1
|
Hali K, Gagnon S, Raleigh M, Ali I, Sniderman J, Halai M, Hall J, Schemitsch EH, Nauth A. The Effect of Cryopreservation on the Bone Healing Capacity of Endothelial Progenitor Cells in a Bone Defect Model. J Orthop Res 2025; 43:904-911. [PMID: 39888074 DOI: 10.1002/jor.26051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Endothelial progenitor cells (EPCs) have proven to be a highly effective cell therapy for critical-sized bone defects. Cryopreservation can enable long-term storage of EPCs, allowing their immediate availability on demand. This study compares the therapeutic potential of EPCs before and after cryopreservation in a small animal critical-sized bone defect model. Five-millimeter segmental defects were created in the right femora of Fischer 344 rats, followed by stabilization with a miniplate and screws. The animals received 2 × 106 fresh EPCs (n = 7) or 2 × 106 cryopreserved EPCs (n = 9) delivered on a gelatin scaffold. Cryopreserved EPCs were stored for 7 days at -80°C prior to thawing and loading onto the gelatin scaffold. Biweekly radiographs were taken until the animals were euthanized 10 weeks after surgery. The operated femora were then evaluated using microscopic-computed tomography (micro-CT) and biomechanical testing. All animals treated with fresh (n = 7/7) or cryopreserved (n = 9/9) EPCs achieved radiographic union at 10 weeks. Animals treated with fresh EPCs had statistically significant higher radiographic scores at 2 weeks (p < 0.05) but showed no statistically significant differences thereafter (p > 0.05). Micro-CT analysis showed no statistically significant differences between the groups in bone volume (BV) or BV normalized to total volume (p > 0.05), with excellent bone formation in both groups. Finally, there were no differences in biomechanical outcomes between the groups (p > 0.05). These results demonstrate that cryopreserved EPCs are highly effective and equivalent to fresh EPCs for healing critical-sized bone defects in a rat model of nonunion.
Collapse
Affiliation(s)
- Kalter Hali
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Stéphane Gagnon
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Matthew Raleigh
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Ikran Ali
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Jhase Sniderman
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Mansur Halai
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Jeremy Hall
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | | | - Aaron Nauth
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Chapman J, Umebayashi M, deVet T, Kulasek M, Shen A, Julien C, Rauch F, Willie BM. Bone healing response to systemic bisphosphonate-prostaglandin E2 receptor 4 agonist treatment in female rats with a critical-size femoral segmental defect. Injury 2025; 56:112269. [PMID: 40127560 DOI: 10.1016/j.injury.2025.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
Despite the wide body of research into prevention and treatment of nonunion, current bone fracture therapies remain suboptimal in their efficacy. Previous animal studies show that MES-1022, a bone-targeted prodrug that activates the prostaglandin E2 receptor EP4, stimulates bone healing when applied locally in uneventful defects. Here we investigated the healing capacity of systemically administered MES-1022 in a rat femoral critical size segmental defect. Ten-week-old female Sprague-Dawley rats (n = 8/group) underwent a 5 mm osteotomy of the left femoral midshaft, stabilized by a unilateral external fixator. Rats received weekly subcutaneous injections of MES-1022 at 5 mg/kg (MES1022-Hi), 1.7 mg/kg (MES1022-Lo), or Vehicle without a defect site scaffold. Serum bone markers and open field activity were measured pre-osteotomy and throughout the study. Rats were sacrificed after 12 weeks and osteotomized femora were imaged via microcomputed tomography (microCT) followed by histology and immunohistochemistry to assess healing. Complete bridging of the defect occurred in one rat from the MES1022-Hi group and zero from MES1022-Lo and Vehicle groups. However, healing outcomes in both MES-1022 groups for bone volume fraction, bone volume, bridging score, callus tissue composition, callus blood vessel density, P1NP levels, TRAcP-5b levels, and physical activity did not differ from Vehicle. Fracture callus osteoclast density and spleen weight were increased in MES1022-Hi rats relative to Vehicle. Overall, systemic administration of MES-1022 alone may not suffice for treatment of large segmental bone defects. Additional studies are needed to determine whether systemic MES-1022 is a useful therapeutic in conjunction with local scaffolds like bone graft substitutes.
Collapse
Affiliation(s)
- Jack Chapman
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Mayumi Umebayashi
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Taylor deVet
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Michal Kulasek
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Faculté de médicine, Université de Montréal, Montreal, QC, Canada
| | - Aijing Shen
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Frank Rauch
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Agnes CJ, Li L, Bertrand D, Murshed M, Willie BM, Tabrizian M. Assessment of bone regeneration potential for a 6-bromoindirubin-3'-oxime (BIO) encapsulated chitosan based scaffold in a mouse critical sized bone defect model. Int J Biol Macromol 2025; 304:140995. [PMID: 39952511 DOI: 10.1016/j.ijbiomac.2025.140995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Development of an effective treatment to guide bone repair in critical size bone defect applications remains a major unmet challenge. Current clinical gold standards display significant disadvantages, thereby necessitating that research focus on designing and producing a suitable alternative for healing. In this study, we comprehensively assessed the bone regenerative potential of a newly formulated 6-Bromoindirubin-3'-Oxime (BIO) incorporated chitosan-based scaffold using a mouse femoral defect model. Live 3D in vivo micro-CT imaging enabled us to monitor the progression of bone formation over 56 days, without needing additional replicates. Results demonstrated smaller distances between bone ends (1.033 ± 0.512 mm) compared to controls (1.474 ± 0.465 mm) at later timepoints (p = 0.0430), suggesting improved bone formation. This observed effect was supported with serum procollagen type I N-propeptide levels, where BIO scaffolds showed marked increases in collagen synthesis. As vascularization is often-overlooked, blood vessel density at 56 days was also assessed, showing an additional benefit of BIO incorporated scaffolds (9.264 ± 0.578) over controls (6.667 ± 1.300) on angiogenesis. Although BIO's incorporation did not lead to bony bridging or a significant difference in bone volume compared to controls at day 56, our findings suggest the BIO incorporated scaffold's ability to improve healing outcomes through enhancement of Wnt signaling. Further studies aimed at optimizing the dose to target this pathway are warranted, as a means to more completely regenerate bone in challenging healing scenarios.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada; Shriners Hospital for Children, Montreal, QC, Canada.
| | - Ling Li
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| | - David Bertrand
- Shriners Hospital for Children, Montreal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| | - Monzur Murshed
- Shriners Hospital for Children, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| | - Bettina M Willie
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada; Shriners Hospital for Children, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Menger MM, Manuschewski R, Hans S, Braun BJ, Kayali MKDE, Ehnert S, Ampofo E, Wrublewsky S, Menger MD, Histing T, Laschke MW. Age-related alterations of angiogenesis, inflammation and bone microarchitecture during fracture healing in mice. GeroScience 2025:10.1007/s11357-025-01584-y. [PMID: 40108067 DOI: 10.1007/s11357-025-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The surgical treatment of geriatric patients represents a major challenge in traumatology. It is well known that aging affects fracture healing. However, the exact pathophysiology of age-related changes in angiogenesis, inflammation and bone remodeling remains still elusive. Therefore, we herein studied the differences of femoral fracture healing in young adult (3-4 months) and aged (16-18 months) CD-1 mice by using a stable closed femoral fracture model with intramedullary screw fixation. The callus tissue was analyzed by means of X-ray, micro-computed tomography (µCT), histology and immunohistochemistry. We found a deteriorated trabecular architecture and a reduced bone formation within the callus tissue of aged mice. Moreover, aged animals showed an increased number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts at an early healing time point, whereas the fraction of mature α-smooth muscle actin (SMA)-positive microvessels was significantly reduced. Furthermore, the numbers of macrophages and granulocytes were higher in the callus tissue of aged animals at the end of the healing process. Taken together, these results demonstrate a delayed femoral fracture healing in aged CD-1 mice. This is most likely caused by an early overshooting osteoclast response, a decelerated maturation of the callus microvasculature and a late increased recruitment of pro-inflammatory cells. Targeting these alterations may contribute to the development of novel treatment approaches for the stimulation of bone regeneration in geriatric patients.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany.
| | - Ruben Manuschewski
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Sandra Hans
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Moses K D El Kayali
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
5
|
Zondervan RL, Capobianco CA, Jenkins DC, Reicha JD, Fredrick L, Lam C, Schmanski JT, Isenberg JS, Ahn J, Marcucio RS, Hankenson KD. CD47 is required for mesenchymal progenitor proliferation and fracture repair. Bone Res 2025; 13:29. [PMID: 40025005 PMCID: PMC11873311 DOI: 10.1038/s41413-025-00409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025] Open
Abstract
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone formation as assessed by microcomputed tomography 10 days post-fracture and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus size due to a reduction in bone relative to WT 15 days-post fracture. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell density. Finally, WT mice with ischemic fracture that were administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
Collapse
Affiliation(s)
- Robert L Zondervan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Christina A Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel C Jenkins
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - John D Reicha
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Livia Fredrick
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Charles Lam
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Jeanna T Schmanski
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jeffery S Isenberg
- Department of Diabetes Complications and Metabolism and Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jaimo Ahn
- Department of Orthopaedics, Grady Memorial Hospital and Emory School of Medicine, Atlanta, GA, USA
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Tchouto MN, Bucher CH, Mess AK, Haas S, Schmidt-Bleek K, Duda GN, Beule D, Milek M. Pronounced impairment of B cell differentiation during bone regeneration in adult immune experienced mice. Front Immunol 2025; 16:1511902. [PMID: 40098964 PMCID: PMC11911212 DOI: 10.3389/fimmu.2025.1511902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Alterations of the adaptive immune system have been shown to impact bone healing and may result in impaired healing in some patients. Apart from T cells, B cells are the key drivers of adaptive immunity. Therefore, their role in age-associated impairments of bone healing might be essential to understand delays during the healing process. B cells are essential for bone formation, and their dysfunction has been associated with aging or autoimmune diseases. But whether age-associated changes in B cell phenotypes are involved in bone regeneration is unknown. Methods Here, we aimed to characterize the role of immune aging in B cell phenotypes during the early inflammatory phase of bone healing. By comparing non-immune experienced with young and immune experienced mice we aimed to analyze the effect of gained immune experience on B cells. Our single cell proteo-genomics analysis quantified thousands of transcriptomes of cells that were isolated from post osteotomy hematoma and the proximal and distal bone marrow cavities, and enabled us to evaluate cell proportion, differential gene expression and cell trajectories. Results While the B cell proportion in young and non-immune experienced animals did not significantly change from 2 to 5 days post osteotomy in the hematoma, we found a significant decrease of the B cell proportion in the immune experienced mice, which was accompanied by the decreased expression of B cell specific genes, suggesting a specific response in immune experienced animals. Furthermore, we detected the most extensive B cell differentiation block in immune-experienced mice compared to non-immune experienced and young animals, predominantly in the transition from immature to mature B cells. Discussion Our results suggest that the pronounced impairment of B cell production found in immune experienced animals plays an important role in the initial phase leading to delayed bone healing. Therefore, novel therapeutic approaches may be able target the B cell differentiation defect to retain B cell functionality even in the immune experienced setting, which is prone to delayed healing.
Collapse
Affiliation(s)
- Mireille Ngokingha Tchouto
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ann-Kathrin Mess
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Haas
- Systems Hematology, Stem Cells & Precision Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Park SY, Yi SM, On SW, Che SA, Lee JY, Yang BE. Evaluation of low-crystallinity apatite as a novel synthetic bone graft material: In vivo and in vitro analysis. J Dent 2025; 154:105597. [PMID: 39892741 DOI: 10.1016/j.jdent.2025.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVES To overcome the shortcomings of sintered bone graft materials, low-crystallinity apatite (LCA) was developed using a non-heated approach to enhance resorption and integration during bone regeneration. This study aimed to evaluate the efficacy of LCA as a synthetic bone graft material for bone reconstruction. METHODS LCA was compared to three conventional synthetic bone graft materials: biphasic calcium phosphate (BCP) 37, BCP 64, and octacalcium phosphate (OCP). Crystalline structure and surface morphology were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). In vivo testing was conducted using a rabbit calvarial augmentation model, in which the grafts were placed into standardized defects. Bone formation and graft resorption were analyzed using micro-computed tomography (micro-CT) and histomorphometric analyses at three and six weeks post-implantation. RESULTS LCA exhibited structural similarities to the allograft material and enhanced surface properties. Micro-CT and histomorphometric evaluations at three and six weeks post-implantation demonstrated higher rates of bone formation and substantial volumetric changes with LCA, indicating efficient graft resorption and bone regeneration. CONCLUSIONS LCA exhibited superior integration, osteoconductivity, and biodegradability compared to other synthetic grafts, suggesting the potential for improved clinical outcomes with its use. Although the efficacy of LCA has been validated, further studies in diverse biological environments are necessary to confirm its safety and effectiveness for broader clinical use. CLINICAL SIGNIFICANCE LCA, which mimics natural bone structure and has superior integration and osteoconductivity, has the potential for clinical applications requiring rapid and effective bone healing.
Collapse
Affiliation(s)
- Sang-Yoon Park
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea; Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Dental Artificial Intelligence and Robotics R&D Center, Hallym University Medical Center, Anyang 14066, Republic of Korea
| | - Sang-Min Yi
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea; Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Dental Artificial Intelligence and Robotics R&D Center, Hallym University Medical Center, Anyang 14066, Republic of Korea
| | - Sung-Woon On
- Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Dental Artificial Intelligence and Robotics R&D Center, Hallym University Medical Center, Anyang 14066, Republic of Korea; Division of Oral and Maxillofacial Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Republic of Korea
| | - Sung-Ah Che
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea; Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Dental Artificial Intelligence and Robotics R&D Center, Hallym University Medical Center, Anyang 14066, Republic of Korea
| | - Ju Young Lee
- Department of Oral and Maxillofacial Surgery, Seoul National University Gwanak Dental Hospital, Seoul 08826, Republic of Korea
| | - Byoung-Eun Yang
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea; Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Dental Artificial Intelligence and Robotics R&D Center, Hallym University Medical Center, Anyang 14066, Republic of Korea.
| |
Collapse
|
8
|
Reeves J, Tournier P, Becquart P, Carton R, Tang Y, Vigilante A, Fang D, Habib SJ. Rejuvenating aged osteoprogenitors for bone repair. eLife 2024; 13:RP104068. [PMID: 39692737 DOI: 10.7554/elife.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Aging is marked by a decline in tissue regeneration, posing significant challenges to an increasingly older population. Here, we investigate age-related impairments in calvarial bone healing and introduce a novel two-part rejuvenation strategy to restore youthful repair. We demonstrate that aging negatively impacts the calvarial bone structure and its osteogenic tissues, diminishing osteoprogenitor number and function and severely impairing bone formation. Notably, increasing osteogenic cell numbers locally fails to rescue repair in aged mice, identifying the presence of intrinsic cellular deficits. Our strategy combines Wnt-mediated osteoprogenitor expansion with intermittent fasting, which leads to a striking restoration of youthful levels of bone healing. We find that intermittent fasting improves osteoprogenitor function, benefits that can be recapitulated by modulating NAD+-dependent pathways or the gut microbiota, underscoring the multifaceted nature of this intervention. Mechanistically, we identify mitochondrial dysfunction as a key component in age-related decline in osteoprogenitor function and show that both cyclical nutrient deprivation and Nicotinamide mononucleotide rejuvenate mitochondrial health, enhancing osteogenesis. These findings offer a promising therapeutic avenue for restoring youthful bone repair in aged individuals, with potential implications for rejuvenating other tissues.
Collapse
Affiliation(s)
- Joshua Reeves
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Pierre Tournier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pierre Becquart
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert Carton
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Alessandra Vigilante
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Brodke D, Devana S, Hernandez A, O'Hara N, Burke C, Gupta J, McKibben N, O'Toole R, Morellato J, Gillon H, Walters M, Barber C, Perdue P, Dekeyser G, Steffenson L, Marchand L, Fairres MJ, Black L, Roddy E, El Naga A, Hogue M, Gulbrandsen T, Atassi O, Mitchell T, Shymon S, Working Z, Lee C. Timing of Radiographic Healing for Distal Femur Fractures Treated With Intramedullary Nails. J Orthop Trauma 2024; 38:661-667. [PMID: 39330970 DOI: 10.1097/bot.0000000000002915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES The aim of this study was to profile modified Radiographic Union Scale for Tibia (mRUST) scores over time in distal femur fractures treated with intramedullary nails and identify predictors of radiographic union timing and delayed progression. METHODS DESIGN Multicenter retrospective cohort study. SETTING Ten Level I Trauma Centers. PATIENT SELECTION CRITERIA The inclusion criteria were patients with distal femur fractures (OTA/AO 33A and 33 C) treated with intramedullary nails, with a minimum follow-up of 1 year or until radiographic union or reoperation. The exclusion criteria were fractures treated with combination nail-plate constructs, pathologic fractures, and patients younger than 18 years old. OUTCOME MEASURES AND COMPARISONS The primary outcome was the mRUST score at 3, 6, and 12 months postoperatively. Receiver operating characteristic curve analysis identified the optimal 3-month mRUST score predicting reoperation. Multivariable models were used to identify predictors of radiographic union timing and delayed progression. RESULTS The study included 155 fractures in 152 patients, with a mean patient age of 51 and a mean follow-up of 17 months. A 3-month mRUST score of ≤8 predicted reoperation with a PPV of 25% and a NPV of 99%. The timing of radiographic union was associated with tobacco use (1.2 months later; P = 0.04), open fracture (1.4 months later; P = 0.04), and the use of topical antibiotics (2.1 months longer; 95% CI, 0.33-3.84; P = 0.02); however, topical antibiotics were at high risk of being confounded by injury severity. Delayed progression to fracture healing, wherein the most rapid radiographic healing occurs more than 3 months postoperatively, was predicted by chronic kidney disease ( P < 0.01). CONCLUSIONS A 3-month mRUST score >8 suggests a very high likelihood of avoiding reoperation for nonunion. Tobacco use and open fractures were associated with a longer time to radiographic union. Chronic kidney disease is associated with a delayed radiographic progression, suggesting a need for adjusted expectations and management strategies in these patients. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
| | - Sai Devana
- University of California, Los Angeles, CA
| | | | - Nathan O'Hara
- R Adams Cowley Shock Trauma Center at the University of Maryland, Baltimore, MD
| | - Cynthia Burke
- R Adams Cowley Shock Trauma Center at the University of Maryland, Baltimore, MD
| | - Jayesh Gupta
- R Adams Cowley Shock Trauma Center at the University of Maryland, Baltimore, MD
| | - Natasha McKibben
- R Adams Cowley Shock Trauma Center at the University of Maryland, Baltimore, MD
| | - Robert O'Toole
- R Adams Cowley Shock Trauma Center at the University of Maryland, Baltimore, MD
| | | | | | | | | | - Paul Perdue
- Virginia Commonwealth University, Richmond, VA
| | | | | | | | | | - Loren Black
- Oregon Health & Science University, Portland, OR
| | | | | | | | | | | | | | - Stephen Shymon
- Los Angeles County Harbor-UCLA Medical Center, Los Angeles, CA
| | | | | |
Collapse
|
10
|
Zhang T, Neunaber C, Ye W, Wagner A, Bülow JM, Relja B, Bundkirchen K. Aging Influences Fracture Healing on the Cellular Level and Alters Systemic RANKL and OPG Concentrations in a Murine Model. Adv Biol (Weinh) 2024; 8:e2300653. [PMID: 39164219 DOI: 10.1002/adbi.202300653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/31/2024] [Indexed: 08/22/2024]
Abstract
Clinical complications frequently follow polytrauma and bleeding fractures, increasing the risk of delayed fracture healing and nonunions, especially in aged patients. Therefore, this study examines age's impact on fracture repair with and without severe bleeding in mice. Young (17-26 weeks) and aged (64-72 weeks) male C57BL/6J mice (n = 72 in total, n = 6 per group) are allocated into 3 groups: the fracture group (Fx) undergoes femur osteotomy stabilized via external fixator, the combined trauma group (THFx) additionally receives pressure-controlled trauma hemorrhage (TH) and Sham animals are implanted with catheter and fixator without blood loss or osteotomy. Femoral bones are evaluated histologically 24 h and 3 weeks post-trauma, while RANKL/OPG and β-CTx are measured systemically via ELISA after 3 weeks. Aging results in less mineralized bone and fewer osteoclasts within the fracture of aged mice in contrast to young groups after three weeks. Systemically, aged animals exhibit increased RANKL and OPG levels after fracture compared to their young counterparts. The RANKL/OPG ratio rises in aged Fx animals compared to young mice, with a similar trend in THFx groups. In conclusion, age has an effect during the later course of fracture healing on the cellular and systemic levels.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Claudia Neunaber
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Weikang Ye
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Spine Surgery, Yu Huang Ding Hospital, Yu Dong Str. 20, Yan Tai, 264000, China
| | - Alessa Wagner
- Ulm University Medical Center, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Helmholtz Str. 16, 89081, Ulm, Germany
| | - Jasmin Maria Bülow
- Ulm University Medical Center, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Helmholtz Str. 16, 89081, Ulm, Germany
| | - Borna Relja
- Ulm University Medical Center, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Helmholtz Str. 16, 89081, Ulm, Germany
| | - Katrin Bundkirchen
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
11
|
Yamamoto de Almeida L, Dietrich C, Duverger O, Lee JS. Acute hyperlipidemia has transient effects on large-scale bone regeneration in male mice. Sci Rep 2024; 14:25610. [PMID: 39463386 PMCID: PMC11514207 DOI: 10.1038/s41598-024-76992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Excessive dietary fat intake increases plasma lipid levels and has been associated with reduced bone mineral density (BMD) and increased risk of osteoporotic fracture, especially in older postmenopausal women. The objective of this study was to investigate whether there are sex-related differences in lipid metabolism that could have an impact on large-scale bone regeneration. Because ribs provide a unique exception as the only bones capable of completely regenerating large-scale defects, we used a rib resection mouse model in which human features are recapitulated. After 10 days of exposure to a low-fat diet or high-fat diet (HFD), we performed large-scale rib resection surgeries on male and female mice (6-7 weeks old) with deletion of the low-density lipoprotein (LDL) receptor (Ldlr-/-) and age- and sex-matched wild-type (WT) mice were used as controls. Plasma analysis showed that short-term exposure to HFD significantly increases total cholesterol, LDL cholesterol, and triglycerides levels in Ldlr-/- mice but not in WT, with no differences between males and females. However, under HFD, callus bone volume was significantly reduced exclusively in male Ldlr-/- mice when compared to WT, although these differences were no longer apparent by 21 days after resection. Regardless of diet or genotype, BMD of regenerated ribs did not differ significantly between groups, although male mice typically had lower average BMD values. Together, these results suggest that short-term hyperlipidemia has transient effects on large-scale bone regeneration exclusively in male mice.
Collapse
Affiliation(s)
- Luciana Yamamoto de Almeida
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Catharine Dietrich
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Kolliopoulos V, Tiffany A, Polanek M, Harley BAC. Donor Sex and Passage Conditions Influence MSC Osteogenic Response in Mineralized Collagen Scaffolds. Adv Healthc Mater 2024; 13:e2400039. [PMID: 39036820 PMCID: PMC11518655 DOI: 10.1002/adhm.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Contemporary tissue engineering efforts often seek to use mesenchymal stem cells (MSCs) due to their multi-potent potential and ability to generate a pro-regenerative secretome. While many have reported the influence of matrix environment on MSC osteogenic response, few have investigated the effects of donor and sex. Here, a well-defined mineralized collagen scaffold is used to study the influence of passage number and donor-reported sex on MSC proliferation and osteogenic potential. A library of bone marrow and adipose tissue-derived stem cells from eight donors to examine donor viability in osteogenic capacity in mineralized collagen scaffolds is obtained. MSCs displayed reduced proliferative capacity as a function of passage duration. Further, MSCs showed significant sex-associated variability in osteogenic capacity. Notably, MSCs from male donors displayed significantly higher cell proliferation while MSCs from female donors displayed significantly higher osteogenic response via increased alkaline phosphate activity, osteoprotegerin release, and mineral formation in vitro. The study highlights the essentiality of including donor-reported sex as an experimental variable and reporting culture expansion in future studies of biomaterial regenerative potential.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleczandria Tiffany
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maxwell Polanek
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
13
|
Ritter K, Baalmann M, Dolderer C, Ritz U, Schäfer MKE. Brain-Bone Crosstalk in a Murine Polytrauma Model Promotes Bone Remodeling but Impairs Neuromotor Recovery and Anxiety-Related Behavior. Biomedicines 2024; 12:1399. [PMID: 39061973 PMCID: PMC11274630 DOI: 10.3390/biomedicines12071399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Traumatic brain injury (TBI) and long bone fractures are a common injury pattern in polytrauma patients and modulate each other's healing process. As only a limited number of studies have investigated both traumatic sites, we tested the hypothesis that brain-bone polytrauma mutually impacts neuro- and osteopathological outcomes. Adult female C57BL/6N mice were subjected to controlled cortical impact (CCI), and/or osteosynthetic stabilized femoral fracture (FF), or sham surgery. Neuromotor and behavioral impairments were assessed by neurological severity score, open field test, rotarod test, and elevated plus maze test. Brain and bone tissues were processed 42 days after trauma. CCI+FF polytrauma mice had increased bone formation as compared to FF mice and increased mRNA expression of bone sialoprotein (BSP). Bone fractures did not aggravate neuropathology or neuroinflammation assessed by cerebral lesion size, hippocampal integrity, astrocyte and microglia activation, and gene expression. Behavioral assessments demonstrated an overall impaired recovery of neuromotor function and persistent abnormalities in anxiety-related behavior in polytrauma mice. This study shows enhanced bone healing, impaired neuromotor recovery and anxiety-like behavior in a brain-bone polytrauma model. However, bone fractures did not aggravate TBI-evoked neuropathology, suggesting the existence of outcome-relevant mechanisms independent of the extent of brain structural damage and neuroinflammation.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| | - Markus Baalmann
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| | - Christopher Dolderer
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.D.); (U.R.)
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.D.); (U.R.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| |
Collapse
|
14
|
Wang B, Wang W, Li J, Li J. Zinc finger protein 36 like 2-histone deacetylase 1 axis is involved in the bone responses to mechanical stress. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167162. [PMID: 38604490 DOI: 10.1016/j.bbadis.2024.167162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
The molecular mechanism underlying the promotion of fracture healing by mechanical stimuli remains unclear. The present study aimed to investigate the role of zinc finger protein 36 like 2 (ZFP36L2)-histone deacetylase 1 (HDAC1) axis on the osteogenic responses to moderate mechanical stimulation. Appropriate stimulation of fluid shear stress (FSS) was performed on MC3T3-E1 cells transduced with ZFP36L2 and HDAC1 recombinant adenoviruses, aiming to validate the influence of mechanical stress on the expression of ZFP36L2-HDAC1 and the osteogenic differentiation and mineralization. The results showed that moderate FSS stimulation significantly upregulated the expression of ZFP36L2 in MC3T3-E1 cells (p < 0.01). The overexpression of ZFP36L1 markedly enhanced the levels of osteogenic differentiation markers, including bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), Osterix, and collagen type I alpha 1 (COL1A1) (p < 0.01). ZFP36L2 accelerated the degradation of HDAC1 by specifically binding to its 3' UTR region, thereby fulfilling its function at the post-transcriptional regulatory gene level and promoting the osteogenic differentiation and mineralization fate of cells. Mechanical unloading notably diminished/elevated the expression of ZFP36L2/HDAC1, decreased bone mineral density and bone volume fraction, hindered the release of osteogenic-related factors and vascular endothelial growth factor in callus tissue (p < 0.01), and was detrimental to fracture healing. Collectively, proper stress stimulation plays a crucial role in facilitating osteogenesis through the promotion of ZFP36L2 and subsequent degradation of HDAC1. Targeting ZFP36L2-HDAC1 axis may provide promising insights to enhance bone defect healing.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Wei Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Jingyu Li
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| | - Jianjun Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
15
|
Roberts JL, Kapfhamer D, Devarapalli V, Drissi H. IL-17RA Signaling in Prx1+ Mesenchymal Cells Influences Fracture Healing in Mice. Int J Mol Sci 2024; 25:3751. [PMID: 38612562 PMCID: PMC11011315 DOI: 10.3390/ijms25073751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - David Kapfhamer
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Varsha Devarapalli
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
16
|
Desai S, Lång P, Näreoja T, Windahl SH, Andersson G. RANKL-dependent osteoclast differentiation and gene expression in bone marrow-derived cells from adult mice is sexually dimorphic. Bone Rep 2023; 19:101697. [PMID: 37485233 PMCID: PMC10359713 DOI: 10.1016/j.bonr.2023.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Sex-specific differences in bone integrity and properties are associated with age as well as the number and activity of cells involved in bone remodeling. The aim of this study was to investigate sex-specific differences in adhesion, proliferation, and differentiation of mouse bone marrow derived cells into osteoclasts. The adherent fraction of bone marrow- derived cells from 12-week-old male and female C57BL/6J mice were assessed for their adhesion, proliferation, and receptor activator of nuclear factor κB (RANKL)-induced differentiation into osteoclasts. Female bone marrow derived macrophages (BMDMs) displayed higher adhesion and proliferation ratio upon macrophage colony stimulating factor (M-CSF) (day 0) and M-CSF + RANKL (day 4) treatment, respectively. On the contrary, male BMDMs differentiated more efficiently into osteoclasts upon RANKL-treatment compared to females (day 5). To further understand these sex-specific differences at the gene expression level, BMDMs treated with M-CSF (day 0) and M-CSF + RANKL (day 4), were assessed for their differential expression of genes through RNA sequencing. M-CSF treatment resulted in 1106 differentially expressed genes, while RANKL-treatment gave 473 differentially expressed genes. Integrin, adhesion, and proliferation-associated genes were elevated in the M-CSF-treated female BMDMs. RANKL-treatment further enhanced the expression of the proliferation- associated genes, and of genes associated with inhibition of osteoclast differentiation in the females, while RANK-signaling-associated genes were upregulated in males. In conclusion, BMDM adhesion, proliferation and differentiation into osteoclasts are sex-specific and may be directed by the PI3K-Akt signaling pathway for proliferation, and the colony stimulating factor 1-receptor and the RANKLsignaling pathway for the differentiation.
Collapse
Affiliation(s)
- Suchita Desai
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| | - Pernilla Lång
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| | - Tuomas Näreoja
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
- Department of Life Technologies, University of Turku, Finland
| | - Sara H. Windahl
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| | - Göran Andersson
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| |
Collapse
|
17
|
Roberts JL, Chiedo B, Drissi H. Systemic inflammatory and gut microbiota responses to fracture in young and middle-aged mice. GeroScience 2023; 45:3115-3129. [PMID: 37821753 PMCID: PMC10643610 DOI: 10.1007/s11357-023-00963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Age is a patient-specific factor that can significantly delay fracture healing and exacerbate systemic sequelae during convalescence. The basis for this difference in healing rates is not well-understood, but heightened inflammation has been suggested to be a significant contributor. In this study, we investigated the systemic cytokine and intestinal microbiome response to closed femur fracture in 3-month-old (young adult) and 15-month-old (middle-aged) female wild-type mice. Middle-aged mice had a serum cytokine profile that was distinct from young mice at days 10, 14, and 18 post-fracture. This was characterized by increased concentrations of IL-17a, IL-10, IL-6, MCP-1, EPO, and TNFα. We also observed changes in the community structure of the gut microbiota in both young and middle-aged mice that was evident as early as day 3 post-fracture. This included an Enterobacteriaceae bloom at day 3 post-fracture in middle-aged mice and an increase in the relative abundance of the Muribaculum genus. Moreover, we observed an increase in the relative abundance of the health-promoting Bifidobacterium genus in young mice after fracture that did not occur in middle-aged mice. There were significant correlations between serum cytokines and specific genera, including a negative correlation between Bifidobacterium and the highly induced cytokine IL-17a. Our study demonstrates that aging exacerbates the inflammatory response to fracture leading to high levels of pro-inflammatory cytokines and disruption of the intestinal microbiota.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
- College of Health Solutions, Arizona State University, 850 N 5th St, Office 360J, Phoenix, AZ, 85004, USA.
| | - Brandon Chiedo
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
18
|
Kolliopoulos V, Tiffany A, Polanek M, Harley BAC. DONOR VARIABILITY IN HUMAN MESENCHYMAL STEM CELL OSTEOGENIC RESPONSE AS A FUNCTION OF PASSAGE CONDITIONS AND DONOR SEX. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566781. [PMID: 38014316 PMCID: PMC10680622 DOI: 10.1101/2023.11.12.566781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Contemporary tissue engineering efforts often seek to use mesenchymal stem cells (MSCs) due to their potential to differentiate to various tissue-specific cells and generate a pro-regenerative secretome. While MSC differentiation and therapeutic potential can differ as a function of matrix environment, it may also be widely influenced as a function of donor-to-donor variability. Further, effects of passage number and donor sex may further convolute the identification of clinically effective MSC-mediated regeneration technologies. We report efforts to adapt a well-defined mineralized collagen scaffold platform to study the influence of MSC proliferation and osteogenic potential as a function of passage number and donor sex. Mineralized collagen scaffolds broadly support MSC osteogenic differentiation and regenerative potency in the absence of traditional osteogenic supplements for a wide range of MSCs (rabbit, rat, porcine, human). We obtained a library of bone marrow and adipose tissue derived stem cells to examine donor-variability of regenerative potency in mineralized collagen scaffolds. MSCs displayed reduced proliferative capacity as a function of passage duration. Further, MSCs showed significant sex-based differences. Notably, MSCs from male donors displayed significantly higher metabolic activity and proliferation while MSCs from female donor displayed significantly higher osteogenic response via increased alkaline phosphate activity, osteoprotegerin release, and mineral formation in vitro. Our study highlights the essentiality of considering MSC donor sex and culture expansion in future studies of biomaterial regenerative potential.
Collapse
|
19
|
Pawelke J, Vinayahalingam V, Heiss C, Khassawna TE, Knapp G. Retrospective Analysis of Bone Substitute Material for Traumatic Long Bone Fractures: Sex-Specific Outcomes. Int J Mol Sci 2023; 24:14232. [PMID: 37762534 PMCID: PMC10532127 DOI: 10.3390/ijms241814232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Male patients often experience increased bone and muscle loss after traumatic fractures. This study aims to compare the treatment outcomes of male and female patients with large bone defects. A total of 345 trauma patients underwent surgery, with participants divided into two groups: one receiving bone substitute material (BSM) for augmented defects (n = 192) and the other without augmentation (empty defects = ED, n = 153). Outcome parameters were assessed among female (n = 184) and male (n = 161) patients. Descriptive statistics revealed no significant differences between male and female patients. Approximately one-half of the fractures resulted from high-energy trauma (n = 187). The BSM group experienced fewer complications (p = 0.004), including pseudarthrosis (BSM: n = 1, ED: n = 7; p = 0.02). Among female patients over 65, the incidence of pseudarthrosis was lower in the BSM group (p = 0.01), while younger females showed no significant differences (p = 0.4). Radiologically, we observed premature bone healing with subsequent harmonization. Post hoc power analysis demonstrated a power of 0.99. Augmenting bone defects, especially with bone substitute material, may reduce complications, including pseudarthrosis, in female patients. Additionally, this material accelerates bone healing. Further prospective studies are necessary for confirmation.
Collapse
Affiliation(s)
- Jonas Pawelke
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (J.P.); (V.V.); (C.H.); (T.E.K.)
| | - Vithusha Vinayahalingam
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (J.P.); (V.V.); (C.H.); (T.E.K.)
| | - Christian Heiss
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (J.P.); (V.V.); (C.H.); (T.E.K.)
- Department of Trauma, Hand and Reconstructive Surgery, Faculty of Medicine, Justus Liebig University, Rudolf-Buchheim-Straße 8, 35392 Giessen, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (J.P.); (V.V.); (C.H.); (T.E.K.)
| | - Gero Knapp
- Department of Trauma, Hand and Reconstructive Surgery, Faculty of Medicine, Justus Liebig University, Rudolf-Buchheim-Straße 8, 35392 Giessen, Germany
| |
Collapse
|
20
|
Ortona E, Pagano MT, Capossela L, Malorni W. The Role of Sex Differences in Bone Health and Healing. BIOLOGY 2023; 12:993. [PMID: 37508423 PMCID: PMC10376157 DOI: 10.3390/biology12070993] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
Fracture healing is a long-term and complex process influenced by a huge variety of factors. Among these, there is a sex/gender disparity. Based on significant differences observed in the outcome of bone healing in males and females, in the present review, we report the main findings, hypotheses and pitfalls that could lead to these differences. In particular, the role of sex hormones and inflammation has been reported to have a role in the observed less efficient bone healing in females in comparison with that observed in males. In addition, estrogen-induced cellular processes such as autophagic cell cycle impairment and molecular signals suppressing cell cycle progression seem also to play a role in female fracture healing delay. In conclusion, it seems conceivable that a complex framework of events could contribute to the female bias in bone healing, and we suggest that a reappraisal of the compelling factors could contribute to the mitigation of sex/gender disparity and improve bone healing outcomes.
Collapse
Affiliation(s)
- Elena Ortona
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Teresa Pagano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lavinia Capossela
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
21
|
Sadek AA, Abd-Elkareem M, Abdelhamid HN, Moustafa S, Hussein K. Repair of critical-sized bone defects in rabbit femurs using graphitic carbon nitride (g-C 3N 4) and graphene oxide (GO) nanomaterials. Sci Rep 2023; 13:5404. [PMID: 37012344 PMCID: PMC10070441 DOI: 10.1038/s41598-023-32487-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Various biomaterials have been evaluated to enhance bone formation in critical-sized bone defects; however, the ideal scaffold is still missing. The objective of this study was to investigate the in vitro and in vivo regenerative capacity of graphitic carbon nitride (g-C3N4) and graphene oxide (GO) nanomaterials to stimulate critical-sized bone defect regeneration. The in vitro cytotoxicity and hemocompatibility of g-C3N4 and GO were evaluated, and their potential to induce the in vitro osteogenesis of human fetal osteoblast (hFOB) cells was assessed using qPCR. Then, bone defect in femoral condyles was created in rabbits and left empty as control or filled with either g-C3N4 or GO. The osteogenesis of the different implanted scaffolds was evaluated after 4, 8, and 12 weeks of surgery using X-ray, computed tomography (CT), macro/microscopic examinations, and qPCR analysis of osteocalcin (OC) and osteopontin (OP) expressions. Both materials displayed good cell viability and hemocompatibility with enhanced collagen type-I (Col-I), OC, and OP expressions of the hFOB cells. Compared to the control group, the bone healing process in g-C3N4 and GO groups was promoted in vivo. Moreover, complete healing of the bone defect was observed radiologically and grossly in g-C3N4 implanted group. Additionally, g-C3N4 implanted group showed higher percentages of osteoid tissue, mature collagen, biodegradation, and expressions of OC and OP. In conclusion, our results revealed that g-C3N4 and GO nanomaterials could induce osteogenesis in critical-sized bone defects.
Collapse
Affiliation(s)
- Ahmed Abdelrahiem Sadek
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, 11837, Cairo, Egypt
| | - Samia Moustafa
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Kamal Hussein
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
22
|
Buettmann EG, DeNapoli RC, Abraham LB, Denisco JA, Lorenz MR, Friedman MA, Donahue HJ. Reambulation following hindlimb unloading attenuates disuse-induced changes in murine fracture healing. Bone 2023; 172:116748. [PMID: 37001629 DOI: 10.1016/j.bone.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the effects of prior disuse followed by physical reambulation on fracture healing cellular processes and adjacent bone and skeletal muscle recovery post-injury remains poorly defined. To bridge this knowledge gap and inform future treatment and rehabilitation strategies for fractures, a preclinical model of fracture healing with a history of prior unloading with and without reambulation was employed. First, skeletally mature male and female C57BL/6J mice (18 weeks) underwent hindlimb unloading by tail suspension (HLU) for 3 weeks to induce significant bone and muscle loss modeling enhanced bone fragility. Next, mice had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). The, mice were randomly assigned to continued HLU or allowed normal weight-bearing reambulation (HLU + R). Mice given normal cage activity throughout the experiment served as healthy age-matched controls. All mice were sacrificed 4-days (DPF4) or 14-days (DPF14) following fracture to assess healing and uninjured hindlimb musculoskeletal properties (6-10 mice per treatment/biological sex). We found that continued disuse following fracture lead to severely diminished uninjured hindlimb skeletal muscle mass (gastrocnemius and soleus) and femoral bone volume adjacent to the fracture site compared to healthy age-matched controls across mouse sexes. Furthermore, HLU led to significantly decreased periosteal expansion (DPF4) and osteochondral tissue formation by DPF14, and trends in increased osteoclastogenesis (DPF14) and decreased woven bone vascular area (DPF14). In contrast, immediate reambulation for 2 weeks after fracture, even following a period of prolonged disuse, was able to increase hindlimb skeletal tissue mass and increase osteochondral tissue formation, albeit not to healthy control levels, in both mouse sexes. Furthermore, reambulation attenuated osteoclast formation seen in woven bone tissue undergoing disuse. Our results suggest that weight-bearing skeletal loading in both sexes immediately following fracture may improve callus healing and prevent further fall risk by stimulating skeletal muscle anabolism and decreasing callus resorption compared to minimal or delayed rehabilitation regimens.
Collapse
Affiliation(s)
- Evan G Buettmann
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Rachel C DeNapoli
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Lovell B Abraham
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Joe A Denisco
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Madelyn R Lorenz
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Michael A Friedman
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Henry J Donahue
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America.
| |
Collapse
|
23
|
Wolter A, Bucher CH, Kurmies S, Schreiner V, Konietschke F, Hohlbaum K, Klopfleisch R, Löhning M, Thöne-Reineke C, Buttgereit F, Huwyler J, Jirkof P, Rapp AE, Lang A. A buprenorphine depot formulation provides effective sustained post-surgical analgesia for 72 h in mouse femoral fracture models. Sci Rep 2023; 13:3824. [PMID: 36882427 PMCID: PMC9992384 DOI: 10.1038/s41598-023-30641-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Adequate pain management is essential for ethical and scientific reasons in animal experiments and should completely cover the period of expected pain without the need for frequent re-application. However, current depot formulations of Buprenorphine are only available in the USA and have limited duration of action. Recently, a new microparticulate Buprenorphine formulation (BUP-Depot) for sustained release has been developed as a potential future alternative to standard formulations available in Europe. Pharmacokinetics indicate a possible effectiveness for about 72 h. Here, we investigated whether the administration of the BUP-Depot ensures continuous and sufficient analgesia in two mouse fracture models (femoral osteotomy) and could, therefore, serve as a potent alternative to the application of Tramadol via the drinking water. Both protocols were examined for analgesic effectiveness, side effects on experimental readout, and effects on fracture healing outcomes in male and female C57BL/6N mice. The BUP-Depot provided effective analgesia for 72 h, comparable to the effectiveness of Tramadol in the drinking water. Fracture healing outcome was not different between analgesic regimes. The availability of a Buprenorphine depot formulation for rodents in Europe would be a beneficial addition for extended pain relief in mice, thereby increasing animal welfare.
Collapse
Affiliation(s)
- Angelique Wolter
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Christian H Bucher
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Kurmies
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Viktoria Schreiner
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Frank Konietschke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Max Löhning
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Anna E Rapp
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
An Inexpensive 3D Printed Mouse Model of Successful, Complication-free Long Bone Distraction Osteogenesis. Plast Reconstr Surg Glob Open 2023; 11:e4674. [PMID: 36798717 PMCID: PMC9925097 DOI: 10.1097/gox.0000000000004674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 02/17/2023]
Abstract
Distraction osteogenesis (DO) is used for skeletal defects; however, up to 50% of cases exhibit complications. Previous mouse models of long bone DO have been anecdotally hampered by postoperative complications, expense, and availability. To improve clinical techniques, cost-effective, reliable animal models are needed. Our focus was to develop a new mouse tibial distractor, hypothesized to result in successful, complication-free DO. Methods A lightweight tibial distractor was developed using CAD and 3D printing. The device was fixed to the tibia of C57Bl/6J mice prior to osteotomy. Postoperatively, mice underwent 5 days latency, 10 days distraction (0.15 mm every 12 hours), and 28 days consolidation. Bone regeneration was examined on postoperative day 43 using micro-computed tomography (μCT) and Movat's modified pentachrome staining on histology (mineralized volume fraction and pixels, respectively). Costs were recorded. We compared cohorts of 11 mice undergoing sham, DO, or acute lengthening (distractor acutely lengthened 3.0 mm). Results The histological bone regenerate was significantly increased in DO (1,879,257 ± 155,415 pixels) compared to acute lengthening (32847 ± 1589 pixels) (P < 0.0001). The mineralized volume fraction (bone/total tissue volume) of the regenerate was significantly increased in DO (0.9 ± 0.1) compared to acute lengthening (0.7 ± 0.1) (P < 0.001). There was no significant difference in bone regenerate between DO and sham. The distractor was relatively low cost ($11), with no complications. Conclusions Histology and µCT analysis confirmed that the proposed tibial DO model resulted in successful bone formation. Our model is cost-effective and reproducible, enabling implementation in genetically dissectible transgenic mice.
Collapse
|
25
|
Sharma A, Michels LV, Pitsillides AA, Greeves J, Plotkin LI, Cardo V, Sims NA, Clarkin CE. Sexing Bones: Improving Transparency of Sex Reporting to Address Bias Within Preclinical Studies. J Bone Miner Res 2023; 38:5-13. [PMID: 36301601 PMCID: PMC10099537 DOI: 10.1002/jbmr.4729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/10/2023]
Abstract
Despite knowledge that sexually dimorphic mechanisms regulate bone homeostasis, sex often remains unreported and unconsidered in preclinical experimental design. Failure to report sex could lead to inappropriate generalizations of research findings and less effective translation into clinical practice. Preclinical sex bias (preferential selection of one sex) is present across other fields, including neuroscience and immunology, but remains uninvestigated in skeletal research. For context, we first summarized key literature describing sexually dimorphic bone phenotypes in mice. We then investigated sex reporting practices in skeletal research, specifically how customary it is for murine sex to be included in journal article titles or abstracts and then determined whether any bias in sex reporting exists. Because sex hormones are important regulators of bone health (gonadectomy procedures, ie, ovariectomy [OVX] and orchidectomy [ORX], are common yet typically not reported with sex), we incorporated reporting of OVX and ORX terms, representing female and male mice, respectively, into our investigations around sex bias. Between 1999 and 2020, inclusion of sex in titles or abstracts was low in murine skeletal studies (2.6%-4.06%). Reporting of OVX and ORX terms was low (1.44%-2.64%) and reporting of OVX and ORX with sex uncommon (0.4%-0.3%). When studies were combined to include both sexes and OVX (representing female) and ORX terms (representing male), a bias toward reporting of female mice was evident. However, when the terms OVX and ORX were removed, a bias toward the use of male mice was identified. Thus, studies focusing on sex hormones are biased toward female reporting with all other studies biased in reporting of male mice. We now call upon journal editors to introduce consistent guidance for transparent and accessible reporting of murine sex in skeletal research to better monitor preclinical sex bias, to diversify development of treatments for bone health, and to enable global skeletal health equity. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Lysanne V Michels
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Julie Greeves
- Army Health and Performance Research, Ministry of Defence, Andover, UK
| | - Lillian I Plotkin
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Valentina Cardo
- Winchester School of Art, University of Southampton, Winchester, UK
| | - Natalie A Sims
- Department of Medicine at St. Vincent's Hospital, St. Vincent's Institute of Medical Research and The University of Melbourne, Fitzroy, Australia
| | - Claire E Clarkin
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
26
|
Njokanma AR, Fatusi OA, Ogundipe OK, Arije OO, Akomolafe AG, Kuye OF. Does platelet-rich fibrin increase bone regeneration in mandibular third molar extraction sockets? J Korean Assoc Oral Maxillofac Surg 2022; 48:371-381. [PMID: 36579909 PMCID: PMC9807374 DOI: 10.5125/jkaoms.2022.48.6.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives This study determined the effect of platelet-rich fibrin (PRF) on extraction socket bone regeneration and assessed the patterns and determinants of bone regeneration after the surgical extraction of impacted mandibular third molars. Materials and Methods This prospective study randomly allocated 90 patients into two treatment groups: A PRF group (intervention group) and a non-PRF group (control group). After surgical extractions, the PRF group had PRF placed in the extraction socket and the socket was sutured, while the socket was only sutured in the non-PRF group. At postoperative weeks 1, 4, 8, and 12, periapical radiographs were obtained and HLImage software was used to determine the region of newly formed bone (RNFB) and the pattern of bone formation. The determinants of bone regeneration were assessed. Statistical significance was set at P<0.05. Results The percentage RNFB (RNFB%) was not significantly higher in the PRF group when compared with the non-PRF group at postoperative weeks 1, 4, 8, and 12 (P=0.188, 0.155, 0.132, and 0.219, respectively). Within the non-PRF group, the middle third consistently exhibited the highest bone formation while the least amount of bone formation was consistently observed in the cervical third. In the PRF group, the middle third had the highest bone formation, while bone formation at the apical third was smaller compared to the cervical third at the 8th week with this difference widening at the 12th week. The sex of the patient, type of impaction, and duration of surgery was significantly associated with percentage bone formation (P=0.041, 0.043, and 0.018, respectively). Conclusion Placement of PRF in extraction sockets increased socket bone regeneration. However, this finding was not statistically significant. The patient's sex, type of impaction, and duration of surgery significantly influenced the percentage of bone formation.
Collapse
Affiliation(s)
- Azuka Raphael Njokanma
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria,Azuka Raphael Njokanma, Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ilesa Road, PMB 5538 Ile-Ife, Nigeria, TEL: +234-8062882989, E-mail: , ORCID: https://orcid.org/0000-0001-7093-8748
| | - Olawunmi Adedoyin Fatusi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olufemi Kolawole Ogundipe
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Ayodele Gbenga Akomolafe
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Olasunkanmi Funmilola Kuye
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lagos State University College of Medicine, Ikeja, Nigeria
| |
Collapse
|
27
|
Durand M, Oger M, Nikovics K, Venant J, Guillope AC, Jouve E, Barbier L, Bégot L, Poirier F, Rousseau C, Pitois O, Mathieu L, Favier AL, Lutomski D, Collombet JM. Influence of the Immune Microenvironment Provided by Implanted Biomaterials on the Biological Properties of Masquelet-Induced Membranes in Rats: Metakaolin as an Alternative Spacer. Biomedicines 2022; 10:biomedicines10123017. [PMID: 36551773 PMCID: PMC9776074 DOI: 10.3390/biomedicines10123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Macrophages play a key role in the inflammatory phase of wound repair and foreign body reactions-two important processes in the Masquelet-induced membrane technique for extremity reconstruction. The macrophage response depends largely on the nature of the biomaterials implanted. However, little is known about the influence of the macrophage microenvironment on the osteogenic properties of the induced membrane or subsequent bone regeneration. We used metakaolin, an immunogenic material, as an alternative spacer to standard polymethylmethacrylate (PMMA) in a Masquelet model in rats. Four weeks after implantation, the PMMA- and metakaolin-induced membranes were harvested, and their osteogenic properties and macrophage microenvironments were investigated by histology, immunohistochemistry, mass spectroscopy and gene expression analysis. The metakaolin spacer induced membranes with higher levels of two potent pro-osteogenic factors, transforming growth factor-β (TGF-β) and bone morphogenic protein-2 (BMP-2). These alternative membranes thus had greater osteogenic activity, which was accompanied by a significant expansion of the total macrophage population, including both the M1-like and M2-like subtypes. Microcomputed tomographic analysis showed that metakaolin-induced membranes supported bone regeneration more effectively than PMMA-induced membranes through better callus properties (+58%), although this difference was not significant. This study provides the first evidence of the influence of the immune microenvironment on the osteogenic properties of the induced membranes.
Collapse
Affiliation(s)
- Marjorie Durand
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
- Correspondence:
| | - Myriam Oger
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Krisztina Nikovics
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Julien Venant
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
- Tissue Engineering Research Unit-URIT, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Anne-Cecile Guillope
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Eugénie Jouve
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Laure Barbier
- Molecular Biology Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Laurent Bégot
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Florence Poirier
- Tissue Engineering Research Unit-URIT, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Catherine Rousseau
- Molecular Biology Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Olivier Pitois
- Laboratoire Navier, Gustave Eiffel University, Ecole des Ponts ParisTech, CNRS, 77447 Marne-la-Vallée, France
| | - Laurent Mathieu
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
- Department of Surgery, Ecole du Val-de-Grace, French Military Health Service Academy, 1 Place Alphonse Laveran, 75005 Paris, France
| | - Anne-Laure Favier
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Didier Lutomski
- Tissue Engineering Research Unit-URIT, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Jean-Marc Collombet
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| |
Collapse
|
28
|
Guo A, Zheng Y, Zhong Y, Mo S, Fang S. Effect of chitosan/inorganic nanomaterial scaffolds on bone regeneration and related influencing factors in animal models: A systematic review. Front Bioeng Biotechnol 2022; 10:986212. [PMID: 36394038 PMCID: PMC9643585 DOI: 10.3389/fbioe.2022.986212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Bone tissue engineering (BTE) provides a promising alternative for transplanting. Due to biocompatibility and biodegradability, chitosan-based scaffolds have been extensively studied. In recent years, many inorganic nanomaterials have been utilized to modify the performance of chitosan-based materials. In order to ascertain the impact of chitosan/inorganic nanomaterial scaffolds on bone regeneration and related key factors, this study presents a systematic comparison of various scaffolds in the calvarial critical-sized defect (CSD) model. A total of four electronic databases were searched without publication date or language restrictions up to April 2022. The Animal Research Reporting of In Vivo Experiments 2.0 guidelines (ARRIVE 2.0) were used to assess the quality of the included studies. Moreover, the risk of bias (RoB) was evaluated via the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. After the screening, 22 studies were selected. None of these studies achieved high quality or had a low RoB. In the available studies, scaffolds reconstructed bone defects in radically different extensions. Several significant factors were identified, including baseline characteristics, physicochemical properties of scaffolds, surgery details, and scanning or reconstruction parameters of micro-computed tomography (micro-CT). Further studies should focus on not only improving the osteogenic performance of the scaffolds but also increasing the credibility of studies through rigorous experimental design and normative reports.
Collapse
Affiliation(s)
| | | | | | - Shuixue Mo
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Shanbao Fang
- College of Stomatology, Guangxi Medical University, Nanning, China
| |
Collapse
|
29
|
Saunders WB, Dejardin LM, Soltys-Niemann EV, Kaulfus CN, Eichelberger BM, Dobson LK, Weeks BR, Kerwin SC, Gregory CA. Angle-stable interlocking nailing in a canine critical-sized femoral defect model for bone regeneration studies: In pursuit of the principle of the 3R’s. Front Bioeng Biotechnol 2022; 10:921486. [PMID: 36118571 PMCID: PMC9479202 DOI: 10.3389/fbioe.2022.921486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Critical-sized long bone defects represent a major therapeutic challenge and current treatment strategies are not without complication. Tissue engineering holds much promise for these debilitating injuries; however, these strategies often fail to successfully translate from rodent studies to the clinical setting. The dog represents a strong model for translational orthopedic studies, however such studies should be optimized in pursuit of the Principle of the 3R’s of animal research (replace, reduce, refine). The objective of this study was to refine a canine critical-sized femoral defect model using an angle-stable interlocking nail (AS-ILN) and reduce total animal numbers by performing imaging, biomechanics, and histology on the same cohort of dogs. Methods: Six skeletally mature hounds underwent a 4 cm mid-diaphyseal femoral ostectomy followed by stabilization with an AS-ILN. Dogs were assigned to autograft (n = 3) or negative control (n = 3) treatment groups. At 6, 12, and 18 weeks, healing was quantified by ordinal radiographic scoring and quantified CT. After euthanasia, femurs from the autograft group were mechanically evaluated using an established torsional loading protocol. Femurs were subsequently assessed histologically. Results: Surgery was performed without complication and the AS-ILN provided appropriate fixation for the duration of the study. Dogs assigned to the autograft group achieved radiographic union by 12 weeks, whereas the negative control group experienced non-union. At 18 weeks, median bone and soft tissue callus volume were 9,001 mm3 (range: 4,939–10,061) for the autograft group and 3,469 mm3 (range: 3,085–3,854) for the negative control group. Median torsional stiffness for the operated, autograft treatment group was 0.19 Nm/° (range: 0.19–1.67) and torque at failure was 12.0 Nm (range: 1.7–14.0). Histologically, callus formation and associated endochondral ossification were identified in the autograft treatment group, whereas fibrovascular tissue occupied the critical-sized defect in negative controls. Conclusion: In a canine critical-sized defect model, the AS-ILN and described outcome measures allowed refinement and reduction consistent with the Principle of the 3R’s of ethical animal research. This model is well-suited for future canine translational bone tissue engineering studies.
Collapse
Affiliation(s)
- W. B. Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
- *Correspondence: W. B. Saunders,
| | - L. M. Dejardin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - E. V. Soltys-Niemann
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - C. N. Kaulfus
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - B. M. Eichelberger
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - L. K. Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - B. R. Weeks
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - S. C. Kerwin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - C. A. Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, School of Medicine, Texas A & M Health Science Center, College Station, TX, United States
| |
Collapse
|
30
|
Local immune cell contributions to fracture healing in aged individuals - A novel role for interleukin 22. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1262-1276. [PMID: 36028760 PMCID: PMC9440089 DOI: 10.1038/s12276-022-00834-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022]
Abstract
With increasing age, the risk of bone fractures increases while regenerative capacity decreases. This variation in healing potential appears to be linked to adaptive immunity, but the underlying mechanism is still unknown. This study sheds light on immunoaging/inflammaging, which impacts regenerative processes in aging individuals. In an aged preclinical model system, different levels of immunoaging were analyzed to identify key factors that connect immunoaged/inflammaged conditions with bone formation after long bone fracture. Immunological facets, progenitor cells, the microbiome, and confounders were monitored locally at the injury site and systemically in relation to healing outcomes in 12-month-old mice with distinct individual levels of immunoaging. Bone tissue formation during healing was delayed in the immunoaged group and could be associated with significant changes in cytokine levels. A prolonged and amplified pro-inflammatory reaction was caused by upregulated immune cell activation markers, increased chemokine receptor availability and a lack of inhibitory signaling. In immunoaged mice, interleukin-22 was identified as a core cell signaling protein that played a central role in delayed healing. Therapeutic neutralization of IL-22 reversed this specific immunoaging-related disturbed healing. Immunoaging was found to be an influencing factor of decreased regenerative capacity in aged individuals. Furthermore, a novel therapeutic strategy of neutralizing IL-22 may successfully rejuvenate healing in individuals with advanced immune experiences.
Collapse
|
31
|
In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review. Bioengineering (Basel) 2022; 9:bioengineering9080388. [PMID: 36004914 PMCID: PMC9404869 DOI: 10.3390/bioengineering9080388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
As the need for efficient, sustainable, customizable, handy and affordable substitute materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was performed following the PRISMA guidelines and PICO method. After the initial selection, 51 articles were included. Silicon in ink formulations was mostly found to be in either the native material, but associated with a secondary role, or to be a crucial additive element used to dope an existing material. The inks and materials presented here were essentially extrusion-based 3D-printed (80%), and, overall, the most investigated animal model was the rabbit (65%) with a femoral defect (51%). Quality (ARRIVE 2.0) and risk of bias (SYRCLE) assessments outlined that although a large majority of ARRIVE items were “reported”, most risks of bias were left “unclear” due to a lack of precise information. Almost all studies, despite a broad range of strategies and formulations, reported their silica-derived material to improve bone regeneration. The rising number of publications over the past few years highlights Si as a leverage element for bone tissue engineering to closely consider in the future.
Collapse
|
32
|
Shen H, Kushioka J, Toya M, Utsunomiya T, Hirata H, Huang EE, Tsubosaka M, Gao Q, Li X, Teissier V, Zhang N, Goodman SB. Sex differences in the therapeutic effect of unaltered versus NFκB sensing IL-4 over-expressing mesenchymal stromal cells in a murine model of chronic inflammatory bone loss. Front Bioeng Biotechnol 2022; 10:962114. [PMID: 36046680 PMCID: PMC9421000 DOI: 10.3389/fbioe.2022.962114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Wear particles from joint arthroplasties induce chronic inflammation associated with prolonged upregulation of nuclear factor kappa-B (NF-κB) signaling in macrophages and osteoclasts, which leads to osteolysis and implant loosening. Mesenchymal stromal cell (MSC)-based therapy showed great potential for immunomodulation and mitigation of osteolysis in vivo, especially in the chronic phase of inflammation. We previously generated genetically modified MSCs that secrete the anti-inflammatory cytokine interleukin 4 (IL-4) in response to NF-κB activation (NFκB-IL-4 MSCs). However, whether the impact of sexual difference in the internal environment can alter the therapeutic effects of IL-4 over-secreting MSCs that simultaneously mitigate prolonged inflammation and enhance bone formation remains unknown. This study investigated the therapeutic effects of unaltered MSCs versus NFκB-IL-4 MSCs in mitigating chronic inflammation and enhancing bone formation in male and female mice. The murine model was established by continuous infusion of polyethylene particles contaminated with lipopolysaccharide (cPE) into the medullary cavity of the distal femur for 6 weeks to induce chronic inflammation. Unaltered MSCs or NFκB-IL-4 MSCs were infused into the femoral intramedullary cavity in sex-matched groups beginning 3 weeks after primary surgery. Femurs were harvested at 6 weeks, and bone marrow density was measured with micro-computational tomography. Numbers of osteoclast-like cells, osteoblasts, and macrophages were evaluated with histochemical and immunofluorescence staining. cPE infusion resulted in severe bone loss at the surgery site, increased tartrate-resistant acid phosphatase positive osteoclasts and M1 pro-inflammatory macrophages, and decreased alkaline phosphatase expression. MSC-based therapy effectively decreased local bone loss and polarized M1 macrophages into an M2 anti-inflammatory phenotype. In females, unaltered MSCs demonstrated a larger impact in enhancing the osteogenesis, but they demonstrated similar anti-inflammatory effects compared to NFκB-IL-4 MSCs. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments in a sexually dimorphic manner, which could be an efficacious therapeutic strategy for treatment of periprosthetic osteolysis in both genders.
Collapse
Affiliation(s)
- Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ejun Elijah Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- *Correspondence: Stuart B. Goodman,
| |
Collapse
|
33
|
Laurent C, Marano A, Baldit A, Ferrari M, Perrin JC, Perroud O, Bianchi A, Kempf H. A preliminary study exploring the mechanical properties of normal and Mgp-deficient mouse femurs during early growth. Proc Inst Mech Eng H 2022; 236:1106-1117. [PMID: 35778813 DOI: 10.1177/09544119221109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Matrix Gla protein (MGP) is mostly known to be a calcification inhibitor, as its absence leads to ectopic calcification of different tissues such as cartilage or arteries. MGP deficiency also leads to low bone mass and delayed bone growth. In the present contribution, we investigate the effect of MGP deficiency on the structural and material mechanical bone properties by focusing on the elastic response of femurs undergoing three-points bending. To this aim, biomechanical tests are performed on femurs issued from Mgp-deficient mice at 14, 21, 28, and 35 days of postnatal life and compared to healthy control femurs. µCT acquisitions enable to reconstruct bone geometries and are used to construct subject-specific finite element models avoiding some of the reported limitations concerning the use of beam-like assumptions for small bone samples. Our results indicate that MGP deficiency may be associated to differences in both structural and material properties of femurs during early stages of development. MGP deficiency appears to be related to a decrease in bone dimensions, compensated by higher material properties resulting in similar structural bone properties at P35. The search for a unique density-elasticity relationship based on calibrated bone mineral density (BMD) indicates that MGP deficiency may affect bone tissue in several ways, that may not be represented uniquely from the quantification of BMD. Despite of its limitation to elastic response, the present preliminary study reports for the very first time the mechanical skeletal properties of Mgp-deficient mice at early stages of development.
Collapse
Affiliation(s)
- Cédric Laurent
- CNRS UMR 7239 LEM3, Université de Lorraine, Metz, France
| | - Alexandre Marano
- CNRS UMR 7365 IMoPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Adrien Baldit
- CNRS UMR 7239 LEM3, Université de Lorraine, Metz, France
| | - Maude Ferrari
- CNRS UMR 7563 LEMTA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | | | - Arnaud Bianchi
- CNRS UMR 7365 IMoPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Hervé Kempf
- CNRS UMR 7365 IMoPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
34
|
Lackington WA, Gehweiler D, Zhao E, Zderic I, Nehrbass D, Zeiter S, González-Vázquez A, O'Brien FJ, Stoddart MJ, Thompson K. Interleukin-1 receptor antagonist enhances the therapeutic efficacy of a low dose of rhBMP-2 in a weight-bearing rat femoral defect model. Acta Biomater 2022; 149:189-197. [PMID: 35840106 DOI: 10.1016/j.actbio.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022]
Abstract
In the clinical treatment of fractures, rhBMP-2 administration is associated with a well-established profile of side-effects, including osteolysis and ectopic bone formation, which are driven by pro-inflammatory processes triggered by the use of high doses. Immunomodulatory strategies could minimize the incidence of side-effects by enabling the use of lower, and safer, rhBMP-2 doses. This study investigated whether interleukin-1 receptor antagonist (IL-1Ra) can enhance the therapeutic efficacy of a low dose of rhBMP-2 in a weight-bearing femoral fracture healing model. Exogenous IL-1Ra, in combination with rhBMP-2, was delivered using a collagen-hydroxyapatite scaffold (CHA) to attenuate IL-1β produced in response to fracture. Femoral defects were treated with CHA scaffolds alone, or loaded with IL-1Ra (2.5 µg), rhBMP-2 (1 µg), IL-1Ra (2.5 µg) in combination with rhBMP-2 (1 µg). Bone healing was assessed over 14 weeks in comparison to control groups, empty defect, and a higher dose of rhBMP-2 (5 µg), which were recently demonstrated to lead to non-union, and successful bridging of the defect, respectively. The combination of IL-1Ra and rhBMP-2 led to significantly faster early bone formation, at both week 4 and 6, compared to a low dose of rhBMP-2 alone. By 14 weeks, the combination of IL-1Ra and a rhBMP-2 promoted full bridging of femurs, which were 3-fold more mechanically reliable compared to the femurs treated with a low dose of rhBMP-2 alone. Taken together, this study demonstrates that IL-1Ra can significantly enhance femoral bone healing when used in combination with a low dose of rhBMP-2. STATEMENT OF SIGNIFICANCE: Enabling the use of lower and safer doses of rhBMP-2, a potent inducer of bone formation, is of clinical relevance in orthopaedic medicine. In this study, the immunomodulatory interleukin-1 receptor antagonist (IL-1Ra) was investigated for its capacity to enhance the therapeutic efficacy of rhBMP-2 when used at lower doses in a weight-bearing femoral fracture healing model. The combination of IL-1Ra and rhBMP-2 led to significantly faster early bone formation, and resulted in more mechanically reliable healed femurs, compared to a low dose of rhBMP-2 alone. This demonstrates for the first time in a rat long bone healing model that IL-1Ra can significantly enhance bone healing when used in combination with a low dose of rhBMP-2.
Collapse
Affiliation(s)
- William A Lackington
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland; Present address: Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, St. Gallen, Switzerland
| | - Dominic Gehweiler
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Ensi Zhao
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Ivan Zderic
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Dirk Nehrbass
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Stephan Zeiter
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin, Ireland; AMBER Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin, Ireland; AMBER Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Martin J Stoddart
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland.
| |
Collapse
|
35
|
Fu R, Bertrand D, Wang J, Kavaseri K, Feng Y, Du T, Liu Y, Willie BM, Yang H. In vivo and in silico monitoring bone regeneration during distraction osteogenesis of the mouse femur. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106679. [PMID: 35139460 DOI: 10.1016/j.cmpb.2022.106679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Distraction osteogenesis (DO) is a mechanobiological process of producing new bone by gradual and controlled distraction of the surgically separated bone segments. Mice have been increasingly used to study the role of relevant biological factors in regulating bone regeneration during DO. However, there remains a lack of in silico DO models and related mechano-regulatory tissue differentiation algorithms for mouse bone. This study sought to establish an in silico model based on in vivo experimental data to simulate the bone regeneration process during DO of the mouse femur. METHODS In vivo micro-CT, including time-lapse morphometry was performed to monitor the bone regeneration in the distraction gap. A 2D axisymmetric finite element model, with a geometry originating from the experimental data, was created. Bone regeneration was simulated with a fuzzy logic-based two-stage (distraction and consolidation) mechano-regulatory tissue differentiation algorithm, which was adjusted from that used for fracture healing based on our in vivo experimental data. The predictive potential of the model was further tested with varied distraction frequencies and distraction rates. RESULTS The computational simulations showed similar bone regeneration patterns to those observed in the micro-CT data from the experiment throughout the DO process. This consisted of rapid bone formation during the first 10 days of the consolidation phase, followed by callus reshaping via bone remodeling. In addition, the computational model predicted a faster and more robust bone healing response as the model's distraction frequency was increased, whereas higher or lower distraction rates were not conducive to healing. CONCLUSIONS This in silico model could be used to investigate basic mechanobiological mechanisms involved in bone regeneration or to optimize DO strategies for potential clinical applications.
Collapse
Affiliation(s)
- Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - David Bertrand
- Department of Pediatric Surgery, McGill University, Montreal, Canada; Research Center, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Jianing Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Kyle Kavaseri
- Department of Pediatric Surgery, McGill University, Montreal, Canada; Research Center, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Yili Feng
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Bettina M Willie
- Department of Pediatric Surgery, McGill University, Montreal, Canada; Research Center, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
36
|
Bone Mass and Osteoblast Activity Are Sex-Dependent in Mice Lacking the Estrogen Receptor α in Chondrocytes and Osteoblast Progenitor Cells. Int J Mol Sci 2022; 23:ijms23052902. [PMID: 35270044 PMCID: PMC8911122 DOI: 10.3390/ijms23052902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/11/2023] Open
Abstract
While estrogen receptor alpha (ERα) is known to be important for bone development and homeostasis, its exact function during osteoblast differentiation remains unclear. Conditional deletion of ERα during specific stages of osteoblast differentiation revealed different bone phenotypes, which were also shown to be sex-dependent. Since hypertrophic chondrocytes can transdifferentiate into osteoblasts and substantially contribute to long-bone development, we aimed to investigate the effects of ERα deletion in both osteoblast and chondrocytes on bone development and structure. Therefore, we generated mice in which the ERα gene was inactivated via a Runx2-driven cyclic recombinase (ERαfl/fl; Runx2Cre). We analyzed the bones of 3-month-old ERαfl/fl; Runx2Cre mice by biomechanical testing, micro-computed tomography, and cellular parameters by histology. Male ERαfl/fl; Runx2Cre mice displayed a significantly increased cortical bone mass and flexural rigidity of the femurs compared to age-matched controls with no active Cre-transgene (ERαfl/fl). By contrast, female ERαfl/fl; Runx2Cre mice exhibited significant trabecular bone loss, whereas in cortical bone periosteal and endosteal diameters were reduced. Our results indicate that the ERα in osteoblast progenitors and hypertrophic chondrocytes differentially contributes to bone mass regulation in male and female mice and improves our understanding of ERα signaling in bone cells in vivo.
Collapse
|
37
|
Working ZM, Peterson D, Lawson M, O’Hara K, Coghlan R, Provencher MT, Friess DM, Johnstone B, Miclau T, Bahney CS. Collagen X Longitudinal Fracture Biomarker Suggests Staged Fixation in Tibial Plateau Fractures Delays Rate of Endochondral Repair. J Orthop Trauma 2022; 36:S32-S39. [PMID: 35061649 PMCID: PMC10308601 DOI: 10.1097/bot.0000000000002307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To use a novel, validated bioassay to monitor serum concentrations of a breakdown product of collagen X in a prospective longitudinal study of patients sustaining isolated tibial plateau fractures. Collagen X is the hallmark extracellular matrix protein present during conversion of soft, cartilaginous callus to bone during endochondral repair. Previous preclinical and clinical studies demonstrated a distinct peak in collagen X biomarker (CXM) bioassay levels after long bone fractures. SETTING Level 1 academic trauma facility. PATIENTS/PARTICIPANTS Thirty-six patients; isolated tibial plateau fractures. INTERVENTION (3) Closed treatment, ex-fix (temporizing/definitive), and open reduction internal fixation. MAIN OUTCOME MEASUREMENTS Collagen X serum biomarker levels (CXM bioassay). RESULTS Twenty-two men and 14 women (average age: 46.3 y; 22.6-73.4, SD 13.3) enrolled (16 unicondylar and 20 bicondylar fractures). Twenty-five patients (72.2%) were treated operatively, including 12 (33.3%) provisionally or definitively treated by ex-fix. No difference was found in peak CXM values between sexes or age. Patients demonstrated peak expression near 1000 pg/mL (average: male-986.5 pg/mL, SD 369; female-953.2 pg/mL, SD 576). There was no difference in peak CXM by treatment protocol, external fixator use, or fracture severity (Schatzker). Patients treated with external fixation (P = 0.05) or staged open reduction internal fixation (P = 0.046) critically demonstrated delayed peaks. CONCLUSIONS Pilot analysis demonstrates a strong CXM peak after fractures commensurate with previous preclinical and clinical studies, which was delayed with staged fixation. This may represent the consequence of delayed construct loading. Further validation requires larger cohorts and long-term follow-up. Collagen X may provide an opportunity to support prospective interventional studies testing novel orthobiologics or fixation techniques. LEVEL OF EVIDENCE Level II, prospective clinical observational study.
Collapse
Affiliation(s)
- Zachary M. Working
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
| | - Danielle Peterson
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
| | - Michelle Lawson
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
| | | | | | | | - Darin M. Friess
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
| | - Brian Johnstone
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
- Portland Shriners Hospital, Portland, OR
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California at San Francisco, San Francisco, CA
| | - Chelsea S. Bahney
- Steadman Philippon Research Institute, Vail, CO
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
38
|
Lang A, Stefanowski J, Pfeiffenberger M, Wolter A, Damerau A, Hemmati-Sadeghi S, Haag R, Hauser AE, Löhning M, Duda GN, Hoff P, Schmidt-Bleek K, Gaber T, Buttgereit F. MIF does only marginally enhance the pro-regenerative capacities of DFO in a mouse-osteotomy-model of compromised bone healing conditions. Bone 2022; 154:116247. [PMID: 34743042 DOI: 10.1016/j.bone.2021.116247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
The initial phase of fracture healing is crucial for the success of bone regeneration and is characterized by an inflammatory milieu and low oxygen tension (hypoxia). Negative interference with or prolongation of this fine-tuned initiation phase will ultimately lead to a delayed or incomplete healing such as non-unions which then requires an effective and gentle therapeutic intervention. Common reasons include a dysregulated immune response, immunosuppression or a failure in cellular adaptation to the inflammatory hypoxic milieu of the fracture gap and a reduction in vascularizing capacity by environmental noxious agents (e.g. rheumatoid arthritis or smoking). The hypoxia-inducible factor (HIF)-1α is responsible for the cellular adaptation to hypoxia, activating angiogenesis and supporting cell attraction and migration to the fracture gap. Here, we hypothesized that stabilizing HIF-1α could be a cost-effective and low-risk prevention strategy for fracture healing disorders. Therefore, we combined a well-known HIF-stabilizer - deferoxamine (DFO) - and a less known HIF-enhancer - macrophage migration inhibitory factor (MIF) - to synergistically induce improved fracture healing. Stabilization of HIF-1α enhanced calcification and osteogenic differentiation of MSCs in vitro. In vivo, only the application of DFO without MIF during the initial healing phase increased callus mineralization and vessel formation in a preclinical mouse-osteotomy-model modified to display a compromised healing. Although we did not find a synergistically effect of MIF when added to DFO, our findings provide additional support for a preventive strategy towards bone healing disorders in patients with a higher risk by accelerating fracture healing using DFO to stabilize HIF-1α.
Collapse
Affiliation(s)
- Annemarie Lang
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
| | - Jonathan Stefanowski
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Moritz Pfeiffenberger
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Angelique Wolter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Alexandra Damerau
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anja E Hauser
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Max Löhning
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Julius Wolff Institute, Berlin, Germany
| | - Paula Hoff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Julius Wolff Institute, Berlin, Germany
| | - Timo Gaber
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
| | - Frank Buttgereit
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
39
|
Buettmann EG, Yoneda S, Hu P, McKenzie JA, Silva MJ. Postnatal Osterix but not DMP1 lineage cells significantly contribute to intramembranous ossification in three preclinical models of bone injury. Front Physiol 2022; 13:1083301. [PMID: 36685200 PMCID: PMC9846510 DOI: 10.3389/fphys.2022.1083301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Murine models of long-bone fracture, stress fracture, and cortical defect are used to discern the cellular and molecular mediators of intramembranous and endochondral bone healing. Previous work has shown that Osterix (Osx+) and Dentin Matrix Protein-1 (DMP1+) lineage cells and their progeny contribute to injury-induced woven bone formation during femoral fracture, ulnar stress fracture, and tibial cortical defect repair. However, the contribution of pre-existing versus newly-derived Osx+ and DMP1+ lineage cells in these murine models of bone injury is unclear. We addressed this knowledge gap by using male and female 12-week-old, tamoxifen-inducible Osx Cre_ERT2 and DMP1 Cre_ERT2 mice harboring the Ai9 TdTomato reporter allele. To trace pre-existing Osx+ and DMP1+ lineage cells, tamoxifen (TMX: 100 mg/kg gavage) was given in a pulse manner (three doses, 4 weeks before injury), while to label pre-existing and newly-derived lineage Osx+ and DMP1+ cells, TMX was first given 2 weeks before injury and continuously (twice weekly) throughout healing. TdTomato positive (TdT+) cell area and cell fraction were quantified from frozen histological sections of injured and uninjured contralateral samples at times corresponding with active woven bone formation in each model. We found that in uninjured cortical bone tissue, Osx Cre_ERT2 was more efficient than DMP1 Cre_ERT2 at labeling the periosteal and endosteal surfaces, as well as intracortical osteocytes. Pulse-labeling revealed that pre-existing Osx+ lineage and their progeny, but not pre-existing DMP1+ lineage cells and their progeny, significantly contributed to woven bone formation in all three injury models. In particular, these pre-existing Osx+ lineage cells mainly lined new woven bone surfaces and became embedded as osteocytes. In contrast, with continuous dosing, both Osx+ and DMP1+ lineage cells and their progeny contributed to intramembranous woven bone formation, with higher TdT+ tissue area and cell fraction in Osx+ lineage versus DMP1+ lineage calluses (femoral fracture and ulnar stress fracture). Similarly, Osx+ and DMP1+ lineage cells and their progeny significantly contributed to endochondral callus regions with continuous dosing only, with higher TdT+ chondrocyte fraction in Osx+ versus DMP1+ cell lineages. In summary, pre-existing Osx+ but not DMP1+ lineage cells and their progeny make up a significant amount of woven bone cells (particularly osteocytes) across three preclinical models of bone injury. Therefore, Osx+ cell lineage modulation may prove to be an effective therapy to enhance bone regeneration.
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Pei Hu
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
40
|
Erickson CB, Hill R, Pascablo D, Kazakia G, Hansen K, Bahney C. A timeseries analysis of the fracture callus extracellular matrix proteome during bone fracture healing. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2021; 3:1-30. [PMID: 35765657 PMCID: PMC9236279 DOI: 10.36069/jols/20220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While most bones fully self-heal, certain diseases require bone allograft to assist with fracture healing. Bone allografts offer promise as treatments for such fractures due to their osteogenic properties. However, current bone allografts made of decellularized bone extracellular matrix (ECM) have high failure rates, and thus grafts which improve fracture healing outcomes are needed. Understanding specific changes to the ECM proteome during normal fracture healing would enable the identification of key proteins that could be used enhance osteogenicity of bone allograft. Here, we performed a timeseries analysis of the fracture callus in mice to investigate proteomic and mineralization changes to the ECM at key stages of fracture healing. We found that changes to the ECM proteome largely coincide with the distinct phases of fracture healing. Basement membrane proteins (AGRN, COL4, LAMA), cartilage proteins (COL2A1, ACAN), and collagen crosslinking enzymes (LOXL, PLOD, ITIH) were initially upregulated, followed by bone specific proteoglycans and collagens (IBSP, COL1A1). Various tissue proteases (MMP2, 9, 13, 14; CTSK, CTSG, ELANE) were expressed at different levels throughout fracture healing. These changes coordinated with mineralization of the fracture callus, which increased steeply during the initial stages of healing. Interestingly the later timepoint was characterized by a response to wound healing and high expression of clotting factors (F2, 7, 9, 10). We identified ELANE and ITIH2 as tissue remodeling enzymes having no prior known involvement with fracture healing. This data can be further mined to identify regenerative proteins for enhanced bone graft design.
Collapse
Affiliation(s)
- Christopher B. Erickson
- Department of Biochemistry and Molecular Genetics,University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Ryan Hill
- Department of Biochemistry and Molecular Genetics,University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Donna Pascablo
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA
| | - Galateia Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics,University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Chelsea Bahney
- Stedman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine. Vail, CO
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA
| |
Collapse
|