1
|
Feng X, Zheng D, Zhang W, Xiao H, Guan H, Xiong H, Jia L, Zhang X, Wang W, Wang H, Lu Y. Histamine: A key compound in red light-enhanced Fusarium verticillioides resistance in maize. IMETA 2025; 4:e70020. [PMID: 40236769 PMCID: PMC11995177 DOI: 10.1002/imt2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/17/2025]
Abstract
In this study, we demonstrate that red light is the most critical light component for promoting healthy maize growth during Fusarium verticillioides infection. Red light receptors PHYTOCHROME B (PHYB) and C (PHYC) play essential roles in maize defense against this pathogen. Overexpression of PHYC in maize enhances resistance to F. verticillioides. Additionally, we identified two defense-related gene networks and some metabolites that reliant on PHYCs, involving key contributors such as WRKY transcription factors and metabolites like histamine and thiamine. Notably, the application of 50 μM histamine significantly boosts resistance, particularly under high-density conditions, marking the first report of the role of histamine in disease resistance in plants.
Collapse
Affiliation(s)
- Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityWenjiangChina
- Maize Research InstituteSichuan Agricultural UniversityWenjiangChina
| | - Dan Zheng
- Maize Research InstituteSichuan Agricultural UniversityWenjiangChina
| | - Weixiao Zhang
- Maize Research InstituteSichuan Agricultural UniversityWenjiangChina
| | - Huihui Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityWenjiangChina
| | - Huarui Guan
- Maize Research InstituteSichuan Agricultural UniversityWenjiangChina
| | - Hao Xiong
- Maize Research InstituteSichuan Agricultural UniversityWenjiangChina
| | - Li Jia
- Maize Research InstituteSichuan Agricultural UniversityWenjiangChina
| | - Xuemei Zhang
- Maize Research InstituteSichuan Agricultural UniversityWenjiangChina
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityWenjiangChina
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityWenjiangChina
- Maize Research InstituteSichuan Agricultural UniversityWenjiangChina
| |
Collapse
|
2
|
Fan S, Li W, Chen Z, Wang Z, Cheng X, Zhang S, Dai M, Yang J, Chen L, Zhao G. Pyridoxine dehydrogenase SePdx regulates photosynthesis via an association with the phycobilisome in a cyanobacterium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70055. [PMID: 40120634 PMCID: PMC11929599 DOI: 10.1111/tpj.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025]
Abstract
Vitamin B6 (VitB6) deficiency is known to have a deleterious effect on photosynthesis, although the precise mechanism remains unclear. Pyridoxine dehydrogenase is a key protein involved in VitB6 biosynthesis, which facilitates the reversible reduction of pyridoxal (PL) and the oxidation of pyridoxine (PN), thereby contributing to VitB6 production. This study demonstrated the enzymatic activity of a pyridoxine dehydrogenase, SePdx, from the cyanobacterium Synechococcus elongatus PCC 7942 in the oxidation of PN. This protein is localized to the thylakoid membrane, interacts with components of the phycobilisome (PBS) and photosystem I (PSI), and plays a role in general stress responses. Deletion of sepdx leads to a distorted thylakoid membrane, shorter membrane spacing distances, and decreased phycobiliprotein content. Protein-protein interaction studies revealed interactions among SePdx, phycobiliprotein CpcA, and the PSI subunit PsaE. The structural analysis identified key residues that mediate SePdx-CpcA and SePdx-PsaE interactions, which were further confirmed through site-directed mutagenesis. Overall, the findings suggested that SePdx may influence PBS assembly, thereby establishing a link between VitB6 biosynthesis and photosynthesis.
Collapse
Affiliation(s)
- Shoujin Fan
- College of Life ScienceShandong Normal UniversityJinan250014China
| | - Wenzhe Li
- College of Life ScienceShandong Normal UniversityJinan250014China
| | - Zhuo Chen
- College of Life ScienceShandong Normal UniversityJinan250014China
| | - Zixu Wang
- College of Life ScienceShandong Normal UniversityJinan250014China
| | - Xiang Cheng
- College of Life ScienceShandong Normal UniversityJinan250014China
| | - Susu Zhang
- College of Life ScienceShandong Normal UniversityJinan250014China
| | - Meixue Dai
- College of Life ScienceShandong Normal UniversityJinan250014China
| | - Jinyu Yang
- Institute of Agro‐Food Science and Technology, Shandong Academy of Agricultural SciencesJinan250100China
| | - Leilei Chen
- Institute of Agro‐Food Science and Technology, Shandong Academy of Agricultural SciencesJinan250100China
| | - Guoyan Zhao
- College of Life ScienceShandong Normal UniversityJinan250014China
| |
Collapse
|
3
|
Nasim A, Hao J, Tawab F, Jin C, Zhu J, Luo S, Nie X. Micronutrient Biofortification in Wheat: QTLs, Candidate Genes and Molecular Mechanism. Int J Mol Sci 2025; 26:2178. [PMID: 40076800 PMCID: PMC11900071 DOI: 10.3390/ijms26052178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Micronutrient deficiency (hidden hunger) is one of the serious health problems globally, often due to diets dominated by staple foods. Genetic biofortification of a staple like wheat has surfaced as a promising, cost-efficient, and sustainable strategy. Significant genetic diversity exists in wheat and its wild relatives, but the nutritional profile in commercial wheat varieties has inadvertently declined over time, striving for better yield and disease resistance. Substantial efforts have been made to biofortify wheat using conventional and molecular breeding. QTL and genome-wide association studies were conducted, and some of the identified QTLs/marker-trait association (MTAs) for grain micronutrients like Fe have been exploited by MAS. The genetic mechanisms of micronutrient uptake, transport, and storage have also been investigated. Although wheat biofortified varieties are now commercially cultivated in selected regions worldwide, further improvements are needed. This review provides an overview of wheat biofortification, covering breeding efforts, nutritional evaluation methods, nutrient assimilation and bioavailability, and microbial involvement in wheat grain enrichment. Emerging technologies such as non-destructive hyperspectral imaging (HSI)/red, green, and blue (RGB) phenotyping; multi-omics integration; CRISPR-Cas9 alongside genomic selection; and microbial genetics hold promise for advancing biofortification.
Collapse
Affiliation(s)
- Adnan Nasim
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Junwei Hao
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Faiza Tawab
- Department of Botany, Shaheed Benazir Bhutto Women University Larama, Peshawar 25000, Pakistan;
| | - Ci Jin
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Jiamin Zhu
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Shuang Luo
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Xiaojun Nie
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| |
Collapse
|
4
|
Yao M, Hong B, Ji H, Guan C, Guan M. Genome-wide identification of PDX and expression analysis under waterlogging stress exhibit stronger waterlogging tolerance in transgenic Brassica napus plants overexpressing the BnaPDX1.3 gene compared to wild-type plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1533219. [PMID: 40012725 PMCID: PMC11863972 DOI: 10.3389/fpls.2025.1533219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
The PDX gene is a key gene in the vitamin B6 synthesis pathway, playing a crucial role in plant growth, development, and stress tolerance. To explore the family characteristics of the PDX gene in Brassica napus (B. napus) and its regulatory function under waterlogging stress, this study used five PDX genes from Arabidopsis thaliana as the basis for sequence analysis. Thirteen, eight, and six PDX genes were identified in B. napus, Brassica oleracea (B. oleracea), and Brassica rapa (B. rapa), respectively. Bioinformatics study reveals high conservation of PDX subfamily genes during evolution, and PDX genes in B. napus respond to waterlogging stress.In order to further investigate the effect of the PDX gene on waterlogging tolerance in B. napus, expression analysis was conducted on BnaPDX1.3 gene overexpressing B. napus plants and wild-type plants. The study showed that overexpressing plants could synthesize more VB6 under waterlogging stress, exhibit stronger antioxidant enzyme activity, and have a more effective and stable ROS scavenging system, thus exhibiting a healthier phenotype. These findings suggested that the BnaPDX1.3 gene can enhance the waterlogging tolerance of B. napus, which is of great significance for its response to waterlogging stress. Our study provides a basic reference for further research on the regulation mechanism of the PDX gene and waterlogging tolerance in B. napus.
Collapse
Affiliation(s)
- Mingyao Yao
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
| | - Bo Hong
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
| | - Hongfei Ji
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
| | - Chunyun Guan
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Mei Guan
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| |
Collapse
|
5
|
Kalemba EM, Dufour S, Gevaert K, Impens F, Meimoun P. Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes. TREE PHYSIOLOGY 2025; 45:tpaf003. [PMID: 39761348 PMCID: PMC11791354 DOI: 10.1093/treephys/tpaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively. Among the 212 identified metabolites, 44 and 67 differentially abundant metabolites were found at the imbibed and germinated stages, respectively, in both Acer species. Higher levels of amines, growth and defense stimulants, including B vitamins, were found in sycamore. We identified 611 and 447 proteins specific to the imbibed and germinated stages, respectively, in addition to groups of proteins expressed at different levels. Functional analysis of significantly regulated proteins revealed that proteins with catalytic and binding activity were enriched during germination, and proteins possibly implicated in nitrogen metabolism and metabolite interconversion enzymes were the predominant classes. Proteins associated with the control of plant growth regulation and seed defense were observed in both species at both germination stages. Sycamore proteins possibly involved in abscisic acid signal transduction pathway, stress tolerance and alleviation, ion binding and oxygenase activities appeared to accompany germination in sycamore. We identified peptides containing methionine (Met) oxidized to methionine sulfoxide (MetO), and functional analyses of proteins with significantly regulated MetO sites revealed that translation, plant growth and development and metabolism of nitrogen compounds were the main processes under Met/MetO redox control. We propose that higher levels of storage proteins and amines, together with higher levels of B vitamins, supported more efficient nitrogen utilization in sycamore, resulting in faster seedling growth. In conclusion, omic signatures identified in sycamore seem to predispose germinated sycamore seeds to better postgerminative growth.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology Polish Academy of Sciences, Parkowa 5, Kórnik 62-035, Poland
| | - Sara Dufour
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- VIB Proteomics Core, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- VIB Proteomics Core, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
| | - Patrice Meimoun
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED UMR 8236), Université Paris-Cité, Paris, France
| |
Collapse
|
6
|
Davis SE, Hart MT, Braza RED, Perry AA, Vega LA, Le Breton YS, McIver KS. The PdxR-PdxKU locus involved in vitamin B 6 salvage is important for group A streptococcal resistance to neutrophil killing and survival in human blood. Microbiol Spectr 2024; 12:e0160924. [PMID: 39530679 PMCID: PMC11619246 DOI: 10.1128/spectrum.01609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a Gram-positive bacterium that inflicts both superficial and life-threatening diseases on its human host. Analysis of fitness using a transposon mutant library revealed that genes predicted to be involved in vitamin B6 acquisition are associated with fitness in whole human blood. Vitamin B6 is essential for all life and is important for many cellular functions. In several streptococcal species, it has been shown that mutants in B6 acquisition exhibited reduced virulence phenotypes and were attenuated during infection. In GAS, B6 acquisition is believed to be controlled by the pdxR-pdxKU locus, where PdxR is a positive regulator of pdxKU, which encodes for a B6-substrate kinase and permease, respectively. Mutants in the regulator (ΔpdxR) and salvage machinery (ΔpdxKU) both exhibited modest growth defects when grown in oxygenated conditions with limited vitamin B6 precursors. ∆pdxR and ∆pdxKU mutants also exhibited an impaired ability to survive when challenged with whole human or mouse blood. This defect was characterized by reduced survival in the presence of human neutrophil-like HL60s, primary polymorphonuclear leukocytes, and antimicrobial peptide LL-37. Promoter analysis showed that PdxR is an autoregulator and activated pdxKU in the absence of B6. Interestingly, ∆pdxR and ∆pdxKU mutants were not attenuated in mouse models of infection, suggesting a species-specific impact on virulence. Overall, it appears that pdxR-pdxKU is associated with GAS vitamin B6 metabolism as well as pathogen survival during encounters with the human innate immune system.IMPORTANCEBacterial pathogens such as Streptococcus pyogenes (Group A Streptococcus, GAS) must be able to obtain needed nutrients in their human host. Vitamin B6 or pyridoxal 5' phosphate is essential for all life and is important for many cellular functions. In other streptococcal pathogens, B6 acquisition has been shown to be important for their ability to cause disease. Here, we show that loss of the putative vitamin B6 salvage pathway locus pdxR-pdxKU affects GAS pathogenesis when encountering innate immune responses from phagocytic neutrophils and antimicrobial peptides within the host. pdxR-pdxKU may contribute to oxygen tolerance through B6; however, there appear to be other mechanisms for salvaging vitamin B6. Overall, pdxR-pdxKU is associated with GAS resistance to the human innate immune response and oxygen tolerance and contributes modestly to B6 metabolism.
Collapse
Affiliation(s)
- Sarah E. Davis
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Meaghan T. Hart
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Rezia Era D. Braza
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Aolani A. Perry
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Luis A. Vega
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Yoann S. Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kevin S. McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
7
|
Olaoye OJ, Aksoy AE, Hyytiäinen SV, Narits AA, Hickey MA. Levodopa Impairs Lysosomal Function in Sensory Neurons In Vitro. BIOLOGY 2024; 13:893. [PMID: 39596848 PMCID: PMC11591693 DOI: 10.3390/biology13110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease worldwide. Patients are diagnosed based upon movement disorders, including bradykinesia, tremor and stiffness of movement. However, non-motor signs, including constipation, rapid eye movement sleep behavior disorder, smell deficits and pain are well recognized. Peripheral neuropathy is also increasingly recognized, as the vast majority of patients show reduced intraepidermal nerve fibers, and sensory nerve conduction and sensory function is also impaired. Many case studies in the literature show that high-dose levodopa may induce or exacerbate neuropathy in PD, which is thought to involve levodopa's metabolism to homocysteine. Here, we treated primary cultures of dorsal root ganglia and a sensory neuronal cell line with levodopa to examine effects on cell morphology, mitochondrial content and physiology, and lysosomal function. High-dose levodopa reduced mitochondrial membrane potential. At concentrations observed in the patient, levodopa enhanced immunoreactivity to beta III tubulin. Critically, levodopa reduced lysosomal content and also reduced the proportion of lysosomes that were acidic, thereby impairing their function, whereas homocysteine tended to increase lysosome content. Levodopa is a critically important drug for the treatment of PD. However, our data suggest that at concentrations observed in the patient, it has deleterious effects on sensory neurons that are not related to homocysteine.
Collapse
Affiliation(s)
| | | | | | | | - Miriam A. Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (O.J.O.); (A.E.A.); (S.V.H.); (A.A.N.)
| |
Collapse
|
8
|
Raimundo I, Rosado PM, Barno AR, Antony CP, Peixoto RS. Unlocking the genomic potential of Red Sea coral probiotics. Sci Rep 2024; 14:14514. [PMID: 38914624 PMCID: PMC11196684 DOI: 10.1038/s41598-024-65152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.
Collapse
Affiliation(s)
- Inês Raimundo
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Adam R Barno
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Chakkiath P Antony
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia.
| |
Collapse
|
9
|
Parra M, Coppola M, Hellmann H. PDX proteins from Arabidopsis thaliana as novel substrates of cathepsin B: implications for vitamin B 6 biosynthesis regulation. FEBS J 2024; 291:2372-2387. [PMID: 38431778 DOI: 10.1111/febs.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Vitamin B6 is a critical molecule for metabolism, development, and stress sensitivity in plants. It is a cofactor for numerous biochemical reactions, can serve as an antioxidant, and has the potential to increase tolerance against both biotic and abiotic stressors. Due to the importance of vitamin B6, its biosynthesis is likely tightly regulated. Plants can synthesize vitamin B6 de novo via the concerted activity of Pyridoxine Biosynthesis Protein 1 (PDX1) and PDX2. Previously, PDX proteins have been identified as targets for ubiquitination, indicating they could be marked for degradation by two highly conserved pathways: the Ubiquitin Proteasome Pathway (UPP) and the autophagy pathway. Initial experiments show that PDXs are in fact degraded, but surprisingly, in a ubiquitin-independent manner. Inhibitor studies pointed toward cathepsin B, a conserved lysosomal cysteine protease, which is implicated in both programed cell death and autophagy in humans and plants. In plants, cathepsin Bs are poorly described, and no confirmed substrates have been identified. Here, we present PDX proteins from Arabidopsis thaliana as interactors and substrates of a plant Cathepsin B. These findings not only describe a novel cathepsin B substrate in plants, but also provide new insights into how plants regulate de novo biosynthesis of vitamin B6.
Collapse
Affiliation(s)
- Marcelina Parra
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Gong B, He E, Xia B, Ying R, Hu P, Chen J, Peijnenburg WJGM, Liu Y, Xu X, Qiu H. Interactions of molybdenum disulfide nanosheets with wheat plants under changing environments: More than meets the eye? CHEMOSPHERE 2023; 331:138736. [PMID: 37088215 DOI: 10.1016/j.chemosphere.2023.138736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Molybdenum disulfide (MoS2) nanosheets are being increasingly employed in various applications. It is therefore imperative to assess their potential environmental implications in a changing world, particularly in the context of global warming. Here, we assessed the effects of MoS2 nanosheets on wheat Triticum aestivum L. under today's typical climatic conditions (22 °C) and future climatic conditions (30 °C), respectively. The results showed that MoS2 nanosheets (10 and 100 Mo mg/L) did not significantly affect wheat plant growth, root morphological traits, and chlorophyll fluorescence, regardless of dose and temperature. However, the metabolic processes were significantly altered in T. aestivum upon exposure to individual MoS2 nanosheets and to a combination of MoS2 nanosheets and future global warming. As a non-specific protective strategy, the wheat plants that were under stress conditions maintained the stability of cell membranes and thus relieved cell injury by accumulating more glycerophospholipids. Warming additionally influenced the nitrogen and carbon pool reallocation in wheat root. MoS2 nanosheets mainly depleted a range of antioxidant metabolites involved in phenylpropanoid biosynthesis and taurine and hypotaurine metabolism, while warming activated vitamin B6 cofactors related to vitamin B6 metabolism. Metabolites involved in glutathione metabolism were uniquely upregulated while most metabolites associated with nucleotide metabolisms were uniquely downregulated in combination-treated wheat. Overall, wheat plants regulated a wide range of growth-related processes, including carbohydrate, amino acids, lipid, vitamins, and nucleotide metabolism, to maintain optimal metabolite pool sizes and eventually global metabolic homeostasis upon different stress conditions. Our findings provide novel insights into MoS2 nanosheets-mediated crop responses under global warming.
Collapse
Affiliation(s)
- Bing Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Xia
- Anhui Academy of Eco-Environmental Science Research, Hefei, 230061, China
| | - Rongrong Ying
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Pengjie Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiugeng Chen
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, 2333CC, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, 3720BA, the Netherlands
| | - Yang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xueqing Xu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Han X, Yang R, Zhang L, Wei Q, Zhang Y, Wang Y, Shi Y. A Review of Potato Salt Tolerance. Int J Mol Sci 2023; 24:10726. [PMID: 37445900 DOI: 10.3390/ijms241310726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Potato is the world's fourth largest food crop. Due to limited arable land and an ever-increasing demand for food from a growing population, it is critical to increase crop yields on existing acreage. Soil salinization is an increasing problem that dramatically impacts crop yields and restricts the growing area of potato. One possible solution to this problem is the development of salt-tolerant transgenic potato cultivars. In this work, we review the current potato planting distribution and the ways in which it overlaps with salinized land, in addition to covering the development and utilization of potato salt-tolerant cultivars. We also provide an overview of the current progress toward identifying potato salt tolerance genes and how they may be deployed to overcome the current challenges facing potato growers.
Collapse
Affiliation(s)
- Xue Han
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ruijie Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yazhi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Fanelli G, Kuzmanović L, Giovenali G, Tundo S, Mandalà G, Rinalducci S, Ceoloni C. Untargeted Metabolomics Reveals a Multi-Faceted Resistance Response to Fusarium Head Blight Mediated by the Thinopyrum elongatum Fhb7E Locus Transferred via Chromosome Engineering into Wheat. Cells 2023; 12:1113. [PMID: 37190021 PMCID: PMC10136595 DOI: 10.3390/cells12081113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The Thinopyrum elongatum Fhb7E locus has been proven to confer outstanding resistance to Fusarium Head Blight (FHB) when transferred into wheat, minimizing yield loss and mycotoxin accumulation in grains. Despite their biological relevance and breeding implications, the molecular mechanisms underlying the resistant phenotype associated with Fhb7E have not been fully uncovered. To gain a broader understanding of processes involved in this complex plant-pathogen interaction, we analysed via untargeted metabolomics durum wheat (DW) rachises and grains upon spike inoculation with Fusarium graminearum (Fg) and water. The employment of DW near-isogenic recombinant lines carrying or lacking the Th. elongatum chromosome 7E region including Fhb7E on their 7AL arm, allowed clear-cut distinction between differentially accumulated disease-related metabolites. Besides confirming the rachis as key site of the main metabolic shift in plant response to FHB, and the upregulation of defence pathways (aromatic amino acid, phenylpropanoid, terpenoid) leading to antioxidants and lignin accumulation, novel insights were revealed. Fhb7E conferred constitutive and early-induced defence response, in which specific importance of polyamine biosynthesis, glutathione and vitamin B6 metabolisms, along with presence of multiple routes for deoxynivalenol detoxification, was highlighted. The results suggested Fhb7E to correspond to a compound locus, triggering a multi-faceted plant response to Fg, effectively limiting Fg growth and mycotoxin production.
Collapse
Affiliation(s)
- Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.)
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Gloria Giovenali
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy; (S.T.)
| | - Giulia Mandalà
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.)
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| |
Collapse
|
13
|
Munteanu C, Berindean I, Mihai M, Pop B, Popa M, Muntean L, Petrescu O, Ona A. E, K, B5, B6, and B9 vitamins and their specific immunological effects evaluated by flow cytometry. Front Med (Lausanne) 2023; 9:1089476. [PMID: 36687400 PMCID: PMC9849766 DOI: 10.3389/fmed.2022.1089476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
It has been proven that vitamins play an essential role in preventing certain diseases since ancient times. It is thus fruitless to approach the roles of vitamins without making reference to the techniques used in evaluating the effects of these micronutrients. Therefore, the aim of this paper was to summarize the immunological effects of E, K, B5, B6, and B9 vitamins evaluated by flow cytometry. Some of these significant effects were presented and discussed: (a) The role of vitamins E in the prevention and treatment of different types of cancer. (b) The properties of K vitamins in the development and maintenance of pheochromocytoma Cell Line 12 (PC12) cells in Parkinson's disease; (c) The improvement effect of vitamin B5 on the loss of bone mass in low estrogen conditions; (d) The anticancer role of vitamins B6. (e) The role of Vitamin B9 in the regulation of Treg cells. As such, the flow cytometry technique used to assess these properties is essential to evaluate the immunomodulatory effects of certain vitamins. The technique undergoes constant improvement which makes it possible to determine several parameters with a role in the modulation of the immune function and at the same time increase the accuracy of the methods that highlight them.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ioana Berindean
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihaela Mihai
- Department of Transversal Competencies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Bianca Pop
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Popa
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Leon Muntean
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Olivia Petrescu
- Department of Applied Modern Languages, Faculty of Letters, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Andreea Ona
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania,*Correspondence: Andreea Ona,
| |
Collapse
|
14
|
Yi SY, Lee M, Park SK, Lu L, Lee G, Kim SG, Kang SY, Lim YP. Jasmonate regulates plant resistance to Pectobacterium brasiliense by inducing indole glucosinolate biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:964092. [PMID: 36247644 PMCID: PMC9559233 DOI: 10.3389/fpls.2022.964092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/08/2022] [Indexed: 05/31/2023]
Abstract
Pectobacterium brasiliense (P. brasiliense) is a necrotrophic bacterium that causes the soft rot disease in Brassica rapa. However, the mechanisms underlying plant immune responses against necrotrophic bacterial pathogens with a broad host range are still not well understood. Using a flg22-triggered seedling growth inhibition (SGI) assay with 455 Brassica rapa inbred lines, we selected six B. rapa flagellin-insensitive lines (Brfin2-7) and three B. rapa flagellin-sensitive lines (Brfs1-3). Brfin lines showed compromised flg22-induced immune responses (oxidative burst, mitogen-activated protein kinase (MAPK) activation, and seedling growth inhibition) compared to the control line R-o-18; nevertheless, they were resistant to P. brasiliense. To explain this, we analyzed the phytohormone content and found that most Brfin lines had higher P. brasiliense-induced jasmonic acid (JA) than Brfs lines. Moreover, MeJA pretreatment enhanced the resistance of B. rapa to P. brasiliense. To explain the correlation between the resistance of Brfin lines to P. brasiliense and activated JA signaling, we analyzed pathogen-induced glucosinolate (GS) content in B. rapa. Notably, in Brfin7, the neoglucobrassicin (NGBS) content among indole glucosinolates (IGS) was significantly higher than that in Brfs2 following P. brasiliense inoculation, and genes involved in IGSs biosynthesis were also highly expressed. Furthermore, almost all Brfin lines with high JA levels and resistance to P. brasiliense had higher P. brasiliense-induced NGBS levels than Brfs lines. Thus, our results show that activated JA-mediated signaling attenuates flg22-triggered immunity but enhances resistance to P. brasiliense by inducing indole glucosinolate biosynthesis in Brassica rapa. This study provides novel insights into the role of JA-mediated defense against necrotrophic bacterial pathogens within a broad host range.
Collapse
Affiliation(s)
- So Young Yi
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Myungjin Lee
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
| | - Sun Kyu Park
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
15
|
Liu Z, Farkas P, Wang K, Kohli M, Fitzpatrick TB. B vitamin supply in plants and humans: the importance of vitamer homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:662-682. [PMID: 35673947 PMCID: PMC9544542 DOI: 10.1111/tpj.15859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
B vitamins are a group of water-soluble micronutrients that are required in all life forms. With the lack of biosynthetic pathways, humans depend on dietary uptake of these compounds, either directly or indirectly, from plant sources. B vitamins are frequently given little consideration beyond their role as enzyme accessory factors and are assumed not to limit metabolism. However, it should be recognized that each individual B vitamin is a family of compounds (vitamers), the regulation of which has dedicated pathways. Moreover, it is becoming increasingly evident that individual family members have physiological relevance and should not be sidelined. Here, we elaborate on the known forms of vitamins B1 , B6 and B9 , their distinct functions and importance to metabolism, in both human and plant health, and highlight the relevance of vitamer homeostasis. Research on B vitamin metabolism over the past several years indicates that not only the total level of vitamins but also the oft-neglected homeostasis of the various vitamers of each B vitamin is essential to human and plant health. We briefly discuss the potential of plant biology studies in supporting human health regarding these B vitamins as essential micronutrients. Based on the findings of the past few years we conclude that research should focus on the significance of vitamer homeostasis - at the organ, tissue and subcellular levels - which could improve the health of not only humans but also plants, benefiting from cross-disciplinary approaches and novel technologies.
Collapse
Affiliation(s)
- Zeguang Liu
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Peter Farkas
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Kai Wang
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Morgan‐Océane Kohli
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| |
Collapse
|
16
|
Wani SH, Gaikwad K, Razzaq A, Samantara K, Kumar M, Govindan V. Improving Zinc and Iron Biofortification in Wheat through Genomics Approaches. Mol Biol Rep 2022; 49:8007-8023. [PMID: 35661970 PMCID: PMC9165711 DOI: 10.1007/s11033-022-07326-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
Globally, about 20% of calories (energy) come from wheat. In some countries, it is more than 70%. More than 2 billion people are at risk for zinc deficiency and even more, people are at risk of iron deficiency, nearly a quarter of all children underage group of 5 are physically and cognitively stunted, and lack of dietary zinc is a major contributing factor. Biofortified wheat with elevated levels of zinc and iron has several potential advantages as a delivery vehicle for micronutrients in the diets of resource-poor consumers who depend on cereal-based diets. The conventional breeding strategies have been successful in the introduction of novel alleles for grain Zn and Fe that led to the release of competitive Zn enriched wheat varieties in South Asia. The major challenge over the next few decades will be to maintain the rates of genetic gains for grain yield along with increased grain Zn/Fe concentration to meet the food and nutritional security challenges. Therefore, to remain competitive, the performance of Zn-enhanced lines/varieties must be equal or superior to that of current non-biofortified elite lines/varieties. Since both yield and Zn content are invisible and quantitatively inherited traits except few intermediate effect QTL regions identified for grain Zn, increased breeding efforts and new approaches are required to combine them at high frequency, ensuring that Zn levels are steadily increased to the required levels across the breeding pipelines. The current review article provides a comprehensive list of genomic regions for enhancing grain Zn and Fe concentrations in wheat including key candidate gene families such NAS, ZIP, VLT, ZIFL, and YSL. Implementing forward breeding by taking advantage of the rapid cycling trait pipeline approaches would simultaneously introgress high Zn and Fe QTL into the high Zn and normal elite lines, further increasing Zn and Fe concentrations.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 192102 Khudwani, J&K India
| | - Kiran Gaikwad
- ICAR-Indian Agricultural Research Institute, Pusa Campus, 110012 New Delhi, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, 761211 Odisha, India
| | - Manjeet Kumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, 110012 New Delhi, India
| | - Velu Govindan
- Global Wheat Program International Maize and Wheat Improvement Center Texcoco Mexico, Texcoco, Mexico
| |
Collapse
|
17
|
Mangel N, Fudge JB, Gruissem W, Fitzpatrick TB, Vanderschuren H. Natural Variation in Vitamin B 1 and Vitamin B 6 Contents in Rice Germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:856880. [PMID: 35444674 PMCID: PMC9014206 DOI: 10.3389/fpls.2022.856880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 05/03/2023]
Abstract
Insufficient dietary intake of micronutrients contributes to the onset of deficiencies termed hidden hunger-a global health problem affecting approximately 2 billion people. Vitamin B1 (thiamine) and vitamin B6 (pyridoxine) are essential micronutrients because of their roles as enzymatic cofactors in all organisms. Metabolic engineering attempts to biofortify rice endosperm-a poor source of several micronutrients leading to deficiencies when consumed monotonously-have led to only minimal improvements in vitamin B1 and B6 contents. To determine if rice germplasm could be exploited for biofortification of rice endosperm, we screened 59 genetically diverse accessions under greenhouse conditions for variation in vitamin B1 and vitamin B6 contents across three tissue types (leaves, unpolished and polished grain). Accessions from low, intermediate and high vitamin categories that had similar vitamin levels in two greenhouse experiments were chosen for in-depth vitamer profiling and selected biosynthesis gene expression analyses. Vitamin B1 and B6 contents in polished seeds varied almost 4-fold. Genes encoding select vitamin B1 and B6 biosynthesis de novo enzymes (THIC for vitamin B1, PDX1.3a-c and PDX2 for vitamin B6) were differentially expressed in leaves across accessions contrasting in their respective vitamin contents. These expression levels did not correlate with leaf and unpolished seed vitamin contents, except for THIC expression in leaves that was positively correlated with total vitamin B1 contents in polished seeds. This study expands our knowledge of diversity in micronutrient traits in rice germplasm and provides insights into the expression of genes for vitamin B1 and B6 biosynthesis in rice.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jared B Fudge
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Teresa B Fitzpatrick
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Plant Genetics Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
18
|
Kapoor P, Dhaka RK, Sihag P, Mehla S, Sagwal V, Singh Y, Langaya S, Balyan P, Singh KP, Xing B, White JC, Dhankher OP, Kumar U. Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: Current understanding and future scope. NANOIMPACT 2022; 26:100407. [PMID: 35594741 DOI: 10.1016/j.impact.2022.100407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 05/16/2023]
Abstract
Nutrient deficiency in food crops severely compromises human health, particularly in under privileged communities. Globally, billions of people, particularly in developing nations, have limited access to nutritional supplements and fortified foods, subsequently suffering from micronutrient deficiency leading to a range of health issues. The green revolution enhanced crop production and provided food to billions of people but often falls short with respect to the nutritional quality of that food. Plants may assimilate nutrients from synthetic chemical fertilizers, but this approach generally has low nutrient delivery and use efficiency. Further, the overexposure of chemical fertilizers may increase the risk of neoplastic diseases, render food crops unfit for consumption and cause environmental degradation. Therefore, to address these challenges, more research is needed for sustainable crop yield and quality enhancement with minimum use of chemical fertilizers. Complex nutritional disorders and 'hidden hunger' can be addressed through biofortification of food crops. Nanotechnology may help to improve food quality via biofortification as plants may readily acquire nanoparticle-based nutrients. Nanofertilizers are target specific, possess controlled release, and can be retained for relatively long time periods, thus prevent leaching or run-off from soil. This review evaluates the recent literature on the development and use of nanofertilizers, their effects on the environment, and benefits to food quality. Further, the review highlights the potential of nanomaterials on plant genetics in biofortification, as well as issues of affordability, sustainability, and toxicity.
Collapse
Affiliation(s)
- Prexha Kapoor
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rahul Kumar Dhaka
- Department of Chemistry & Centre for Bio-Nanotechnology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125004, India
| | - Pooja Sihag
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sheetal Mehla
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Vijeta Sagwal
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Yogita Singh
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sonu Langaya
- Department of Genetics and Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243001, India
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA.
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
19
|
Wang Y, Zhao Y, Xia L, Chen L, Liao Y, Chen B, Liu Y, Gong W, Tian Y, Hu B. yggS Encoding Pyridoxal 5'-Phosphate Binding Protein Is Required for Acidovorax citrulli Virulence. Front Microbiol 2022; 12:783862. [PMID: 35087487 PMCID: PMC8787154 DOI: 10.3389/fmicb.2021.783862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
Bacterial fruit blotch, caused by seed-borne pathogen Acidovorax citrulli, poses a serious threat to the production of cucurbits globally. Although the disease can cause substantial economic losses, limited information is available about the molecular mechanisms of virulence. This study identified that, a random transposon insertion mutant impaired in the ability to elicit a hypersensitive response on tobacco. The disrupted gene in this mutant was determined to be Aave_0638, which is predicted to encode a YggS family pyridoxal phosphate-dependent enzyme. YggS is a highly conserved protein among multiple organisms, and is responsible for maintaining the homeostasis of pyridoxal 5′-phosphate and amino acids in cells. yggS deletion mutant of A. citrulli strain XjL12 displayed attenuated virulence, delayed hypersensitive response, less tolerance to H2O2 and pyridoxine, increased sensitivity to antibiotic β-chloro-D-alanine, and reduced swimming. In addition, RNA-Seq analysis demonstrated that yggS was involved in regulating the expression of certain pathogenicity-associated genes related to secretion, motility, quorum sensing and oxidative stress response. Importantly, YggS significantly affected type III secretion system and its effectors in vitro. Collectively, our results suggest that YggS is indispensable for A.citrulli virulence and expands the role of YggS in the biological processes.
Collapse
Affiliation(s)
- Yuanjie Wang
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing, China
| | - Liming Xia
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Lin Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yajie Liao
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baohui Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yiyang Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Weirong Gong
- Plant Protection and Quarantine Station of Province, Nanjing, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Sakauchi K, Taira W, Otaki JM. Metabolomic Profiles of the Creeping Wood Sorrel Oxalis corniculata in Radioactively Contaminated Fields in Fukushima: Dose-Dependent Changes in Key Metabolites. Life (Basel) 2022; 12:life12010115. [PMID: 35054508 PMCID: PMC8780803 DOI: 10.3390/life12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The biological impacts of the Fukushima nuclear accident, in 2011, on wildlife have been studied in many organisms, including the pale grass blue butterfly and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed an LC–MS-based metabolomic analysis on leaves of this plant collected in 2018 from radioactively contaminated and control localities in Fukushima, Miyagi, and Niigata prefectures, Japan. Using 7967 peaks detected by LC–MS analysis, clustering analyses showed that nine Fukushima samples and one Miyagi sample were clustered together, irrespective of radiation dose, while two Fukushima (Iitate) and two Niigata samples were not in this cluster. However, 93 peaks were significantly different (FDR < 0.05) among the three dose-dependent groups based on background, low, and high radiation dose rates. Among them, seven upregulated and 15 downregulated peaks had single annotations, and their peak intensity values were positively and negatively correlated with ground radiation dose rates, respectively. Upregulated peaks were annotated as kudinoside D (saponin), andrachcinidine (alkaloid), pyridoxal phosphate (stress-related activated vitamin B6), and four microbe-related bioactive compounds, including antibiotics. Additionally, two peaks were singularly annotated and significantly upregulated (K1R1H1; peptide) or downregulated (DHAP(10:0); decanoyl dihydroxyacetone phosphate) most at the low dose rates. Therefore, this plant likely responded to radioactive pollution in Fukushima by upregulating and downregulating key metabolites. Furthermore, plant-associated endophytic microbes may also have responded to pollution, suggesting their contributions to the stress response of the plant.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Research Planning Office, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Correspondence: ; Tel.: +81-98-895-8557
| |
Collapse
|
21
|
Kim KH, Lee KA. Metabolic Rewiring by Human Placenta-Derived Mesenchymal Stem Cell Therapy Promotes Rejuvenation in Aged Female Rats. Int J Mol Sci 2022; 23:ijms23010566. [PMID: 35008991 PMCID: PMC8745533 DOI: 10.3390/ijms23010566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023] Open
Abstract
Aging is a degenerative process involving cell function deterioration, leading to altered metabolic pathways, increased metabolite diversity, and dysregulated metabolism. Previously, we reported that human placenta-derived mesenchymal stem cells (hPD-MSCs) have therapeutic effects on ovarian aging. This study aimed to identify hPD-MSC therapy-induced responses at the metabolite and protein levels and serum biomarker(s) of aging and/or rejuvenation. We observed weight loss after hPD-MSC therapy. Importantly, insulin-like growth factor-I (IGF-I), known prolongs healthy life spans, were markedly elevated in serum. Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF/MS) analysis identified 176 metabolites, among which the levels of 3-hydroxybutyric acid, glycocholic acid, and taurine, which are associated with health and longevity, were enhanced after hPD-MSC stimulation. Furthermore, after hPD-MSC therapy, the levels of vitamin B6 and its metabolite pyridoxal 5′-phosphate were markedly increased in the serum and liver, respectively. Interestingly, hPD-MSC therapy promoted serotonin production due to increased vitamin B6 metabolism rates. Increased liver serotonin levels after multiple-injection therapy altered the expression of mRNAs and proteins associated with hepatocyte proliferation and mitochondrial biogenesis. Changes in metabolites in circulation after hPD-MSC therapy can be used to identify biomarker(s) of aging and/or rejuvenation. In addition, serotonin is a valuable therapeutic target for reversing aging-associated liver degeneration.
Collapse
|
22
|
Amaral J, Lamelas L, Valledor L, Castillejo MÁ, Alves A, Pinto G. Comparative proteomics of Pinus-Fusarium circinatum interactions reveal metabolic clues to biotic stress resistance. PHYSIOLOGIA PLANTARUM 2021; 173:2142-2154. [PMID: 34537969 DOI: 10.1111/ppl.13563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 05/24/2023]
Abstract
Fusarium circinatum, causing pine pitch canker (PPC), affects conifers productivity and health worldwide. Selection and breeding for resistance arises as the most promising approach to fight PPC. Therefore, it is crucial to explore the response of hosts with varying levels of susceptibility to PPC to unveil the genes/pathways behind these phenotypes. We evaluated the dynamics of the needle proteome of a susceptible (Pinus radiata) and a relatively resistant (Pinus pinea) species upon F. circinatum inoculation by GeLC-MS/MS. Integration with physiological data and validation of key genes by qPCR allowed to identify core pathways regulating these contrasting responses. In P. radiata, the pathogen may target both the secondary metabolism to negatively regulate immune response and chloroplast redox proteins to increase energy-producing pathways for amino acid production in its favour. In contrast, chloroplast redox regulation may assure redox homeostasis in P. pinea, as well as nonenzymatic antioxidants. The presence of membrane trafficking-related proteins exclusively in P. pinea likely explains its defence response against F. circinatum. A crosstalk between abscisic acid and epigenetic regulation of gene expression is also proposed in PPC response. These results are useful to support breeding programs aiming to achieve PPC resistance.
Collapse
Affiliation(s)
- Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
23
|
Wei TJ, Li G, Wang MM, Jin YY, Zhang GH, Liu M, Yang HY, Jiang CJ, Liang ZW. Physiological and transcriptomic analyses reveal novel insights into the cultivar-specific response to alkaline stress in alfalfa (Medicago sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113017. [PMID: 34823214 DOI: 10.1016/j.ecoenv.2021.113017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Soil alkalization severely limits plant growth and development, however, the mechanisms of alkaline response in plants remain largely unknown. In this study, we performed physiological and transcriptomic analyses using two alfalfa cultivars (Medicago sativa L.) with different sensitivities to alkaline conditions. The chlorophyll content and shoot fresh mass drastically declined in the alkaline-sensitive cultivar Algonquin (AG) following alkaline treatment (0-25 mM Na2CO3 solution), while the alkaline-tolerant cultivar Gongnong NO.1 (GN) maintained relatively stable growth and chlorophyll content. Compared with AG, GN had higher contents of Ca2+ and Mg2+; the ratios of Ca2+ and Mg2+ to Na+, proline and soluble sugar, as well as higher enzyme activities of peroxidase (POD) and catalase (CAT) under the alkaline conditions. Furthermore, transcriptomic analysis identified three categories of alkaline-responsive differentially expressed genes (DEGs) between the two cultivars: 48 genes commonly induced in both the cultivars (CAR), 574 genes from the tolerant cultivar (TAR), and 493 genes from the sensitive cultivar (SAR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that CAR genes were mostly involved in phenylpropanoid biosynthesis, lipid metabolism, and DNA replication and repair; TAR genes were significantly enriched in metabolic pathways, such as biosynthesis of amino acids and secondary metabolites including flavonoids, and the MAPK signaling pathway; SAR genes were specifically enriched in vitamin B6 metabolism. Taken together, the results identified candidate pathways associated with genetic variation in response to alkaline stress, providing novel insights into the mechanisms underlying alkaline tolerance in alfalfa.
Collapse
Affiliation(s)
- Tian-Jiao Wei
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ming-Ming Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Da'an Sodic Land Experiment Station, Da'an, Jilin 131317, China
| | - Yang-Yang Jin
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guo-Hui Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Miao Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Da'an Sodic Land Experiment Station, Da'an, Jilin 131317, China
| | - Hao-Yu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Da'an Sodic Land Experiment Station, Da'an, Jilin 131317, China
| | - Chang-Jie Jiang
- Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba 305-8642, Japan.
| | - Zheng-Wei Liang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Da'an Sodic Land Experiment Station, Da'an, Jilin 131317, China.
| |
Collapse
|
24
|
Integrated Application of Selenium and Silicon Enhances Growth and Anatomical Structure, Antioxidant Defense System and Yield of Wheat Grown in Salt-Stressed Soil. PLANTS 2021; 10:plants10061040. [PMID: 34064224 PMCID: PMC8224300 DOI: 10.3390/plants10061040] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
Selenium (Se) and silicon (Si) are considered advantageous elements to induce plants’ tolerance to various environmental stresses. Wheat yield is negatively affected by salinity stress, especially in dry and semi-dry areas. Therefore, the objective of the current study was to investigate the effects of Se, Si and their combinations (0 as control, Se15, Se30, Si15, Si30, Se15 + Si15, and Se30 + Si30 mM) in alleviating the deleterious effects of salinity stress (7.61 dS m−1, real field conditions) on anatomical characteristics as well as the physio-biochemical and productivity parameters of wheat plants. The selenium and silicon treatments and their combinations caused significant amelioration in growth, anatomical and physiological attributes, and grain yields of salinity-stressed wheat in comparison with the untreated plants (control treatment). The integrated application of Se30 + Si30 significantly increased plant growth (i.e., plant height 28.24%, number of tillers m−2 76.81%, fresh weight plant−1 80.66%, and dry weight plant−1 79.65%), Fv/Fm (44.78%), performance index (PI; 60.45%), membrane stability index (MSI; 36.39%), relative water content (RWC; 29.39%), total soluble sugars (TSS; 53.38%), proline (33.74%), enzymatic antioxidants (i.e., CAT activity by 14.45%, GR activity by 67.5%, SOD activity by 35.37% and APX activity by 39.25%) and non-enzymatic antioxidants (i.e., GSH content by 117.5%, AsA content by 52.32%), yield and its components (i.e., number of spikelets spike−1 29.55%, 1000-grain weight 48.73% and grain yield ha−1 26.44%). The anatomical traits of stem and leaves were improved in wheat plants treated with Se30 + Si30. These changes resulting from the exogenous applications of Se, Si or their combinations, in turn, make these elements prospective in helping wheat plants to acclimate successfully to saline soil.
Collapse
|
25
|
Chang WCW, Chen YT, Chen HJ, Hsieh CW, Liao PC. Comparative UHPLC-Q-Orbitrap HRMS-Based Metabolomics Unveils Biochemical Changes of Black Garlic during Aging Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14049-14058. [PMID: 33166446 DOI: 10.1021/acs.jafc.0c04451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aged black garlic (BG) is a functional food in global markets; however, very few studies have ventured into comprehensive profiling of BG metabolomes during the aging process. Herein, we exploited UHPLC-Orbitrap HRMS for a comparative metabolomics analysis. During the heat treatment, organosulfur compounds such as allicin, diallyl disulfide, ajoene, S-allyl-l-cysteine (SAC), and γ-glutamyl-SAC were downregulated. Plenty of glycerophospholipids together with shikimate, aromatic amino acids, and vitamin B6 vitamers were significantly augmented; tryptophan was however consumed to generate downstream products manifested in nicotinate metabolism and aminobenzoate degradation. These secondary metabolites serve as signaling mediators or protectants against extreme thermal exposure. Besides, Heyns compounds and Amadori-rearrangement byproducts with potential mutagenic effects were concentrated. Together, our findings expand the known metabolome space of BG processing and better elucidate the reactivities of the key metabolites. We provide in-depth insights into the biochemical changes of BG that enable further functional or toxicological investigations of this popular food.
Collapse
Affiliation(s)
- William Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Ting Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Jhang Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
26
|
Neugart S, Hideg É, Czégény G, Schreiner M, Strid Å. Ultraviolet-B radiation exposure lowers the antioxidant capacity in the Arabidopsis thaliana pdx1.3-1 mutant and leads to glucosinolate biosynthesis alteration in both wild type and mutant. Photochem Photobiol Sci 2020; 19:217-228. [PMID: 31961357 DOI: 10.1039/c9pp00342h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pyridoxine (vitamin B6) and its vitamers are used by living organisms both as enzymatic cofactors and as antioxidants. We used Arabidopsis pyridoxine biosynthesis mutant pdx1.3-1 to study the involvement of the PLP-synthase main polypeptide PDX1 in plant responses to ultraviolet radiation of two different qualities, one containing primarily UV-A (315-400 nm) and the other containing both UV-A and UV-B (280-315 nm). The antioxidant capacity and the flavonoid and glucosinolate (GS) profiles were examined. As an indicator of stress, Fv/Fm of photosystem II reaction centers was used. In pdx1.3-1, UV-A + B exposure led to a significant 5% decrease in Fv/Fm on the last day (day 15), indicating mild stress at this time point. The antioxidant capacity of Col-0 wildtype increased significantly (50-73%) after 1 and 3 days of UV-A + B. Instead, in pdx1.3-1, the antioxidant capacity significantly decreased by 44-52% over the same time period, proving the importance of a full complement of functional PDX1 genes for the detoxification of reactive oxygen species. There were no significant changes in the flavonoid glycoside profile under any light condition. However, the GS profile was significantly altered, both with respect to Arabidopsis accession and exposure to UV. The difference in flavonoid and GS profiles reflects that the GS biosynthesis pathway contains at least one pyridoxine-dependent enzyme, whereas no such enzyme is used in flavonoid biosynthesis. Also, there was strong correlation between the antioxidant capacity and the content of some GS compounds. Our results show that vitamin B6 vitamers, functioning both as antioxidants and co-factors, are of importance for the physiological fitness of plants.
Collapse
Affiliation(s)
- Susanne Neugart
- Division of Quality and Sensory of Plant Products, University of Göttingen, Göttingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Samsatly J, Bayen S, Jabaji SH. Vitamin B6 Is Under a Tight Balance During Disease Development by Rhizoctonia solani on Different Cultivars of Potato and on Arabidopsis thaliana Mutants. FRONTIERS IN PLANT SCIENCE 2020; 11:875. [PMID: 32670323 PMCID: PMC7327096 DOI: 10.3389/fpls.2020.00875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/28/2020] [Indexed: 05/06/2023]
Abstract
Vitamin B6 is well recognized as an essential antioxidant and plays a role in stress responses. Co-expression of plant and pathogen-derived vitamin B6 genes is critical during disease development of R. solani. However, little is known about the functionality of vitamin B6 vitamers during plant-R. solani interactions and their involvement in disease tolerance. Here, we explored the possible involvement of vitamin B6 during disease progression of potato cultivars of different susceptibility levels to R. solani. A distinct pattern of gene expression, pyridoxine (PN) concentration, and fungal biomass was found in the susceptible cv. Russet Burbank and tolerant cv. Chieftain. Accumulation of reactive oxygen species (ROS) in R. solani mycelia or plant tissues applying non-fluorescence or fluorescence methods was related to up-regulation in the vitamin B6 pathway and is indicative of oxidative stress. Russet Burbank was susceptible to R. solani, which was linked to reduced amounts of VB6 content. Prior to infection, constitutive PN levels were significantly higher in Russet Burbank by 1.6-fold compared to Chieftain. Upon infection with R. solani, PN levels in infected tissues increased more in Chieftain (1.7-fold) compared to Russet Burbank (1.4-fold). R. solani AG3 infection of potato sprouts in both cultivars significantly activates the fungal and plant vitamin B6 and glutathione-S-transferase (GST) genes in a tissue-specific response. Significant fold increases of transcript abundance of the fungal genes ranged from a minimum of 3.60 (RsolSG3GST) to a maximum of 13.91 (RsolAG3PDX2) in the surrounding necrotic lesion tissues (zone 1). On the other hand, PCA showed that the top plant genes STGST and STPDX1.1 were linked to both tissues of necrotic lesions (zone 2) and their surrounding areas of necrotic lesions. Functional characterization of Arabidopsis pdx1.3 mutants challenged with R. solani provided evidence into the role of the vitamin B6 pathway in the maintenance of plant tolerance during disease progression. Overall, we demonstrate that the production of vitamin VB6 is under tight control and is an essential determinant of disease development during the interaction of R. solani with potato cultivars.
Collapse
Affiliation(s)
- Jamil Samsatly
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Suha H. Jabaji
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- *Correspondence: Suha H. Jabaji,
| |
Collapse
|
28
|
Mangel N, Fudge JB, Li K, Wu T, Tohge T, Fernie AR, Szurek B, Fitzpatrick TB, Gruissem W, Vanderschuren H. Enhancement of vitamin B 6 levels in rice expressing Arabidopsis vitamin B 6 biosynthesis de novo genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1047-1065. [PMID: 31063672 PMCID: PMC6852651 DOI: 10.1111/tpj.14379] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 05/06/2023]
Abstract
Vitamin B6 (pyridoxine) is vital for key metabolic reactions and reported to have antioxidant properties in planta. Therefore, enhancement of vitamin B6 content has been hypothesized to be a route to improve resistance to biotic and abiotic stresses. Most of the current studies on vitamin B6 in plants are on eudicot species, with monocots remaining largely unexplored. In this study, we investigated vitamin B6 biosynthesis in rice, with a view to examining the feasibility and impact of enhancing vitamin B6 levels. Constitutive expression in rice of two Arabidopsis thaliana genes from the vitamin B6 biosynthesis de novo pathway, AtPDX1.1 and AtPDX2, resulted in a considerable increase in vitamin B6 in leaves (up to 28.3-fold) and roots (up to 12-fold), with minimal impact on general growth. Rice lines accumulating high levels of vitamin B6 did not display enhanced tolerance to abiotic stress (salt) or biotic stress (resistance to Xanthomonas oryzae infection). While a significant increase in vitamin B6 content could also be achieved in rice seeds (up to 3.1-fold), the increase was largely due to its accumulation in seed coat and embryo tissues, with little enhancement observed in the endosperm. However, seed yield was affected in some vitamin B6 -enhanced lines. Notably, expression of the transgenes did not affect the expression of the endogenous rice PDX genes. Intriguingly, despite transgene expression in leaves and seeds, the corresponding proteins were only detectable in leaves and could not be observed in seeds, possibly pointing to a mode of regulation in this organ.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Jared B. Fudge
- Department of Botany and Plant BiologyUniversity of GenevaGeneva1211Switzerland
| | - Kuan‐Te Li
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Ting‐Ying Wu
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Takayuki Tohge
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
- Present address:
Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaNara630‐0192Japan
| | - Alisdair R. Fernie
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
| | - Boris Szurek
- IRDCiradUniversity of MontpellierIPMEMontpellier34394France
| | | | - Wilhelm Gruissem
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichung City40227Taiwan
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Plant Genetics LabTERRA Research and Teaching CentreGembloux Agro BioTechUniversity of LiègeGembloux5030Belgium
| |
Collapse
|
29
|
Kumar S, Palve A, Joshi C, Srivastava RK, Rukhsar. Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches. Heliyon 2019; 5:e01914. [PMID: 31338452 PMCID: PMC6579847 DOI: 10.1016/j.heliyon.2019.e01914] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022] Open
Abstract
Micronutrient malnutrition is an important issue in the developing countries especially in Asia and Africa where millions of school-going children and pregnant women are affected. Poor people are more exposed to risks of malnutrition and hidden hunger due to intake of carbohydrate rich but micronutrient deficient plant based food. The expansion of high yielding but micronutrient poor cultivars further intensified the malnutrition. The existing approaches viz., supplementation and food fortification of staple food with minerals and vitamins can address the issue of adequate nutrition security. But supplementation and fortification is neither feasible for each nutrient specially iron nor viable due to recurrent cost. Recently, genetic bio-fortification of crops is emerged as self-targeted and non-recurrent approach to address the micronutrient malnutrition. Most of the traditional breeding approaches were limited due to non-availability of enough genetic variation in the crossable genepools. Additionally, it also lacks the modulation of target gene expression underlying the micronutrient accumulation. At this juncture, genetic engineering based food biofortification is promising way to address the hidden hunger especially, where breeding is not rewarding due to lack of genetic variability. Genetic modification through gene technology is swift and accurate method to develop nutrient denser crops without any recurrent investment as compared to different strategies.
Collapse
Affiliation(s)
- Sushil Kumar
- Centre of Excellence in Agricultural Biotechnology, Anand Agricultural University, Anand, India
| | - Adinath Palve
- Centre of Excellence in Agricultural Biotechnology, Anand Agricultural University, Anand, India
| | - Chitra Joshi
- Centre of Excellence in Agricultural Biotechnology, Anand Agricultural University, Anand, India
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Rukhsar
- Centre of Excellence in Agricultural Biotechnology, Anand Agricultural University, Anand, India
| |
Collapse
|
30
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
31
|
Chandrasekaran M, Paramasivan M, Chun SC. Bacillus subtilis CBR05 induces Vitamin B6 biosynthesis in tomato through the de novo pathway in contributing disease resistance against Xanthomonas campestris pv. vesicatoria. Sci Rep 2019; 9:6495. [PMID: 31019197 PMCID: PMC6482200 DOI: 10.1038/s41598-019-41888-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/15/2019] [Indexed: 02/03/2023] Open
Abstract
Expression profiling for genes involved in Vitamin B6 (VitB6) biosynthesis was undertaken to delineate the involvement of de novo and salvage pathway induced by Bacillus subtilis CBR05 against, Xanthomonas campestris pv. vesicatoria in tomato. Pyridoxine biosynthesis (PDX) genes such as PDX1.2 and PDX1.3, were found to be overexpressed significantly at 72 hpi in B. subtilis and pyridoxine inoculated plants. Most significant upregulation was observed in the transcript profile of PDX1.3, which showed more than 12- fold increase in expression. Unfortunately, salt sensitive overlay4 (SOS4) profiling showed irregular expression which corroborates that SOS4 role in VitB6 biosynthesis needs further studies for deciphering a clear notion about their role in tomato. Antioxidant enzymes i.e., superoxide dismutase, catalase, polyphenol oxidase, and peroxidase activities clearly demonstrate escalation till 48 hpi and gets reduced in 72 hpi. Pot trials also confirm that B. subtilis compared to pyridoxine supplementation alone show plant disease resistance and elongated roots. The present study confirms that B. subtilis, as a versatile agent in eliciting induced systemic resistance regulated by de novo pathway as a model for plant defense against X. campestris pv. vesicatoria substantiated by VitB6 biosynthesis. Nevertheless, the study is preliminary and needs further evidence for affirming this phenomenon.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Manivannan Paramasivan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Se-Chul Chun
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
32
|
Wang Y, Zeng X, Xu Q, Mei X, Yuan H, Jiabu D, Sang Z, Nyima T. Metabolite profiling in two contrasting Tibetan hulless barley cultivars revealed the core salt-responsive metabolome and key salt-tolerance biomarkers. AOB PLANTS 2019; 11:plz021. [PMID: 31037214 PMCID: PMC6482114 DOI: 10.1093/aobpla/plz021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/27/2019] [Indexed: 05/18/2023]
Abstract
Salinity stress represents one of the most harmful abiotic stresses for agricultural productivity. Tibetan hulless barley is an important economic crop widely grown in highly stressful conditions in the Qinghai-Tibet Plateau and is often challenged by salinity stress. To investigate the temporal metabolic responses to salinity stress in hulless barley, we performed a widely targeted metabolomic analysis of 72 leaf samples from two contrasting cultivars. We identified 642 compounds 57 % of which were affected by salt stress in the two cultivars, principally amino acids and derivatives, organic acids, nucleotides, and derivatives and flavonoids. A total of 13 stress-related metabolites including piperidine, L-tryptophan, L-glutamic acid, L-saccharopine, L-phenylalanine, 6-methylcoumarin, cinnamic acid, inosine 5'-monophosphate, aminomalonic acid, 6-aminocaproic acid, putrescine, tyramine and abscisic acid (ABA) represent the core metabolome responsive to salinity stress in hulless barley regardless of the tolerance level. In particular, we found that the ABA signalling pathway is essential to salt stress response in hulless barley. The high tolerance of the cultivar 0119 is due to a metabolic reprogramming at key stress times. During the early salt stress stages (0-24 h), 0119 tended to save energy through reduced glycolysis, nucleotide metabolism and amino acid synthesis, while increased antioxidant compounds such as flavonoids. Under prolonged stress (48-72 h), 0119 significantly enhanced energy production and amino acid synthesis. In addition, some important compatible solutes were strongly accumulated. By comparing the two cultivars, nine salt-tolerance biomarkers, mostly unreported salt-tolerance compounds in plants, were uncovered. Our study indicated that the salt tolerant hulless barley cultivar invokes a tolerance strategy which is conserved in other plant species. Overall, we provide for the first time some extensive metabolic data and some important salt-tolerance biomarkers which may assist in efforts to improve hulless barley tolerance to salinity stress.
Collapse
Affiliation(s)
- Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Qijun Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiao Mei
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Hongjun Yuan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dunzhu Jiabu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zha Sang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Tashi Nyima
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| |
Collapse
|
33
|
Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech 2019; 9:73. [PMID: 30800584 PMCID: PMC6368905 DOI: 10.1007/s13205-019-1613-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/02/2019] [Indexed: 10/27/2022] Open
Abstract
Silicon (Si) being considered as a non-essential element for plant growth and development finds its role in providing several benefits to the plant, especially under stress conditions. Thus, Si can be regarded as "multi-talented" quasi-essential element. It is the most abundant element present in the earth's crust after oxygen predominantly as a silicon dioxide (SiO2), a form plants cannot utilize. Plants take up Si into their root from the soil in the plant-available forms (PAF) such as silicic acid or mono silicic acid [Si(OH)4 or H4SiO4]. Nevertheless, besides being abundantly available, the PAF of Si in the soil is mostly a limiting factor. To improve Si-uptake and derived benefits therein in plants, understanding the molecular basis of Si-uptake and transport within the tissues has great importance. Numerous Si-transporters (influx and efflux) have been identified in both monocot and dicot plants. A difference in the root anatomy of both monocot and dicot plants leads to a difference in the Si-uptake mechanism. In the present review, Si-transporters identified in different species, their evolution and the Si-uptake mechanism have been addressed. Further, the role of Si in biotic and abiotic stress tolerance has been discussed. The information provided here will help to plan the research in a better way to develop more sustainable cropping system by harnessing Si-derived benefits.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K 190025 India
| | - Reetika Mahajan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, J&K 180009 India
| | - Javaid A. Bhat
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, J&K 180009 India
| | - Muslima Nazir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K 190025 India
| | - Rupesh Deshmukh
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab India
| |
Collapse
|
34
|
Dimerization misalignment in human glutamate-oxaloacetate transaminase variants is the primary factor for PLP release. PLoS One 2018; 13:e0203889. [PMID: 30208107 PMCID: PMC6135512 DOI: 10.1371/journal.pone.0203889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022] Open
Abstract
The active form of vitamin B6, pyridoxal 5’-phosphate (PLP), plays an essential role in the catalytic mechanism of various proteins, including human glutamate-oxaloacetate transaminase (hGOT1), an important enzyme in amino acid metabolism. A recent molecular and genetic study showed that the E266K, R267H, and P300L substitutions in aspartate aminotransferase, the Arabidopsis analog of hGOT1, genetically suppress a developmentally arrested Arabidopsis RUS mutant. Furthermore, CD analyses suggested that the variants exist as apo proteins and implicated a possible role of PLP in the regulation of PLP homeostasis and metabolic pathways. In this work, we assessed the stability of PLP bound to hGOT1 for the three variant and wildtype (WT) proteins using a combined 6 μs of molecular dynamics (MD) simulation. For the variants and WT in the holo form, the MD simulations reproduced the “closed-open” transition needed for substrate binding. This conformational transition was associated with the rearrangement of the P15-R32 small domain loop providing substrate access to the R387/R293 binding motif. We also showed that formation of the dimer interface is essential for PLP affinity to the active site. The position of PLP in the WT binding site was stabilized by a unique hydrogen bond network of the phosphate binding cup, which placed the cofactor for formation of the covalent Schiff base linkage with K259 for catalysis. The amino acid substitutions at positions 266, 267, and 300 reduced the structural correlation between PLP and the protein active site and/or integrity of the dimer interface. Principal component analysis and energy decomposition clearly suggested dimer misalignment and dissociation for the three variants tested in our work. The low affinity of PLP in the hGOT1 variants observed in our computational work provided structural rationale for the possible role of vitamin B6 in regulating metabolic pathways.
Collapse
|
35
|
Mateos R, García-Zafra A, Vera-López S, San Andrés MP, Díez-Pascual AM. Effect of Graphene Flakes Modified by Dispersion in Surfactant Solutions on the Fluorescence Behaviour of Pyridoxine. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E888. [PMID: 29799471 PMCID: PMC6025388 DOI: 10.3390/ma11060888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 11/16/2022]
Abstract
The influence of graphene (G) dispersions in different types of surfactants (anionic, non-ionic, and cationic) on the fluorescence of vitamin B₆ (pyridoxine) was studied. Scanning electron microscopy (SEM) was used to evaluate the quality of the G dispersions via measuring their flake thickness. The effect of surfactant type and concentration on the fluorescence intensity was analyzed, and fluorescence quenching effects were found for all of the systems. These turn out to be more intense with increasing both surfactant and G concentrations, albeit they do not depend on the G/surfactant weight ratio. For the same G concentration, the magnitude of the quenching follows the order: cationic > non-ionic ≥ anionic. The cationic surfactants, which strongly adsorb onto G via electrostatic attraction, are the most effective dispersing agents and they enable a stronger interaction with the zwitterionic form of the vitamin; the dispersing power improves with increasing the surfactant chain length. The fit of the experimental data to the Stern-Volmer equation suggests either a static or dynamic quenching mechanism for the dispersions in non-ionic surfactants, while those in ionic surfactants show a combined mechanism. The results that were obtained herein have been compared to those that were reported earlier for the quenching of another vitamin, riboflavin, to elucidate how the change in the vitamin structure influences the interactions with G in the surfactant dispersions.
Collapse
Affiliation(s)
- Rocío Mateos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
| | - Alba García-Zafra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
| | - Soledad Vera-López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
| | - María Paz San Andrés
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ana María Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
- Institute of Chemistry Research, "Andrés M. del Río" (IQAR), University of Alcalá, Ctra. Madrid Barcelona, Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
36
|
Vitamin B6 biosynthetic genes expression and antioxidant enzyme properties in tomato against, Erwinia carotovora subsp. carotovora. Int J Biol Macromol 2018; 116:31-36. [PMID: 29738862 DOI: 10.1016/j.ijbiomac.2018.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
Vitamin B6 (VitB6) is an essential cofactor for >140 biochemical reactions. Also, VitB6 is a potent antioxidant and helps plants cope with both biotic and abiotic stress conditions. However, the role of VitB6 in plant disease resistance has yet to be confirmed using molecular biology approaches. Here, we analyzed the expression patterns of VitB6 biosynthetic genes, including the de novo (PDX1 [PDX1.2 and 1.3] and PDX2) and the salvage (SOS4) pathways during the response to Erwinia carotovora subsp. carotovora. By quantitative PCR, we found that the most significant upregulation in the transcript profile of PDX2, which showed a 9.2-fold increase in expression at 12 h post inoculation (hpi) compared to 24-48 hpi. We also detected significant upregulation of PDX1.2 and PDX1.3, which were 6.6- and 4.3-fold upregulated at 24 hpi compared to 12 hpi, while SOS4 showed only low-level expression. Also, at 24 hpi, a significant increase in superoxide dismutase, catalase, peroxidase, and polyphenol oxidase activities was observed in plants. Our findings confirm that the expression of de novo and salvage pathway genes is induced by E. carotovora and that this plays an important role in the regulation of defense response by modulating cellular antioxidant capacity.
Collapse
|
37
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
38
|
Samsatly J, Copley TR, Jabaji SH. Antioxidant genes of plants and fungal pathogens are distinctly regulated during disease development in different Rhizoctonia solani pathosystems. PLoS One 2018; 13:e0192682. [PMID: 29466404 PMCID: PMC5821333 DOI: 10.1371/journal.pone.0192682] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022] Open
Abstract
Biotic stress, as a result of plant-pathogen interactions, induces the accumulation of reactive oxygen species in the cells, causing severe oxidative damage to plants and pathogens. To overcome this damage, both the host and pathogen have developed antioxidant systems to quench excess ROS and keep ROS production and scavenging systems under control. Data on ROS-scavenging systems in the necrotrophic plant pathogen Rhizoctonia solani are just emerging. We formerly identified vitamin B6 biosynthetic machinery of R. solani AG3 as a powerful antioxidant exhibiting a high ability to quench ROS, similar to CATALASE (CAT) and GLUTATHIONE S-TRANSFERASE (GST). Here, we provide evidence on the involvement of R. solani vitamin B6 biosynthetic pathway genes; RsolPDX1 (KF620111.1), RsolPDX2 (KF620112.1), and RsolPLR (KJ395592.1) in vitamin B6 de novo biosynthesis by yeast complementation assays. Since gene expression studies focusing on oxidative stress responses of both the plant and the pathogen following R. solani infection are very limited, this study is the first coexpression analysis of genes encoding vitamin B6, CAT and GST in plant and fungal tissues of three pathosystems during interaction of different AG groups of R. solani with their respective hosts. The findings indicate that distinct expression patterns of fungal and host antioxidant genes were correlated in necrotic tissues and their surrounding areas in each of the three R. solani pathosystems: potato sprout-R. solani AG3; soybean hypocotyl-R. solani AG4 and soybean leaves-R. solani AG1-IA interactions. Levels of ROS increased in all types of potato and soybean tissues, and in fungal hyphae following infection of R. solani AGs as determined by non-fluorescence and fluorescence methods using H2DCF-DA and DAB, respectively. Overall, we demonstrate that the co-expression and accumulation of certain plant and pathogen ROS-antioxidant related genes in each pathosystem are highlighted and might be critical during disease development from the plant's point of view, and in pathogenicity and developing of infection structures from the fungal point of view.
Collapse
Affiliation(s)
- Jamil Samsatly
- Plant Science Department, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Tanya R. Copley
- Plant Science Department, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Suha H. Jabaji
- Plant Science Department, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Canada
| |
Collapse
|
39
|
Fudge J, Mangel N, Gruissem W, Vanderschuren H, Fitzpatrick TB. Rationalising vitamin B6 biofortification in crop plants. Curr Opin Biotechnol 2017; 44:130-137. [DOI: 10.1016/j.copbio.2016.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
|
40
|
Strobbe S, Van Der Straeten D. Folate biofortification in food crops. Curr Opin Biotechnol 2017; 44:202-211. [DOI: 10.1016/j.copbio.2016.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/09/2016] [Accepted: 12/17/2016] [Indexed: 10/19/2022]
|
41
|
Jiang L, Wang W, Lian T, Zhang C. Manipulation of Metabolic Pathways to Develop Vitamin-Enriched Crops for Human Health. FRONTIERS IN PLANT SCIENCE 2017; 8:937. [PMID: 28634484 PMCID: PMC5460589 DOI: 10.3389/fpls.2017.00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/19/2017] [Indexed: 05/22/2023]
Abstract
Vitamin deficiencies are major forms of micronutrient deficiencies, and are associated with huge economic losses as well as severe physical and intellectual damages to humans. Much evidence has demonstrated that biofortification plays an important role in combating vitamin deficiencies due to its economical and effective delivery of nutrients to populations in need. Biofortification enables food plants to be enriched with vitamins through conventional breeding and/or biotechnology. Here, we focus on the progress in the manipulation of the vitamin metabolism, an essential part of biofortification, by the genetic modification or by the marker-assisted selection to understand mechanisms underlying metabolic improvement in food plants. We also propose to integrate new breeding technologies with metabolic pathway modification to facilitate biofortification in food plants and, thereby, to benefit human health.
Collapse
Affiliation(s)
- Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Facility for Crop Gene Resources and Genetic ImprovementBeijing, China
- *Correspondence: Ling Jiang, Chunyi Zhang,
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Facility for Crop Gene Resources and Genetic ImprovementBeijing, China
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Facility for Crop Gene Resources and Genetic ImprovementBeijing, China
- *Correspondence: Ling Jiang, Chunyi Zhang,
| |
Collapse
|
42
|
Hanson AD, Beaudoin GA, McCarty DR, Gregory JF. Does Abiotic Stress Cause Functional B Vitamin Deficiency in Plants? PLANT PHYSIOLOGY 2016; 172:2082-2097. [PMID: 27807106 PMCID: PMC5129723 DOI: 10.1104/pp.16.01371] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/19/2016] [Indexed: 05/20/2023]
Abstract
B vitamins are the precursors of essential metabolic cofactors but are prone to destruction under stress conditions. It is therefore a priori reasonable that stressed plants suffer B vitamin deficiencies and that certain stress symptoms are metabolic knock-on effects of these deficiencies. Given the logic of these arguments, and the existence of data to support them, it is a shock to realize that the roles of B vitamins in plant abiotic stress have had minimal attention in the literature (100-fold less than hormones) and continue to be overlooked. In this article, we therefore aim to explain the connections among B vitamins, enzyme cofactors, and stress conditions in plants. We first outline the chemistry and biochemistry of B vitamins and explore the concept of vitamin deficiency with the help of information from mammals. We then summarize classical and recent evidence for stress-induced vitamin deficiencies and for plant responses that counter these deficiencies. Lastly, we consider potential implications for agriculture.
Collapse
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Guillaume A Beaudoin
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Donald R McCarty
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Jesse F Gregory
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| |
Collapse
|
43
|
Rosenberg J, Ischebeck T, Commichau FM. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol Adv 2016; 35:31-40. [PMID: 27890703 DOI: 10.1016/j.biotechadv.2016.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Vitamin B6 is a designation for the six vitamers pyridoxal, pyridoxine, pyridoxamine, pyridoxal 5'-phosphate (PLP), pyridoxine 5'-phosphate, and pyridoxamine. PLP, being the most important B6 vitamer, serves as a cofactor for many proteins and enzymes. In contrast to other organisms, animals and humans have to ingest vitamin B6 with their food. Several disorders are associated with vitamin B6 deficiency. Moreover, pharmaceuticals interfere with metabolism of the cofactor, which also results in vitamin B6 deficiency. Therefore, vitamin B6 is a valuable compound for the pharmaceutical and the food industry. Although vitamin B6 is currently chemically synthesized, there is considerable interest on the industrial side to shift from chemical processes to sustainable fermentation technologies. Here, we review recent findings regarding biosynthesis and homeostasis of vitamin B6 and describe the approaches that have been made in the past to develop microbial production processes. Moreover, we will describe novel routes for vitamin B6 biosynthesis and discuss their potential for engineering bacteria that overproduce the commercially valuable substance. We also highlight bottlenecks of the vitamin B6 biosynthetic pathways and propose strategies to circumvent these limitations.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University of Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
44
|
Prunetti L, El Yacoubi B, Schiavon CR, Kirkpatrick E, Huang L, Bailly M, El Badawi-Sidhu M, Harrison K, Gregory JF, Fiehn O, Hanson AD, de Crécy-Lagard V. Evidence that COG0325 proteins are involved in PLP homeostasis. MICROBIOLOGY-SGM 2016; 162:694-706. [PMID: 26872910 DOI: 10.1099/mic.0.000255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for nearly 60 Escherichia coli enzymes but is a highly reactive molecule that is toxic in its free form. How PLP levels are regulated and how PLP is delivered to target enzymes are still open questions. The COG0325 protein family belongs to the fold-type III class of PLP enzymes and binds PLP but has no known biochemical activity although it occurs in all kingdoms of life. Various pleiotropic phenotypes of the E. coli COG0325 (yggS) mutant have been reported, some of which were reproduced and extended in this study. Comparative genomic, genetic and metabolic analyses suggest that these phenotypes reflect an imbalance in PLP homeostasis. The E. coli yggS mutant accumulates the PLP precursor pyridoxine 5'-phosphate (PNP) and is sensitive to an excess of pyridoxine but not of pyridoxal. The pyridoxine toxicity phenotype is complemented by the expression of eukaryotic yggS orthologs. It is also suppressed by the presence of amino acids, specifically isoleucine, threonine and leucine, suggesting the PLP-dependent enzyme transaminase B (IlvE) is affected. These genetic results lay a foundation for future biochemical studies of the role of COG0325 proteins in PLP homeostasis.
Collapse
Affiliation(s)
- Laurence Prunetti
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Cara R Schiavon
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ericka Kirkpatrick
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lili Huang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Marc Bailly
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Mona El Badawi-Sidhu
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, USA
| | - Katherine Harrison
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jesse F Gregory
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, USA
| | - Andrew D Hanson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Samsatly J, Chamoun R, Gluck-Thaler E, Jabaji S. Genes of the de novo and Salvage Biosynthesis Pathways of Vitamin B6 are Regulated under Oxidative Stress in the Plant Pathogen Rhizoctonia solani. Front Microbiol 2016; 6:1429. [PMID: 26779127 PMCID: PMC4700284 DOI: 10.3389/fmicb.2015.01429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022] Open
Abstract
Vitamin B6 is recognized as an important cofactor required for numerous metabolic enzymes, and has been shown to act as an antioxidant and play a role in stress responses. It can be synthesized through two different routes: salvage and de novo pathways. However, little is known about the possible function of the vitamin B6 pathways in the fungal plant pathogen Rhizoctonia solani. Using genome walking, the de novo biosynthetic pathway genes; RsolPDX1 and RsolPDX2 and the salvage biosynthetic pathway gene, RsolPLR were sequenced. The predicted amino acid sequences of the three genes had high degrees of similarity to other fungal PDX1, PDX2, and PLR proteins and are closely related to other R. solani anastomosis groups. We also examined their regulation when subjected to reactive oxygen species (ROS) stress inducers, the superoxide generator paraquat, or H2O2, and compared it to the well-known antioxidant genes, catalase and glutathione-S-transferase (GST). The genes were differentially regulated with transcript levels as high as 33 fold depending on the gene and type of stress reflecting differences in the type of damage induced by ROS. Exogenous addition of the vitamers PN or PLP in culture medium significantly induced the transcription of the vitamin B6 de novo encoding genes as early as 0.5 hour post treatment (HPT). On the other hand, transcription of RsolPLR was vitamer-specific; a down regulation upon supplementation of PN and upregulation with PLP. Our results suggest that accumulation of ROS in R. solani mycelia is linked to transcriptional regulation of the three genes and implicate the vitamin B6 biosynthesis machinery in R. solani, similar to catalases and GST, as an antioxidant stress protector against oxidative stress.
Collapse
Affiliation(s)
- Jamil Samsatly
- Department of Plant Science, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Rony Chamoun
- Department of Plant Science, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | | | - Suha Jabaji
- Department of Plant Science, McGill University Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
46
|
Rusaczonek A, Czarnocka W, Kacprzak S, Witoń D, Ślesak I, Szechyńska-Hebda M, Gawroński P, Karpiński S. Role of phytochromes A and B in the regulation of cell death and acclimatory responses to UV stress in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6679-95. [PMID: 26385378 PMCID: PMC4623682 DOI: 10.1093/jxb/erv375] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants coordinate their responses to various biotic and abiotic stresses in order to optimize their developmental and acclimatory programmes. The ultimate response to an excessive amount of stress is local induction of cell death mechanisms. The death of certain cells can help to maintain tissue homeostasis and enable nutrient remobilization, thus increasing the survival chances of the whole organism in unfavourable environmental conditions. UV radiation is one of the environmental factors that negatively affects the photosynthetic process and triggers cell death. The aim of this work was to evaluate a possible role of the red/far-red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) and their interrelations during acclimatory responses to UV stress. We showed that UV-C treatment caused a disturbance in photosystem II and a deregulation of photosynthetic pigment content and antioxidant enzymes activities, followed by increased cell mortality rate in phyB and phyAB null mutants. We also propose a regulatory role of phyA and phyB in CO2 assimilation, non-photochemical quenching, reactive oxygen species accumulation and salicylic acid content. Taken together, our results suggest a novel role of phytochromes as putative regulators of cell death and acclimatory responses to UV.
Collapse
Affiliation(s)
- Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, Warsaw, 02-776 Poland
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, Warsaw, 02-776 Poland Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Sylwia Kacprzak
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, Warsaw, 02-776 Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, Warsaw, 02-776 Poland
| | - Ireneusz Ślesak
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, Warsaw, 02-776 Poland The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-239 Krakow, Poland
| | - Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, Warsaw, 02-776 Poland The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-239 Krakow, Poland
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, Warsaw, 02-776 Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, Warsaw, 02-776 Poland
| |
Collapse
|
47
|
Li KT, Moulin M, Mangel N, Albersen M, Verhoeven-Duif NM, Ma Q, Zhang P, Fitzpatrick TB, Gruissem W, Vanderschuren H. Increased bioavailable vitamin B6 in field-grown transgenic cassava for dietary sufficiency. Nat Biotechnol 2015; 33:1029-32. [DOI: 10.1038/nbt.3318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Zhang Y, Jin X, Ouyang Z, Li X, Liu B, Huang L, Hong Y, Zhang H, Song F, Li D. Vitamin B6 contributes to disease resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:21-5. [PMID: 25460872 DOI: 10.1016/j.jplph.2014.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/26/2014] [Accepted: 06/24/2014] [Indexed: 05/06/2023]
Abstract
Vitamin B6 (VB6) is an important cofactor for numerous enzymatic reactions and plays an important role in abiotic stress tolerance. However, direct molecular evidence supporting a role for VB6 in plant disease resistance remains lacking. In this study, we explored the possible function of VB6 in disease resistance by analyzing disease phenotypes of Arabidopsis mutants with defects in de novo biosynthetic pathway and salvage pathway of VB6 biosynthesis against Pseudomonas syringae pv. tomato (Pst) DC3000 and Botrytis cinerea. Mutations in AtPDX1.2 and AtPDX1.3 genes involved in the de novo pathway, and in AtSOS4 gene involved in the salvage pathway led to increased levels of diseases caused by Pst DC3000 and B. cinerea. The pdx1.2 and pdx1.3 plants had reduced VB6 contents and showed a further reduction in VB6 contents after infection by Pst DC3000 or B. cinerea. Our preliminary results suggest an important role for VB6 in plant disease resistance against different types of pathogens.
Collapse
Affiliation(s)
- Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoyi Jin
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bo Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
49
|
Miret JA, Munné-Bosch S. Redox signaling and stress tolerance in plants: a focus on vitamin E. Ann N Y Acad Sci 2015; 1340:29-38. [PMID: 25586886 DOI: 10.1111/nyas.12639] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plants are subject to specific redox processes, in which photosynthesis plays a prominent role. Chloroplasts function in light at high oxygen tensions and are enormous generators of reactive oxygen species, mainly singlet oxygen. This side product of photosynthesis inflicts damage to thylakoid membranes at high concentrations, but at the same time it is an essential component of cellular signaling. Detoxification of singlet oxygen is achieved by different means, including quenching and scavenging by tocopherols, responsible for controlling singlet oxygen levels, and the extent of lipid peroxidation in chloroplasts. Here, environmental conditions leading to excess light in chloroplasts will be used to show the importance of singlet oxygen, tocopherols, and lipid peroxidation in cell signaling. Defects in antioxidant protection (e.g., tocopherol deficiency) can lead to increased photo-oxidative damage, but also to the activation of defense pathways, illustrating the phenotypic plasticity evolved by plants to withstand stress. Most importantly, these studies show how redox signaling processes are integrated within the cell and illustrate the great capacity of plants to adapt to their environment.
Collapse
Affiliation(s)
- Javier A Miret
- Plant Biology Department, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
50
|
Zhang Y, Liu B, Li X, Ouyang Z, Huang L, Hong Y, Zhang H, Li D, Song F. The de novo biosynthesis of vitamin B6 is required for disease resistance against Botrytis cinerea in tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:688-99. [PMID: 24678833 DOI: 10.1094/mpmi-01-14-0020-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vitamin B6 (VB6), an essential cofactor for numerous metabolic enzymes, has recently been shown to act as a potent antioxidant and play important roles in developmental processes and stress responses. However, little is known about the possible function of VB6 in plant disease resistance response against pathogen infection. In the present study, we explored the possible involvement of VB6 in defense response against Botrytis cinerea through functional analysis of tomato VB6 biosynthetic genes. Three de novo VB6 biosynthetic genes (SlPDX1.2, SlPDX1.3, and SlPDX2) and one salvage pathway gene (SlSOS4) were identified and the SlPDX1.2, SlPDX1.3, and SlPDX2 genes were shown to encode functional enzymes involved in de novo biosynthesis of VB6, as revealed by complementation of the VB6 prototrophy in yeast snz1 and sno1 mutants. Expression of SlPDX1.2, SlPDX1.3, and SlSOS4 genes was induced by infection with B. cinerea. Virus-induced gene silencing-mediated knockdown of SlPDX1.2 or SlPDX1.3 but not SlPDX2 and SlSOS4 led to increased severity of disease caused by B. cinerea, indicating that the VB6 de novo biosynthetic pathway but not the salvage pathway is involved in tomato defense response against B. cinerea. Furthermore, the SlPDX1.2- and SlPDX1.3-silenced tomato plants exhibited reduced levels of VB6 contents and reactive oxygen species scavenging capability, increased levels of superoxide anion and H2O2 generation, and increased activity of superoxide dismutase after infection by B. cinerea. Our results suggest that VB6 and its de novo biosynthetic pathway play important roles in regulation of defense response against B. cinerea through modulating cellular antioxidant capacity.
Collapse
|