1
|
Pérez ÁJ, Pérez-Zabala JA, Romoleroux K, Espinel-Ortiz DA, Romoleroux C, Albán-Vallejo N. A new cherry species ( Prunus, Rosaceae) from south-western Ecuador. PHYTOKEYS 2025; 255:23-34. [PMID: 40226446 PMCID: PMC11992535 DOI: 10.3897/phytokeys.255.151041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025]
Abstract
Prunusluxurians, a new species from Buenaventura Reserve at El Oro province in Ecuador is described and illustrated. Additionally, notes on its geographical distribution, ecology, conservation status, and taxonomic affinities are documented. Prunusluxurians has some vegetative and floral similarities with other Andean species, but the unique combination of oblong-lanceolate leaves with prominent secondary and tertiary veins, densiflorous floriferous shoots less than 5 cm long, sepals with two marginal glands and flowers with turbinate hypanthium clearly differentiates it from the rest. This is the first species of Prunus described from the western flank at elevation below 1500 m, and particularly from a humid spot surrounded by dry areas (Tumbesian influence). Other taxonomic novelties of Prunus on this flank can be expected, so further botanical exploration is needed to better understand the diversity of the genus in the region.
Collapse
Affiliation(s)
- Álvaro J. Pérez
- Herbario QCA, Laboratorio de Botánica Sistemática, Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, 170525, Quito, EcuadorPontificia Universidad Católica del EcuadorQuitoEcuador
| | - Jorge Andrés Pérez-Zabala
- Herbario Gabriel Gutiérrez Villegas (MEDEL) y Semillero de estudios taxonómicos de plantas de Colombia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra 65, 59A-110, Medellín, ColombiaUniversidad Nacional de ColombiaMedellínColombia
| | - Katya Romoleroux
- Herbario QCA, Laboratorio de Botánica Sistemática, Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, 170525, Quito, EcuadorPontificia Universidad Católica del EcuadorQuitoEcuador
| | - David A. Espinel-Ortiz
- Herbario QCA, Laboratorio de Botánica Sistemática, Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, 170525, Quito, EcuadorPontificia Universidad Católica del EcuadorQuitoEcuador
- Bonn Institute of Organismic Biodiversity, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, GermanyUniversity of BonnBonnGermany
| | - Chaquira Romoleroux
- Herbario QCA, Laboratorio de Botánica Sistemática, Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, 170525, Quito, EcuadorPontificia Universidad Católica del EcuadorQuitoEcuador
| | - Natasha Albán-Vallejo
- Herbario QCA, Laboratorio de Botánica Sistemática, Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, 170525, Quito, EcuadorPontificia Universidad Católica del EcuadorQuitoEcuador
| |
Collapse
|
2
|
Hu Z, Shan D, Wang C, Bai Y, Yan T, Zhang T, Song H, Li R, Zhao Y, Deng Q, Dai C, Xiao P, Dong S, Kong J. The MdWRKY17 positively regulates nitrate uptake by promoting MdNRT2.5 expression under long-term low N stress in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112402. [PMID: 39892709 DOI: 10.1016/j.plantsci.2025.112402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Nitrogen (N) supply is critical for apple yield and quality. Improving nitrogen use efficiency (NUE) could reduce fertilizer application for maintaining apple yield at the cost of environmental pollution in infertile soil. The molecular mechanisms underlying nitrate (NO3-) uptake are foundational for breeding high NUE cultivars. The two-month low N treatment mimicking infertile soil dramatically induced the accumulation of transcription factor MdWRKY17 in apple. Overexpression of MdWRKY17 conferred enhanced long-term low nitrogen tolerance in transgenic apple plants and calli, while RNA interference of MdWRKY17 reduced this tolerance. MdNRT2.5 encoding a high-affinity nitrate transporter was identified by chromatin immunoprecipitation sequencing (ChIP-seq) as the direct target of MdWRKY17. This is confirmed by in vitro EMSA and in vivo ChIP-qPCR assay. Notably, overexpression of MdNRT2.5 increased NO3- uptake under long-term N-deficiency conditions. RNA interference of MdNRT2.5 in roots decreased NO3- uptake efficiency of MdWRKY17-OE transgenic apple plants, indicating that MdWRKY17 improves NO3- uptake mainly by activating MdNRT2.5 expression. Our study identified an important MdWRKY17-MdNRT2.5 module in response to long-term low N stress, which will contribute to the molecular breeding of high NUE apple cultivars.
Collapse
Affiliation(s)
- Zehui Hu
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Tong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Handong Song
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ruoxue Li
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yixuan Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Qian Deng
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Changjian Dai
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Peiyun Xiao
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Silong Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Schnablová R, Bartušková A, Horčičková E, Šmarda P, Klimešová J, Herben T. Diversity and functional differentiation of renewal buds in temperate herbaceous plants. THE NEW PHYTOLOGIST 2024; 244:292-306. [PMID: 39135384 DOI: 10.1111/nph.20042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/16/2024] [Indexed: 09/17/2024]
Abstract
Spring regrowth in temperate perennials relies on renewal buds, which form a key component in the shoot growth cycle. Still, we possess almost no information on these renewal buds, which is becoming more pressing with the current climate change. Most existing studies concentrated on easy-to-study aboveground buds of woody plants, whose morphology has largely been linked to frost protection. It is not clear to what extent these findings apply also to herbaceous species. We therefore examined protective traits and preformation of winter renewal buds in 379 species of temperate herbs, and tested how these traits are distributed across the phylogeny and related to other bud bank and whole-plant traits. We identified a major gradient from few, large, highly preformed, scale-covered buds associated with larger belowground storage organs deep in the soil, to small, numerous, less preformed, and naked buds near the soil surface. Belowground renewal buds of temperate herbs show several distinct strategies for winter survival and spring regrowth that might affect their response to changing winter and early spring conditions. Renewal bud traits are driven not only by frost protection but also by protection of the apical meristem from mechanical disturbance in the soil.
Collapse
Affiliation(s)
- Renáta Schnablová
- Institute of Botany of the Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| | - Alena Bartušková
- Institute of Botany of the Czech Academy of Sciences, Třeboň, 379 01, Czech Republic
| | - Eva Horčičková
- Faculty of Environment, University of J.E. Purkyně in Ústí nad Labem, 40096, Ústí nad Labem, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Jitka Klimešová
- Institute of Botany of the Czech Academy of Sciences, Třeboň, 379 01, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Praha 2, 128 43, Czech Republic
| | - Tomáš Herben
- Institute of Botany of the Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Praha 2, 128 43, Czech Republic
| |
Collapse
|
4
|
Lan G, Wu M, Zhang Q, Yuan B, Shi G, Zhu N, Zheng Y, Cao Q, Qiao Q, Zhang T. Transcriptomic and Physiological Analyses for the Role of Hormones and Sugar in Axillary Bud Development of Wild Strawberry Stolon. PLANTS (BASEL, SWITZERLAND) 2024; 13:2241. [PMID: 39204677 PMCID: PMC11359144 DOI: 10.3390/plants13162241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Strawberries are mainly propagated by stolons, which can be divided into monopodial and sympodial types. Monopodial stolons consistently produce ramets at each node following the initial single dormant bud, whereas sympodial stolons develop a dormant bud before each ramet. Sympodial stolon encompasses both dormant buds and ramet buds, making it suitable for studying the formation mechanism of different stolon types. In this study, we utilized sympodial stolons from Fragaria nilgerrensis as materials and explored the mechanisms underlying sympodial stolon development through transcriptomic and phytohormonal analyses. The transcriptome results unveiled that auxin, cytokinin, and sugars likely act as main regulators. Endogenous hormone analysis revealed that the inactivation of auxin could influence bud dormancy. Exogenous cytokinin application primarily induced dormant buds to develop into secondary stolons, with the proportion of ramet formation being very low, less than 10%. Furthermore, weighted gene co-expression network analysis identified key genes involved in ramet formation, including auxin transport and response genes, the cytokinin activation gene LOG1, and glucose transport genes SWEET1 and SFP2. Consistently, in vitro cultivation experiments confirmed that glucose enhances the transition of dormant buds into ramets within two days. Collectively, cytokinin and glucose act as dormant breakers, with cytokinin mainly driving secondary stolon formation and glucose promoting ramet generation. This study improved our understanding of stolon patterning and bud development in the sympodial stolon of strawberries.
Collapse
Affiliation(s)
- Genqian Lan
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Mingzhao Wu
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Qihang Zhang
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Bo Yuan
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Guangxin Shi
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Ni Zhu
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Yibingyue Zheng
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Qiang Cao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Ticao Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
López ME, Denoyes B, Bucher E. Epigenomic and transcriptomic persistence of heat stress memory in strawberry (Fragaria vesca). BMC PLANT BIOLOGY 2024; 24:405. [PMID: 38750420 PMCID: PMC11096098 DOI: 10.1186/s12870-024-05093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, Geneva, 1205, Switzerland
| | - Béatrice Denoyes
- INRAE, Biologie du Fruit et Pathologie, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland.
| |
Collapse
|
6
|
Gu J, Struik PC, Evers JB, Lertngim N, Lin R, Driever SM. Quantifying differences in plant architectural development between hybrid potato (Solanum tuberosum) plants grown from two types of propagules. ANNALS OF BOTANY 2024; 133:365-378. [PMID: 38099505 PMCID: PMC11005760 DOI: 10.1093/aob/mcad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND AND AIMS Plants can propagate generatively and vegetatively. The type of propagation and the resulting propagule can influence the growth of the plants, such as plant architectural development and pattern of biomass allocation. Potato is a species that can reproduce through both types of propagation: through true botanical seeds and seed tubers. The consequences of propagule type on the plant architectural development and biomass partitioning in potatoes are not well known. We quantified architectural differences between plants grown from these two types of propagules from the same genotype, explicitly analysing branching dynamics above and below ground, and related these differences to biomass allocation patterns. METHODS A greenhouse experiment was conducted, using potato plants of the same genotype but grown from two types of propagules: true seeds and seed tubers from a plant grown from true seed (seedling tuber). Architectural traits and biomass allocation to different organs were quantified at four developmental stages. Differences between true-seed-grown and seedling-tuber-grown plants were compared at the whole-plant level and at the level of individual stems and branches, including their number, size and location on the plant. KEY RESULTS A more branched and compact architecture was produced in true-seed-grown plants compared with seedling-tuber-grown plants. The architectural differences between plants grown from true seeds and seedling tubers appeared gradually and were attributed mainly to the divergent temporal-spatial distribution of lateral branches above and below ground on the main axis. The continual production of branches in true-seed-grown plants indicated their indeterminate growth habit, which was also reflected in a slower shift of biomass allocation from above- to below-ground branches, whereas the opposite trend was found in seedling-tuber-grown plants. CONCLUSIONS In true-seed-grown plants, lateral branching was stronger and determined whole-plant architecture and plant function with regard to light interception and biomass production, compared with seedling-tuber-grown plants. This different role of branching indicates that a difference in preference between clonal and sexual reproduction might exist. The divergent branching behaviours in true-seed-grown and seedling-tuber-grown plants might be regulated by the different intensity of apical dominance, which suggests that the control of branching can depend on the propagule type.
Collapse
Affiliation(s)
- Jiahui Gu
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Jochem B Evers
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Narawitch Lertngim
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Ruokai Lin
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| |
Collapse
|
7
|
Yang J, Song J, Jeong BR. Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:375. [PMID: 38337908 PMCID: PMC10857185 DOI: 10.3390/plants13030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The strawberry (Fragaria × ananassa Duch.) "Sulhyang" is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Mollman R, Çiftçi A, Kaleli BS, Erol O. Teasing out elevational trends in infraspecific Prunus taxa: A vein analysis approach. Microsc Res Tech 2023; 86:1699-1711. [PMID: 37642303 DOI: 10.1002/jemt.24409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Using 33 specimens collected from across their range in Turkey, we demonstrate that the subspecies of Prunus microcarpa C.A.Mey react very differently to altitude. We first outline a simplified, flexible protocol for sectioning and removing the epidermis of small, difficult-to-image leaves for leaf vein studies. We then used venation analysis software to evaluate the two subspecies of this wild cherry in relation to altitude. We also found key differences in venation features between short-shoot and long-shoot leaves for each taxon. Differences include statistically significant negative correlation between vein density, and positive correlation between areole area and altitude in long-shoot leaves of Prunus microcarpa subsp. microcarpa, while its short-shoot leaves had a positive relationship between maximum areole area, and negative relationship between vein density, numbers of veins and endpoints. Meanwhile, P. microcarpa subsp. tortuosa (Boiss. & Hausskn.) Browicz recorded trends that were largely opposite of this, but beside vein thickness and areole area, were not statistically significant. This difference may be part of each taxon's overarching syndrome of anatomical and morphological adaptations to its external environment. RESEARCH HIGHLIGHTS: Features of vein density and thickness fell, while areole area and vein length rose with altitude in P. microcarpa. P. microcarpa subsp. tortuosa showed opposite trends, but reacted less strongly to altitude. Short-shoot and long-shoot have significantly different venation parameters. Using sections proportionate to leaf size is useful to compare venation of leaves that vary due to dimorphism. We discuss protocol strategies for imaging of difficult leaves for venation analyses.
Collapse
Affiliation(s)
- Rachel Mollman
- Institute of Science, Biology Department, Istanbul University, Istanbul, Turkey
| | - Almıla Çiftçi
- Biology Department, Botany Division, Istanbul University, Istanbul, Turkey
- Leibniz Institute of Plant Genetics and Crop Research (IPK), Gatersleben, Germany
| | - Bilge S Kaleli
- Institute of Science, Biology Department, Istanbul University, Istanbul, Turkey
| | - Osman Erol
- Biology Department, Botany Division, Istanbul University, Istanbul, Turkey
| |
Collapse
|
9
|
Karami O, Mueller-Roeber B, Rahimi A. The central role of stem cells in determining plant longevity variation. PLANT COMMUNICATIONS 2023; 4:100566. [PMID: 36840355 PMCID: PMC10504568 DOI: 10.1016/j.xplc.2023.100566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Vascular plants display a huge variety of longevity patterns, from a few weeks for several annual species up to thousands of years for some perennial species. Understanding how longevity variation is structured has long been considered a fundamental aspect of the life sciences in view of evolution, species distribution, and adaptation to diverse environments. Unlike animals, whose organs are typically formed during embryogenesis, vascular plants manage to extend their life by continuously producing new tissues and organs in apical and lateral directions via proliferation of stem cells located within specialized tissues called meristems. Stem cells are the main source of plant longevity. Variation in plant longevity is highly dependent on the activity and fate identity of stem cells. Multiple developmental factors determine how stem cells contribute to variation in plant longevity. In this review, we provide an overview of the genetic mechanisms, hormonal signaling, and environmental factors involved in controlling plant longevity through long-term maintenance of stem cell fate identity.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| |
Collapse
|
10
|
Labadie M, Guy K, Demené MN, Caraglio Y, Heidsieck G, Gaston A, Rothan C, Guédon Y, Pradal C, Denoyes B. Spatio-temporal analysis of strawberry architecture: insights into the control of branching and inflorescence complexity. JOURNAL OF EXPERIMENTAL BOTANY 2023:7143673. [PMID: 37133320 DOI: 10.1093/jxb/erad097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
Plant architecture plays a major role in flowering and therefore in crop yield. Attempts to visualize and analyse strawberry plant architecture have been few to date. Here, we developed open-source software combining two- and three-dimensional representations of plant development over time along with statistical methods to explore the variability in spatio-temporal development of plant architecture in cultivated strawberry. We applied this software to six seasonal strawberry varieties whose plants were exhaustively described monthly at the node scale. Results showed that the architectural pattern of the strawberry plant is characterized by a decrease of the module complexity between the zeroth-order module (primary crown) and higher-order modules (lateral branch crowns and extension crowns). Furthermore, for each variety, we could identify traits with a central role in determining yield, such as date of appearance and number of branches. By modeling the spatial organization of axillary meristem fate on the zeroth-order module using a hidden hybrid Markov/semi-Markov mathematical model, we further identified three zones with different probabilities of production of branch crowns, dormant buds, or stolons. This open-source software will be of value to the scientific community and breeders in studying the influence of environmental and genetic cues on strawberry architecture and yield.
Collapse
Affiliation(s)
- Marc Labadie
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
| | - Karine Guy
- INVENIO, MIN de Brienne, 110 quai de Paludate, 33800 Bordeaux, France
| | | | - Yves Caraglio
- CIRAD, UMR AMAP and Université de Montpellier, 34398 Montpellier, France
| | - Gaetan Heidsieck
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
| | - Amelia Gaston
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
| | - Christophe Rothan
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
| | - Yann Guédon
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
| | - Christophe Pradal
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- Inria and LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
| |
Collapse
|
11
|
de Haldat du Lys A, Millan M, Barczi J, Caraglio Y, Midgley GF, Charles‐Dominique T. If self-shading is so bad, why is there so much? Short shoots reconcile costs and benefits. THE NEW PHYTOLOGIST 2023; 237:1684-1695. [PMID: 36427292 PMCID: PMC10107860 DOI: 10.1111/nph.18636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/19/2022] [Indexed: 05/29/2023]
Abstract
If trees minimize self-shading, new foliage in shaded parts of the crown should remain minimal. However, many species have abundant foliage on short shoots inside their crown. In this paper, we test the hypothesis that short shoots allow trees to densify their foliage in self-shaded parts of the crown thanks to reduced costs. Using 30 woody species in Mediterranean and tropical biomes, we estimated the contribution of short shoots to total plant foliage, calculated their costs relative to long shoots including wood cost and used 3D plant simulations calibrated with field measurements to quantify their light interception, self-shading and yield. In species with short shoots, leaves on short shoots account for the majority of leaf area. The reduced cost of short stems enables the production of leaf area with 36% less biomass. Simulations show that although short shoots are more self-shaded, they benefit the plant because they cost less. Lastly, the morphological properties of short shoots have major implications for whole plant architecture. Taken together, our results question the validity of only assessing leaf costs to understand leaf economics and call for more integrated observations at the crown scale to understand light capture strategies in woody plants.
Collapse
Affiliation(s)
| | - Mathieu Millan
- Centre for African Ecology, School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag X3 WITSJohannesburg2050South Africa
- Global Change Biology Group, Department of Botany and ZoologyStellenbosch UniversityPrivate Bag X1Matieland7602South Africa
- Institute of Botany of the Czech Academy of Sciencesv.v.i, Dukelská 135Třeboň379 01Czech Republic
| | | | - Yves Caraglio
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRDF‐34398MontpellierFrance
| | - Guy F. Midgley
- Global Change Biology Group, Department of Botany and ZoologyStellenbosch UniversityPrivate Bag X1Matieland7602South Africa
| | - Tristan Charles‐Dominique
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRDF‐34398MontpellierFrance
- CNRS UMR7618Institute of Ecology and Environmental Sciences Paris, Sorbonne University4 Place Jussieu75005ParisFrance
| |
Collapse
|
12
|
Mészáros M, Hnátková H, Čonka P, Lošák T, Náměstek J. Effect of spring nitrogen fertilization on bearing and branching behaviors of young apple trees. PLoS One 2023; 18:e0285194. [PMID: 37141246 PMCID: PMC10159155 DOI: 10.1371/journal.pone.0285194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
The total aboveground biomass production, nutritional status, bearing and branching behaviors of the central leader and one year old shoots of young apple trees have been analyzed. The shoots were further characterized according to the length, shoot demography, and the production of terminal and lateral flowers. All the characteristics are described in connection with nitrogen supply and cultivar. Nitrogen represents one of the major macronutrients involved in the growth and development of the fruit trees. The understanding of the effect of nitrogen supply for flower bud formation can be further improved by detailed analyses of tree architecture. While the biomass production was cultivar specific, the trees within particular cultivar were characterized by almost similar growth with respect to the nitrogen supply. Cultivar ´Rubinola´ exhibited similar branching pattern, but higher vigor than ´Topaz´. As a result of higher apical dominance, ´Rubinola´ produced higher proportion of long shoots, but a lower quality of short shoots than ´Topaz´. Consequently, cultivar ´Rubinola´ produced only few terminal flowers on short shoots and lateral flowers dominantly in the distal zone, while ´Topaz´ was characterized by intensive terminal flowering, but the lateral flowers were more abundant in the median zone. Even a lower dose of spring nitrogen improved the flower bud formation on both terminal and lateral positions extending the flowering zone on one-year-old shoots. This further changed the branching and bearing behavior of the apple trees, which particularly allows to optimize their fertilization management. However, this effect appears to be further regulated by mechanism connected with apical dominance.
Collapse
Affiliation(s)
- Martin Mészáros
- Department of Technology, Research and Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic
| | - Hana Hnátková
- Department of Technology, Research and Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic
| | - Patrik Čonka
- Department of Technology, Research and Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic
| | - Tomáš Lošák
- Mendel University in Brno, Brno, Czech Republic
| | - Jan Náměstek
- Department of Technology, Research and Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic
| |
Collapse
|
13
|
Belhassine F, Pallas B, Pierru-Bluy S, Martinez S, Fumey D, Costes E. A genotype-specific architectural and physiological profile is involved in the flowering regularity of apple trees. TREE PHYSIOLOGY 2022; 42:2306-2318. [PMID: 35951430 DOI: 10.1093/treephys/tpac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In polycarpic plants, meristem fate varies within individuals in a given year. In perennials, the proportion of floral induction (FI) in meristems also varies between consecutive years and among genotypes of a given species. Previous studies have suggested that FI of meristems could be determined by the within-plant competition for carbohydrates and by hormone signaling as key components of the flowering pathway. At the genotypic level, variability in FI was also associated with variability in architectural traits. However, the part of genotype-dependent variability in FI that can be explained by either tree architecture or tree physiology is still not fully understood. This study aimed at deciphering the respective effect of architectural and physiological traits on FI variability within apple trees by comparing six genotypes with contrasted architectures. Shoot type demography as well as the flowering and fruit production patterns were followed over 6 years and characterized by different indexes. Architectural morphotypes were then defined based on architectural traits using a clustering approach. For two successive years, non-structural starch content in leaf, stem and meristems, and hormonal contents (gibberellins, cytokinins, auxin and abscisic acid) in meristems were quantified and correlated to FI within-tree proportions. Based on a multi-step regression analysis, cytokinins and gibberellins content in meristem, starch content in leaves and the proportion of long shoots in tree annual growth were shown to contribute to FI. Although the predictive linear model of FI was common to all genotypes, each of the explicative variables had a different weight in FI determination, depending on the genotype. Our results therefore suggest both a common determination model and a genotype-specific architectural and physiological profile linked to its flowering behavior.
Collapse
Affiliation(s)
- Fares Belhassine
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
- ITK, 34830, Clapiers, France
| | - Benoît Pallas
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| | - Sylvie Pierru-Bluy
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| | - Sébastien Martinez
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| | | | - Evelyne Costes
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| |
Collapse
|
14
|
Liang J, Wu Z, Xu T, Li X, Jiang F, Wang H. Overexpression of HANABA TARANU in cultivated strawberry delays flowering and leads to defective flower and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111307. [PMID: 35696907 DOI: 10.1016/j.plantsci.2022.111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Cultivated strawberry is one of the most important horticultural crops in the world, and the fruit yields and economic benefits are largely dependent on the quality of floral initiation and floral organ development. However, the underlying regulatory mechanisms controlling these processes in strawberry are largely unknown. In this study, the function of a GATA transcription factor gene, HANABA TARANU (HAN), in floral initiation and floral organ development was characterized in strawberry. FaHAN is expressed in four whorls of the floral organs. Overexpression (OE) of FaHAN in the strawberry cultivar 'Benihoppe' delayed flowering by at least one week by affecting key genes, such as TERMINAL FLOWER 1, APETALA 1…and increased the number of runners. FaHAN-OE plants also showed malformed floral organs, especially the deformed stigmas with disordered arrangement. Several key genes for pistil apical development such as STYLISH, YUCCA 1, and auxin-related genes such as GH3.5, PIN-FORMED 1, which play important roles in pistil primordium development in many plant species, were all down-regulated in FaHAN-OE plants. Further observations showed that the fruit deformity rate was nearly 4-fold higher than in control plants. Together, this study provides a new approach for exploring floral initiation and floral organ development in strawberry.
Collapse
Affiliation(s)
- Jiahui Liang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Ze Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tengfei Xu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Xiaofeng Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Feng Jiang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Hongqing Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
15
|
Ge H, Li G, Wan S, Zhao A, Huang Y, Ma R, Zhang R, Song Y, Sha G. Whole genome re-sequencing and transcriptome reveal an alteration in hormone signal transduction in a more-branching mutant of apple. Gene 2022; 818:146214. [PMID: 35066064 DOI: 10.1016/j.gene.2022.146214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
Abstract
Branch number is an important trait in grafted apple breeding and cultivation. To provide new information on molecular mechanisms of apple branching, whole reduced-representation genomes and transcriptome of a wild-type (WT) apple (Malus spectabilis) and its more-branching (MB) mutant at the branching stage were examined in this study. Comparison of WT and MB genomes against the Malus domestica reference genome identified 14,908,939 single nucleotide polymorphisms (SNPs) and 173,315 insertions and deletions (InDels) in WT and 1,483,221 SNPs and 1,725,977 InDels in MB. Analysis of the genetic variation between MB and WT revealed 1,048,575 SNPs and 37,327 InDels. Among them, 24,303 SNPs and 891 InDels mapped to coding regions of 5,072 and 596 genes, respectively. GO and KEGG functional annotation of 3,846 and 944 genes, respectively, identified 32 variant genes related to plant hormone signal transduction that were involved in auxin, cytokinin, gibberellin, abscisic acid, ethylene, and brassinosteroid pathways. The transcriptome pathways of plant hormone signal transduction and zeatin biosynthesis were also significantly enriched during MB branching. Furthermore, transcriptome data suggested the regulatory roles of auxin signaling, increase of cytokinin and genes of cytokinin synthesis and signaling, and the suppressed abscisic acid signaling. Our findings suggest that branching development in apple is regulated by plant hormone signal transduction.
Collapse
Affiliation(s)
- Hongjuan Ge
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Guofang Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Shuwei Wan
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Aihong Zhao
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Yue Huang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Rongqun Ma
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Ruifen Zhang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Yongjun Song
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Guangli Sha
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| |
Collapse
|
16
|
Grisafi F, DeJong TM, Tombesi S. Fruit tree crop models: an update. TREE PHYSIOLOGY 2022; 42:441-457. [PMID: 34542149 DOI: 10.1093/treephys/tpab126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Functional structural plant models of tree crops are useful tools that were introduced more than two decades ago. They can represent the growth and development of a plant through the in silico simulation of the 3D architecture in connection with physiological processes. In tree crops, physiological processes such as photosynthesis, carbon allocation and growth are usually integrated into these models, although other functions such as water and nutrient uptake are often disregarded. The implementation of the 3D architecture involves different techniques such as L-system frameworks, pipe model concepts and Markovian models to simulate branching processes, bud fates and elongation of stems based on the production of metamers. The simulation of root architecture is still a challenge for researchers due to a limited amount of information and experimental issues in dealing with roots, because root development is not based on the production of metamers. This review aims to focus on functional-structural models of fruit tree crops, highlighting their physiological components. The potential and limits of these tools are reviewed to point out the topics that still need more attention.
Collapse
Affiliation(s)
- Francesca Grisafi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy
| | - Theodore M DeJong
- Department of Plant Sciences, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Sergio Tombesi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy
| |
Collapse
|
17
|
Fan G, Andrés J, Olbricht K, Koskela E, Hytönen T. Natural Variation in the Control of Flowering and Shoot Architecture in Diploid Fragaria Species. FRONTIERS IN PLANT SCIENCE 2022; 13:832795. [PMID: 35310677 PMCID: PMC8926021 DOI: 10.3389/fpls.2022.832795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In perennial fruit and berry crops of the Rosaceae family, flower initiation occurs in late summer or autumn after downregulation of a strong repressor TERMINAL FLOWER1 (TFL1), and flowering and fruiting takes place the following growing season. Rosaceous fruit trees typically form two types of axillary shoots, short flower-bearing shoots called spurs and long shoots that are, respectively, analogous to branch crowns and stolons in strawberry. However, regulation of flowering and shoot architecture differs between species, and environmental and endogenous controlling mechanisms have just started to emerge. In woodland strawberry (Fragaria vesca L.), long days maintain vegetative meristems and promote stolon formation by activating TFL1 and GIBBERELLIN 20-OXIDASE4 (GA20ox4), respectively, while silencing of these factors by short days and cool temperatures induces flowering and branch crown formation. We characterized flowering responses of 14 accessions of seven diploid Fragaria species native to diverse habitats in the northern hemisphere and selected two species with contrasting environmental responses, Fragaria bucharica Losinsk. and Fragaria nilgerrensis Schlecht. ex J. Gay for detailed studies together with Fragaria vesca. Similar to F. vesca, short days at 18°C promoted flowering in F. bucharica, and the species was induced to flower regardless of photoperiod at 11°C after silencing of TFL1. F. nilgerrensis maintained higher TFL1 expression level and likely required cooler temperatures or longer exposure to inductive treatments to flower. We also found that high expression of GA20ox4 was associated with stolon formation in all three species, and its downregulation by short days and cool temperature coincided with branch crown formation in F. vesca and F. nilgerrensis, although the latter did not flower. F. bucharica, in contrast, rarely formed branch crowns, regardless of flowering or GA20ox4 expression level. Our findings highlighted diploid Fragaria species as rich sources of genetic variation controlling flowering and plant architecture, with potential applications in breeding of Rosaceous crops.
Collapse
Affiliation(s)
- Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Klaus Olbricht
- Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elli Koskela
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
| |
Collapse
|
18
|
Abstract
Above-ground plant architecture is dictated to a large extent by the fates and growth rates of aerial plant meristems. Shoot apical meristem gives rise to the fundamental plant form by generating new leaves. However, the fates of axillary meristems located in leaf axils have a great influence on plant architecture and affect the harvest index, yield potential and cultural practices. Improving plant architecture by breeding facilitates denser plantations, better resource use efficiency and even mechanical harvesting. Knowledge of the genetic mechanisms regulating plant architecture is needed for precision breeding, especially for determining feasible breeding targets. Fortunately, research in many crop species has demonstrated that a relatively small number of genes has a large effect on axillary meristem fates. In this review, we select a number of important horticultural and agricultural plant species as examples of how changes in plant architecture affect the cultivation practices of the species. We focus specifically on the determination of the axillary meristem fate and review how plant architecture may change even drastically because of altered axillary meristem fate. We also explain what is known about the genetic and environmental control of plant architecture in these species, and how further changes in plant architectural traits could benefit the horticultural sector.
Collapse
|
19
|
Ma J, Xie L, Zhao Q, Sun Y, Zhang D. Cyclanilide Induces Lateral Bud Outgrowth by Modulating Cytokinin Biosynthesis and Signalling Pathways in Apple Identified via Transcriptome Analysis. Int J Mol Sci 2022; 23:ijms23020581. [PMID: 35054767 PMCID: PMC8776233 DOI: 10.3390/ijms23020581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclanilide (CYC), a plant growth regulator, is a potent shoot branching agent in apple. However, its mechanism remains unclear. The current study revealed that CYC treatment resulted in massive reprogramming of the axillary bud transcriptome, implicating several hormones in the response. We observed a marked increase (approximately 2-fold) in the level of zeatin riboside and a significant decrease (approximately 2-fold) in the level of abscisic acid (ABA). Zeatin metabolism gene cytokinin (CTK) oxidase 1 (CKX 1) was down-regulated at 168 h after CYC treatment compared with the control. Weighted gene co-expression network analysis of differentially expressed genes demonstrated the turquoise module clusters exhibited the highest positive correlation with zeatin riboside (r = 0.92) and the highest negative correlation with ABA (r = -0.8). A total of 37 genes were significantly enriched in the plant hormone signal transduction pathway in the turquoise module. Among them, the expressions of CTK receptor genes WOODEN LEG and the CTK type-A response regulators genes ARR3 and ARR9 were up-regulated. ABA signal response genes protein phosphatase 2C genes ABI2 and ABI5 were down-regulated in lateral buds after CYC treatment at 168 h. In addition, exogenous application of 6-benzylaminopurine (6-BA, a synthetic type of CTK) and CYC enhanced the inducing effect of CYC, whereas exogenous application of lovastatin (a synthetic type of inhibitor of CTK biosynthesis) or ABA and CYC weakened the promoting effect of CYC. These results collectively revealed that the stimulation of bud growth by CYC might involve CTK biosynthesis and signalling, including genes CKX1 and ARR3/9, which provided a direction for further study of the branching promoting mechanism of CYC.
Collapse
Affiliation(s)
| | | | | | | | - Dong Zhang
- Correspondence: ; Tel./Fax: +86-029-87082849
| |
Collapse
|
20
|
Andrés J, Caruana J, Liang J, Samad S, Monfort A, Liu Z, Hytönen T, Koskela EA. Woodland strawberry axillary bud fate is dictated by a crosstalk of environmental and endogenous factors. PLANT PHYSIOLOGY 2021; 187:1221-1234. [PMID: 34618090 PMCID: PMC8567079 DOI: 10.1093/plphys/kiab421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/26/2021] [Indexed: 05/18/2023]
Abstract
Plant architecture is defined by fates and positions of meristematic tissues and has direct consequences on yield potential and environmental adaptation of the plant. In strawberries (Fragaria vesca L. and F. × ananassa Duch.), shoot apical meristems can remain vegetative or differentiate into a terminal inflorescence meristem. Strawberry axillary buds (AXBs) are located in leaf axils and can either remain dormant or follow one of the two possible developmental fates. AXBs can either develop into stolons needed for clonal reproduction or into branch crowns (BCs) that can bear their own terminal inflorescences under favorable conditions. Although AXB fate has direct consequences on yield potential and vegetative propagation of strawberries, the regulation of AXB fate has so far remained obscure. We subjected a number of woodland strawberry (F. vesca L.) natural accessions and transgenic genotypes to different environmental conditions and growth regulator treatments to demonstrate that strawberry AXB fate is regulated either by environmental or endogenous factors, depending on the AXB position on the plant. We confirm that the F. vesca GIBBERELLIN20-oxidase4 (FvGA20ox4) gene is indispensable for stolon development and under tight environmental regulation. Moreover, our data show that apical dominance inhibits the outgrowth of the youngest AXB as BCs, although the effect of apical dominance can be overrun by the activity of FvGA20ox4. Finally, we demonstrate that the FvGA20ox4 is photoperiodically regulated via FvSOC1 (F. vesca SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) at 18°C, but at higher temperature of 22°C an unidentified FvSOC1-independent pathway promotes stolon development.
Collapse
Affiliation(s)
- Javier Andrés
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | - Julie Caruana
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742, USA
- American Society for Engineering Education, Washington, District of Columbia, USA
| | - Jiahui Liang
- Department of Fruit Science, College of Horticulture, China Agricultural University, China
| | - Samia Samad
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp SE-230 53, Sweden
| | - Amparo Monfort
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08193 Barcelona, Spain
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742, USA
| | - Timo Hytönen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland
- NIAB East Malling Research, West Malling, ME19 6BJ, UK
| | - Elli A Koskela
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
21
|
Alger EI, Platts AE, Deb SK, Luo X, Ou S, Cao Y, Hummer KE, Xiong Z, Knapp SJ, Liu Z, McKain MR, Edger PP. Chromosome-Scale Genome for a Red-Fruited, Perpetual Flowering and Runnerless Woodland Strawberry ( Fragaria vesca). Front Genet 2021; 12:671371. [PMID: 34335685 PMCID: PMC8323839 DOI: 10.3389/fgene.2021.671371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Elizabeth I Alger
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Sontosh K Deb
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States.,Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Yao Cao
- College of Life Science, Inner Mongolia University, Hohhot, China
| | - Kim E Hummer
- USDA ARS National Clonal Germplasm Repository, Corvallis, OR, United States
| | - Zhiyong Xiong
- College of Life Science, Inner Mongolia University, Hohhot, China
| | - Steven J Knapp
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Michael R McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, United States.,Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Phenotyping Almond Orchards for Architectural Traits Influenced by Rootstock Choice. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cropping potential of almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) cultivars is determined by their adaptation to edaphoclimatic and environmental conditions. The effects of scion–rootstock interactions on vigor have a decisive impact on this cropping success. Intensively planted orchards with smaller less vigorous trees present several potential benefits for increasing orchard profitability. While several studies have examined rootstock effects on tree vigor, it is less clear how rootstocks influence more specific aspects of tree architecture. The objective of this current study was to identify which architectural traits of commercially important scion cultivars are influenced by rootstock and which of these traits can be useful as descriptors of rootstock performance in breeding evaluations. To do this, 6 almond cultivars of commercial significance were grafted onto 5 hybrid rootstocks, resulting in 30 combinations that were measured after their second year of growth. We observed that rootstock choice mainly influenced branch production, but the effects were not consistent across the different scion–rootstock combinations evaluated. This lack of consistency in response highlights the importance of the unique interaction between each rootstock and its respective scion genotype.
Collapse
|
23
|
Soppe WJJ, Viñegra de la Torre N, Albani MC. The Diverse Roles of FLOWERING LOCUS C in Annual and Perennial Brassicaceae Species. FRONTIERS IN PLANT SCIENCE 2021; 12:627258. [PMID: 33679840 PMCID: PMC7927791 DOI: 10.3389/fpls.2021.627258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/25/2021] [Indexed: 05/07/2023]
Abstract
Most temperate species require prolonged exposure to winter chilling temperatures to flower in the spring. In the Brassicaceae, the MADS box transcription factor FLOWERING LOCUS C (FLC) is a major regulator of flowering in response to prolonged cold exposure, a process called vernalization. Winter annual Arabidopsis thaliana accessions initiate flowering in the spring due to the stable silencing of FLC by vernalization. The role of FLC has also been explored in perennials within the Brassicaceae family, such as Arabis alpina. The flowering pattern in A. alpina differs from the one in A. thaliana. A. alpina plants initiate flower buds during vernalization but only flower after subsequent exposure to growth-promoting conditions. Here we discuss the role of FLC in annual and perennial Brassicaceae species. We show that, besides its conserved role in flowering, FLC has acquired additional functions that contribute to vegetative and seed traits. PERPETUAL FLOWERING 1 (PEP1), the A. alpina FLC ortholog, contributes to the perennial growth habit. We discuss that PEP1 directly and indirectly, regulates traits such as the duration of the flowering episode, polycarpic growth habit and shoot architecture. We suggest that these additional roles of PEP1 are facilitated by (1) the ability of A. alpina plants to form flower buds during long-term cold exposure, (2) age-related differences between meristems, which enable that not all meristems initiate flowering during cold exposure, and (3) differences between meristems in stable silencing of PEP1 after long-term cold, which ensure that PEP1 expression levels will remain low after vernalization only in meristems that commit to flowering during cold exposure. These features result in spatiotemporal seasonal changes of PEP1 expression during the A. alpina life cycle that contribute to the perennial growth habit. FLC and PEP1 have also been shown to influence the timing of another developmental transition in the plant, seed germination, by influencing seed dormancy and longevity. This suggests that during evolution, FLC and its orthologs adopted both similar and divergent roles to regulate life history traits. Spatiotemporal changes of FLC transcript accumulation drive developmental decisions and contribute to life history evolution.
Collapse
Affiliation(s)
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Maria C. Albani, ;
| |
Collapse
|
24
|
Zhou Y, Gan X, Viñegra de la Torre N, Neumann U, Albani MC. Beyond flowering time: diverse roles of an APETALA2-like transcription factor in shoot architecture and perennial traits. THE NEW PHYTOLOGIST 2021; 229:444-459. [PMID: 32745288 DOI: 10.1111/nph.16839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/22/2020] [Indexed: 05/11/2023]
Abstract
Polycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) in Arabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive. To identify additional genes that regulate flowering and contribute to perennial traits we performed an enhancer screen of pep1. Using mapping-by-sequencing, we cloned a mutant (enhancer of pep1-055, eop055), performed transcriptome analysis and physiologically characterised the role it plays on perennial traits in an introgression line carrying the eop055 mutation and a functional PEP1 wild-type allele. eop055 flowers earlier than pep1 and carries a lesion in the A. alpina orthologue of the APETALA2 (AP2)-like gene, TARGET OF EAT2 (AaTOE2). AaTOE2 is a floral repressor and acts upstream of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 5 (AaSPL5). In the wild-type background, which requires cold treatment to flower, AaTOE2 regulates the age-dependent response to vernalisation. In addition, AaTOE2 ensures the maintenance of vegetative growth by delaying axillary meristem initiation and repressing flowering of axillary buds before and during cold exposure. We conclude that AaTOE2 is instrumental in fine tuning different developmental traits in the perennial life cycle of A. alpina.
Collapse
Affiliation(s)
- Yanhao Zhou
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences, "From Complex Traits towards Synthetic Modules", Düsseldorf, 40225, Germany
| | - Xiangchao Gan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences, "From Complex Traits towards Synthetic Modules", Düsseldorf, 40225, Germany
| |
Collapse
|
25
|
Beyer RM, Basler D, Raumonen P, Kaasalainen M, Pretzsch H. Do trees have constant branch divergence angles? J Theor Biol 2020; 512:110567. [PMID: 33359208 DOI: 10.1016/j.jtbi.2020.110567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Many herbaceous plants feature remarkably regular arrangements of lateral organs along the central axis. These phyllotactic patterns are generated by a constant divergence angle between successive buds (or whorls thereof) that first appears at the shoot apircal meristem and is maintained across later ontogentic stages when it can be observed at the macroscopic scale. Do the branches along a tree trunk exhibit similar patterns? Here we use branch skeleton data derived from terrestrial laser scans to empirically estimate the distributions of the divergence angles between successive branches along the trunks of mature European beech, Norway spruce, and Scots pine trees. We find that rather than clustering around a particular value, species-specific branch divergence angles feature statistical properties characteristic of a uniform distribution. We hypothesise this to be the result of the stochasticity in bud development and branch shedding, and provide a rigorous mathematical proof that even when the divergence angle between successive lateral buds is constant, the observed distribution of branch divergence angles will approximate a uniform distribution if bud mortality and branch shedding rates are high.
Collapse
Affiliation(s)
- Robert M Beyer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| | - David Basler
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, United States; Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Pasi Raumonen
- Mathematics, Tampere University, FI-33014 Tampere, Finland
| | | | - Hans Pretzsch
- TUM School of Life Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
26
|
Wang YT, Pallas B, Salazar-Gutierrez MR, Costes E, Hoogenboom G. A Comparative Study on the Branching Pattern of Monocyclic and Bicyclic Shoots of Apple cv. "Fuji". FRONTIERS IN PLANT SCIENCE 2020; 11:571918. [PMID: 32983221 PMCID: PMC7488870 DOI: 10.3389/fpls.2020.571918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The development of tree architecture results from shoot growth and branching, but their relationship is still not fully understood. The goal of this study was to determine the effect of parent shoot growth characteristics on branching patterns in terms of polycyclism, growth duration (GD), and growth period (GP), considering apple tree as a case study. Weekly shoot growth records were collected from 227 shoots during their second year of growth and the resulting branching patterns from the following year. The branching patterns were compared between the different shoot categories, using hidden semi-Markov models. Our results showed that the branching pattern was similar in bicyclic and monocyclic shoots with a long GD. The number of floral laterals, and the frequency and length of the floral zones, increased with GD. Moreover, a long GD led to strong acrotony, due to the high occurrence of a vegetative zone with long laterals in the distal position of the shoot. In bicyclic shoots, an early GP of the second GU led to more frequent and longer floral zones than a late GP. Therefore, the GD was the strongest driver of the branching pattern, and GP modulated the flowering capacity. The main similarities among shoot categories resulted from the existence of latent buds and floral zones associated with growth cessation periods. Even though flowering was more abundant during the early GP, the positions of floral zones indicated that induction in axillary meristems can also occur late in the season. This study provides new knowledge regarding the relationships between the dynamics of parent shoot growth and axillary meristem fates, with key consequences on flowering abundance and positions.
Collapse
Affiliation(s)
- Ying-Tsui Wang
- AgWeatherNet Program, Washington State University, Prosser, WA, United States
- Department of Biological Systems Engineering, Washington State University, Prosser, WA, United States
| | - Benoît Pallas
- UMR AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro-Montpellier SupAgro, Montpellier, France
| | | | - Evelyne Costes
- UMR AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro-Montpellier SupAgro, Montpellier, France
| | - Gerrit Hoogenboom
- AgWeatherNet Program, Washington State University, Prosser, WA, United States
| |
Collapse
|
27
|
Belhassine F, Fumey D, Chopard J, Pradal C, Martinez S, Costes E, Pallas B. Modelling transport of inhibiting and activating signals and their combined effects on floral induction: application to apple tree. Sci Rep 2020; 10:13085. [PMID: 32753623 PMCID: PMC7403595 DOI: 10.1038/s41598-020-69861-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Floral induction (FI) in shoot apical meristems (SAM) is assumed to be triggered by antagonistic endogenous signals. In fruit trees, FI occurs in some SAM only and is determined by activating and inhibiting signals originating from leaves and fruit, respectively. We developed a model (SigFlow) to quantify on 3D structures the combined impact of such signals and distances at which they act on SAM. Signal transport was simulated considering a signal 'attenuation' parameter, whereas SAM fate was determined by probability functions depending on signal quantities. Model behaviour was assessed on simple structures before being calibrated and validated on a unique experimental dataset of 3D digitized apple trees with contrasted crop loads and subjected to leaf and fruit removal at different scales of tree organization. Model parameter estimations and comparisons of two signal combination functions led us to formulate new assumptions on the mechanisms involved: (i) the activating signal could be transported at shorter distances than the inhibiting one (roughly 50 cm vs 1 m) (ii) both signals jointly act to determine FI with SAM being more sensitive to inhibiting signal than activating one. Finally, the genericity of the model is promising to further understand the physiological and architectural determinisms of FI in plants.
Collapse
Affiliation(s)
- Fares Belhassine
- AGAP, Univ Montpellier, INRAE, CIRAD, Montpellier SupAgro, Montpellier, France
- ITK, Clapiers, France
| | | | | | - Christophe Pradal
- AGAP, Univ Montpellier, INRAE, CIRAD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
| | - Sébastien Martinez
- AGAP, Univ Montpellier, INRAE, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Evelyne Costes
- AGAP, Univ Montpellier, INRAE, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Benoît Pallas
- AGAP, Univ Montpellier, INRAE, CIRAD, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
28
|
Mészáros M, Guédon Y, Krška B, Costes E. Modelling the bearing and branching behaviors of 1-year-old shoots in apricot genotypes. PLoS One 2020; 15:e0235347. [PMID: 32645033 PMCID: PMC7347096 DOI: 10.1371/journal.pone.0235347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
In most temperate fruit trees, fruits are located on one-year old shoots. In Prunus species, flowers and fruits are born in axillary position along those shoots. The axillary bud fate and branching patterns are thus key components of the cultivar potential fruit production. The objective of this study was to analyze the branching and bearing behaviors of 1-year-old shoots of apricot cultivars and clones genetically closely related. Shoot structures were analyzed in terms of axillary bud fates using hidden semi-Markov chains and compared depending on the genotype, year and shoot length. The shoots were composed of three successive zones containing latent buds (basal zone), central flower buds (median zone) and vegetative buds (distal zone), respectively. The last two zones contained few associated flower buds. The zones length (in number of metamers) and occurrence strongly depended on shoot development in the two successive years. With decrease in the number of metamers per shoot, the last two zones become shorter or may not develop. While the number of metamers of the basal and distal zones and the number of associated flower buds correlated to the number of metamers of the shoot, the number of metamers of the median zone and the transition probability from the median to the distal zone were cultivar specific.
Collapse
Affiliation(s)
- Martin Mészáros
- Research and Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic
| | - Yann Guédon
- UMR AGAP, CIRAD, CIRAD-INRA-Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Boris Krška
- Department of Fruit Growing, Faculty of Horticulture, Mendel University, Brno, Czech Republic
| | - Evelyne Costes
- UMR AGAP, INRA, CIRAD-INRA-Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
29
|
Vayssières A, Mishra P, Roggen A, Neumann U, Ljung K, Albani MC. Vernalization shapes shoot architecture and ensures the maintenance of dormant buds in the perennial Arabis alpina. THE NEW PHYTOLOGIST 2020; 227:99-115. [PMID: 32022273 DOI: 10.1111/nph.16470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/29/2020] [Indexed: 05/11/2023]
Abstract
Perennials have a complex shoot architecture with axillary meristems organized in zones of differential bud activity and fate. This includes zones of buds maintained dormant for multiple seasons and used as reservoirs for potential growth in case of damage. The shoot of Arabis alpina, a perennial relative of Arabidopsis thaliana, consists of a zone of dormant buds placed between subapical vegetative and basal flowering branches. This shoot architecture is shaped after exposure to prolonged cold, required for flowering. To understand how vernalization ensures the maintenance of dormant buds, we performed physiological and transcriptome studies, followed the spatiotemporal changes of auxin, and generated transgenic plants. Our results demonstrate that the complex shoot architecture in A. alpina is shaped by its flowering behavior, specifically the initiation of inflorescences during cold treatment and rapid flowering after subsequent exposure to growth-promoting conditions. Dormant buds are already formed before cold treatment. However, dormancy in these buds is enhanced during, and stably maintained after, vernalization by a BRC1-dependent mechanism. Post-vernalization, stable maintenance of dormant buds is correlated with increased auxin response, transport, and endogenous indole-3-acetic acid levels in the stem. Here, we provide a functional link between flowering and the maintenance of dormant buds in perennials.
Collapse
Affiliation(s)
- Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Priyanka Mishra
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| |
Collapse
|
30
|
Whitaker VM, Knapp SJ, Hardigan MA, Edger PP, Slovin JP, Bassil NV, Hytönen T, Mackenzie KK, Lee S, Jung S, Main D, Barbey CR, Verma S. A roadmap for research in octoploid strawberry. HORTICULTURE RESEARCH 2020; 7:33. [PMID: 32194969 PMCID: PMC7072068 DOI: 10.1038/s41438-020-0252-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/26/2020] [Indexed: 05/02/2023]
Abstract
The cultivated strawberry (Fragaria × ananassa) is an allo-octoploid species, originating nearly 300 years ago from wild progenitors from the Americas. Since that time the strawberry has become the most widely cultivated fruit crop in the world, universally appealing due to its sensory qualities and health benefits. The recent publication of the first high-quality chromosome-scale octoploid strawberry genome (cv. Camarosa) is enabling rapid advances in genetics, stimulating scientific debate and provoking new research questions. In this forward-looking review we propose avenues of research toward new biological insights and applications to agriculture. Among these are the origins of the genome, characterization of genetic variants, and big data approaches to breeding. Key areas of research in molecular biology will include the control of flowering, fruit development, fruit quality, and plant-pathogen interactions. In order to realize this potential as a global community, investments in genome resources must be continually augmented.
Collapse
Affiliation(s)
- Vance M Whitaker
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Steven J Knapp
- 2Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Michael A Hardigan
- 2Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Patrick P Edger
- 3Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Janet P Slovin
- USDA-ARS Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MA 20705 USA
| | - Nahla V Bassil
- 5USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333 USA
| | - Timo Hytönen
- 6Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
- 7Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
- NIAB EMR, Kent, ME19 6BJ UK
| | - Kathryn K Mackenzie
- 6Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
| | - Seonghee Lee
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Sook Jung
- 9Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Dorrie Main
- 9Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Christopher R Barbey
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Sujeet Verma
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| |
Collapse
|
31
|
Pineda M, Yu B, Tian Y, Morante N, Salazar S, Hyde PT, Setter TL, Ceballos H. Effect of Pruning Young Branches on Fruit and Seed Set in Cassava. FRONTIERS IN PLANT SCIENCE 2020; 11:1107. [PMID: 32793264 PMCID: PMC7390943 DOI: 10.3389/fpls.2020.01107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/06/2020] [Indexed: 05/13/2023]
Abstract
Flowering in cassava is closely linked with branching. Early-flowering genotypes branch low and abundantly. Although farmers prefer late flowering genotypes because of their erect plant architecture, their usefulness as progenitors in breeding is limited by their low seed production. In general, the first inflorescence aborts in cassava. Preventing this abortion would result in early production of seeds and make cassava breeding more efficient. The objective of this study was to assess if pruning young branches prevents the abortion of first inflorescences and promotes early fruit and seed set. Four genotypes with early, late, very late, and no flowering habits were grown under an extended photoperiod (EP) or normal dark night conditions (DN). Additional treatments included pruning young branches at the first or second flowering event and spraying (or not) benzyladenine (BA) after pruning. One genotype failed to flower and was not considered further. For the remaining genotypes, EP proved crucial to induce an earlier flowering, which is a pre-requisite for pruning. Total production of seeds in EP plots was 2,971 versus 150 in DN plots. For plants grown under EP, the average number of seeds per plant without pruning was 3.88, whereas those pruned produced 17.60 seeds per plant. Pruning at the first branching event led to higher number of seeds per plant (26.25) than pruning at the second flowering event (8.95). In general, applying BA was beneficial (38.52 and 13.98 seeds/plant with or without spraying it, respectively). The best combination of treatments was different for each genotype. Pruning young branches and applying BA in the first flowering event not only prevented the abortion of inflorescences but also induced the feminization of male flowers into hermaphrodite or female-only flowers. The procedures suggested from this study (combining EP, pruning young branches, and spraying BA), allowed the production of a high number of seeds from erect cassava genotypes in a short period. The implementation of these procedures will improve the breeding efficiency in cassava.
Collapse
Affiliation(s)
- Marcela Pineda
- CGIAR Research Program on Roots Tubers and Bananas (RTB), The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Benchi Yu
- Cassava Program, Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Yinong Tian
- Cassava Program, Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Nelson Morante
- CGIAR Research Program on Roots Tubers and Bananas (RTB), The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Sandra Salazar
- CGIAR Research Program on Roots Tubers and Bananas (RTB), The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Peter T. Hyde
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tim L. Setter
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Hernán Ceballos
- CGIAR Research Program on Roots Tubers and Bananas (RTB), The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
- *Correspondence: Hernán Ceballos,
| |
Collapse
|
32
|
Guan L, Zhao M, Qian Y, Yu H, Xia J, Wu E. Phenotypic analysis combined with tandem mass tags (TMT) labeling reveal the heterogeneity of strawberry stolon buds. BMC PLANT BIOLOGY 2019; 19:505. [PMID: 31744478 PMCID: PMC6862844 DOI: 10.1186/s12870-019-2096-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/23/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Ramet propagation in strawberry (Fragaria × ananassa) is the most effective way in production. However, the lack of systematically phenotypic observations and high-throughput methods limits our ability to analyze the key factors regulating the heterogeneity in strawberry stolon buds. RESULTS From observation, we found that the axillary bud located in the first node quickly stepped into dormancy (DSB), after several bract and leaf buds were differentiated. The stolon apical meristem (SAM) degenerated as the new ramet leaf buds (RLB), and the new active axillary stolon buds (ASB) differentiated continually after the differentiation of the first leaf. Using the tandem mass tags (TMT) labeling method, a total of 7271 strawberry proteins were identified. Between ASB and DSB, the spliceosome DEPs, such as Ser/Arg-rich (SR) and heterogeneous nuclear ribonucleoprotein particle (hnRNP), showed the highest enrichment and high PPI connectivity. This indicated that the differences in DEPs (e.g., SF-3A and PK) at the transcriptional level may be causing the differences between the physiological statuses of ASB and DSB. As expected, the photosynthetic pre-form RLB mainly differentiated from ASB and DSB judging by the DEP enrichment of photosynthesis. However, there are still other specialized features of DEPs between RLB and DSB and between ASB and DSB. The DEPs relative to DNA duplication [e.g., minichromosome maintenance protein (MCM 2, 3, 4, 7)], provide a strong hint of functional gene duplication leading the bud heterogeneity between RLB and DSB. In addition, the top fold change DEP of LSH 10-like might be involved in the degeneration of SAM into RLBs, based on its significant function in modulating the plant shoot initiation. As for RLB/ASB, the phenylpropanoid biosynthesis pathway probably regulates the ramet axillary bud specialization, and further promotes the differentiation of xylem when ASB develops into a new stolon [e.g., cinnamyl alcohol dehydrogenase 1 (CAD1) and phenylalanine ammonia-lyase 1 (PAL1)]. CONCLUSIONS By using phenotypic observation combined with proteomic networks with different types of strawberry stolon buds, the definite dormancy phase of DSB was identified, and the biological pathways and gene networks that might be responsible for heterogeneity among different stolon buds in strawberry were also revealed.
Collapse
Affiliation(s)
- Ling Guan
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| | - Mizhen Zhao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China.
| | - Yaming Qian
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| | - Hongmei Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| | - Jin Xia
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| | - Ejiao Wu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| |
Collapse
|
33
|
Labadie M, Denoyes B, Guédon Y. Identifying phenological phases in strawberry using multiple change-point models. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5687-5701. [PMID: 31328226 PMCID: PMC6812722 DOI: 10.1093/jxb/erz331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/10/2019] [Indexed: 05/11/2023]
Abstract
Plant development studies often generate data in the form of multivariate time series, each variable corresponding to a count of newly emerged organs for a given development process. These phenological data often exhibit highly structured patterns, and the aim of this study was to identify such patterns in cultivated strawberry. Six strawberry genotypes were observed weekly for their course of emergence of flowers, leaves, and stolons during 7 months. We assumed that these phenological series take the form of successive phases, synchronous between individuals. We applied univariate multiple change-point models for the identification of flowering, vegetative development, and runnering phases, and multivariate multiple change-point models for the identification of consensus phases for these three development processes. We showed that the flowering and the runnering processes are the main determinants of the phenological pattern. On this basis, we propose a typology of the six genotypes in the form of a hierarchical classification. This study introduces a new longitudinal data modeling approach for the identification of phenological phases in plant development. The focus was on development variables but the approach can be directly extended to growth variables and to multivariate series combining growth and development variables.
Collapse
Affiliation(s)
- Marc Labadie
- UMR BFP, INRA, Université de Bordeaux, Villenave d’Ornon, France
- CIRAD, UMR AGAP and Université de Montpellier, Montpellier, France
| | - Béatrice Denoyes
- UMR BFP, INRA, Université de Bordeaux, Villenave d’Ornon, France
- Correspondence: or
| | - Yann Guédon
- UMR BFP, INRA, Université de Bordeaux, Villenave d’Ornon, France
- CIRAD, UMR AGAP and Université de Montpellier, Montpellier, France
- Correspondence: or
| |
Collapse
|
34
|
Belhassine F, Martinez S, Bluy S, Fumey D, Kelner JJ, Costes E, Pallas B. Impact of Within-Tree Organ Distances on Floral Induction and Fruit Growth in Apple Tree: Implication of Carbohydrate and Gibberellin Organ Contents. FRONTIERS IN PLANT SCIENCE 2019; 10:1233. [PMID: 31695709 PMCID: PMC6816281 DOI: 10.3389/fpls.2019.01233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
In plants, organs are inter-dependent for growth and development. Here, we aimed to investigate the distance at which interaction between organs operates and the relative contribution of within-tree variation in carbohydrate and hormonal contents on floral induction and fruit growth, in a fruit tree case study. Manipulations of leaf and fruit numbers were performed in two years on "Golden delicious" apple trees, at the shoot or branch scale or one side of Y-shape trees. For each treatment, floral induction proportion and mean fruit weight were recorded. Gibberellins content in shoot apical meristems, photosynthesis, and non-structural carbohydrate concentrations in organs were measured. Floral induction was promoted by leaf presence and fruit absence but was not associated with non-structural content in meristems. This suggests a combined action of promoting and inhibiting signals originating from leaves and fruit, and involving gibberellins. Nevertheless, these signals act at short distance only since leaf or fruit presence at long distances had no effect on floral induction. Conversely, fruit growth was affected by leaf presence even at long distances when sink demands were imbalanced within the tree, suggesting long distance transport of carbohydrates. We thus clarified the inter-dependence and distance effect among organs, therefore their degree of autonomy that appeared dependent on the process considered, floral induction or fruit growth.
Collapse
Affiliation(s)
- Fares Belhassine
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
- ITK, Montpellier, France
| | - Sébastien Martinez
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Sylvie Bluy
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | | | - Jean-Jacques Kelner
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Evelyne Costes
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Benoît Pallas
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
35
|
Prats-Llinàs MT, López G, Fyhrie K, Pallas B, Guédon Y, Costes E, DeJong TM. Long proleptic and sylleptic shoots in peach (Prunus persica L. Batsch) trees have similar, predetermined, maximum numbers of nodes and bud fate patterns. ANNALS OF BOTANY 2019; 123:993-1004. [PMID: 30605513 PMCID: PMC6589516 DOI: 10.1093/aob/mcy232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS In peach (Prunus persica) trees, three types of shoots can be distinguished depending on the time of their appearance: sylleptic, proleptic and epicormic. On proleptic shoots, an average of ten phytomers are preformed in dormant buds prior to shoot growth after bud-break, whereas all phytomers are considered neoformed in sylleptic and epicormic shoots. However, casual observations indicated that proleptic and sylleptic shoots appear quite similar in number of phytomers and structure in spite of their different origins. The goal of this research was to test the hypothesis that both proleptic and sylleptic shoots exhibit similar growth characteristics by analysing their node numbers and bud fate patterns. If their growth characteristics are similar, it would indicate that the structure of both types of shoots is primarily under genetic rather than environmental control. METHODS The number of phytomers and bud fate patterns of proleptic and sylleptic shoots of four peach cultivars grown in the same location (Winters, California) were analysed and characterized using hidden semi-Markov models. Field data were collected during winter 2016, just prior to floral bud-break. KEY RESULTS Sylleptic shoots tended to have slightly fewer phytomers than proleptic shoots of the same cultivars. The bud fate patterns along proleptic and sylleptic shoots were remarkably similar for all the cultivars, although proleptic shoots started growing earlier (at least 1 month) in the spring than sylleptic shoots. CONCLUSIONS This study provides strong evidence for the semi-deterministic nature of both proleptic and sylleptic shoots across four peach cultivars in terms of number of phytomers and bud fate patterns along shoots. It is apparent that the overall structure of shoots with similar numbers of phytomers was under similar genetic control for the two shoot types. Understanding shoot structural characteristics can aid in phenotypic characterization of vegetative growth of trees and in providing a foundation for vegetative management of fruit trees in horticultural settings.
Collapse
Affiliation(s)
- Maria Teresa Prats-Llinàs
- Efficient Use of Water in Agriculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Fruitcentre, Parc Cientific i Tecnològic Agroalimentari (PCiTAL), Lleida, Spain
| | - Gerardo López
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Katherine Fyhrie
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Benoît Pallas
- UMR AGAP, Univ. Montpellier, CIRAD, INRA, SupAgro, Equipe Architecture et Fonctionnement des Espèces Fruitières, Montpellier, France
| | - Yann Guédon
- CIRAD, UMR AGAP, Univ. Montpellier, Montpellier, France
| | - Evelyne Costes
- UMR AGAP, Univ. Montpellier, CIRAD, INRA, SupAgro, Equipe Architecture et Fonctionnement des Espèces Fruitières, Montpellier, France
| | - Theodore M DeJong
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
36
|
Tan M, Li G, Chen X, Xing L, Ma J, Zhang D, Ge H, Han M, Sha G, An N. Role of Cytokinin, Strigolactone, and Auxin Export on Outgrowth of Axillary Buds in Apple. FRONTIERS IN PLANT SCIENCE 2019; 10:616. [PMID: 31156679 PMCID: PMC6530649 DOI: 10.3389/fpls.2019.00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Shoot branching is regulated by phytohormones, including cytokinin (CK), strigolactone (SL), and auxin in axillary buds. The correlative importance of these phytohormones in the outgrowth of apple axillary buds remains unclear. In this study, the outgrowth dynamics of axillary buds of a more-branching mutant (MB) and its wild-type (WT) of Malus spectabilis were assessed using exogenous chemical treatments, transcriptome analysis, paraffin section, and reverse transcription-quantitative PCR analysis (RT-qPCR). High contents of CK and abscisic acid coincided in MB axillary buds. Exogenous CK promoted axillary bud outgrowth in the WT but not in MB, whereas exogenous gibberellic had no significant effect on bud outgrowth in the WT. Functional analysis of transcriptome data and RT-qPCR analysis of gene transcripts revealed that MB branching were associated with CK signaling, auxin transport, and SL signaling. Transcription of the SL-related genes MsMAX1, MsD14, and MsMAX2 in the axillary buds of MB was generally upregulated during bud outgrowth, whereas MsBRC1/2 were generally downregulated both in WT and MB. Exogenous SL inhibited outgrowth of axillary buds in the WT and the apple varieties T337, M26, and Nagafu 2, whereas axillary buds of the MB were insensitive to SL treatment. Treatment with N-1-naphthylphalamic acid (NPA; an auxin transport inhibitor) inhibited bud outgrowth in plants of the WT and MB. The transcript abundance of MsPIN1 was generally decreased in response to NPA and SL treatments, and increased in CK and decapitation treatments, whereas no consistent pattern was observed for MsD14 and MsMAX2. Collectively, the present results suggest that in apple auxin transport from the axillary bud to the stem may be essential for the outgrowth of axillary buds, and at least, is involved in the process of bud outgrowth.
Collapse
Affiliation(s)
- Ming Tan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guofang Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xilong Chen
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - HongJuan Ge
- Institute of Agricultural Science, Qingdao, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guangli Sha
- Institute of Agricultural Science, Qingdao, China
| | - Na An
- College of Life Science, Northwest A&F University, Yangling, China
| |
Collapse
|
37
|
High density linkage map construction and QTL mapping for runner production in allo-octoploid strawberry Fragaria × ananassa based on ddRAD-seq derived SNPs. Sci Rep 2019; 9:3275. [PMID: 30824841 PMCID: PMC6397268 DOI: 10.1038/s41598-019-39808-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/29/2019] [Indexed: 11/08/2022] Open
Abstract
Recent advances in high-throughput genome sequencing technologies are now making the genetic dissection of the complex genome of cultivated strawberry easier. We sequenced Maehyang (short-day cultivar) × Albion (day-neutral cultivar) crossing populations using double digest restriction-associated DNA (ddRAD) sequencing technique that yielded 978,968 reads, 80.2% of which were aligned to strawberry genome allowing the identification of 13,181 high quality single nucleotide polymorphisms (SNPs). Total 3051 SNPs showed Mendelian segregation in F1, of which 1268 were successfully mapped to 46 linkage groups (LG) spanning a total of 2581.57 cM with an average interval genetic distance of 2.22 cM. The LGs were assigned to the 28 chromosomes of Fragaria × ananassa as determined by positioning the sequence tags on F. vesca genome. In addition, seven QTLs namely, qRU-5D, qRU-3D1, qRU-1D2, qRU-4D, qRU-4C, qRU-5C and qRU-2D2 were identified for runner production with LOD value ranging from 3.5–7.24 that explained 22–38% of phenotypic variation. The key candidate genes having putative roles in meristem differentiation for runnering and flowering within these QTL regions were identified. These will enhance our understanding of the vegetative vs sexual reproductive behavior in strawberry and will aid in setting breeding targets for developing perpetual flowering and profuse runnering cultivar.
Collapse
|
38
|
Hill JL, Hollender CA. Branching out: new insights into the genetic regulation of shoot architecture in trees. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:73-80. [PMID: 30339931 DOI: 10.1016/j.pbi.2018.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 05/03/2023]
Abstract
Directional growth in all plants involves both phototropic and gravitropic responses. Accordingly, mechanisms controlling shoot architecture throughout the plant kingdom are likely similar. However, as forms vary between species due in part to gene copy number and functional divergence, some aspects of how plants predetermine and regulate architecture can differ. This is especially true when comparing annual herbaceous species (e.g. model plants) to woody perennials such as trees. In the past decade, inexpensive genomic sequencing and technological advances enabled gene discovery and functional analyses in trees. This led to the identification of genes associated with tree shoot architecture control. Here, we present recent discoveries on the regulation of shoot architectures for which causative genes have been identified, including dwarf, weeping, columnar, and pillar growth habits. We also discuss potential applications of these findings.
Collapse
Affiliation(s)
- Joseph L Hill
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
39
|
Pallas B, Bluy S, Ngao J, Martinez S, Clément-Vidal A, Kelner JJ, Costes E. Growth and carbon balance are differently regulated by tree and shoot fruiting contexts: an integrative study on apple genotypes with contrasted bearing patterns. TREE PHYSIOLOGY 2018; 38:1395-1408. [PMID: 29325154 DOI: 10.1093/treephys/tpx166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/30/2017] [Indexed: 05/10/2023]
Abstract
In plants, carbon source-sink relationships are assumed to affect their reproductive effort. In fruit trees, carbon source-sink relationships are likely to be involved in their fruiting behavior. In apple, a large variability in fruiting behaviors exists, from regular to biennial, which has been related to the within-tree synchronization vs desynchronization of floral induction in buds. In this study, we analyzed if carbon assimilation, availability and fluxes as well as shoot growth differ in apple genotypes with contrasted behaviors. Another aim was to determine the scale of plant organization at which growth and carbon balance are regulated. The study was carried out on 16 genotypes belonging to three classes: (i) biennial, (ii) regular with a high production of floral buds every year and (iii) regular, displaying desynchronized bud fates in each year. Three shoot categories, vegetative and reproductive shoots with or without fruits, were included. This study shows that shoot growth and carbon balance are differentially regulated by tree and shoot fruiting contexts. Shoot growth was determined by the shoot fruiting context, or by the type of shoot itself, since vegetative shoots were always longer than reproductive shoots whatever the tree crop load. Leaf photosynthesis depended on the tree crop load only, irrespective of the shoot category or the genotypic class. Starch content was also strongly affected by the tree crop load with some adjustments of the carbon balance among shoots since starch content was lower, at least at some dates, in shoots with fruits compared with the shoots without fruits within the same trees. Finally, the genotypic differences in terms of shoot carbon balance partly matched with genotypic bearing patterns. Nevertheless, carbon content in buds and the role of gibberellins produced by seeds as well as the distances at which they could affect floral induction should be further analyzed.
Collapse
Affiliation(s)
- Benoît Pallas
- UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier Cedex, France
| | - Sylvie Bluy
- UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier Cedex, France
| | - Jérôme Ngao
- UMR PIAF, Université Clermont Auvergne, INRA, Clermont Ferrand, France
| | - Sébastien Martinez
- UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier Cedex, France
| | - Anne Clément-Vidal
- UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier Cedex, France
| | - Jean-Jacques Kelner
- UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier Cedex, France
| | - Evelyne Costes
- UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier Cedex, France
| |
Collapse
|
40
|
Foster TM, Ledger SE, Janssen BJ, Luo Z, Drummond RSM, Tomes S, Karunairetnam S, Waite CN, Funnell KA, van Hooijdonk BM, Saei A, Seleznyova AN, Snowden KC. Expression of MdCCD7 in the scion determines the extent of sylleptic branching and the primary shoot growth rate of apple trees. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2379-2390. [PMID: 29190381 PMCID: PMC5913623 DOI: 10.1093/jxb/erx404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/24/2017] [Indexed: 05/05/2023]
Abstract
Branching has a major influence on the overall shape and productivity of a plant. Strigolactones (SLs) have been identified as plant hormones that have a key role in suppressing the outgrowth of axillary meristems. CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes are integral to the biosynthesis of SLs and are well characterized in annual plants, but their role in woody perennials is relatively unknown. We identified CCD7 and CCD8 orthologues from apple and demonstrated that MdCCD7 and MdCCD8 are able to complement the Arabidopsis branching mutants max3 and max4 respectively, indicating conserved function. RNAi lines of MdCCD7 show reduced gene expression and increased branching in apple. We performed reciprocal grafting experiments with combinations of MdCCD7 RNAi and wild-type 'Royal Gala' as rootstocks and scion. Unexpectedly, wild-type roots were unable to suppress branching in MdCCD7 RNAi scions. Another key finding was that MdCCD7 RNAi scions initiated phytomers at an increased rate relative to the wild type, resulting in a greater node number and primary shoot length. We suggest that localized SL biosynthesis in the shoot, rather than roots, controls axillary bud outgrowth and shoot growth rate in apple.
Collapse
Affiliation(s)
- Toshi M Foster
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Susan E Ledger
- Faculty of Health Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Bart J Janssen
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Revel S M Drummond
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | | | - Chethi N Waite
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Keith A Funnell
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Ben M van Hooijdonk
- The New Zealand Institute for Plant & Food Research Limited, Havelock North Havelock North, New Zealand
| | - Ali Saei
- The New Zealand Institute for Plant & Food Research Limited, Kerikeri, New Zealand
| | - Alla N Seleznyova
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|
41
|
Gou J, Debnath S, Sun L, Flanagan A, Tang Y, Jiang Q, Wen J, Wang Z. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:951-962. [PMID: 28941083 PMCID: PMC5866946 DOI: 10.1111/pbi.12841] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 05/05/2023]
Abstract
Biomass yield, salt tolerance and drought tolerance are important targets for alfalfa (Medicago sativa L.) improvement. Medicago truncatula has been developed into a model plant for alfalfa and other legumes. By screening a Tnt1 retrotransposon-tagged M. truncatula mutant population, we identified three mutants with enhanced branching. Branch development determines shoot architecture which affects important plant functions such as light acquisition, resource use and ultimately impacts biomass production. Molecular analyses revealed that the mutations were caused by Tnt1 insertions in the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8 (SPL8) gene. The M. truncatula spl8 mutants had increased biomass yield, while overexpression of SPL8 in M. truncatula suppressed branching and reduced biomass yield. Scanning electron microscopy (SEM) analysis showed that SPL8 inhibited branching by directly suppressing axillary bud formation. Based on the M. truncatula SPL8 sequence, alfalfa SPL8 (MsSPL8) was cloned and transgenic alfalfa plants were produced. MsSPL8 down-regulated or up-regulated alfalfa plants exhibited similar phenotypes to the M. truncatula mutants or overexpression lines, respectively. Specifically, the MsSPL8 down-regulated alfalfa plants showed up to 43% increase in biomass yield in the first harvest. The impact was even more prominent in the second harvest, with up to 86% increase in biomass production compared to the control. Furthermore, down-regulation of MsSPL8 led to enhanced salt and drought tolerance in transgenic alfalfa. Results from this research offer a valuable approach to simultaneously improve biomass production and abiotic stress tolerance in legumes.
Collapse
Affiliation(s)
- Jiqing Gou
- Noble Research InstituteArdmoreOKUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | | | - Liang Sun
- Noble Research InstituteArdmoreOKUSA
| | - Amy Flanagan
- Noble Research InstituteArdmoreOKUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | - Yuhong Tang
- Noble Research InstituteArdmoreOKUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | - Zeng‐Yu Wang
- Noble Research InstituteArdmoreOKUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
42
|
Peyhardi J, Caraglio Y, Costes E, Lauri PÉ, Trottier C, Guédon Y. Integrative models for joint analysis of shoot growth and branching patterns. THE NEW PHYTOLOGIST 2017; 216:1291-1304. [PMID: 28892159 DOI: 10.1111/nph.14742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
Plants exhibit dependences between shoot growth and branching that generate highly structured patterns. The characterization of the patterning mechanism is still an open issue because of the developmental processes involved with both succession of events (e.g. internode elongation, axillary shoot initiation and elongation) and complex dependences among neighbouring positions along the parent shoot. Statistical models called semi-Markov switching partitioned conditional generalized linear models were built on the basis of apple and pear tree datasets. In these models, the semi-Markov chain represents both the succession and lengths of branching zones, whereas the partitioned conditional generalized linear models represent the influence of parent shoot growth variables on axillary productions within each branching zone. Parent shoot growth variables were shown to influence specific developmental events. On this basis, the growth and branching patterns of two apple tree (Malus domestica) cultivars, as well as of pear trees (Pyrus spinosa) between two successive growing cycles, were compared. The proposed integrative statistical models were able to decipher the roles of successive developmental events in the growth and branching patterning mechanisms. These models could incorporate other parent shoot explanatory variables, such as the local curvature or the maximum growth rate of the leaf.
Collapse
Affiliation(s)
- Jean Peyhardi
- CIRAD, UMR AGAP and Inria, Virtual Plants, 34095, Montpellier, France
- Université de Montpellier, Institut Montpelliérain Alexander Grothendieck, 34095, Montpellier, France
| | | | | | | | - Catherine Trottier
- Université de Montpellier, Institut Montpelliérain Alexander Grothendieck, 34095, Montpellier, France
| | - Yann Guédon
- CIRAD, UMR AGAP and Inria, Virtual Plants, 34095, Montpellier, France
| |
Collapse
|
43
|
Tenreira T, Lange MJP, Lange T, Bres C, Labadie M, Monfort A, Hernould M, Rothan C, Denoyes B. A Specific Gibberellin 20-Oxidase Dictates the Flowering-Runnering Decision in Diploid Strawberry. THE PLANT CELL 2017; 29:2168-2182. [PMID: 28874507 PMCID: PMC5635972 DOI: 10.1105/tpc.16.00949] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/14/2017] [Accepted: 08/31/2017] [Indexed: 05/18/2023]
Abstract
Asexual and sexual reproduction occur jointly in many angiosperms. Stolons (elongated stems) are used for asexual reproduction in the crop species potato (Solanum tuberosum) and strawberry (Fragaria spp), where they produce tubers and clonal plants, respectively. In strawberry, stolon production is essential for vegetative propagation at the expense of fruit yield, but the underlying molecular mechanisms are unknown. Here, we show that the stolon deficiency trait of the runnerless (r) natural mutant in woodland diploid strawberry (Fragaria vesca) is due to a deletion in the active site of a gibberellin20-oxidase (GA20ox) gene, which is expressed primarily in the axillary meristem dome and primordia and in developing stolons. This mutation, which is found in all r mutants, goes back more than three centuries. When FveGA20ox4 is mutated, axillary meristems remain dormant or produce secondary shoots terminated by inflorescences, thus increasing the number of inflorescences in the plant. The application of bioactive gibberellin (GA) restored the runnering phenotype in the r mutant, indicating that GA biosynthesis in the axillary meristem is essential for inducing stolon differentiation. The possibility of regulating the runnering-flowering decision in strawberry via FveGA20ox4 provides a path for improving productivity in strawberry by controlling the trade-off between sexual reproduction and vegetative propagation.
Collapse
Affiliation(s)
- Tracey Tenreira
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | | | - Theo Lange
- TU Braunschweig, Institut für Pfanzenbiologie, 38106 Braunschweig, Germany
| | - Cécile Bres
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Marc Labadie
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Amparo Monfort
- IRTA, Center of Research in Agrigenomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Valles), 08193 Barcelona, Spain
| | - Michel Hernould
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Christophe Rothan
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Béatrice Denoyes
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| |
Collapse
|
44
|
Baïram E, Delaire M, Le Morvan C, Buck-Sorlin G. Models for Predicting the Architecture of Different Shoot Types in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:65. [PMID: 28203241 PMCID: PMC5285357 DOI: 10.3389/fpls.2017.00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/12/2017] [Indexed: 05/10/2023]
Abstract
In apple, the first-order branch of a tree has a characteristic architecture constituting three shoot types: bourses (rosettes), bourse shoots, and vegetative shoots. Its overall architecture as well as that of each shoot thus determines the distribution of sources (leaves) and sinks (fruits) and could have an influence on the amount of sugar allocated to fruits. Knowledge of architecture, in particular the position and area of leaves helps to quantify source strength. In order to reconstruct this initial architecture, rules equipped with allometric relations could be used: these allow predicting model parameters that are difficult to measure from simple traits that can be determined easily, non-destructively and directly in the orchard. Once such allometric relations are established they can be used routinely to recreate initial structures. Models based on allometric relations have been established in this study in order to predict the leaf areas of the three different shoot types of three apple cultivars with different branch architectures: "Fuji," "Ariane," and "Rome Beauty." The allometric relations derived from experimental data allowed us to model the total shoot leaf area as well as the individual leaf area for each leaf rank, for each shoot type and each genotype. This was achieved using two easily measurable input variables: total leaf number per shoot and the length of the biggest leaf on the shoot. The models were tested using a different data set, and they were able to accurately predict leaf area of all shoot types and genotypes. Additional focus on internode lengths on spurs contributed to refine the models.
Collapse
Affiliation(s)
- Emna Baïram
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences (Institut National de la Recherche Agronomique-Agrocampus Ouest-Université d'Angers)Angers, France
| | | | | | - Gerhard Buck-Sorlin
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences (Institut National de la Recherche Agronomique-Agrocampus Ouest-Université d'Angers)Angers, France
| |
Collapse
|
45
|
Rinne PLH, Paul LK, Vahala J, Kangasjärvi J, van der Schoot C. Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-β-glucanase genes during branching in hybrid aspen. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5975-5991. [PMID: 27697786 PMCID: PMC5100014 DOI: 10.1093/jxb/erw352] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Axillary buds (AXBs) of hybrid aspen (Populus tremula×P. tremuloides) contain a developing dwarfed shoot that becomes para-dormant at the bud maturation point. Para-dormant AXBs can grow out after stem decapitation, while dormant AXBs pre-require long-term chilling to release them from dormancy. The latter is mediated by gibberellin (GA)-regulated 1,3-β-glucanases, but it is unknown if GA is also important in the development, activation, and outgrowth of para-dormant AXBs. The present data show that para-dormant AXBs up-regulate GA receptor genes during their maturation, but curtail GA biosynthesis by down-regulating the rate-limiting GIBBERELLIN 3-OXIDASE2 (GA3ox2), which is characteristically expressed in the growing apex. However, decapitation significantly up-regulated GA3ox2 and GA4-responsive 1,3-β-glucanases (GH17-family; α-clade). In contrast, decapitation down-regulated γ-clade 1,3-β-glucanases, which were strongly up-regulated in maturing AXBs concomitant with lipid body accumulation. Overexpression of selected GH17 members in hybrid aspen resulted in characteristic branching patterns. The α-clade member induced an acropetal branching pattern, whereas the γ-clade member activated AXBs in recurrent flushes during transient cessation of apex proliferation. The results support a model in which curtailing the final step in GA biosynthesis dwarfs the embryonic shoot, while high levels of GA precursors and GA receptors keep AXBs poised for growth. GA signaling, induced by decapitation, reinvigorates symplasmic supply routes through GA-inducible 1,3-β-glucanases that hydrolyze callose at sieve plates and plasmodesmata.
Collapse
Affiliation(s)
- Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Laju K Paul
- Department of Plant Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Jorma Vahala
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
46
|
Perrotte J, Guédon Y, Gaston A, Denoyes B. Identification of successive flowering phases highlights a new genetic control of the flowering pattern in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5643-5655. [PMID: 27664957 PMCID: PMC5066487 DOI: 10.1093/jxb/erw326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years.
Collapse
Affiliation(s)
- Justine Perrotte
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France Ciref, Maison Jeannette, 24140 Douville, France
| | - Yann Guédon
- CIRAD, UMR AGAP and Inria, Virtual Plants, 34095 Montpellier, France
| | - Amèlia Gaston
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| | - Béatrice Denoyes
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| |
Collapse
|
47
|
Gama F, Saavedra T, da Silva JP, Miguel MG, de Varennes A, Correia PJ, Pestana M. The memory of iron stress in strawberry plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:36-44. [PMID: 27010743 DOI: 10.1016/j.plaphy.2016.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 05/26/2023]
Abstract
To provide information towards optimization of strategies to treat Fe deficiency, experiments were conducted to study the responses of Fe-deficient plants to the resupply of Fe. Strawberry (Fragaria × ananassa Duch.) was used as model plant. Bare-root transplants of strawberry (cv. 'Diamante') were grown for 42 days in Hoagland's nutrient solutions without Fe (Fe0) and containing 10 μM of Fe as Fe-EDDHA (control, Fe10). For plants under Fe0 the total chlorophyll concentration of young leaves decreased progressively on time, showing the typical symptoms of iron chlorosis. After 35 days the Fe concentration was 6% of that observed for plants growing under Fe10. Half of plants growing under Fe0 were then Fe-resupplied by adding 10 μM of Fe to the Fe0 nutrient solution (FeR). Full Chlorophyll recovery of young leaves took place within 12 days. Root ferric chelate-reductase activity (FCR) and succinic and citric acid concentrations increased in FeR plants. Fe partition revealed that FeR plants expressively accumulated this nutrient in the crown and flowers. This observation can be due to a passive deactivation mechanism of the FCR activity, associated with continuous synthesis of succinic and citric acids at root level, and consequent greater uptake of Fe.
Collapse
Affiliation(s)
- Florinda Gama
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Teresa Saavedra
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - José Paulo da Silva
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Maria Graça Miguel
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Amarilis de Varennes
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Pedro José Correia
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Maribela Pestana
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
48
|
Guitton B, Kelner JJ, Celton JM, Sabau X, Renou JP, Chagné D, Costes E. Analysis of transcripts differentially expressed between fruited and deflowered 'Gala' adult trees: a contribution to biennial bearing understanding in apple. BMC PLANT BIOLOGY 2016; 16:55. [PMID: 26924309 PMCID: PMC4770685 DOI: 10.1186/s12870-016-0739-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/17/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The transition from vegetative to floral state in shoot apical meristems (SAM) is a key event in plant development and is of crucial importance for reproductive success. In perennial plants, this event is recurrent during tree life and subject to both within-tree and between-years heterogeneity. In the present study, our goal was to identify candidate processes involved in the repression or induction of flowering in apical buds of adult apple trees. RESULTS Genes differentially expressed (GDE) were examined between trees artificially set in either 'ON' or 'OFF' situation, and in which floral induction (FI) was shown to be inhibited or induced in most buds, respectively, using qRT-PCR and microarray analysis. From the period of FI through to flower differentiation, GDE belonged to four main biological processes (i) response to stimuli, including response to oxidative stress; (ii) cellular processes, (iii) cell wall biogenesis, and (iv) metabolic processes including carbohydrate biosynthesis and lipid metabolic process. Several key regulator genes, especially TEMPRANILLO (TEM), FLORAL TRANSITION AT MERISTEM (FTM1) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) were found differentially expressed. Moreover, homologs of SPL and Leucine-Rich Repeat proteins were present under QTL zones previously detected for biennial bearing. CONCLUSIONS This data set suggests that apical buds of 'ON' and 'OFF' trees were in different physiological states, resulting from different metabolic, hormonal and redox status which are likely to contribute to FI control in adult apple trees. Investigations on carbohydrate and hormonal fluxes from sources to SAM and on cell detoxification process are expected to further contribute to the identification of the underlying physiological mechanisms of FI in adult apple trees.
Collapse
Affiliation(s)
- B Guitton
- INRA, UMR AGAP, CIRAD-INRA-SupAgro, AFEF team (Architecture et Fonctionnement des Espèces Fruitières) TA 108/03, Avenue Agropolis, 34398, Montpellier, CEDEX 5, France.
- ICRISAT, Samanko station, BP320, Bamako, Mali.
- CIRAD, UMR AGAP, CIRAD-INRA-SupAgro, TA 108/03, Avenue Agropolis, 34398, Montpellier, CEDEX 5, France.
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand.
| | - J J Kelner
- SupAgro, UMR AGAP, CIRAD-INRA-SupAgro, AFEF team (Architecture et Fonctionnement des Espèces Fruitières) TA 108/03, Avenue Agropolis, 34398, Montpellier, CEDEX 5, France.
| | - J M Celton
- INRA, UMR1345 IRHS, Institut de Recherche en Horticulture et Semences, AgroCampus-Ouest-INRA- QUASAV, Bretagne-Loire University, 49071, Beaucouzé, France.
| | - X Sabau
- CIRAD, UMR AGAP, CIRAD-INRA-SupAgro, TA 108/03, Avenue Agropolis, 34398, Montpellier, CEDEX 5, France.
| | - J P Renou
- INRA, UMR1345 IRHS, Institut de Recherche en Horticulture et Semences, AgroCampus-Ouest-INRA- QUASAV, Bretagne-Loire University, 49071, Beaucouzé, France.
| | - D Chagné
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand.
| | - E Costes
- INRA, UMR AGAP, CIRAD-INRA-SupAgro, AFEF team (Architecture et Fonctionnement des Espèces Fruitières) TA 108/03, Avenue Agropolis, 34398, Montpellier, CEDEX 5, France.
| |
Collapse
|