1
|
Postiglione AE, Delange AM, Ali MF, Wang EY, Houben M, Hahn SL, Khoury MG, Roark CM, Davis M, Reid RW, Pease JB, Loraine AE, Muday GK. Flavonols improve tomato pollen thermotolerance during germination and tube elongation by maintaining reactive oxygen species homeostasis. THE PLANT CELL 2024; 36:4511-4534. [PMID: 39102899 PMCID: PMC11449072 DOI: 10.1093/plcell/koae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The tomato (Solanum lycopersicum) anthocyanin reduced (are) mutant harbors a mutation in FLAVANONE 3-HYDROXYLASE (F3H), resulting in impaired flavonol antioxidant biosynthesis. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, phenotypes that are accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent reactive oxygen species (ROS) accumulation in pollen and restored the reduced viability, germination, and tube elongation of are to VF36 levels. Overexpression of F3H in VF36 prevented temperature-driven ROS increases and impaired pollen performance, revealing that flavonol biosynthesis promotes thermotolerance. Although stigmas of are had reduced flavonol and elevated ROS levels, the growth of are pollen tubes was similarly impaired in both are and VF36 pistils. RNA-seq was performed at optimal and stress temperatures in are, VF36, and the F3H overexpression line at multiple timepoints across pollen tube elongation. The number of differentially expressed genes increased over time under elevated temperatures in all genotypes, with the greatest number in are. These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that lead to reproductive failure.
Collapse
Affiliation(s)
- Anthony E Postiglione
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Allison M Delange
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Mohammad Foteh Ali
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Eric Y Wang
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Maarten Houben
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Stacy L Hahn
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Maleana G Khoury
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Colleen M Roark
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Molly Davis
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Robert W Reid
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - James B Pease
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
2
|
Hou L, Liu Z, Zhang D, Liu S, Chen Z, Wu Q, Shang Z, Wang J, Wang J. BR regulates wheat root salt tolerance by maintaining ROS homeostasis. PLANTA 2024; 260:5. [PMID: 38777878 DOI: 10.1007/s00425-024-04429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
MAIN CONCLUSION Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.
Collapse
Affiliation(s)
- Lijiang Hou
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihui Liu
- Department of Biochemistry, Baoding University, Baoding, 071000, Hebei, China
| | - Dongzhi Zhang
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, 734000, China
| | - Shuhan Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, 464000, Henan, China
| | - Zhenzhen Chen
- Xinyang Academy of Agricultural Sciences, Xinyang, 464000, Henan, China
| | - Qiufang Wu
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Zengzhen Shang
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Jingshun Wang
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Burian M, Podgórska A, Kryzheuskaya K, Gieczewska K, Sliwinska E, Szal B. Ammonium treatment inhibits cell cycle activity and induces nuclei endopolyploidization in Arabidopsis thaliana. PLANTA 2024; 259:94. [PMID: 38509428 DOI: 10.1007/s00425-024-04372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
MAIN CONCLUSION This study determined the effect of ammonium supply on the cell division process and showed that ammonium-dependent elevated reactive oxygen species production could mediate the downregulation of the cell cycle-related gene expression. Plants grown under high-ammonium conditions show stunted growth and other toxicity symptoms, including oxidative stress. However, how ammonium regulates the development of plants remains unknown. Growth is defined as an increase in cell volume or proliferation. In the present study, ammonium-related changes in cell cycle activity were analyzed in seedlings, apical buds, and young leaves of Arabidopsis thaliana plants. In all experimental ammonium treatments, the genes responsible for regulating cell cycle progression, such as cyclin-dependent kinases and cyclins, were downregulated in the studied tissues. Thus, ammonium nutrition could be considered to reduce cell proliferation; however, the cause of this phenomenon may be secondary. Reactive oxygen species (ROS), which are produced in large amounts in response to ammonium nutrition, can act as intermediates in this process. Indeed, high ROS levels resulting from H2O2 treatment or reduced ROS production in rbohc mutants, similar to ammonium-triggered ROS, correlated with altered cell cycle-related gene expression. It can be concluded that the characteristic ammonium growth suppression may be executed by enhanced ROS metabolism to inhibit cell cycle activity. This study provides a base for future research in determining the mechanism behind ammonium-induced dwarfism in plants, and strategies to mitigate such stress.
Collapse
Affiliation(s)
- Maria Burian
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
4
|
Saxena S, Das A, Kaila T, Ramakrishna G, Sharma S, Gaikwad K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genomics 2023; 45:783-811. [PMID: 37115379 DOI: 10.1007/s13258-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
5
|
Li X, Wu J, Yi F, Lai J, Chen J. High temporal-resolution transcriptome landscapes of maize embryo sac and ovule during early seed development. PLANT MOLECULAR BIOLOGY 2023; 111:233-248. [PMID: 36508138 DOI: 10.1007/s11103-022-01318-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/07/2022] [Indexed: 06/18/2023]
Abstract
Here we provided a high temporal-resolution transcriptome atlas of maize embryo sac and ovule to reveal the gene activity dynamic during early seed development. The early maize (Zea mays) seed development is initiated from double fertilization in the embryo sac and needs to undergo a highly dynamic and complex development process to form the differentiated embryo and endosperm. Despite the importance of maize seed for food, feed, and biofuel, many regulators responsible for controlling its early development are not known yet. Here, we reported a high temporal-resolution transcriptome atlas of embryo sac and ovule based on 44 time point samples collected within the first four days of seed development. A total of 25,187 genes including 1598 transcription factors (TFs) involved in early seed development were detected. Global comparisons of the expressions of these genes revealed five distinct development stages of early seed, which are mainly related to double fertilization, asymmetric cell division of the zygote, as well as coenocyte formation, cellularization and differentiation in endosperm. We identified 3327 seed-specific genes, which more than one thousand seed-specific genes with main expressions during early seed development were newly identified here, including 859 and 186 genes predominantly expressed in the embryo sac and ovule, respectively. Combined with the published transcriptome data of seed, we uncovered the dominant auxin biosynthesis, transport and signaling related genes at different development stages and subregions of seed. These results are helpful for understanding the genetic control of early seed development.
Collapse
Affiliation(s)
- Xinchen Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Jian Wu
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, People's Republic of China
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, People's Republic of China.
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Lee BR, La VH, Park SH, Mamun MA, Bae DW, Kim TH. Dimethylthiourea Alleviates Drought Stress by Suppressing Hydrogen Peroxide-Dependent Abscisic Acid-Mediated Oxidative Responses in an Antagonistic Interaction with Salicylic Acid in Brassica napus Leaves. Antioxidants (Basel) 2022; 11:2283. [PMID: 36421468 PMCID: PMC9687642 DOI: 10.3390/antiox11112283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 08/01/2023] Open
Abstract
In plants, prolonged drought induces oxidative stress, leading to a loss of reducing potential in redox components. Abscisic acid (ABA) is a representative hormonal signal regulating stress responses. This study aimed to investigate the physiological significance of dimethylthiourea (DMTU, an H2O2 scavenger) in the hormonal regulation of the antioxidant system and redox control in rapeseed (Brassica napus L.) leaves under drought stress. Drought treatment for 10 days provoked oxidative stress, as evidenced by the increase in O2•- and H2O2 concentrations, and lipid peroxidation levels, and a decrease in leaf water potential. Drought-induced oxidative responses were significantly alleviated by DMTU treatment. The accumulation of O2•- and H2O2 in drought-treated plants coincided with the enhanced expression of the NADPH oxidase and Cu/Zn-SOD genes, leading to an up-regulation in oxidative signal-inducible 1 (OXI1) and mitogen-activated protein kinase 6 (MAPK6), with a concomitant increase in ABA levels and the up-regulation of ABA-related genes. DMTU treatment under drought largely suppressed the drought-responsive up-regulation of these genes by depressing ABA responses through an antagonistic interaction with salicylic acid (SA). DMTU treatment also alleviated the drought-induced loss of reducing potential in GSH- and NADPH-based redox by the enhanced expression of glutathione reductase 1 (GR1) and up-regulation of oxidoreductase genes (TRXh5 and GRXC9). These results indicate that DMTU effectively alleviates drought-induced oxidative responses by suppressing ABA-mediated oxidative burst signaling in an antagonistic regulation of SA.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Van Hien La
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
- Center of Crop Research for Adaption to Climate Change (CRCC), Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam
| | - Sang-Hyun Park
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Al Mamun
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae-Hwan Kim
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Nickolov K, Gauthier A, Hashimoto K, Laitinen T, Väisänen E, Paasela T, Soliymani R, Kurusu T, Himanen K, Blokhina O, Fagerstedt KV, Jokipii-Lukkari S, Tuominen H, Häggman H, Wingsle G, Teeri TH, Kuchitsu K, Kärkönen A. Regulation of PaRBOH1-mediated ROS production in Norway spruce by Ca 2+ binding and phosphorylation. FRONTIERS IN PLANT SCIENCE 2022; 13:978586. [PMID: 36311083 PMCID: PMC9608432 DOI: 10.3389/fpls.2022.978586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Plant respiratory burst oxidase homologs (RBOHs) are plasma membrane-localized NADPH oxidases that generate superoxide anion radicals, which then dismutate to H2O2, into the apoplast using cytoplasmic NADPH as an electron donor. PaRBOH1 is the most highly expressed RBOH gene in developing xylem as well as in a lignin-forming cell culture of Norway spruce (Picea abies L. Karst.). Since no previous information about regulation of gymnosperm RBOHs exist, our aim was to resolve how PaRBOH1 is regulated with a focus on phosphorylation. The N-terminal part of PaRBOH1 was found to contain several putative phosphorylation sites and a four-times repeated motif with similarities to the Botrytis-induced kinase 1 target site in Arabidopsis AtRBOHD. Phosphorylation was indicated for six of the sites in in vitro kinase assays using 15 amino-acid-long peptides for each of the predicted phosphotarget site in the presence of protein extracts of developing xylem. Serine and threonine residues showing positive response in the peptide assays were individually mutated to alanine (kinase-inactive) or to aspartate (phosphomimic), and the wild type PaRBOH1 and the mutated constructs transfected to human kidney embryogenic (HEK293T) cells with a low endogenous level of extracellular ROS production. ROS-producing assays with HEK cells showed that Ca2+ and phosphorylation synergistically activate the enzyme and identified several serine and threonine residues that are likely to be phosphorylated including a novel phosphorylation site not characterized in other plant species. These were further investigated with a phosphoproteomic study. Results of Norway spruce, the first gymnosperm species studied in relation to RBOH regulation, show that regulation of RBOH activity is conserved among seed plants.
Collapse
Affiliation(s)
- Kaloian Nickolov
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Adrien Gauthier
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- UniLaSalle, Agro-Ecology, Hydrogeochemistry, Environments & Resources, UP 2018.C101 of the Ministry in Charge of Agriculture (AGHYLE) Research Unit CS UP 2018.C101, Mont-Saint-Aignan, France
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Teresa Laitinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Enni Väisänen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Tanja Paasela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Dev. Biology, University of Helsinki, Biomedicum-Helsinki, Helsinki, Finland
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kristiina Himanen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Olga Blokhina
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kurt V. Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Soile Jokipii-Lukkari
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| |
Collapse
|
8
|
Lu C, Tian Y, Hou X, Hou X, Jia Z, Li M, Hao M, Jiang Y, Wang Q, Pu Q, Yin Z, Li Y, Liu B, Kang X, Zhang G, Ding X, Liu Y. Multiple forms of vitamin B 6 regulate salt tolerance by balancing ROS and abscisic acid levels in maize root. STRESS BIOLOGY 2022; 2:39. [PMID: 37676445 PMCID: PMC10441934 DOI: 10.1007/s44154-022-00061-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 09/08/2023]
Abstract
Salt stress causes osmotic stress, ion toxicity and oxidative stress, inducing the accumulation of abscisic acid (ABA) and excessive reactive oxygen species (ROS) production, which further damage cell structure and inhibit the development of roots in plants. Previous study showed that vitamin B6 (VB6) plays a role in plant responses to salt stress, however, the regulatory relationship between ROS, VB6 and ABA under salt stress remains unclear yet in plants. In our study, we found that salt stress-induced ABA accumulation requires ROS production, in addition, salt stress also promoted VB6 (including pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and pyridoxal 5'-phosphate (PLP)) accumulation, which involved in ROS scavenging and ABA biosynthesis. Furthermore, VB6-deficient maize mutant small kernel2 (smk2) heterozygous is more susceptible to salt stress, and which failed to scavenge excessive ROS effectively or induce ABA accumulation in maize root under salt stress, interestingly, which can be restored by exogenous PN and PLP, respectively. According to these results, we proposed that PN and PLP play an essential role in balancing ROS and ABA levels under salt stress, respectively, it laid a foundation for VB6 to be better applied in crop salt resistance than ABA.
Collapse
Affiliation(s)
- Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xuanxuan Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xin Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zichang Jia
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Min Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingxia Hao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Qingbin Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Shandong Pengbo Biotechnology Co., LTD, Taian, 271018, China
| | - Qiong Pu
- Shandong Agriculture and Engineering University, Jinan, 250000, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, Shandong, China
| | - Xiaojing Kang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Guangyi Zhang
- Shandong Xinyuan Seed Industry Co., LTD, Taian, 271000, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Yinggao Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
9
|
Receptor for Activated C Kinase1B (OsRACK1B) Impairs Fertility in Rice through NADPH-Dependent H2O2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158455. [PMID: 35955593 PMCID: PMC9368841 DOI: 10.3390/ijms23158455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The scaffold protein receptor for Activated C Kinase1 (RACK1) regulates multiple aspects of plants, including seed germination, growth, environmental stress responses, and flowering. Recent studies have revealed that RACK1 is associated with NADPH-dependent reactive oxygen species (ROS) signaling in plants. ROS, as a double-edged sword, can modulate several developmental pathways in plants. Thus, the resulting physiological consequences of perturbing the RACK1 expression-induced ROS balance remain to be explored. Herein, we combined molecular, pharmacological, and ultrastructure analysis approaches to investigate the hypothesized connection using T-DNA-mediated activation-tagged RACK1B overexpressed (OX) transgenic rice plants. In this study, we find that OsRACK1B-OX plants display reduced pollen viability, defective anther dehiscence, and abnormal spikelet morphology, leading to partial spikelet sterility. Microscopic observation of the mature pollen grains from the OX plants revealed abnormalities in the exine and intine structures and decreased starch granules in the pollen, resulting in a reduced number of grains per locule from the OX rice plants as compared to that of the wild-type (WT). Histochemical staining revealed a global increase in hydrogen peroxide (H2O2) in the leaves and roots of the transgenic lines overexpressing OsRACK1B compared to that of the WT. However, the elevated H2O2 in tissues from the OX plants can be reversed by pre-treatment with diphenylidonium (DPI), an NADPH oxidase inhibitor, indicating that the source of H2O2 could be, in part, NADPH oxidase. Expression analysis showed a differential expression of the NADPH/respiratory burst oxidase homolog D (RbohD) and antioxidant enzyme-related genes, suggesting a homeostatic mechanism of H2O2 production and antioxidant enzyme activity. BiFC analysis demonstrated that OsRACK1B interacts with the N-terminal region of RbohD in vivo. Taken together, these data indicate that elevated OsRACK1B accumulates a threshold level of ROS, in this case H2O2, which negatively regulates pollen development and fertility. In conclusion, we hypothesized that an optimal expression of RACK1 is critical for fertility in rice plants.
Collapse
|
10
|
Sonmez MC, Ozgur R, Uzilday B, Turkan I, Ganie SA. Redox regulation in
C
3
and
C
4
plants during climate change and its implications on food security. Food Energy Secur 2022. [DOI: 10.1002/fes3.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Rengin Ozgur
- Department of Biology Faculty of Science Ege University Izmir Turkey
- Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Baris Uzilday
- Department of Biology Faculty of Science Ege University Izmir Turkey
- Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Ismail Turkan
- Department of Biology Faculty of Science Ege University Izmir Turkey
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology Department of Biological Sciences Royal Holloway University of London Egham UK
| |
Collapse
|
11
|
Berrios L, Rentsch JD. Linking Reactive Oxygen Species (ROS) to Abiotic and Biotic Feedbacks in Plant Microbiomes: The Dose Makes the Poison. Int J Mol Sci 2022; 23:ijms23084402. [PMID: 35457220 PMCID: PMC9030523 DOI: 10.3390/ijms23084402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC 29502, USA;
| |
Collapse
|
12
|
Kannan G, Saraswathi MS, Thangavelu R, Kumar PS, Bathrinath M, Uma S, Backiyarani S, Chandrasekar A, Ganapathi TR. Development of fusarium wilt resistant mutants of Musa spp. cv.Rasthali (AAB, Silk subgroup) and comparative proteomic analysis along with its wild type. PLANTA 2022; 255:80. [PMID: 35249170 DOI: 10.1007/s00425-022-03860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Induced mutagenesis using embryogenic cell suspension (ECS) explants with toxin based screening is an effective tool to create non-chimeral Fusarium wilt resistant mutants in banana. Global proteomics unravel the molecular mechanism behind resistance. Race 1 of Fusarium wilt is a serious threat to Musa spp. cv.Rasthali (AAB, Silk subgroup) which is a choice variety traditionally grown in most of the south East Asian countries. Resistant gene introgression into susceptible varieties through conventional breeding has several limitations and the predominant ones being sterility and long generation time. Under such circumstances, induced mutagenesis combined with toxin based in vitro screening remains as the viable alternative for the development of fusarium wilt resistant Rasthali. Therefore, induced mutagenesis was attempted by using ethylmethane sulfonate (EMS) in embryogenic cell suspension (ECS) of Rasthali followed by in vitro screening for fusarium wilt resistance using new generation toxins and pot screening through challenge inoculation with Foc race 1. This ultimately resulted in the identification of 15 resistant lines. Global proteomic analysis in one of the resistant mutant lines namely NRCBRM15 and its wild type revealed 37 proteins, of which 20 showed differential expression. Out of 20 proteins, nineteen were significantly abundant in NRCBRM15 and only one was abundant in wild Rasthali. A total of nine genes based on protein expression were further validated using quantitative real time polymerase chain reaction (qRT-PCR). Annotation results revealed that some of the genes namely Enolase, ATP synthase-alpha subunit, Actin 2, Actin 3,-glucanase, UTP-glucose-1-phosphate uridylyltransferase, Respiratory burst oxidase homolog, V type proton ATPase catalytic subunit A and DUF292 domain containing protein are involved in diverse functions such as carbohydrate metabolism, energy production, electron carrier, response to wounding, binding proteins, cytoskeleton organization, extracellular region, structural molecule and defense.
Collapse
Affiliation(s)
- Gandhi Kannan
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Road, Thayanur (post), Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Marimuthu Somasundaram Saraswathi
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Road, Thayanur (post), Tiruchirappalli, Tamil Nadu, 620 102, India.
| | - Raman Thangavelu
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Road, Thayanur (post), Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Parasuraman Subesh Kumar
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Road, Thayanur (post), Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Murugesan Bathrinath
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Road, Thayanur (post), Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Subbaraya Uma
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Road, Thayanur (post), Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Suthanthiram Backiyarani
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Road, Thayanur (post), Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Arumugam Chandrasekar
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Road, Thayanur (post), Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Thumballi R Ganapathi
- Plant Cell Culture Technology Section Nuclear Agriculture and Biotechnology Division Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| |
Collapse
|
13
|
Gallé Á, Czékus Z, Tóth L, Galgóczy L, Poór P. Pest and disease management by red light. PLANT, CELL & ENVIRONMENT 2021; 44:3197-3210. [PMID: 34191305 DOI: 10.1111/pce.14142] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 05/22/2023]
Abstract
Light is essential for plant life. It provides a source of energy through photosynthesis and regulates plant growth and development and other cellular processes, such as by controlling the endogenous circadian clock. Light intensity, quality, duration and timing are all important determinants of plant responses, especially to biotic stress. Red light can positively influence plant defence mechanisms against different pathogens, but the molecular mechanism behind this phenomenon is not fully understood. Therefore, we reviewed the impact of red light on plant biotic stress responses against viruses, bacteria, fungi and nematodes, with a focus on the physiological effects of red light treatment and hormonal crosstalk under biotic stress in plants. We found evidence suggesting that exposing plants to red light increases levels of salicylic acid (SA) and induces SA signalling mediating the production of reactive oxygen species, with substantial differences between species and plant organs. Such changes in SA levels could be vital for plants to survive infections. Therefore, the application of red light provides a multidimensional aspect to developing innovative and environmentally friendly approaches to plant and crop disease management.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
von der Mark C, Ivanov R, Eutebach M, Maurino VG, Bauer P, Brumbarova T. Reactive oxygen species coordinate the transcriptional responses to iron availability in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2181-2195. [PMID: 33159788 PMCID: PMC7966954 DOI: 10.1093/jxb/eraa522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species play a central role in the regulation of plant responses to environmental stress. Under prolonged iron (Fe) deficiency, increased levels of hydrogen peroxide (H2O2) initiate signaling events, resulting in the attenuation of Fe acquisition through the inhibition of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). As this H2O2 increase occurs in a FIT-dependent manner, our aim was to understand the processes involved in maintaining H2O2 levels under prolonged Fe deficiency and the role of FIT. We identified the CAT2 gene, encoding one of the three Arabidopsis catalase isoforms, as regulated by FIT. CAT2 loss-of-function plants displayed severe susceptibility to Fe deficiency and greatly increased H2O2 levels in roots. Analysis of the Fe homeostasis transcription cascade revealed that H2O2 influences the gene expression of downstream regulators FIT, BHLH genes of group Ib, and POPEYE (PYE); however, H2O2 did not affect their upstream regulators, such as BHLH104 and ILR3. Our data shows that FIT and CAT2 participate in a regulatory loop between H2O2 and prolonged Fe deficiency.
Collapse
Affiliation(s)
- Claudia von der Mark
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Department of Molecular Plant Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschalle 1, D-53115 Bonn, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
- Correspondence: or
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Correspondence: or
| |
Collapse
|
15
|
Bilcke G, Van den Berge K, De Decker S, Bonneure E, Poulsen N, Bulankova P, Osuna-Cruz CM, Dickenson J, Sabbe K, Pohnert G, Vandepoele K, Mangelinckx S, Clement L, De Veylder L, Vyverman W. Mating type specific transcriptomic response to sex inducing pheromone in the pennate diatom Seminavis robusta. THE ISME JOURNAL 2021; 15:562-576. [PMID: 33028976 PMCID: PMC8027222 DOI: 10.1038/s41396-020-00797-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
Sexual reproduction is a fundamental phase in the life cycle of most diatoms. Despite its role as a source of genetic variation, it is rarely reported in natural circumstances and its molecular foundations remain largely unknown. Here, we integrate independent transcriptomic datasets to prioritize genes responding to sex inducing pheromones (SIPs) in the pennate diatom Seminavis robusta. We observe marked gene expression changes associated with SIP treatment in both mating types, including an inhibition of S phase progression, chloroplast division, mitosis, and cell wall formation. Meanwhile, meiotic genes are upregulated in response to SIP, including a sexually induced diatom specific cyclin. Our data further suggest an important role for reactive oxygen species, energy metabolism, and cGMP signaling during the early stages of sexual reproduction. In addition, we identify several genes with a mating type specific response to SIP, and link their expression pattern with physiological specialization, such as the production of the attraction pheromone diproline in mating type - (MT-) and mate-searching behavior in mating type + (MT+). Combined, our results provide a model for early sexual reproduction in pennate diatoms and significantly expand the suite of target genes to detect sexual reproduction events in natural diatom populations.
Collapse
Affiliation(s)
- Gust Bilcke
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000, Ghent, Belgium
| | - Koen Van den Berge
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000, Ghent, Belgium
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Sam De Decker
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Eli Bonneure
- SynBioC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, Technical University of Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Petra Bulankova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Jack Dickenson
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Lieven Clement
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
16
|
Qian M, Xu L, Tang C, Zhang H, Gao H, Cao P, Yin H, Wu L, Wu J, Gu C, Zhang S. PbrPOE21 inhibits pear pollen tube growth in vitro by altering apical reactive oxygen species content. PLANTA 2020; 252:43. [PMID: 32870426 DOI: 10.1007/s00425-020-03446-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Genome-wide identification, tissue-specific expression analysis and functional characterization of selected genes containing the pear Pollen Olea europaea I domain reveal their roles in pollen tube growth. Genes containing the Pollen Olea europaea I (POE) domain play crucial roles in diverse growth and developmental processes. Nevertheless, the specific functions of POE family members in progression of pollen tube growth (PTG) remain uncharacterized. We identified 45 PbrPOE genes in the pear (Pyrus bretschneideri) genome, clustered into seven subclasses. PbrPOE genes contained 1 to 11 exons and 0 to 10 introns, with exon/intron structure mostly conserved within each subclass. Whole-genome duplication has mainly contributed to the duplication pattern of PbrPOE genes in pear. Expression profiles of 45 PbrPOE genes in 12 different pear tissues revealed that six PbrPOE genes (PbrPOE6, 12, 21, 29, 35 and 41) of subclass B were highly expressed during the growth of the pear pollen tube in vitro. PbrPOE21 was selected for further functional analysis on the basis of its high and differential expression pattern in pollen. Antisense oligodeoxynucleotide assays demonstrated that PTG was augmented in vitro when PbrPOE21 expression was significantly inhibited. Moreover, pollen tube length in vitro was reduced when PbrPOE21 was transitorily over-expressed using particle bombardment technology. Exogenous PbrPOE21 recombinant protein inhibited PTG in vitro at an optimum concentration of 1.8 µM. PbrPOE21 also affected reactive oxygen species content in the pear pollen tube apex. We suggest that PbrPOE21 inhibits PTG in vitro by altering apical reactive oxygen species content.
Collapse
Affiliation(s)
- Ming Qian
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linlin Xu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Tang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongru Gao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Cao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Gu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Superoxide Radical Metabolism in Sweet Pepper ( Capsicum annuum L.) Fruits Is Regulated by Ripening and by a NO-Enriched Environment. FRONTIERS IN PLANT SCIENCE 2020; 11:485. [PMID: 32477380 PMCID: PMC7240112 DOI: 10.3389/fpls.2020.00485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 05/21/2023]
Abstract
Superoxide radical (O2 •-) is involved in numerous physiological and stress processes in higher plants. Fruit ripening encompasses degradative and biosynthetic pathways including reactive oxygen and nitrogen species. With the use of sweet pepper (Capsicum annuum L.) fruits at different ripening stages and under a nitric oxide (NO)-enriched environment, the metabolism of O2 •- was evaluated at biochemical and molecular levels considering the O2 •- generation by a NADPH oxidase system and its dismutation by superoxide dismutase (SOD). At the biochemical level, seven O2 •--generating NADPH-dependent oxidase isozymes [also called respiratory burst oxidase homologs (RBOHs) I-VII], with different electrophoretic mobility and abundance, were detected considering all ripening stages from green to red fruits and NO environment. Globally, this system was gradually increased from green to red stage with a maximum of approximately 2.4-fold increase in red fruit compared with green fruit. Significantly, breaking-point (BP) fruits with and without NO treatment both showed intermediate values between those observed in green and red peppers, although the value in NO-treated fruits was lower than in BP untreated fruits. The O2 •--generating NADPH oxidase isozymes I and VI were the most affected. On the other hand, four SOD isozymes were identified by non-denaturing electrophoresis: one Mn-SOD, one Fe-SOD, and two CuZn-SODs. However, none of these SOD isozymes showed any significant change during the ripening from green to red fruits or under NO treatment. In contrast, at the molecular level, both RNA-sequencing and real-time quantitative PCR analyses revealed different patterns with downregulation of four genes RBOH A, C, D, and E during pepper fruit ripening. On the contrary, it was found out the upregulation of a Mn-SOD gene in the ripening transition from immature green to red ripe stages, whereas a Fe-SOD gene was downregulated. In summary, the data reveal a contradictory behavior between activity and gene expression of the enzymes involved in the metabolism of O2 •- during the ripening of pepper fruit. However, it could be concluded that the prevalence and regulation of the O2 •- generation system (NADPH oxidase-like) seem to be essential for an appropriate control of the pepper fruit ripening, which, additionally, is modulated in the presence of a NO-enriched environment.
Collapse
Affiliation(s)
| | | | | | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
18
|
Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Rokka A, Stolze SC, Harzen A, Meißner L, Wilkens MMT, Hamann T, Toyota M, Nakagami H, Wrzaczek M. CRK2 and C-terminal Phosphorylation of NADPH Oxidase RBOHD Regulate Reactive Oxygen Species Production in Arabidopsis. THE PLANT CELL 2020; 32:1063-1080. [PMID: 32034035 PMCID: PMC7145479 DOI: 10.1105/tpc.19.00525] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/13/2020] [Accepted: 02/06/2020] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are important messengers in eukaryotic organisms, and their production is tightly controlled. Active extracellular ROS production by NADPH oxidases in plants is triggered by receptor-like protein kinase-dependent signaling networks. Here, we show that CYSTEINE-RICH RLK2 (CRK2) kinase activity is required for plant growth and CRK2 exists in a preformed complex with the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) in Arabidopsis (Arabidopsis thaliana). Functional CRK2 is required for the full elicitor-induced ROS burst, and consequently the crk2 mutant is impaired in defense against the bacterial pathogen Pseudomonas syringae pv tomato DC3000. Our work demonstrates that CRK2 regulates plant innate immunity. We identified in vitro CRK2-dependent phosphorylation sites in the C-terminal region of RBOHD. Phosphorylation of S703 RBOHD is enhanced upon flg22 treatment, and substitution of S703 with Ala reduced ROS production in Arabidopsis. Phylogenetic analysis suggests that phospho-sites in the C-terminal region of RBOHD are conserved throughout the plant lineage and between animals and plants. We propose that regulation of NADPH oxidase activity by phosphorylation of the C-terminal region might be an ancient mechanism and that CRK2 is an important element in regulating microbe-associated molecular pattern-triggered ROS production.
Collapse
Affiliation(s)
- Sachie Kimura
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Kerri Hunter
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Lauri Vaahtera
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Huy Cuong Tran
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Anne Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Anne Harzen
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Lena Meißner
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Maya Melina Tabea Wilkens
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Department of Botany, University of Wisconsin, Madison, WI 53593, USA
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
19
|
Sousa B, Soares C, Oliveira F, Martins M, Branco-Neves S, Barbosa B, Ataíde I, Teixeira J, Azenha M, Azevedo RA, Fidalgo F. Foliar application of 24-epibrassinolide improves Solanum nigrum L. tolerance to high levels of Zn without affecting its remediation potential. CHEMOSPHERE 2020; 244:125579. [PMID: 32050351 DOI: 10.1016/j.chemosphere.2019.125579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Although Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still compromised by toxic levels of zinc (Zn). Thus, the development of eco-friendly strategies to enhance its tolerance, maintaining remediation potential is of special interest. This study evaluated the potential of 24-epibrassinolide (24-EBL) to boost S. nigrum defence against Zn towards a better growth rate and remediation potential. After 24 days of exposure, the results revealed that Zn-mediated inhibitory effects on biomass and biometry were efficiently mitigated upon application of 24-EBL, without affecting Zn accumulation. The evaluation of oxidative stress markers reported that Zn excess stimulated the accumulation of superoxide anion (O2.-), but reduced hydrogen peroxide (H2O2) levels, while not altering lipid peroxidation (LP). This was accompanied by an up-regulation of the antioxidant system, especially proline, superoxide dismutase (SOD) and ascorbate peroxidase (APX) in both organs, and ascorbate in roots of Zn-exposed plants. Foliar application of 24-EBL, however, induced distinctive effects, lowering proline levels in both organs, as well as APX activity in shoots and SOD in roots, whilst stimulating GSH and total thiols in both organs, as well as SOD and APX activity, in shoots and in roots, respectively. Probably due to a better antioxidant efficiency, levels of O2.- and H2O2 in pre-treated plants remained identical to the control, while LP further decreased in shoots. Overall, our results indicate a protective effect of 24-EBL on S. nigrum response to excess Zn, contributing for a better tolerance and growth rate, without disturbing its phytoremediation potential.
Collapse
Affiliation(s)
- Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Francisca Oliveira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Simão Branco-Neves
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Beatriz Barbosa
- Colégio Internato dos Carvalhos (CIC), Rua Moeiro s/n, 4415-133, Pedroso, Portugal
| | - Inês Ataíde
- Colégio Internato dos Carvalhos (CIC), Rua Moeiro s/n, 4415-133, Pedroso, Portugal
| | - Jorge Teixeira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Manuel Azenha
- CIQ-UP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, CP. 83, CEP 13418-900, Piracicaba, Brazil
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
20
|
García-Quirós E, Alché JDD, Karpinska B, Foyer CH. Glutathione redox state plays a key role in flower development and pollen vigour. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:730-741. [PMID: 31557297 PMCID: PMC6946011 DOI: 10.1093/jxb/erz376] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/10/2019] [Indexed: 05/04/2023]
Abstract
The importance of the glutathione pool in the development of reproductive tissues and in pollen tube growth was investigated in wild-type (WT) Arabidopsis thaliana, a reporter line expressing redox-sensitive green fluorescent protein (roGFP2), and a glutathione-deficient cad2-1 mutant (cad2-1/roGFP2). The cad2-1/roGFP2 flowers had significantly less reduced glutathione (GSH) and more glutathione disulfide (GSSG) than WT or roGFP2 flowers. The stigma, style, anther, germinated pollen grains, and pollen tubes of roGFP2 flowers had a low degree of oxidation. However, these tissues were more oxidized in cad2-1/roGFP2 flowers than the roGFP2 controls. The ungerminated pollen grains were significantly more oxidized than the germinated pollen grains, indicating that the pollen cells become reduced upon the transition from the quiescent to the metabolically active state during germination. The germination percentage was lower in cad2-1/roGFP2 pollen and pollen tube growth arrested earlier than in roGFP2 pollen, demonstrating that increased cellular reduction is essential for pollen tube growth. These findings establish that ungerminated pollen grains exist in a relatively oxidized state compared with germinating pollen grains. Moreover, failure to accumulate glutathione and maintain a high GSH/GSSG ratio has a strong negative effect on pollen germination.
Collapse
Affiliation(s)
- Estefanía García-Quirós
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Christine H Foyer
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Correspondence:
| |
Collapse
|
21
|
Sankaranarayanan S, Ju Y, Kessler SA. Reactive Oxygen Species as Mediators of Gametophyte Development and Double Fertilization in Flowering Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1199. [PMID: 32849744 PMCID: PMC7419745 DOI: 10.3389/fpls.2020.01199] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) are toxic by-products of aerobic metabolism. In plants, they also function as important signaling molecules that regulate biotic and abiotic stress responses as well as plant growth and development. Recent studies have implicated ROS in various aspects of plant reproduction. In male gametophytes, ROS are associated with germline development as well as the developmentally associated programmed cell death of tapetal cells necessary for microspore development. ROS have a role in regulation of female gametophyte patterning and maintenance of embryo sac polarity. During pollination, ROS play roles in the generation of self-incompatibility response during pollen-pistil interaction, pollen tube growth, pollen tube burst for sperm release and fertilization. In this mini review, we provide an overview of ROS production and signaling in the context of plant reproductive development, from female and male gametophyte development to fertilization.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Subramanian Sankaranarayanan, ; Sharon A. Kessler,
| | - Yan Ju
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Sharon A. Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Subramanian Sankaranarayanan, ; Sharon A. Kessler,
| |
Collapse
|
22
|
Pearson GA, Martins N, Madeira P, Serrão EA, Bartsch I. Sex-dependent and -independent transcriptional changes during haploid phase gametogenesis in the sugar kelp Saccharina latissima. PLoS One 2019; 14:e0219723. [PMID: 31513596 PMCID: PMC6742357 DOI: 10.1371/journal.pone.0219723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
In haplodiplontic lineages, sexual reproduction occurs in haploid parents without meiosis. Although widespread in multicellular lineages such as brown algae (Phaeophyceae), haplodiplontic gametogenesis has been little studied at the molecular level. We addressed this by generating an annotated reference transcriptome for the gametophytic phase of the sugar kelp, Saccharina latissima. Transcriptional profiles of microscopic male and female gametophytes were analysed at four time points during the transition from vegetative growth to gametogenesis. Gametogenic signals resulting from a switch in culture irradiance from red to white light activated a core set of genes in a sex-independent manner, involving rapid activation of ribosome biogenesis, transcription and translation related pathways, with several acting at the post-transcriptional or post-translational level. Additional genes regulating nutrient acquisition and key carbohydrate-energy pathways were also identified. Candidate sex-biased genes under gametogenic conditions had potentially key roles in controlling female- and male-specific gametogenesis. Among these were several sex-biased or -specific E3 ubiquitin-protein ligases that may have important regulatory roles. Females specifically expressed several genes that coordinate gene expression and/or protein degradation, and the synthesis of inositol-containing compounds. Other female-biased genes supported parallels with oogenesis in divergent multicellular lineages, in particular reactive oxygen signalling via an NADPH-oxidase. Males specifically expressed the hypothesised brown algal sex-determining factor. Male-biased expression mainly involved upregulation of genes that control mitotic cell proliferation and spermatogenesis in other systems, as well as multiple flagella-related genes. Our data and results enhance genome-level understanding of gametogenesis in this ecologically and economically important multicellular lineage.
Collapse
Affiliation(s)
- Gareth A. Pearson
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Neusa Martins
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Pedro Madeira
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Ester A. Serrão
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Inka Bartsch
- Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen, Germany
| |
Collapse
|
23
|
Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100182] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Engelsdorf T, Kjaer L, Gigli-Bisceglia N, Vaahtera L, Bauer S, Miedes E, Wormit A, James L, Chairam I, Molina A, Hamann T. Functional characterization of genes mediating cell wall metabolism and responses to plant cell wall integrity impairment. BMC PLANT BIOLOGY 2019; 19:320. [PMID: 31319813 PMCID: PMC6637594 DOI: 10.1186/s12870-019-1934-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/10/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant cell walls participate in all plant-environment interactions. Maintaining cell wall integrity (CWI) during these interactions is essential. This realization led to increased interest in CWI and resulted in knowledge regarding early perception and signalling mechanisms active during CWI maintenance. By contrast, knowledge regarding processes mediating changes in cell wall metabolism upon CWI impairment is very limited. RESULTS To identify genes involved and to investigate their contributions to the processes we selected 23 genes with altered expression in response to CWI impairment and characterized the impact of T-DNA insertions in these genes on cell wall composition using Fourier-Transform Infrared Spectroscopy (FTIR) in Arabidopsis thaliana seedlings. Insertions in 14 genes led to cell wall phenotypes detectable by FTIR. A detailed analysis of four genes found that their altered expression upon CWI impairment is dependent on THE1 activity, a key component of CWI maintenance. Phenotypic characterizations of insertion lines suggest that the four genes are required for particular aspects of CWI maintenance, cell wall composition or resistance to Plectosphaerella cucumerina infection in adult plants. CONCLUSION Taken together, the results implicate the genes in responses to CWI impairment, cell wall metabolism and/or pathogen defence, thus identifying new molecular components and processes relevant for CWI maintenance.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
- Present address: Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043 Marburg, Germany
| | - Lars Kjaer
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: Sjælland erhvervsakademi, Breddahlsgade 1b, 4200 Slagelse, Zealand Denmark
| | - Nora Gigli-Bisceglia
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
- Present address: Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Lauri Vaahtera
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
| | - Stefan Bauer
- Energy Biosciences Institute, University of California, 120A Energy Biosciences Building, 2151 Berkeley Way, MC 5230, Berkeley, CA 94720-5230 USA
- Present address: Zymergen, Inc, 5980 Horton St, Suite 105, Emeryville, CA 94608 USA
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo- UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Alexandra Wormit
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: RWTH Aachen, Institute for Biology I, Worringerweg 3, D-52056 Aachen, Germany
| | - Lucinda James
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: ADAS, Battlegate Road, Boxworth, Cambridge, CB23 4NN UK
| | - Issariya Chairam
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: ADAS, Battlegate Road, Boxworth, Cambridge, CB23 4NN UK
- Present address: Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo- UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
| |
Collapse
|
25
|
Sadhu A, Moriyasu Y, Acharya K, Bandyopadhyay M. Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells. Sci Rep 2019; 9:8973. [PMID: 31222105 PMCID: PMC6586778 DOI: 10.1038/s41598-019-45470-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Synergistic interaction of nitric oxide (NO) and reactive oxygen species (ROS) is essential to initiate cell death mechanisms in plants. Though autophagy is salient in either restricting or promoting hypersensitivity response (HR)-related cell death, the crosstalk between the reactive intermediates and autophagy during hypersensitivity response is paradoxical. In this investigation, the consequences of Alternaria alternata toxin (AaT) in tobacco BY-2 cells were examined. At 3 h, AaT perturbed intracellular ROS homeostasis, altered antioxidant enzyme activities, triggered mitochondrial depolarization and induced autophagy. Suppression of autophagy by 3-Methyladenine caused a decline in cell viability in AaT treated cells, which indicated the vital role of autophagy in cell survival. After 24 h, AaT facilitated Ca2+ influx with an accumulation of reactive oxidant intermediates and NO, to manifest necrotic cell death. Inhibition of NO accumulation by 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) decreased the level of necrotic cell death, and induced autophagy, which suggests NO accumulation represses autophagy and facilitates necrotic cell death at 24 h. Application of N-acetyl-L-cysteine at 3 h, confirmed ROS to be the key initiator of autophagy, and together with cPTIO for 24 h, revealed the combined effects of NO and ROS is required for necrotic HR cell death.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Saitama, 338-8570, Japan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
26
|
Kaya H, Takeda S, Kobayashi MJ, Kimura S, Iizuka A, Imai A, Hishinuma H, Kawarazaki T, Mori K, Yamamoto Y, Murakami Y, Nakauchi A, Abe M, Kuchitsu K. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:291-300. [PMID: 30570803 DOI: 10.1111/tpj.14212] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidases, called respiratory burst oxidase homologs (Rbohs), play crucial roles in development as well as biotic and abiotic stress responses in plants. Arabidopsis has 10 Rboh genes, AtRbohA to AtRbohJ. Five AtRbohs (AtRbohC, -D, -F, -H and -J) are synergistically activated by Ca2+ -binding and protein phosphorylation to produce ROS that play various roles in planta, although the activities of the other Rbohs remain unknown. With a heterologous expression system, we found a range of ROS-producing activity among the AtRbohs with differences up to 100 times, indicating that the required amounts of ROS are different in each situation where AtRbohs act. To specify the functions of AtRbohs involved in cell growth, we focused on AtRbohC, -H and -J, which are involved in tip growth of root hairs or pollen tubes. Ectopic expression of the root hair factor AtRbohC/ROOT HAIR DEFECTIVE 2 (RHD2) in pollen tubes restored the atrbohH atrbohJ defects in tip growth of pollen tubes. However, expression of AtRbohH or -J in root hairs did not complement the tip growth defect in the atrbohC/rhd2 mutant. Our data indicate that Rbohs possess different ranges of enzymatic activity, and that some Rbohs have evolved to carry specific functions in cell growth.
Collapse
Affiliation(s)
- Hidetaka Kaya
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Center, Kitainayazuma Oji 74, Seika-cho, Soraku-gun, Kyoto, 619-0244, Japan
| | - Masaki J Kobayashi
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Sachie Kimura
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayako Iizuka
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Aya Imai
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Haruka Hishinuma
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomoko Kawarazaki
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kyoichiro Mori
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuta Yamamoto
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuki Murakami
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayuko Nakauchi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Mitsutomo Abe
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
27
|
Han JP, Köster P, Drerup MM, Scholz M, Li S, Edel KH, Hashimoto K, Kuchitsu K, Hippler M, Kudla J. Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca 2+ binding. THE NEW PHYTOLOGIST 2019; 221:1935-1949. [PMID: 30320882 DOI: 10.1111/nph.15543] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/27/2018] [Indexed: 05/19/2023]
Abstract
RBOHF from Arabidopsis thaliana represents a multifunctional NADPH oxidase regulating biotic and abiotic stress tolerance, developmental processes and guard cell aperture. The molecular components and mechanisms determining RBOHF activity remain to be elucidated. Here we combined protein interaction studies, biochemical and genetic approaches, and pathway reconstitution analyses to identify and characterize proteins that confer RBOHF regulation and elucidated mechanisms that adjust RBOHF activity. While the Ca2+ sensor-activated kinases CIPK11 and CIPK26 constitute alternative paths for RBOHF activation, the combined activity of CIPKs and the kinase open stomata 1 (OST1) triggers complementary activation of this NADPH oxidase, which is efficiently counteracted through dephosphorylation by the phosphatase ABI1. Within RBOHF, several distinct phosphorylation sites (p-sites) in the N-terminus of RBOHF appear to contribute individually to activity regulation. These findings identify RBOHF as a convergence point targeted by a complex regulatory network of kinases and phosphatases. We propose that this allows for fine-tuning of plant reactive oxygen species (ROS) production by RBOHF in response to different stimuli and in diverse physiological processes.
Collapse
Affiliation(s)
- Jian-Pu Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7/8, Münster, 48149, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7/8, Münster, 48149, Germany
| | - Maria M Drerup
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7/8, Münster, 48149, Germany
| | - Martin Scholz
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7/8, Münster, 48149, Germany
| | - Shizhen Li
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7/8, Münster, 48149, Germany
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7/8, Münster, 48149, Germany
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7/8, Münster, 48149, Germany
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7/8, Münster, 48149, Germany
| | - Jörg Kudla
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7/8, Münster, 48149, Germany
| |
Collapse
|
28
|
NADPH Oxidase (Rboh) Activity is Up Regulated during Sweet Pepper ( Capsicum annuum L.) Fruit Ripening. Antioxidants (Basel) 2019; 8:antiox8010009. [PMID: 30609654 PMCID: PMC6356770 DOI: 10.3390/antiox8010009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/25/2018] [Indexed: 11/21/2022] Open
Abstract
In plants, NADPH oxidase (NOX) is also known as a respiratory burst oxidase homolog (Rboh). This highly important enzyme, one of the main enzymatic sources of superoxide radicals (O2•−), is involved in the metabolism of reactive oxygen and nitrogen species (ROS and RNS), which is active in the non-climacteric pepper (Capsicum annuum L.) fruit. We used sweet pepper fruits at two ripening stages (green and red) to biochemically analyze the O2•−-generating Rboh activity and the number of isozymes during this physiological process. Malondialdehyde (MDA) content, an oxidative stress marker, was also assayed as an index of lipid peroxidation. In red fruits, MDA was observed to increase 2-fold accompanied by a 5.3-fold increase in total Rboh activity. Using in-gel assays of Rboh activity, we identified a total of seven CaRboh isozymes (I–VII) which were differentially modulated during ripening. CaRboh-III and CaRboh-I were the most prominent isozymes in green and red fruits, respectively. An in vitro assay showed that CaRboh activity is inhibited in the presence of nitric oxide (NO) donors, peroxynitrite (ONOO−) and glutathione (GSH), suggesting that CaRboh can undergo S-nitrosation, Tyr-nitration, and glutathionylation, respectively. In summary, this study provides a basic biochemical characterization of CaRboh activity in pepper fruits and indicates that this O2•−-generating Rboh is involved in nitro-oxidative stress associated with sweet pepper fruit ripening.
Collapse
|
29
|
Jimenez-Quesada MJ, Traverso JA, Potocký M, Žárský V, Alché JDD. Generation of Superoxide by OeRbohH, a NADPH Oxidase Activity During Olive ( Olea europaea L.) Pollen Development and Germination. FRONTIERS IN PLANT SCIENCE 2019; 10:1149. [PMID: 31608092 PMCID: PMC6761571 DOI: 10.3389/fpls.2019.01149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Reactive oxygen species (ROS) are produced in the olive reproductive organs as the result of intense metabolism. ROS production and pattern of distribution depend on the developmental stage, supposedly playing a broad panel of functions, which include defense and signaling between pollen and pistil. Among ROS-producing mechanisms, plasma membrane NADPH-oxidase activity is being highlighted in plant tissues, and two enzymes of this type have been characterized in Arabidopsis thaliana pollen (RbohH and RbohJ), playing important roles in pollen physiology. Besides, pollen from different species has shown distinct ROS production mechanism and patterns of distribution. In the olive reproductive tissues, a significant production of superoxide has been described. However, the enzymes responsible for such generation are unknown. Here, we have identified an Rboh-type gene (OeRbohH), mainly expressed in olive pollen. OeRbohH possesses a high degree of identity with RbohH and RbohJ from Arabidopsis, sharing most structural features and motifs. Immunohistochemistry experiments allowed us to localize OeRbohH throughout pollen ontogeny as well as during pollen tube elongation. Furthermore, the balanced activity of tip-localized OeRbohH during pollen tube growth has been shown to be important for normal pollen physiology. This was evidenced by the fact that overexpression caused abnormal phenotypes, whereas incubation with specific NADPH oxidase inhibitor or gene knockdown lead to impaired ROS production and subsequent inhibition of pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- María José Jimenez-Quesada
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - José Angel Traverso
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
- *Correspondence: Juan de Dios Alché,
| |
Collapse
|
30
|
Kaur G, Pati PK. In silico insights on diverse interacting partners and phosphorylation sites of respiratory burst oxidase homolog (Rbohs) gene families from Arabidopsis and rice. BMC PLANT BIOLOGY 2018; 18:161. [PMID: 30097007 PMCID: PMC6086027 DOI: 10.1186/s12870-018-1378-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/30/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND NADPH oxidase (Nox) is a critical enzyme involved in the generation of apoplastic superoxide (O2-), a type of reactive oxygen species (ROS) and hence regulate a wide range of biological functions in many organisms. Plant Noxes are the homologs of the catalytic subunit from mammalian NADPH oxidases and are known as respiratory burst oxidase homologs (Rbohs). Previous studies have highlighted their versatile roles in tackling different kind of stresses and in plant growth and development. In the current study, potential interacting partners and phosphorylation sites were predicted for Rboh proteins from two model species (10 Rbohs from Arabidopsis thaliana and 9 from Oryza sativa japonica). The present work is the first step towards in silico prediction of interacting partners and phosphorylation sites for Rboh proteins from two plant species. RESULTS In this work, an extensive range of potential partners (unique and common), leading to diverse functions were revealed from interaction networks and gene ontology classifications, where majority of AtRbohs and OsRbohs play role in stress-related activities, followed by cellular development. Further, 68 and 38 potential phosphorylation sites were identified in AtRbohs and OsRbohs, respectively. Their distribution, location and kinase specificities were also predicted and correlated with experimental data as well as verified with the other EF-hand containing proteins within both genomes. CONCLUSIONS Analysis of regulatory mechanisms including interaction with diverse partners and post-translational modifications like phosphorylation have provided insights regarding functional multiplicity of Rbohs. The bioinformatics-based workflow in the current study can be used to get insights for interacting partners and phosphorylation sites from Rbohs of other plant species.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
- Present Address: Quantitative Biology Center (QBiC), University of Tuebingen, 72076, Tuebingen, Germany
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
31
|
Abstract
Reactive oxygen species (ROS) are produced by metabolic pathways in almost all cells. As signaling components, ROS are best known for their roles in abiotic and biotic stress-related events. However, recent studies have revealed that they are also involved in numerous processes throughout the plant life cycle, from seed development and germination, through to root, shoot and flower development. Here, we provide an overview of ROS production and signaling in the context of plant growth and development, highlighting the key functions of ROS and their interactions with plant phytohormonal networks.
Collapse
Affiliation(s)
- Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
32
|
Koldenkova VP, Hatsugai N. How do Plants Keep their Functional Integrity? PLANT SIGNALING & BEHAVIOR 2018; 13:e1464853. [PMID: 29727257 PMCID: PMC6149517 DOI: 10.1080/15592324.2018.1464853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Unlike animals, plants possess a non-strict and sometimes very fuzzy morphology. Mutual proportions of plant parts can vary to a much greater extent than in animals, changing according to the environmental conditions and the plant needs of nutrients, water and light. Despite the existence of this fundamental difference between plants and animals, it passes almost non-reflected in most studies on plants. In this review we make a preliminary attempt to gather together the mechanisms by which plants preserve their integrity, not loosing at the same time the physiological (and morphological) flexibility which allows them adapting to the different environments they can populate.
Collapse
Affiliation(s)
- Vadim Pérez Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330, Col. Doctores, Del. Cuauhtémoc. 06720, México D.F., Mexico
| | - Noriyuki Hatsugai
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota St Paul, MN, USA
| |
Collapse
|
33
|
Tapetal-Delayed Programmed Cell Death (PCD) and Oxidative Stress-Induced Male Sterility of Aegilops uniaristata Cytoplasm in Wheat. Int J Mol Sci 2018; 19:ijms19061708. [PMID: 29890696 PMCID: PMC6032135 DOI: 10.3390/ijms19061708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023] Open
Abstract
Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of hybrid vigor. Pollen development is often accompanied by oxidative metabolism responses and tapetal programmed cell death (PCD), and deficiency in these processes could lead to male sterility. Aegilops uniaristata cytoplasmic male sterility (Mu-CMS) wheat is a novel male-sterile line in wheat, which possess important potential in hybrid wheat breeding. However, its CMS mechanisms remain poorly understood. In our study, U87B1-706A, with the Aegilops uniaristata cytoplasm, and the maintainer line 706B were used to explore the abortive reason. Compared with 706B, histological analysis and PCD detection of the anther demonstrated that U87B1-706A appeared as delayed tapetal PCD as well as a disorganized organelle phenotype in the early uninucleate stage. Subsequently, a shrunken microspore and disordered exine structure were exhibited in the late uninucleate stage. While the activities of antioxidase increased markedly, the nonenzymatic antioxidant contents declined obviously following overacummulation of reactive oxygen species (ROS) during pollen development in U87B1-706A. Real-time quantitative PCR testified that the transcript levels of the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) genes, encoding pivotal antioxidant enzymes, were up-regulated in early pollen development. Therefore, we deduce excess ROS as a signal may be related to the increased expression levels of enzyme genes, thereby breaking the antioxidative system balance, resulting in delayed tapetal PCD initiation, which finally led to pollen abortion and male sterility in U87B1-706A. These results provide evidence to further explore the mechanisms of abortive pollen in CMS wheat.
Collapse
|
34
|
Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Sci Rep 2018; 8:6465. [PMID: 29691462 PMCID: PMC5915390 DOI: 10.1038/s41598-018-24979-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/13/2018] [Indexed: 11/24/2022] Open
Abstract
In this work, we investigated the molecular basis of autotrophic vs. mixotrophic growth of Chlorella sorokiniana, one of the most productive microalgae species with high potential to produce biofuels, food and high value compounds. To increase biomass accumulation, photosynthetic microalgae are commonly cultivated in mixotrophic conditions, adding reduced carbon sources to the growth media. In the case of C. sorokiniana, the presence of acetate enhanced biomass, proteins, lipids and starch productivity when compared to autotrophic conditions. Despite decreased chlorophyll content, photosynthetic properties were essentially unaffected while differential gene expression profile revealed transcriptional regulation of several genes mainly involved in control of carbon flux. Interestingly, acetate assimilation caused upregulation of phosphoenolpyruvate carboxylase enzyme, enabling potential recovery of carbon atoms lost by acetate oxidation. The obtained results allowed to associate the increased productivity observed in mixotrophy in C. sorokiniana with a different gene regulation leading to a fine regulation of cell metabolism.
Collapse
|
35
|
Sadhu A, Ghosh I, Moriyasu Y, Mukherjee A, Bandyopadhyay M. Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells. Mutagenesis 2018; 33:161-177. [PMID: 29506140 DOI: 10.1093/mutage/gey004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/10/2018] [Indexed: 12/17/2023] Open
Abstract
The effect of cerium oxide nanoparticle (CeNP) in plants has elicited substantial controversy. While some investigators have reported that CeNP possesses antioxidant properties, others observed CeNP to induce reactive oxygen species (ROS). In spite of considerable research carried out on the effects of CeNP in metazoans, fundamental studies that can unveil its intracellular consequences linking ROS production, autophagy and DNA damage are lacking in plants. To elucidate the impact of CeNP within plant cells, tobacco BY-2 cells were treated with 10, 50 and 250 µg ml-1 CeNP (Ce10, Ce50 and Ce250), for 24 h. Results demonstrated concentration-dependent accumulation of Ca2+ and ROS at all CeNP treatment sets. However, significant DNA damage and alteration in antioxidant defence systems were noted prominently at Ce50 and Ce250. Moreover, Ce50 and Ce250 induced DNA damage, analysed by comet assay and DNA diffusion experiments, complied with the concomitant increase in ROS. Furthermore, to evaluate the antioxidant property of CeNP, treated cells were washed after 24 h (to minimise CeNP interference) and challenged with H2O2 for 3 h. Ce10 did not induce genotoxicity and H2O2 exposure to Ce10-treated cells showed lesser DNA breakage than cells treated with H2O2 only. Interestingly, Ce10 provided better protection over N-acetyl-L-cysteine against exogenous H2O2 in BY-2 cells. CeNP exposure to transgenic BY-2 cells expressing GFP-Atg8 fusion protein exhibited formation of autophagosomes at Ce10. Application of vacuolar protease inhibitor E-64c and fluorescent basic dye acridine orange, further demonstrated accumulation of particulate matters in the vacuole and occurrence of acidic compartments, the autophagolysosomes, respectively. BY-2 cells co-treated with CeNP and autophagy inhibitor 3-methyladenine exhibited increased DNA damage in Ce10 and cell death at all assessed treatment sets. Thus, current results substantiate an alternative autophagy-mediated, antioxidant and geno-protective role of CeNP, which will aid in deciphering novel phenomena of plant-nanoparticle interaction at cellular level.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Ilika Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Ballygunge Circular Road, Kolkata, India
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Saitama, Japan
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Ballygunge Circular Road, Kolkata, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
36
|
Wang X, Dong X, Feng Y, Liu X, Wang J, Zhang Z, Li J, Zhao Y, Shi S, Tu P. H 2O 2 and NADPH oxidases involve in regulation of 2-(2-phenylethyl)chromones accumulation during salt stress in Aquilaria sinensis calli. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:1-11. [PMID: 29606206 DOI: 10.1016/j.plantsci.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
2-(2-Phenylethyl)chromones are the main compounds responsible for the quality of agarwood, which is widely used in traditional medicines, incenses and perfumes. H2O2 and NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) mediate diverse physiological and biochemical processes in environmental stress responses. However, little is known about the function of H2O2 and NADPH oxidases in 2-(2-phenylethyl)chromones accumulation. In this study, we found that salt stress induced a transient increase in content of H2O2 and 2-(2-phenylethyl)chromones accumulation in Aquilaria sinensis calli. Exogenous H2O2 remarkably decreased the production of 2-(2-phenylethyl)chromones, while dimethylthiourea (DMTU), a scavenger of H2O2, significantly increased 2-(2-phenylethyl)chromones accumulation in salt treated calli. Three new H2O2-generating genes, named AsRbohA-C, were isolated and characterized from A. sinensis. Salt stress also induced a transient increase in AsRbohA-C expression and NADPH oxidase activity. Furthermore, exogenous H2O2 increased AsRbohA-C expression and NADPH oxidase activity, while DMTU inhibited AsRbohA-C expression and NADPH oxidase activity under salt stress. Moreover, diphenylene iodonium (DPI), the inhibitor of NADPH oxidases, reduced AsRbohA-C expression and NADPH oxidase activity, but significantly induced 2-(2-phenylethyl)chromones accumulation during salt stress. These results clearly demonstrated the central role of H2O2 and NADPH oxidases in regulation of salt-induced 2-(2-phenylethyl)chromones accumulation in A. sinensis calli.
Collapse
Affiliation(s)
- Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xianjuan Dong
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yingying Feng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jinling Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhongxiu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
37
|
Demidchik V, Tyutereva EV, Voitsekhovskaja OV. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:28-46. [PMID: 32291019 DOI: 10.1071/fp16380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 05/26/2023]
Abstract
Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.
Collapse
Affiliation(s)
- Vadim Demidchik
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| |
Collapse
|
38
|
Liu L, Jiang Y, Zhang X, Wang X, Wang Y, Han Y, Coupland G, Jin JB, Searle I, Fu YF, Chen F. Two SUMO Proteases SUMO PROTEASE RELATED TO FERTILITY1 and 2 Are Required for Fertility in Arabidopsis. PLANT PHYSIOLOGY 2017; 175:1703-1719. [PMID: 29066667 PMCID: PMC5717720 DOI: 10.1104/pp.17.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/22/2017] [Indexed: 05/21/2023]
Abstract
In plants, the posttranslational modification small ubiquitin-like modifier (SUMO) is involved in regulating several important developmental and cellular processes, including flowering time control and responses to biotic and abiotic stresses. Here, we report two proteases, SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2, that regulate male and female gamete and embryo development and remove SUMO from proteins in vitro and in vivo. spf1 mutants exhibit abnormal floral structures and embryo development, while spf2 mutants exhibit largely a wild-type phenotype. However, spf1 spf2 double mutants exhibit severe abnormalities in microgametogenesis, megagametogenesis, and embryo development, suggesting that the two genes are functionally redundant. Mutation of SPF1 and SPF2 genes also results in misexpression of generative- and embryo-specific genes. In vitro, SPF1 and SPF2 process SUMO1 precursors into a mature form, and as expected in vivo, spf1 and spf2 mutants accumulate SUMO conjugates. Using a yeast two-hybrid screen, we identified EMBRYO SAC DEVELOPMENT ARREST9 (EDA9) as an SPF1-interacting protein. In vivo, we demonstrate that EDA9 is sumolyated and that, in spf1 mutants, EDA9-SUMO conjugates increase in abundance, demonstrating that EDA9 is a substrate of SPF1. Together, our results demonstrate that SPF1 and SPF2 are two SUMO proteases important for plant development in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Linpo Liu
- MOA Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- College of Biological Sciences, State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 100094 Beijing, People's Republic of China
| | - Ying Jiang
- MOA Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- College of Biological Sciences, State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 100094 Beijing, People's Republic of China
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, 100097 Beijing, People's Republic of China
| | - Xiaomei Zhang
- MOA Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Xu Wang
- MOA Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Yanbing Wang
- College of Life Sciences, Peking University, 100871 Beijing, People's Republic of China
| | - Yuzhen Han
- College of Biological Sciences, State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 100094 Beijing, People's Republic of China
| | - George Coupland
- Max Planck Institute for Plant Breeding, D-50829 Cologne, Germany
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - Iain Searle
- School of Biological Sciences, University of Adelaide-Shanghai Jiao Tong University Joint Centre for Agriculture and Health, University of Adelaide, Adelaide 5005, Australia
| | - Yong-Fu Fu
- MOA Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Fulu Chen
- MOA Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| |
Collapse
|
39
|
Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1867. [PMID: 29163592 PMCID: PMC5671638 DOI: 10.3389/fpls.2017.01867] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
40
|
Edlund AF, Olsen K, Mendoza C, Wang J, Buckley T, Nguyen M, Callahan B, Owen HA. Pollen wall degradation in the Brassicaceae permits cell emergence after pollination. AMERICAN JOURNAL OF BOTANY 2017; 104:1266-1273. [PMID: 29756225 DOI: 10.3732/ajb.1700201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/26/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Despite attempts to degrade the sporopollenin in pollen walls, this material has withstood a hundred years of experimental treatments and thousands of years of environmental attack in insects and soil. We present evidence that sporopollenin, nonetheless, locally degrades only minutes after pollination in Arabidopsis thaliana flowers, and describe here a two-part pollen germination mechanism in A. thaliana involving both chemical weakening of the exine wall and swelling of the underlying intine. METHODS We explored naturally occurring components from pollen and stigma surfaces and found a tripartite mix of hydrogen peroxide, peroxidase and catalase enzymes (all at high levels at the pollination interface) to be experimentally sufficient to degrade the sporopollenin of some Brassicaceae family members. KEY RESULTS At pollination, factors carried on the pollen surface may mix with factors on the stigma surface in a reaction that locally oxidizes the exine pollen wall. Hydrogen peroxide, catalases, and peroxidases are biologically present at the right time and place and, when mixed experimentally, are sufficient to degrade the walls of susceptible pollen. CONCLUSIONS Our work on native biochemistry for breaching sporopollenin suggests new research directions in pollen aperture evolution and could aid efforts to analyze sporopollenin's composition, needed for application of this corrosion-resistant, but long-intractable material.
Collapse
Affiliation(s)
- Anna F Edlund
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Katrina Olsen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 North Maryland Avenue, Milwaukee, Wisconsin 53211 USA
| | - Christian Mendoza
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Jing Wang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 North Maryland Avenue, Milwaukee, Wisconsin 53211 USA
| | - Trudyann Buckley
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Mai Nguyen
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Brooke Callahan
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Heather A Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 North Maryland Avenue, Milwaukee, Wisconsin 53211 USA
| |
Collapse
|
41
|
Poór P, Takács Z, Bela K, Czékus Z, Szalai G, Tari I. Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:216-226. [PMID: 28423344 DOI: 10.1016/j.jplph.2017.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Salicylic acid (SA) is an important plant growth regulator playing a role in the hypersensitive reaction (HR) and the induction of systemic acquired resistance. Since the SA-mediated signalling pathways and the formation of reactive oxygen species (ROS) are light-dependent, the time- and concentration-specific induction of oxidative stress was investigated in leaves of tomato plants kept under light and dark conditions after treatments with 0.1mM and 1mM SA. The application of exogenous SA induced early superoxide- and H2O2 production in the leaves, which was different in the absence or presence of light and showed time- and concentration-dependent changes. 1mM SA, which induced HR-like cell death resulted in two peaks in the H2O2 production in the light but the first, priming peak was not detected in the dark. Unlike 0.1mM SA, 1mM SA application induced NADPH oxidase activity leading to increased superoxide production in the first hours of SA treatments in the light. Moreover, SA treatments inhibited catalase (CAT) activity and caused a transient decline in ascorbate peroxidase (APX), the two main enzymes responsible for H2O2 degradation, which led to a fast H2O2 burst in the light. Their activity as well as the expression of some isoenzymes of SOD and APX increased only from the 12th h in the illuminated samples. The activity of NADPH oxidase and expression SlRBOH1 gene encoding a NADPH oxidase subunit was much lower in the dark. In spite of low CAT and APX activity after SA treatments in the dark, the activation of guaiacol-dependent peroxidase (POD) could partially substitute H2O2 scavenging activity of these enzymes in the dark, which reduced the ROS burst and development of lesion formation in the leaves.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| | - Zoltán Takács
- Department of Plant Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2., H-2462 Martonvásár, Hungary
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| |
Collapse
|
42
|
Kurusu T, Kuchitsu K. Autophagy, programmed cell death and reactive oxygen species in sexual reproduction in plants. JOURNAL OF PLANT RESEARCH 2017; 130:491-499. [PMID: 28364377 DOI: 10.1007/s10265-017-0934-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is one of the major cellular processes of recycling of proteins, metabolites and intracellular organelles, and plays crucial roles in the regulation of innate immunity, stress responses and programmed cell death (PCD) in many eukaryotes. It is also essential in development and sexual reproduction in many animals. In plants, although autophagy-deficient mutants of Arabidopsis thaliana show phenotypes in abiotic and biotic stress responses, their life cycle seems normal and thus little had been known until recently about the roles of autophagy in development and reproduction. Rice mutants defective in autophagy show sporophytic male sterility and immature pollens, indicating crucial roles of autophagy during pollen maturation. Enzymatic production of reactive oxygen species (ROS) by respiratory burst oxidase homologues (Rbohs) play multiple roles in regulating anther development, pollen tube elongation and fertilization. Significance of autophagy and ROS in the regulation of PCD of transient cells during plant sexual reproduction is discussed in comparison with animals.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuyuki Kuchitsu
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
43
|
Broz AK, Guerrero RF, Randle AM, Baek YS, Hahn MW, Bedinger PA. Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers. BMC PLANT BIOLOGY 2017; 17:81. [PMID: 28438120 PMCID: PMC5402651 DOI: 10.1186/s12870-017-1032-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Unilateral incompatibility (UI) is an asymmetric reproductive barrier that unidirectionally prevents gene flow between species and/or populations. UI is characterized by a compatible interaction between partners in one direction, but in the reciprocal cross fertilization fails, generally due to pollen tube rejection by the pistil. Although UI has long been observed in crosses between different species, the underlying molecular mechanisms are only beginning to be characterized. The wild tomato relative Solanum habrochaites provides a unique study system to investigate the molecular basis of this reproductive barrier, as populations within the species exhibit both interspecific and interpopulation UI. Here we utilized a transcriptomic approach to identify genes in both pollen and pistil tissues that may be key players in UI. RESULTS We confirmed UI at the pollen-pistil level between a self-incompatible population and a self-compatible population of S. habrochaites. A comparison of gene expression between pollinated styles exhibiting the incompatibility response and unpollinated controls revealed only a small number of differentially expressed transcripts. Many more differences in transcript profiles were identified between UI-competent versus UI-compromised reproductive tissues. A number of intriguing candidate genes were highly differentially expressed, including a putative pollen arabinogalactan protein, a stylar Kunitz family protease inhibitor, and a stylar peptide hormone Rapid ALkalinization Factor. Our data also provide transcriptomic evidence that fundamental processes including reactive oxygen species (ROS) signaling are likely key in UI pollen-pistil interactions between both populations and species. CONCLUSIONS Gene expression analysis of reproductive tissues allowed us to better understand the molecular basis of interpopulation incompatibility at the level of pollen-pistil interactions. Our transcriptomic analysis highlighted specific genes, including those in ROS signaling pathways that warrant further study in investigations of UI. To our knowledge, this is the first report to identify candidate genes involved in unilateral barriers between populations within a species.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | | | - April M. Randle
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117 USA
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405 USA
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| |
Collapse
|
44
|
Chen S, Zhao H, Wang M, Li J, Wang Z, Wang F, Liu A, Ahammed GJ. Overexpression of E3 Ubiquitin Ligase Gene AdBiL Contributes to Resistance against Chilling Stress and Leaf Mold Disease in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:1109. [PMID: 28713400 PMCID: PMC5492635 DOI: 10.3389/fpls.2017.01109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/08/2017] [Indexed: 05/11/2023]
Abstract
Ubiquitination is a common regulatory mechanism, playing a critical role in diverse cellular and developmental processes in eukaryotes. However, a few reports on the functional correlation between E3 ubiquitin ligases and reactive oxygen species (ROS) or reactive nitrogen species (RNS) metabolism in response to stress are currently available in plants. In the present study, the E3 ubiquitin ligase gene AdBiL (Adi3 Binding E3 Ligase) was introduced into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR. Transcription of AdBiL in various transgenic lines was determined using real-time PCR. Evaluation of stress tolerance showed that T1 generation of transgenic tomato lines showed only mild symptoms of chilling injury as evident by higher biomass accumulation and chlorophyll content than those of non-transformed plants. Compared with wild-type plants, the contents of AsA, AsA/DHA, GSH and the activity of GaILDH, γ-GCS and GSNOR were increased, while H2O2, [Formula: see text], MDA, NO, SNOs, and GSNO accumulations were significantly decreased in AdBiL overexpressing plants in response to chilling stress. Furthermore, transgenic tomato plants overexpressing AdBiL showed higher activities of enzymes such as G6PDH, 6PGDH, NADP-ICDH, and NADP-ME involved in pentose phosphate pathway (PPP). The transgenic tomato plants also exhibited an enhanced tolerance against the necrotrophic fungus Cladosporium fulvum. Tyrosine nitration protein was activated in the plants infected with leaf mold disease, while the inhibition could be recovered in AdBiL gene overexpressing lines. Taken together, our results revealed a possible physiological role of AdBiL in the activation of the key enzymes of AsA-GSH cycle, PPP and down-regulation of GSNO reductase, thereby reducing oxidative and nitrosative stress in plants. This study demonstrates an optimized transgenic strategy using AdBiL gene for crop improvement against biotic and abiotic stress factors.
Collapse
Affiliation(s)
- Shuangchen Chen
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
- Department of Plant Science, Tibet Agriculture and Animal Husbandry CollegeLinzhi, China
- *Correspondence: Shuangchen Chen, Airong Liu,
| | - Hongjiao Zhao
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Mengmeng Wang
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Jidi Li
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Zhonghong Wang
- Department of Plant Science, Tibet Agriculture and Animal Husbandry CollegeLinzhi, China
| | - Fenghua Wang
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Airong Liu
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
- *Correspondence: Shuangchen Chen, Airong Liu,
| | | |
Collapse
|