/MAFLD/MASLD associated with the odds of incident CKD are discussed. The involved pathomechanisms, including the common soil hypothesis, genetics, gut dysbiosis, and portal hypertension, are examined in detail. Finally, lifestyle changes (diet and physical exercise), direct manipulation of gut microbiota, and drug approaches involving statins, renin-angiotensin-aldosterone system inhibitors, GLP-1 Receptor Agonists, Sodium-glucose cotransporter-2, pemafibrate, and vonafexor are examined within the context of prevention and management of CKD among those with NAFLD/MAFLD/MASLD. The evolving NAFLD/MAFLD/MASLD nomenclature may generate confusion among practicing clinicians and investigators. However, comparative studies investigating the pros and contra of different nomenclatures may identify the most useful definitions among NAFLD/MAFLD/MASLD and strategies to identify, prevent, and halt the onset and progression of CKD.
Collapse
|
26
|
Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol 2024; 261:109939. [PMID: 38382658 DOI: 10.1016/j.clim.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal chronic autoimmune disease which is underlain by complex dysfunction of the innate and adaptive immune systems. Although a series of well-defined genetic and environmental factors have been implicated in disease etiology, neither the development nor the persistence of SLE is well understood. Given that several disease susceptibility genes and environmental factors interact and influence inflammatory lineage specification through metabolism, the field of immunometabolism has become a forefront of cutting edge research. Along these lines, metabolic checkpoints of pathogenesis have been identified as targets of effective therapeutic interventions in mouse models and validated in clinical trials. Ongoing studies focus on mitochondrial oxidative stress, activation of the mechanistic target of rapamycin, calcium signaling, glucose utilization, tryptophan degradation, and metabolic cross-talk between gut microbiota and the host immune system.
Collapse
Affiliation(s)
- Marlene Marte Furment
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America.
| |
Collapse
|
27
|
Hasse T, Mantei E, Shahoei R, Pawnikar S, Wang J, Miao Y, Huang YMM. Mechanistic insights into ligand dissociation from the SARS-CoV-2 spike glycoprotein. PLoS Comput Biol 2024; 20:e1011955. [PMID: 38452125 PMCID: PMC10959368 DOI: 10.1371/journal.pcbi.1011955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/22/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
The COVID-19 pandemic, driven by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an urgent need for effective therapeutic interventions. The spike glycoprotein of the SARS-CoV-2 is crucial for infiltrating host cells, rendering it a key candidate for drug development. By interacting with the human angiotensin-converting enzyme 2 (ACE2) receptor, the spike initiates the infection of SARS-CoV-2. Linoleate is known to bind the spike glycoprotein, subsequently reducing its interaction with ACE2. However, the detailed mechanisms underlying the protein-ligand interaction remain unclear. In this study, we characterized the pathways of ligand dissociation and the conformational changes associated with the spike glycoprotein by using ligand Gaussian accelerated molecular dynamics (LiGaMD). Our simulations resulted in eight complete ligand dissociation trajectories, unveiling two distinct ligand unbinding pathways. The preference between these two pathways depends on the gate distance between two α-helices in the receptor binding domain (RBD) and the position of the N-linked glycan at N343. Our study also highlights the essential contributions of K417, N121 glycan, and N165 glycan in ligand unbinding, which are equally crucial in enhancing spike-ACE2 binding. We suggest that the presence of the ligand influences the motions of these residues and glycans, consequently reducing accessibility for spike-ACE2 binding. These findings enhance our understanding of ligand dissociation from the spike glycoprotein and offer significant implications for drug design strategies in the battle against COVID-19.
Collapse
Affiliation(s)
- Timothy Hasse
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Esra Mantei
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Rezvan Shahoei
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Shristi Pawnikar
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Jinan Wang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Yinglong Miao
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Yu-ming M. Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
28
|
Miron VD, Drăgănescu AC, Pițigoi D, Aramă V, Streinu-Cercel A, Săndulescu O. The Impact of Obesity on the Host-Pathogen Interaction with Influenza Viruses - Novel Insights: Narrative Review. Diabetes Metab Syndr Obes 2024; 17:769-777. [PMID: 38371386 PMCID: PMC10874191 DOI: 10.2147/dmso.s434115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
After exposure to a viral pathogen, the host-pathogen interaction is essential to determine whether or not infection will ensue, and what the clinical outline of the infection will be. Recent research has shown that the patient with obesity presents a set of particular pathophysiological changes that lead to higher severity of viral infections, and this is particularly true for infection with influenza viruses. Herein, we describe the main metabolic, endocrine, and immune dysregulations that occur in the presence of obesity and their impact on driving intra-host viral diversity, leading to heightened severity and virulence of influenza. We show that obesity is linked to modified responses of both the innate and adaptive immune systems during viral infections, including influenza. Due to chronic inflammation and metabolic, endocrine, and signaling pathway disruptions, individuals with obesity have a suboptimal immune response. This results in longer illness duration, increased virus shedding, higher risk of hospitalization and complications, and greater mortality rates. Additionally, they may have a blunted response to vaccination and a higher likelihood of genetic mutation selection. Understanding the intricate interplay between obesity and viral pathogenesis is crucial for developing efficacious therapeutic approaches and public health policies, particularly in light of the escalating worldwide incidence of obesity.
Collapse
Affiliation(s)
- Victor Daniel Miron
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, Bucharest, Romania
| | - Anca Cristina Drăgănescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, Bucharest, Romania
| | - Daniela Pițigoi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, Bucharest, Romania
| | - Victoria Aramă
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, Bucharest, Romania
| | - Adrian Streinu-Cercel
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, Bucharest, Romania
| | - Oana Săndulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, Bucharest, Romania
| |
Collapse
|
29
|
Xu M, Cui Y, Wei S, Cong X, Chen Y, Tian S, Yao A, Chen W, Weng L. Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review). Int J Mol Med 2024; 53:13. [PMID: 38063240 PMCID: PMC10760796 DOI: 10.3892/ijmm.2023.5337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Macrophages, as highly heterogeneous and plastic immune cells, occupy a pivotal role in both pro‑inflammatory (M1) and anti‑inflammatory (M2) responses. While M1‑type macrophages secrete pro‑inflammatory factors to initiate and sustain inflammation, M2‑type macrophages promote inflammation regression and uphold tissue homeostasis. These distinct phenotypic transitions in macrophages are closely linked to significant alterations in cellular metabolism, encompassing key response pathways such as glycolysis, pentose phosphate pathway, oxidative phosphorylation, lipid metabolism, amino acid metabolism, the tricarboxylic acid cycle and iron metabolism. These metabolic adaptations enable macrophages to adapt their activities in response to varying disease microenvironments. Therefore, the present review focused primarily on elucidating the intricate metabolic pathways that underlie macrophage functionality. Subsequently, it offers a comprehensive overview of the current state‑of‑the‑art nanomaterials, highlighting their promising potential in modulating macrophage metabolism to effectively hinder disease progression in both cancer and atherosclerosis.
Collapse
Affiliation(s)
- Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Siyuan Wei
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Xuelong Cong
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Yiying Chen
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Shujie Tian
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Anqi Yao
- RDFZ Chaoyang Branch School, Beijing 100028, P.R. China
| | - Weiwei Chen
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
30
|
Sun S, Xu H, Zhao W, Li Q, Yuan Y, Zhang G, Li S, Wang B, Zhang W, Gao X, Zheng J, Zhang Q. PA suppresses antitumor immunity of T cells by disturbing mitochondrial activity through Akt/mTOR-mediated Ca 2+ flux. Cancer Lett 2024; 581:216511. [PMID: 38013049 DOI: 10.1016/j.canlet.2023.216511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Deciphering the mechanisms behind how T cells become exhausted and regulatory T cells (Tregs) differentiate in a tumor microenvironment (TME) will significantly benefit cancer immunotherapy. A common metabolic alteration feature in TME is lipid accumulation, associated with T cell exhaustion and Treg differentiation. However, the regulatory role of free fatty acids (FFA) on T cell antitumor immunity has yet to be clearly illustrated. Our study observed that palmitic acid (PA), the most abundant saturated FFA in mouse plasma, enhanced T cell exhaustion and Tregs population in TME and increased tumor growth. In contrast, oleic acid (OA), a monounsaturated FFA, rescued PA-induced T cell exhaustion, decreased Treg population, and ameliorated T cell antitumor immunity in an obese mouse model. Mechanistically, mitochondrial metabolic activity is critical in maintaining T cell function, which PA attenuated. PA-induced T cell exhaustion and Treg formation depended on CD36 and Akt/mTOR-mediated calcium signaling. The study described a new mechanism of PA-induced downregulation of antitumor immunity of T cells and the therapeutic potential behind its restoration by targeting PA.
Collapse
Affiliation(s)
- Shishuo Sun
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Heng Xu
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Wanxin Zhao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Qihong Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yifan Yuan
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Guopeng Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Shuyu Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Bixi Wang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Wei Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Xiaoge Gao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Qing Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
31
|
Chu DY, Ravelli MN, Faltersack KM, Woods AL, Almane D, Li Z, Sampene E, Felton EA. Hypocarnitinemia and its effect on seizure control in adult patients with intractable epilepsy on the modified Atkins diet. Front Nutr 2024; 10:1304209. [PMID: 38249600 PMCID: PMC10796679 DOI: 10.3389/fnut.2023.1304209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Previous studies have demonstrated the safety and efficacy of the modified Atkins diet (MAD) in attenuating seizures in patients with intractable epilepsy. MAD works by achieving ketosis, which is heavily dependent on the metabolic compound, carnitine, to facilitate the transport of long-chain fatty acids across the mitochondria for beta-oxidation. The effect of carnitine on ketogenic diet therapy is not well-defined in the current literature. Thus, the purpose of our study is to investigate the effects of hypocarnitinemia on the efficacy of MAD. Methods A retrospective chart review was conducted, and 58 adults with epilepsy undergoing MAD were evaluated. Generalized linear mixed effects models were used to compare the low carnitine status with normal carnitine group in patient measures of body mass index, seizure frequency and severity, number of anti-seizure medications, beta-hydroxybutyrate, triglyceride, and carnitine levels across baseline, 3-9-month follow-up (timepoint 1), 1-2-year follow-up (timepoint 2), and 2+ year follow-up (timepoint 3). Results Our study revealed that 38.3% of adult patients with epilepsy following MAD experienced low free carnitine at some point through the course of diet therapy. Patients with hypocarnitinemia at timepoint 2 showed a significant percent seizure increase while seizures continued to decrease in the normal carnitine group. Fasting triglyceride levels at timepoint 1 were significantly increased in the low carnitine group compared to normal carnitine group. Change in BHB, BMI, seizure severity, and number of ASMs showcased no significant differences between the low and normal carnitine groups. Discussion It may be important for clinicians to monitor for hypocarnitinemia in adults on MAD and provide carnitine supplementation when low. Further investigations into carnitine and MAD may inform clinical decisions on carnitine supplementation to maximize the efficacy of MAD therapy.
Collapse
Affiliation(s)
- Daniel Y. Chu
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Michele N. Ravelli
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kelly M. Faltersack
- Department of Clinical Nutrition, University of Wisconsin Hospitals and Clinics, Madison, WI, United States
| | - Arron L. Woods
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dace Almane
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zhanhai Li
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Emmanuel Sampene
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Elizabeth A. Felton
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
32
|
Wang CH, Surbhi, Goraya S, Byun J, Pennathur S. Fatty acids and inflammatory stimuli induce expression of long-chain acyl-CoA synthetase 1 to promote lipid remodeling in diabetic kidney disease. J Biol Chem 2024; 300:105502. [PMID: 38016515 PMCID: PMC10770716 DOI: 10.1016/j.jbc.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Fatty acid handling and complex lipid synthesis are altered in the kidney cortex of diabetic patients. We recently showed that inhibition of the renin-angiotensin system without changes in glycemia can reverse diabetic kidney disease (DKD) and restore the lipid metabolic network in the kidney cortex of diabetic (db/db) mice, raising the possibility that lipid remodeling may play a central role in DKD. However, the roles of specific enzymes involved in lipid remodeling in DKD have not been elucidated. In the present study, we used this diabetic mouse model and a proximal tubule epithelial cell line (HK2) to investigate the potential relationship between long-chain acyl-CoA synthetase 1 (ACSL1) and lipid metabolism in response to fatty acid exposure and inflammatory signals. We found ACSL1 expression was significantly increased in the kidney cortex of db/db mice, and exposure to palmitate or tumor necrosis factor-α significantly increased Acsl1 mRNA expression in HK-2 cells. In addition, palmitate treatment significantly increased the levels of long-chain acylcarnitines and fatty acyl CoAs in HK2 cells, and these increases were abolished in HK2 cell lines with specific deletion of Acsl1(Acsl1KO cells), suggesting a key role for ACSL1 in fatty acid β-oxidation. In contrast, tumor necrosis factor-α treatment significantly increased the levels of short-chain acylcarnitines and long-chain fatty acyl CoAs in HK2 cells but not in Acsl1KO cells, consistent with fatty acid channeling to complex lipids. Taken together, our data demonstrate a key role for ACSL1 in regulating lipid metabolism, fatty acid partitioning, and inflammation.
Collapse
Affiliation(s)
- Chih-Hong Wang
- Department of Physiology, Tulane University of School Medicine, New Orleans, Louisiana, USA; Tulane Hypertension & Renal Center of Excellence, Tulane University, New Orleans, Louisiana, USA; Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Surbhi
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sayhaan Goraya
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
33
|
Su X, Yang Y, Gao Y, Wang J, Hao Y, Zhang Y, Yang R. Gut microbiota CLA and IL-35 induction in macrophages through Gαq/11-mediated STAT1/4 pathway: an animal-based study. Gut Microbes 2024; 16:2437253. [PMID: 39636005 PMCID: PMC11622586 DOI: 10.1080/19490976.2024.2437253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Gut microbiota/metabolites not only participate in the food and energy metabolism but also contribute to the host immune response and homeostasis. The alternation of gut microbiota/metabolites has been widely related to intestinal and extra-intestinal disorders such as intestinal bowel diseases (IBDs). Bactericidal substances from gut epithelial cells can regulate the composition of gut microbiota. However, the effects of regenerating protein 4 (REG4) (human)/(Reg4) (mice), a potentially bactericidal substance from gut epithelial cells, on the gut immune homeostasis maintain elusive. Here, we found that REG4/Reg4 is essential in maintaining gut immune homeostasis through REG4/Reg4 associated gut microbiota. Reg4 knockout (KO) mice were highly sensitive to DSS-mediated colitis, whereas human REG4 intestine epithelial cell transgenic (huREG4IECtg) mice exhibited more resistance to DSS-mediated colitis. Mechanistically, sequencing of gut microbiota and liquid chromatography-mass spectrometry showed that REG4/Reg4 could affect the composition of gut microbiota. REG4/Reg4 associated gut microbiota such as Lactobacillus could metabolize linoleic acid (LA) into conjugated linoleic acid (CLA). Immunoprecipitation and immunoblot showed that CLA could effectively promote the expression of IL-35 in macrophages through Gαq/11 mediated activation STAT1/4. Thus, our results demonstrate that REG4/Reg4 plays a critical role in maintaining gut immune homeostasis through CLA-mediated IL-35+ macrophages.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yazheng Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yang Hao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
34
|
Nakajima S, Demers G, Machuca-Parra AI, Pour ZD, Bairamian D, Bouyakdan K, Fisette A, Kabahizi A, Robb J, Rodaros D, Laurent C, Ferreira G, Arbour N, Alquier T, Fulton S. Central activation of the fatty acid sensor GPR120 suppresses microglia reactivity and alleviates sickness- and anxiety-like behaviors. J Neuroinflammation 2023; 20:302. [PMID: 38111048 PMCID: PMC10729532 DOI: 10.1186/s12974-023-02978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1β and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1β. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Geneviève Demers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Zahra Dashtehei Pour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Diane Bairamian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Alexandre Fisette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Anita Kabahizi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Josephine Robb
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Cyril Laurent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Guillaume Ferreira
- Nutrition and Integrative Neurobiology Unit, UMR 1286, INRA-Université de Bordeaux, Bordeaux, France
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada.
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada.
| |
Collapse
|
35
|
Di Petrillo A, Kumar A, Onali S, Favale A, Fantini MC. GPR120/FFAR4: A Potential New Therapeutic Target for Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:1981-1989. [PMID: 37542525 DOI: 10.1093/ibd/izad161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 08/07/2023]
Abstract
Inflammatory bowel disease, whose major forms are Crohn's disease and ulcerative colitis, is characterized by chronic inflammation of the gut due to the loss of tolerance toward antigens normally contained in the gut lumen. G protein-coupled receptor (GPR) 120 has gained considerable attention as a potential therapeutic target for metabolic disorders due to its implication in the production of the incretin hormone glucagon-like peptide 1 and the secretion of cholecystokinin. Recent studies have also highlighted the role of GPR120 in regulating immune system activity and inflammation. GPR120, expressed by intestinal epithelial cells, proinflammatory macrophages, enteroendocrine L cells, and CD4+ T cells, suppresses proinflammatory and enhances anti-inflammatory cytokine production, suggesting that GPR120 might have a pivotal role in intestinal inflammation and represent a possible therapeutic target in inflammatory bowel disease. This narrative review aims at summarizing the role of GPR120 in the maintenance of intestinal homeostasis through the analysis of the most recent studies.
Collapse
Affiliation(s)
- Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Sara Onali
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Agnese Favale
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | | |
Collapse
|
36
|
Mazurak VC, Rivas-Serna IM, Parsons SR, Monirujjaman M, Maybank KE, Woo SK, Rewa OG, Cave AJ, Richard C, Clandinin MT. Plasma essential fatty acid on hospital admission is a marker of COVID-19 disease severity. Sci Rep 2023; 13:18973. [PMID: 37923927 PMCID: PMC10624896 DOI: 10.1038/s41598-023-46247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
It is important for allocation of resources to predict those COVID patients at high risk of dying or organ failure. Early signals to initiate cellular events of host immunity can be derived from essential fatty acid metabolites preceding the cascade of proinflammatory signals. Much research has focused on understanding later proinflammatory responses. We assessed if remodelling of plasma phospholipid content of essential fatty acids by the COVID-19 virus provides early markers for potential death and disease severity. Here we show that, at hospital admission, COVID-19 infected subjects who survive exhibit higher proportions of C20:4n-6 in plasma phospholipids concurrent with marked proinflammatory cytokine elevation in plasma compared to healthy subjects. In contrast, more than half of subjects who die of this virus exhibit very low C18:2n-6 and C20:4n-6 content in plasma phospholipids on hospital admission compared with healthy control subjects. Moreover, in these subjects who die, the low level of primary inflammatory signals indicates limited or aberrant stimulation of host immunity. We conclude that COVID-19 infection results in early fundamental remodelling of essential fatty acid metabolism. In subjects with high mortality, it appears that plasma n-6 fatty acid content is too low to stimulate cellular events of host immunity.
Collapse
Affiliation(s)
- Vera C Mazurak
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Irma Magaly Rivas-Serna
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Sarah R Parsons
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Md Monirujjaman
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Krista E Maybank
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Stanley K Woo
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Oleksa G Rewa
- Department of Critical Care Medicine, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | - Andrew J Cave
- Department of Family Medicine, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Caroline Richard
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - M Thomas Clandinin
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada.
- Department of Medicine, University of Alberta, Edmonton, T6G 2P5, Canada.
| |
Collapse
|
37
|
Elliott K, Caicedo PA, Haunerland NH, Lowenberger C. Profiling lipidomic changes in dengue-resistant and dengue-susceptible strains of Colombian Aedes aegypti after dengue virus challenge. PLoS Negl Trop Dis 2023; 17:e0011676. [PMID: 37847671 PMCID: PMC10581493 DOI: 10.1371/journal.pntd.0011676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
The mosquito Aedes aegypti is the primary vector for all four serotypes of dengue viruses (DENV1-4), which infect millions across the globe each year. Traditional insecticide programs have been transiently effective at minimizing cases; however, insecticide resistance and habitat expansion have caused cases of DENV to surge over the last decade. There is an urgent need to develop novel vector control measures, but these are contingent on a detailed understanding of host-parasite interactions. Here, we have utilized lipidomics to survey the profiles of naturally DENV-resistant (Cali-MIB) or susceptible (Cali-S) populations of Ae. aegypti, isolated from Cali, Colombia, when fed on blood meals containing DENV. Control insects were fed on a DENV-free blood meal. Midguts were dissected from Cali-MIB and Cali-S females at three time points post-infectious blood meal, 18, 24 and 36h, to identify changes in the lipidome at key times associated with the entry, replication and exit of DENV from midgut cells. We used principal component analysis to visualize broad patterns in lipidomic profiles between the treatment groups, and significance analysis of microarray to determine lipids that were altered in response to viral challenge. These data can be used to identify molecules or metabolic pathways particular to the susceptible or refractory phenotypes, and possibly lead to the generation of stable, DENV-resistant strains of Ae. aegypti.
Collapse
Affiliation(s)
- Keenan Elliott
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| | - Paola A. Caicedo
- Universidad Icesi, Natural Science Faculty, Department of Biology, Cali, Colombia
| | - Norbert H. Haunerland
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| | - Carl Lowenberger
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| |
Collapse
|
38
|
Morin S, Tremblay A, Dumais E, Julien P, Flamand N, Pouliot R. Eicosapentaenoic Acid Influences the Lipid Profile of an In Vitro Psoriatic Skin Model Produced with T Cells. Biomolecules 2023; 13:1413. [PMID: 37759812 PMCID: PMC10526348 DOI: 10.3390/biom13091413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is a skin disease characterized by epidermal hyperplasia and an inappropriate activation of the adaptive immunity. A dysregulation of the skin's lipid mediators is reported in the disease with a predominance of the inflammatory cascade derived from n-6 polyunsaturated fatty acids (n-6 PUFAs). Bioactive lipid mediators derived from arachidonic acid (AA) are involved in the inflammatory functions of T cells in psoriasis, whereas n-3 PUFAs' derivatives are anti-inflammatory metabolites. Here, we sought to evaluate the influence of a supplementation of the culture media with eicosapentaenoic acid (EPA) on the lipid profile of a psoriatic skin model produced with polarized T cells. Healthy and psoriatic skin substitutes were produced following the auto-assembly technique. Psoriatic skin substitutes produced with or without T cells presented increased epidermal and dermal linolenic acid (LA) and AA levels. N-6 PUFA lipid mediators were strongly measured in psoriatic substitutes, namely, 13-hydroxyoctadecadienoic acid (13-HODE), prostaglandin E2 (PGE2) and 12-hydroxyeicosatetraenoic acid (12-HETE). The added EPA elevated the amounts of EPA, n-3 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in the epidermal and dermal phospholipids. The EPA supplementation balanced the production of epidermal lipid mediators, with an increase in prostaglandin E3 (PGE3), 12-hydroxyeicosapentaenoic acid (12-HEPE) and N-eicosapentaenoyl-ethanolamine (EPEA) levels. These findings show that EPA modulates the lipid composition of psoriatic skin substitutes by encouraging the return to a cutaneous homeostatic state.
Collapse
Affiliation(s)
- Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec, QC G1J 2Z4, Canada; (S.M.); (A.T.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec, QC G1J 2Z4, Canada; (S.M.); (A.T.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elizabeth Dumais
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (E.D.); (N.F.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC G1V 0A6, Canada
| | - Pierre Julien
- Centre de Recherche du CHU de Québec-Université Laval, Axe Endocrinologie et Néphrologie, Université Laval, Québec, QC G1V 4G2, Canada;
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (E.D.); (N.F.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC G1V 0A6, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec, QC G1J 2Z4, Canada; (S.M.); (A.T.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
39
|
Garcia Corrales AV, Verberk SGS, Haidar M, Grajchen E, Dehairs J, Vanherle S, Loix M, Weytjens T, Gervois P, Matsuzaka T, Lambrichts I, Swinnen JV, Bogie JFJ, Hendriks JJA. Fatty acid elongation by ELOVL6 hampers remyelination by promoting inflammatory foam cell formation during demyelination. Proc Natl Acad Sci U S A 2023; 120:e2301030120. [PMID: 37669365 PMCID: PMC10500284 DOI: 10.1073/pnas.2301030120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
A hallmark of multiple sclerosis (MS) is the formation of multiple focal demyelinating lesions within the central nervous system (CNS). These lesions mainly consist of phagocytes that play a key role in lesion progression and remyelination, and therefore represent a promising therapeutic target in MS. We recently showed that unsaturated fatty acids produced by stearoyl-CoA desaturase-1 induce inflammatory foam cell formation during demyelination. These fatty acids are elongated by the "elongation of very long chain fatty acids" proteins (ELOVLs), generating a series of functionally distinct lipids. Here, we show that the expression and activity of ELOVLs are altered in myelin-induced foam cells. Especially ELOVL6, an enzyme responsible for converting saturated and monounsaturated C16 fatty acids into C18 species, was found to be up-regulated in myelin phagocytosing phagocytes in vitro and in MS lesions. Depletion of Elovl6 induced a repair-promoting phagocyte phenotype through activation of the S1P/PPARγ pathway. Elovl6-deficient foamy macrophages showed enhanced ABCA1-mediated lipid efflux, increased production of neurotrophic factors, and reduced expression of inflammatory mediators. Moreover, our data show that ELOVL6 hampers CNS repair, as Elovl6 deficiency prevented demyelination and boosted remyelination in organotypic brain slice cultures and the mouse cuprizone model. These findings indicate that targeting ELOVL6 activity may be an effective strategy to stimulate CNS repair in MS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Aida V. Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Sanne G. S. Verberk
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven3000, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Tine Weytjens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Pascal Gervois
- Department of Cardiology and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki305-8575, Japan
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Johannes V. Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven3000, Belgium
| | - Jeroen F. J. Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| |
Collapse
|
40
|
Wang X, Zhang C, Bao N. Molecular mechanism of palmitic acid and its derivatives in tumor progression. Front Oncol 2023; 13:1224125. [PMID: 37637038 PMCID: PMC10447256 DOI: 10.3389/fonc.2023.1224125] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid commonly found in coconut oil and palm oil. It serves as an energy source for the body and plays a role in the structure and function of cell membranes. Beyond its industrial applications, PA has gained attention for its potential therapeutic properties. Modern pharmacological studies have demonstrated that PA exhibits anti-inflammatory, antioxidant, and immune-enhancing effects. In recent years, PA has emerged as a promising anti-tumor agent with demonstrated efficacy against various malignancies including gastric cancer, liver cancer, cervical cancer, breast cancer, and colorectal cancer. Its anti-tumor effects encompass inducing apoptosis in tumor cells, inhibiting tumor cell proliferation, suppressing metastasis and invasion, enhancing sensitivity to chemotherapy, and improving immune function. The main anticancer mechanism of palmitic acid (PA) involves the induction of cell apoptosis through the mitochondrial pathway, facilitated by the promotion of intracellular reactive oxygen species (ROS) generation. PA also exhibits interference with the cancer cell cycle, leading to cell cycle arrest predominantly in the G1 phase. Moreover, PA induces programmed cell autophagy death, inhibits cell migration, invasion, and angiogenesis, and synergistically enhances the efficacy of chemotherapy drugs while reducing adverse reactions. PA acts on various intracellular and extracellular targets, modulating tumor cell signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), endoplasmic reticulum (ER), B Cell Lymphoma-2 (Bcl-2), P53, and other signaling pathways. Furthermore, derivatives of PA play a significant regulatory role in tumor resistance processes. This paper provides a comprehensive review of recent studies investigating the anti-tumor effects of PA. It summarizes the underlying mechanisms through which PA exerts its anti-tumor effects, aiming to inspire new perspectives for the treatment of malignant tumors in clinical settings and the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Xitan Wang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chaonan Zhang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, Shandong, China
| | - Na Bao
- Jining First People’s Hospital, Jining, Shandong, China
| |
Collapse
|
41
|
Salazar-Puerta AI, Rincon-Benavides MA, Cuellar-Gaviria TZ, Aldana J, Martinez GV, Ortega-Pineda L, Das D, Dodd D, Spencer CA, Deng B, McComb DW, Englert JA, Ghadiali S, Zepeda-Orozco D, Wold LE, Gallego-Perez D, Higuita-Castro N. Engineered Extracellular Vesicles Derived from Dermal Fibroblasts Attenuate Inflammation in a Murine Model of Acute Lung Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210579. [PMID: 37119468 PMCID: PMC10573710 DOI: 10.1002/adma.202210579] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Indexed: 06/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) represents a significant burden to the healthcare system, with ≈200 000 cases diagnosed annually in the USA. ARDS patients suffer from severe refractory hypoxemia, alveolar-capillary barrier dysfunction, impaired surfactant function, and abnormal upregulation of inflammatory pathways that lead to intensive care unit admission, prolonged hospitalization, and increased disability-adjusted life years. Currently, there is no cure or FDA-approved therapy for ARDS. This work describes the implementation of engineered extracellular vesicle (eEV)-based nanocarriers for targeted nonviral delivery of anti-inflammatory payloads to the inflamed/injured lung. The results show the ability of surfactant protein A (SPA)-functionalized IL-4- and IL-10-loaded eEVs to promote intrapulmonary retention and reduce inflammation, both in vitro and in vivo. Significant attenuation is observed in tissue damage, proinflammatory cytokine secretion, macrophage activation, influx of protein-rich fluid, and neutrophil infiltration into the alveolar space as early as 6 h post-eEVs treatment. Additionally, metabolomics analyses show that eEV treatment causes significant changes in the metabolic profile of inflamed lungs, driving the secretion of key anti-inflammatory metabolites. Altogether, these results establish the potential of eEVs derived from dermal fibroblasts to reduce inflammation, tissue damage, and the prevalence/progression of injury during ARDS via nonviral delivery of anti-inflammatory genes/transcripts.
Collapse
Affiliation(s)
- Ana I. Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - María A. Rincon-Benavides
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
| | | | - Julian Aldana
- Biochemistry Program, The Ohio State University, Columbus, Ohio, United States
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
| | - Lilibeth Ortega-Pineda
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Devleena Das
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Daniel Dodd
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States
| | - Charles A. Spencer
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Joshua A. Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Samir Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
- Division of Pediatric Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, Ohio, United States
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
- Division of General Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
- Division of General Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
42
|
Decsi T, Marosvölgyi T, Szabó É. Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation. Life (Basel) 2023; 13:1326. [PMID: 37374109 DOI: 10.3390/life13061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a novel mandatory constituent of breast-milk-substitute infant formula in Europe. The aim of the present narrative review was to summarize available data in connection with the background of the novel European mandatory dietary recommendation to add at least 20 mg/100 kcal (4.8 mg/100 kJ) DHA to infant formula. The literature search with the expression "docosahexaenoic acid with (infant or human milk or formula)" revealed nearly 2000 papers, including more than 400 randomized controlled trials (RCTs). DHA is a persistent constituent of human milk (HM) with a worldwide mean level of 0.37% (standard deviation: 0.11%) of all fatty acids in HM. RCTs on supplementing DHA to lactating women showed some indications, though no direct evidence of the beneficial effect of enhanced HM DHA on the development of breastfed infants. The most-recent Cochrane review of RCTs investigating the effect of DHA supplementation to infant formula for full-term infants reported no evidence for recommending supplementation. The controversy between the Cochrane view and the actual recommendation may be related to the numerous hurdles in organizing high-quality studies in this field. On the basis of the official food composition recommendation, today in Europe, DHA should be considered as a fatty acid essential for infants.
Collapse
Affiliation(s)
- Tamás Decsi
- Department of Pediatrics, Medical School and Clinical Centre, University of Pécs, 7623 Pécs, Hungary
- Cochrane Hungary, Clinical Centre, University of Pécs, 7623 Pécs, Hungary
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
43
|
Li Y, Lu Z, Kirkwood CL, Kirkwood KL, Wank SA, Li AJ, Lopes-Virella MF, Huang Y. GPR40 deficiency worsens metabolic syndrome-associated periodontitis in mice. J Periodontal Res 2023; 58:575-587. [PMID: 36807310 PMCID: PMC10182248 DOI: 10.1111/jre.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND AND OBJECTIVE G protein-coupled receptor 40 (GPR40) is a receptor for medium- and long-chain free fatty acids (FFAs). GPR40 activation improves type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), and the complications of T2DM and MetS. Periodontitis, a common oral inflammatory disease initiated by periodontal pathogens, is another complication of T2DM and MetS. Since FFAs play a key role in the pathogenesis of MetS which exacerbates periodontal inflammation and GPR40 is a FFA receptor with anti-inflammatory properties, it is important to define the role of GPR40 in MetS-associated periodontitis. MATERIALS AND METHODS We induced MetS and periodontitis by high-fat diet and periodontal injection of lipopolysaccharide (LPS), respectively, in wild-type and GPR40-deficient mice and determined alveolar bone loss and periodontal inflammation using micro-computed tomography, histology, and osteoclast staining. We also performed in vitro study to determine the role of GPR40 in the expression of proinflammatory genes. RESULTS The primary outcome of the study is that GPR40 deficiency increased alveolar bone loss and enhanced osteoclastogenesis in control mice and the mice with both MetS and periodontitis. GPR40 deficiency also augmented periodontal inflammation in control mice and the mice with both MetS and periodontitis. Furthermore, GPR40 deficiency led to increased plasma lipids and insulin resistance in control mice but had no effect on the metabolic parameters in mice with MetS alone. For mice with both MetS and periodontitis, GPR40 deficiency increased insulin resistance. Finally, in vitro studies with macrophages showed that deficiency or inhibition of GPR40 upregulated proinflammatory genes while activation of GPR40 downregulated proinflammatory gene expression stimulated synergistically by LPS and palmitic acid. CONCLUSION GPR40 deficiency worsens alveolar bone loss and periodontal inflammation in mice with both periodontitis and MetS, suggesting that GPR40 plays a favorable role in MetS-associated periodontitis. Furthermore, GPR40 deficiency or inhibition in macrophages further upregulated proinflammatory and pro-osteoclastogenic genes induced by LPS and palmitic acid, suggesting that GPR40 has anti-inflammatory and anti-osteoclastogenic properties.
Collapse
Affiliation(s)
- Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Zhongyang Lu
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Cameron L. Kirkwood
- Departments of Oral Biology, School of Dental Medicine, University at Buffalo
| | - Keith L. Kirkwood
- Departments of Oral Biology, School of Dental Medicine, University at Buffalo
- Department of Head & Neck/Plastic & Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Stephen A. Wank
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Ai-Jun Li
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
44
|
Mohammed M, Ibrahim UH, Aljoundi A, Omolo CA, Devnarain N, Gafar MA, Mocktar C, Govender T. Enzyme-responsive biomimetic solid lipid nanoparticles for antibiotic delivery against hyaluronidase-secreting bacteria. Int J Pharm 2023; 640:122967. [PMID: 37084831 DOI: 10.1016/j.ijpharm.2023.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
In this work, a potent hyaluronidase inhibitor (ascorbyl stearate (AS)) was successfully employed to design vancomycin-loaded solid lipid nanoparticles (VCM-AS-SLNs) with biomimetic and enzyme-responsive features, to enhance the antibacterial efficacy of vancomycin against bacterial-induced sepsis. The VCM-AS-SLNs prepared were biocompatible and had appropriate physicochemical parameters. The VCM-AS-SLNs showed an excellent binding affinity to the bacterial lipase. The in vitro drug release study showed that the release of the loaded vancomycin was significantly accelerated by the bacterial lipase. The in silico simulations and MST studies confirmed the strong binding affinity of AS and VCM-AS-SLNs to bacterial hyaluronidase compared to its natural substrate. This binding superiority indicates that AS and VCM-AS-SLNs could competitively inhibit the effect of hyaluronidase enzyme, and thus block its virulence action. This hypothesis was further confirmed using the hyaluronidase inhibition assay. The in vitro antibacterial studies against sensitive and resistant Staphylococcus aureus revealed that the VCM-AS-SLNs had a 2-fold lower minimum inhibitory concentration, and a 5-fold MRSA biofilm elimination compared to the free vancomycin. Furthermore, the bactericidal-kinetic showed a 100% bacterial clearance rate within 12 hours of treatment with VCM-AS-SLNs, and less than 50 % eradication after 24 hours for the bare VCM. Therefore, the VCM-AS-SLN shows potential as an innovative multi-functional nanosystem for effective and targeted delivery of antibiotics.
Collapse
Affiliation(s)
- Mahir Mohammed
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Faculty of Pharmacy, University of Khartoum, El Qasr Street P.O. Box 1996, Khartoum, Sudan
| | - Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, College of Health Sciences, University of KwaZulu-Natal, 4001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Faculty of Pharmacy, University of Khartoum, El Qasr Street P.O. Box 1996, Khartoum, Sudan
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
45
|
Seufert AL, Napier BA. A new frontier for fat: dietary palmitic acid induces innate immune memory. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00021. [PMID: 37197687 PMCID: PMC10184819 DOI: 10.1097/in9.0000000000000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 05/19/2023]
Abstract
Dietary saturated fats have recently been appreciated for their ability to modify innate immune cell function, including monocytes, macrophages, and neutrophils. Many dietary saturated fatty acids (SFAs) embark on a unique pathway through the lymphatics following digestion, and this makes them intriguing candidates for inflammatory regulation during homeostasis and disease. Specifically, palmitic acid (PA) and diets enriched in PA have recently been implicated in driving innate immune memory in mice. PA has been shown to induce long-lasting hyper-inflammatory capacity against secondary microbial stimuli in vitro and in vivo, and PA-enriched diets alter the developmental trajectory of stem cell progenitors in the bone marrow. Perhaps the most relevant finding is the ability of exogenous PA to enhance clearance of fungal and bacterial burdens in mice; however, the same PA treatment enhances endotoxemia severity and mortality. Westernized countries are becoming increasingly dependent on SFA-enriched diets, and a deeper understanding of SFA regulation of innate immune memory is imperative in this pandemic era.
Collapse
Affiliation(s)
- Amy L. Seufert
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Brooke A. Napier
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
- *Correspondence: Brooke A. Napier, E-mail:
| |
Collapse
|
46
|
Widmayer P, Pregitzer P, Breer H. Short-term high fat feeding induces inflammatory responses of tuft cells and mucosal barrier cells in the murine stomach. Histol Histopathol 2023; 38:273-286. [PMID: 35904321 DOI: 10.14670/hh-18-503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Feeding mice with a high fat diet (HFD) induces inflammation and results in changes of gene expression and cellular composition in various tissues throughout the body, including the gastrointestinal tract. In the stomach, tuft cells expressing the receptor GPR120 are capable of sensing saturated long chain fatty acids (LCFAs) and thus may be involved in initiating mechanisms of mucosal inflammation. In this study, we assessed which cell types may additionally be affected by high fat feeding and which candidate molecular mediators might contribute to mucosa-protective immune responses. A high fat dietary intervention for 3 weeks caused an expansion of tuft cells that was accompanied by a higher frequency of mucosal mast cells and surface mucous cells which are a known source of the insult-associated cytokine interleukin 33 (IL-33). Our data demonstrate that both brush and mucosal mast cells comprise the enzyme ALOX5 and its activating protein FLAP and thus have the capacity for synthesizing leukotriene (LT). In HFD mice, several tuft cells showed a perinuclear colocalization of ALOX5 with FLAP which is indicative of an active LT synthesis. Monitoring changes in the expression of genes encoding elements of LT synthesis and signaling revealed that transcript levels of the leukotriene C4 synthase, LTC4S, catalyzing the first step in the biosynthesis of cysteinyl (cys) LTs, and the cysLT receptors, cysLTR2 and cysLTR3, were upregulated in mice on HFD. These mice also showed an increased expression level of IL-33 receptors, the membrane-bound ST2L and soluble isoform sST2, as well as the mast cell-specific protease MCPT1. Based on these findings it is conceivable that upon sensing saturated LCFAs tuft cells may elicit inflammatory responses which result in the production of cysLTs and activation of surface mucous cells as well as mucosal mast cells regulating gastric mucosal function and integrity.
Collapse
Affiliation(s)
- Patricia Widmayer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany.
| | - Pablo Pregitzer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
47
|
Stoikevich M, Karachynova V, Klenina I, Petishko O. Prognostic value of blood saturated fatty acids in inflammatory bowel diseases. Gastroenterology 2023; 56:230-237. [DOI: 10.22141/2308-2097.56.4.2022.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background. Pathogenetic factors that cause the development of inflammatory bowel diseases (IBD) remain poorly understood, namely, the peculiarities of saturated fatty acids (SFAs) in the blood serum at different degrees of disease severity, which is quite an important task. Objective: to evaluate serum level of SFAs depending on IBD severity. Materials and methods. Thirty-seven patients with IBD were examined, their average age was (38.5±2.1) years. Depending on the severity of the disease, the patients were divided into 2 groups: group I— with IBD of moderate severity (n=24) and group II— with severe IBD (n=13). The control group consisted of 16 healthy people. The quantitative content of SFAs in the blood serum of the examined patients was determined by gas chromatography. Median (Me), lower (25%) and upper (75%) quartiles were used to describe the data. Results. Biochemical analysis revealed a tendency to decrease in the level of short-chain SFA (butyric acid; p>0.05) and a significant increase in the total content of medium- and long-chain SFAs (MCSFAs and LCSFAs; p<0.001) in the serum of group I and II patients compared to the controls. It was found that with increasing severity of IBD, there was a decrease in LCSFAs content in the blood (r=–0.420, p=0.048). The serum spectrum of SFAs was analyzed and a significant increase in all MCSFAs fractions was detected in both groups of patients: caproic acid (p<0.001), caprylic acid (p<0.001), capric acid (p≤0.002), undecylic acid (p≤0.006) and lauric acid (p≤0.001). Characteristically, the content of the most MCSFAs fractions had a tendency to decrease (p>0.05) in group I against group II of patients. The content of LCSFAs, namely: tridecylic acid (p≤0.012), myristic acid (p<0.001), pentadecylic acid (p≤0.012), palmitic acid (p<0.001), stearic acid (p≤0.001) and heneicosylic acid (p<0.001), increased significantly in group I and II of patients, while the content of margaric and eicosanoic acids— only in group I compared to the controls. Almost all LCSFAs (except tridecylic acid) had a tendency to increase in group I against group II. Conclusions. It has been shown that the content of SFAs in the blood depends on the degree of IBD severity. The mechanism of SFAs action with different carbon chain lengths is multidirectional and is associated with the effect on pro-/anti-inflammatory mediators and with the maintenance of the immune and intestinal homeostasis. The necessity of determining serum SFAs in IBD to correct the identified disorders has been confirmed.
Collapse
|
48
|
He Y, de Araújo Júnior RF, Cavalcante RS, Yu Z, Schomann T, Gu Z, Eich C, Cruz LJ. Effective breast cancer therapy based on palmitic acid-loaded PLGA nanoparticles. BIOMATERIALS ADVANCES 2023; 145:213270. [PMID: 36603405 DOI: 10.1016/j.bioadv.2022.213270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Although new strategies for breast cancer treatment have yielded promising results, most drugs can lead to serious side effects when applied systemically. Doxorubicin (DOX), currently the most effective chemotherapeutic drug to treat breast cancer, is poorly selective towards tumor cells and treatment often leads to the development of drug resistance. Recent studies have indicated that several fatty acids (FAs) have beneficial effects on inhibiting tumorigenesis. The saturated FA palmitic acid (PA) showed anti-tumor activities in several types of cancer, as well as effective repolarization of M2 macrophages towards the anti-tumorigenic M1 phenotype. However, water insolubility and cellular impermeability limit the use of PA in vivo. To overcome these limitations, here, we encapsulated PA into a poly(d,l-lactic co-glycolic acid) (PLGA) nanoparticle (NP) platform, alone and in combination with DOX, to explore PA's potential as mono or combinational breast cancer therapy. Our results showed that PLGA-PA-DOX NPs and PLGA-PA NPs significantly reduced the viability and migratory capacity of breast cancer cells in vitro. In vivo studies in mice bearing mammary tumors demonstrated that PLGA-PA-NPs were as effective in reducing primary tumor growth and metastasis as NPs loaded with DOX, PA and DOX, or free DOX. At the molecular level, PLGA-PA NPs reduced the expression of genes associated with multi-drug resistance and inhibition of apoptosis, and induced apoptosis via a caspase-3-independent pathway in breast cancer cells. In addition, immunohistochemical analysis of residual tumors showed a reduction in M2 macrophage content and infiltration of leukocytes after treatment of PLGA-PA NPs and PLGA-PA-DOX NPs, suggesting immunomodulatory properties of PA in the tumor microenvironment. In conclusion, the use of PA alone or in combination with DOX may represent a promising novel strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Raimundo Fernandes de Araújo Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, 59064-720, Brazil; Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, 59064-720, Brazil; Percuros B.V., 2333, CL, Leiden, the Netherlands
| | - Rômulo S Cavalcante
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, 59064-720, Brazil; Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, 59064-720, Brazil
| | - Zhenfeng Yu
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands; Percuros B.V., 2333, CL, Leiden, the Netherlands
| | - Zili Gu
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands.
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands.
| |
Collapse
|
49
|
Alharbi AS. Immune fitness and lifestyle habits of Saudi medical students: a cross sectional study. PeerJ 2023; 11:e14363. [PMID: 36627921 PMCID: PMC9826612 DOI: 10.7717/peerj.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/18/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Immune function reaches an optimum level in young adults. However, young adults are more likely to adopt potentially harmful habits that may pose a risk to their long-term health and immune fitness, and which eventually may put a substantial burden on the healthcare system. This study aimed to assess the status of medical students' immune fitness, using the immune status questionnaire (ISQ) and exploring the association with the commonly adopted lifestyle habits hypothesized to have an impact on immune functions. Methods A descriptive, cross-sectional study was conducted among preclinical students attending the medical school of King Abdulaziz University. An online self-reported questionnaire was used to assess the immune status (ISQ), perceived (momentary) immune fitness, general health, lifestyle habits and students' perception of these lifestyle-associated impacts on immune fitness. Descriptive, Spearman's correlation and stepwise linear regression analyses were performed. Results In a pooled sample of 211 participants, the overall ISQ score was 6.00 ± 5.0 with statistically significant abnormally lower scores in females (ISQ 5.00 ± 5.0, p < 0.001). 49.29% of respondents experienced poor immune fitness as measured by the ISQ (<6). The ISQ score was significantly correlated with fast and fatty food consumption (p = 0.003), daytime sleepiness (p = 0.001), and BMI subgroups (p = 0.028) negatively and positively correlated with adherence to a program of exercise (p = 0.005). A total of 41.23% of participants who reported a normal immune health, rated at ≥6 were graded below 6 on the ISQ score. Only 62.6% of students were able to correctly identify the effects of fast and fatty food consumption on immune fitness. Conclusion Poor immune fitness was common among medical students in KAU and associated significantly with their adopted lifestyle habits. Although, other factors can be significant contributors, biased immune health perception and lack of awareness of these lifestyle-associated impacts on immune fitness and general health may hinder the adoption of healthier habits. Immune biomarkers should be implemented in future work.
Collapse
Affiliation(s)
- Azzah S. Alharbi
- Medical Microbiology and Parasitology Department, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA. The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol 2023; 33:70-86. [PMID: 35788297 DOI: 10.1016/j.tcb.2022.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022]
Abstract
Peroxisomes are essential metabolic organelles, well known for their roles in the metabolism of complex lipids and reactive ionic species. In the past 10 years, peroxisomes have also been cast as central regulators of immunity. Lipid metabolites of peroxisomes, such as polyunsaturated fatty acids (PUFAs), are precursors for important immune mediators, including leukotrienes (LTs) and resolvins. Peroxisomal redox metabolism modulates cellular immune signaling such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Additionally, peroxisomal β-oxidation and ether lipid synthesis control the development and aspects of the activation of both innate and adaptive immune cells. Finally, peroxisome number and metabolic activity have been linked to inflammatory diseases. These discoveries have opened avenues of investigation aimed at targeting peroxisomes for therapeutic intervention in immune disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada.
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zürich), Zurich, Switzerland
| | - Peter Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | |
Collapse
|