1
|
Wang X, Li Y, Rensing C, Zhang X. Early inoculation and bacterial community assembly in plants: A review. Microbiol Res 2025; 296:128141. [PMID: 40120566 DOI: 10.1016/j.micres.2025.128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The relationship between plants and early colonizing microbes is crucial for regulating agricultural ecosystems. Recent evidence strongly suggests that by introducing beneficial microbes during the seed or seedling stages, the diversity and assembly structure of the plant-related microbial community during later plant development can be altered, recruiting beneficial bacteria to enhance plant protection. However, the mechanisms of community assembly and their effects on plant growth are still not fully understood. To deepen our understanding of the importance of early inoculation for improving plant performance, this review comprehensively summarizes recent research advancements on the effects of early introduction on plant growth and adaptability. The mechanisms and ecological significance of early inoculation in the assembly of plant-related bacterial communities are discussed, with particular emphasis on the importance of seed endophytes, plant growth-promoting rhizobacteria (PGPR), and synthetic microbial consortia as microbial inoculants in enhancing plant health and productivity. Additionally, this review proposes a new strategy: sequential inoculation during the seed and seedling stages, aiming to maximize the effects of microbes.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoxia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Chopra P, Sapia N, Karami O, Kumar P, Honys D, Colombo L, Mendes M, Benhamed M, Fotopoulos V, Lieberman-Lazarovich M, Mueller-Roeber B, Kaiserli E, Hafidh S, Fragkostefanakis S. Priming thermotolerance: unlocking heat resilience for climate-smart crops. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240234. [PMID: 40439313 PMCID: PMC12121387 DOI: 10.1098/rstb.2024.0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 06/02/2025] Open
Abstract
Rising temperatures and heat waves pose a substantial threat to crop productivity by disrupting essential physiological and reproductive processes. While plants have a genetically inherited capacity to acclimate to high temperatures, the thermotolerance capacity of many crops remains limited. This limitation leads to yield losses, which are further intensified by the increasing intensity of climate change. In this review, we explore how thermopriming enhances plant resilience by preparing plants for future heat stress (HS) events and summarize the mechanisms underlying the memory of HS (thermomemory) in different plant tissues and organs. We also discuss recent advances in priming agents, including chemical, microbial and physiological interventions, and their application strategies to extend thermotolerance beyond inherent genetic capacity. Additionally, this review examines how integrating priming strategies with genetic improvements, such as breeding and genome editing for thermotolerance traits, provides a holistic solution to mitigate the impact of climate change on agriculture. By combining these approaches, we propose a framework for developing climate-resilient crops and ensuring global food security in the face of escalating environmental challenges.This article is part of the theme issue 'Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the 'Resilience Revolution'?'.
Collapse
Affiliation(s)
- Priyanka Chopra
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Natalia Sapia
- Institute of Molecular Biosciences, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
- Institute of Plant Sciences Paris-Saclay (IPS2), Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Omid Karami
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Pawan Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - David Honys
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), Universite Paris-Saclay, Gif-sur-Yvette, France
| | | | | | | | - Eirini Kaiserli
- Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Said Hafidh
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Heyer R, Wolf M, Benndorf D, Uzzau S, Seifert J, Grenga L, Pabst M, Schmitt H, Mesuere B, Van Den Bossche T, Haange SB, Jehmlich N, Di Luca M, Ferrer M, Serrano-Villar S, Armengaud J, Bode HB, Hellwig P, Masselot CR, Léonard R, Wilmes P. Metaproteomics in the One Health framework for unraveling microbial effectors in microbiomes. MICROBIOME 2025; 13:134. [PMID: 40410872 PMCID: PMC12100821 DOI: 10.1186/s40168-025-02119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/21/2025] [Indexed: 05/25/2025]
Abstract
One Health seeks to integrate and balance the health of humans, animals, and environmental systems, which are intricately linked through microbiomes. These microbial communities exchange microbes and genes, influencing not only human and animal health but also key environmental, agricultural, and biotechnological processes. Preventing the emergence of pathogens as well as monitoring and controlling the composition of microbiomes through microbial effectors including virulence factors, toxins, antibiotics, non-ribosomal peptides, and viruses holds transformative potential. However, the mechanisms by which these microbial effectors shape microbiomes and their broader functional consequences for host and ecosystem health remain poorly understood. Metaproteomics offers a novel methodological framework as it provides insights into microbial dynamics by quantifying microbial biomass composition, metabolic functions, and detecting effectors like viruses, antimicrobial resistance proteins, and non-ribosomal peptides. Here, we highlight the potential of metaproteomics in elucidating microbial effectors and their impact on microbiomes and discuss their potential for modulating microbiomes to foster desired functions.
Collapse
Affiliation(s)
- Robert Heyer
- Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany.
- Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| | - Maximilian Wolf
- Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto-Von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Sandtorstraße 1, 39106, Magdeburg, Germany
- Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str, Stuttgart, Germany
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg, Stuttgart, Germany
| | - Lucia Grenga
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-Sur-Cèze, France
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Heike Schmitt
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- Institute for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Bart Mesuere
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000, Ghent, Belgium
| | - Tim Van Den Bossche
- VIB - UGent Center for Medical Biotechnology, VIB, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052, Ghent, Belgium
| | - Sven-Bastiaan Haange
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | | | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Jean Armengaud
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-Sur-Cèze, France
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max-Planck-Institut for Terrestrial Microbiology, Karl-Von-Frisch-Str. 10, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043, Marburg, Germany
- Department of Chemistry, Phillips University Marburg, 35043, Marburg, Germany
| | - Patrick Hellwig
- Bioprocess Engineering, Otto-Von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | | | - Renaud Léonard
- Université de Lille, CNRS, UMR, 8576 - UGSF, Lille, France
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-Sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, L-4362, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Di Martino A, Ozaltin K, Hua LS, Prianto AH, Syahidah, Rochima E, Farobie O, Fatriasari W. Lignin-based hydrogels for application in agriculture: A review. Int J Biol Macromol 2025; 306:141744. [PMID: 40049478 DOI: 10.1016/j.ijbiomac.2025.141744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Agriculture is an important sector for maintaining environmental sustainability and ensuring global food security. However, the sector faces significant challenges caused by soil degradation, water scarcity, and resource limitations. To overcome the challenges, several studies have shown that innovative materials, including hydrogels, have the ability to improve agricultural practices. Lignin, the sole polyaromatic biopolymer, and the second most abundant biopolymer, has been extensively explored for a wide range of applications. For example, lignin valorization represents a significant issue for lignocellulosic biorefineries as well as the pulp and paper industry. This has led to an increase in interest over the past decade in its utilization to create innovative, advanced smart materials. Therefore, this study aims to discuss the applications, advantages, and possibilities of lignin-based hydrogels in addressing the primary difficulties of contemporary agriculture to increase sustainability. The initial section of the study discussed the introduction of lignin and its isolation methods, followed by an in-depth examination of polymeric hydrogels, encompassing their composition and applications in agriculture. The third section focused on lignin-based hydrogels, detailing preparation procedures for their primary application in agriculture. This study also analyzed the progress in lignin-based hydrogels over the past decade and provided a relevant assessment of the promising material.
Collapse
Affiliation(s)
- Antonio Di Martino
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, JI Raya Bogor KM 46, Cibinong 16911, Indonesia; Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation.
| | - Kadir Ozaltin
- Centre of Polymer Systems, Tomas Bata University in Zlin, ZLin, Czech Republic
| | - Lee Seng Hua
- Department of Wood Industry, Faculty of Applied Sciences, University Technology MARA Pahang Branch Jengka Campus, Bandar Tun Razak, Malaysia
| | - Arief Heru Prianto
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, JI Raya Bogor KM 46, Cibinong 16911, Indonesia
| | - Syahidah
- Faculty of Forestry, Hasanuddin University, Makassar, Indonesia
| | - Emma Rochima
- Department of Fisheries Processing Technology, Faculty of Fishery and Marine Science, Padjadjaran University, Jatinangor, Indonesia; Research Collaboration Center for Marine Biomaterials, Jl. Ir. Sukarno, Jatinangor, Sumedang, Indonesia
| | - Obie Farobie
- Department of Mechanical and Biosystem Engineering, IPB University, Jalan Lingkar Akademik, Kampus IPB Dramaga, Babakan, Dramaga, Babakan, Kec. Dramaga, Kabupaten Bogor, Jawa Barat, Indonesia
| | - Widya Fatriasari
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, JI Raya Bogor KM 46, Cibinong 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Jl. Ir. Sukarno, Jatinangor, Sumedang, Indonesia.
| |
Collapse
|
5
|
Vangenechten B, De Coninck B, Ceusters J. How to improve the potential of microalgal biostimulants for abiotic stress mitigation in plants? FRONTIERS IN PLANT SCIENCE 2025; 16:1568423. [PMID: 40330133 PMCID: PMC12053235 DOI: 10.3389/fpls.2025.1568423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
Abiotic stress is among the most critical factors limiting crop productivity worldwide and its importance is further exacerbated by climate change. In recent years, microalgal biostimulants have gained attention for their potential to enhance plant resilience towards abiotic stress. However, significant hurdles still persist, particularly regarding the unknown modes of action of microalgal biostimulants, which is a concern for stringent regulatory requirements and product reliability. The aim of this review is to improve the potential of microalgal biostimulants for abiotic stress mitigation in plants by addressing different key parameters shaping the efficacy of microalgal biostimulants, encompassing cultivation approaches, extraction techniques, and application methods. Furthermore, it also highlights how microalgal biostimulants modulate plant morphology, physiology and biochemistry under drought, salinity, and heat stress-three predominant stressors anticipated to intensify under climate change. Notably, these biostimulants consistently enhance drought stress tolerance by improving biomass accumulation, nutrient uptake, and water use efficiency through enhanced photosynthesis and stomatal regulation. These effects are largely driven by the accumulation of osmoprotectants and antioxidant compounds. In contrast, salt stress mitigation is highly species-dependent, with some microalgae enhancing stress tolerance through osmoprotectant and antioxidant accumulation, while others reduce these compounds, potentially lowering stress perception via unknown mechanisms. Despite the significance of the abiotic stress, heat stress mitigation by microalgal biostimulants remains an underexplored research area. Additionally, indirect applications of microalgae-ranging from biotechnological innovations to desalination-underscore the broader potential of these organisms in agricultural resilience. Collectively, this review identifies three key gaps in the existing literature-the diversity gap, the practical gap, and the research gap-while outlining promising avenues for future research in microalgal biostimulant development.
Collapse
Affiliation(s)
- Bram Vangenechten
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Barbara De Coninck
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, Belgium
| |
Collapse
|
6
|
Quattrocelli P, Piccirillo C, Kuramae EE, Pullar RC, Ercoli L, Pellegrino E. Synergistic interaction of phosphate nanoparticles from fish by-products and phosphate-solubilizing bacterial consortium on maize growth and phosphorus cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179082. [PMID: 40107140 DOI: 10.1016/j.scitotenv.2025.179082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Phosphate nanomaterials, such as hydroxyapatite/β-tricalcium nanoparticles (nHAs) derived from food industry by-products, offer a sustainable alternative to enhance P-use efficiency in agriculture. However, their limited solubility remains a challenge. This study first investigated the mechanisms of P solubilization of salmon and tuna bones (SnHAs and TnHAs) in fifteen strains of phosphate-solubilizing bacteria (PSB) by an in vitro system. Then, best-performing strains were assembled in a consortium and tested in vivo on maize. We hypothesized that combining nHAs and the PSB consortium inoculated as seed coating (SC) outperforms single treatments alone in promoting plant growth and P cycling, and ensures the establishment in plant-soil system without a bacterial reinforcement (BR) by an additional inoculum suspension. The synergistic effect of nHAs and PSB was proved, improving maize root (+22 %) and total plant biomass (+29 %), as well as P (+32 %) and K (66 %) uptake compared to single treatments. With nHAs and SC, P-use efficiency and recovery increased by 25 % and three-fold, respectively, compared to nHAs alone or with bacterial reinforcement. Consistently, root and substrate bacterial biomass were associated with nHAs plus SC, while nHAs alone or with PSB upregulated PHT1;1 and PHT1;2 transporter genes in maize. Finally, linking the in vitro and in vivo system, we demonstrated that propionic acid production and P-solubilization efficiency of PSB co-applied with nHAs are key drivers of maize growth and P uptake. Our findings indicated that co-applying nHAs and PSB through SC offers a sustainable strategy to improve maize P-use efficiency.
Collapse
Affiliation(s)
- Piera Quattrocelli
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| | - Clara Piccirillo
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands; Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Robert C Pullar
- Department of Molecular Science and Nanosystems (DSMN), Università Ca' Foscari Venezia, Venezia Mestre, Venezia, VE 30172, Italy
| | - Laura Ercoli
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Elisa Pellegrino
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
7
|
Sharma P, Sahu BK, Swami K, Chandel M, Kumar P, Palanisamy T, Shanmugam V. E-seed skin: a carbohydrate-protein hybrid nanostructure for delayed germination and accelerated growth. J Mater Chem B 2025; 13:3895-3905. [PMID: 40007250 DOI: 10.1039/d4tb01603c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The main purpose of the seed industry is to cater seeds with desired strength and viability, for which seed coating is a basic requirement. Herein, a hybrid coating of an electrosprayed protein (collagen) on electrospun nanofibers having a multidentate zinc-reinforced carbohydrate (pectin)/PVA composite (PVA/Pec/Zn/Col-NF) was developed. The zinc ensured covalent binding with the -OH in pectin/PVA in addition to the native galvanic binding between the polymers. Along with this, hydrogen bonding interactions between the -NH2 groups of electrosprayed collagen and the -OH groups in PVA/pectin further enabled the formation of a highly stable nanostructure. Controlled electrodeposition of collagen nanoparticles on the PVA/Pec/Zn-NF led to a decreased surface roughness scale with enhanced moisture resistance. The humidity resistance of the coating and the participation of zinc as a nutrient delayed the germination by 8 days and accelerated the tomato seedling's growth by approximately two times, respectively. The presence of zinc in the coating formulation enabled oxidative stress protection by boosting the superoxide dismutase activity. Moreover, the fungal resistance of the coating enabled the seeds to germinate even in the presence of phytopathogens. Thus, the approach of using the developed PVA/Pec/Zn/Col-NF coating material to construct a tight packing without affecting viability of the seed demonstrates a pioneering seed coating technique for increasing global food security amidst climate change and global warming.
Collapse
Affiliation(s)
- Parul Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| | - Bandana Kumari Sahu
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
- Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517619, India
| | - Kanchan Swami
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| | - Mahima Chandel
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| | - Prem Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| | - Thanikaivelan Palanisamy
- Advanced Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India.
| | - VijayaKumar Shanmugam
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| |
Collapse
|
8
|
Rai S, Pokhrel P, Udash P, Chemjong M, Bhattarai N, Thuanthong A, Nalinanon S, Nirmal N. Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries. Crit Rev Biotechnol 2025:1-19. [PMID: 40090738 DOI: 10.1080/07388551.2025.2473576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 03/18/2025]
Abstract
A shellfish processing plant generates only 30-40% of edible meat, while 70-60% of portions are considered inedible or by-products. This large amount of byproduct or shellfish processing waste contains 20-40% chitin, that can be extracted using chemical or greener alternative extraction technologies. Chitin and its derivative (chitosan) are natural polysaccharides with nontoxicity, biocompatible, and biodegradable properties. Due to their versatile physicochemical, mechanical, and various bioactivities, these compounds find applications in various industries, including: biomedical, dental, cosmetics, food, textiles, agriculture, and biotechnology. In the agricultural sector, these compounds have been reported to promote: plant growth, plant defense system, slow release of nutrients in fertilizer, plant nutrition, and remediate soil conditions, etc. Whereas, biotechnology applications indicated: enhanced enzyme stability and efficacy, water purification and remediation, application in fuel cells and supercapacitors for energy conversion, acting as a catalyst in chemical synthesis, etc. This review provides a comprehensive discussion on the utilization of these biopolymers in agriculture (fertilizer, seed coating, soil treatment, and bioremediation) and biotechnology (enzyme immobilization, energy conversion, wastewater treatment, and chemical synthesis). Additionally, various extraction techniques including conventional and non-thermal techniques have been reported. Lastly, concluding remarks and future direction have been provided.
Collapse
Affiliation(s)
- Sampurna Rai
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Prashant Pokhrel
- Department of Food Technology and Quality Control, Ministry of Agriculture and Livestock Development, Government of Nepal, Babar Mahal, Kathmandu, Nepal
| | - Pranaya Udash
- Faculty of Life Science, Campus Kulmbach, University of Bayreuth, Kulmbach, Germany
| | - Menjo Chemjong
- German Institute of Food Technologies-DIL e.V., Quakenbrück, Germany
| | - Namita Bhattarai
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | | | - Sitthipong Nalinanon
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
9
|
De Giorgi F, Durka W, Huang Y, Schmid B, Roscher C. Selection and Phenotypic Plasticity Shape Plant Performance in a Grassland Biodiversity Experiment. Ecol Evol 2025; 15:e71117. [PMID: 40083731 PMCID: PMC11904805 DOI: 10.1002/ece3.71117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
The increasing strength of positive biodiversity effects on plant community productivity, observed in long-term biodiversity experiments, relates to mixed responses at the species level. However, it is still not well understood if the observed mixed responses are adaptations to the different selection pressures in plant communities of different diversity or plastic adjustments. We conducted a transplant experiment for nine plant species in a 17-year-old biodiversity experiment (Jena Experiment). We used offspring of plants selected in the biodiversity experiment and from plants without selection in the experiment (naïve). In a Community History Experiment, offspring of selected plants were planted in three test environments: their original plant communities with old soil (of the long-term Jena Experiment), newly assembled plant communities with old soil, and newly assembled plant communities with new soil. In a Selection Experiment, we compared selected plants with naïve plants, both grown in the selected plants' original environment. In all test environments, increasing species richness was associated with a decrease in plant individual biomass, reproductive output, relative growth rate, plant height, leaf greenness, and leaf nitrogen concentration, and an increase in specific leaf area (SLA). In the Selection Experiment, selected plants had a weaker decline in biomass, taller stature, and higher leaf carbon and nitrogen concentrations than naïve plants with increasing species richness. In the Community History Experiment, survival was lower, while plant height, SLA, leaf nitrogen, and carbon concentrations were highest in the test environment with new plants and soil. However, in high-diversity communities, individuals produced more biomass, grew taller, and had higher leaf greenness in their original environment. Overall, we found that, despite the crucial role of phenotypic plasticity for trait adjustments to the actual environment, selection in the biodiversity experiment produced adaptive phenotypic responses, largely explained by plant community history and positive plant-soil feedbacks established over time.
Collapse
Affiliation(s)
- Francesca De Giorgi
- Department of Physiological DiversityHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Community EcologyHelmholtz Centre for Environmental Research – UFZHalleGermany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology, Experimental Interaction EcologyLeipzig UniversityLeipzigGermany
| | - Bernhard Schmid
- Remote Sensing Laboratories, Department of GeographyUniversity of ZürichZürichSwitzerland
| | - Christiane Roscher
- Department of Physiological DiversityHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
10
|
Mistry V, Chandwani S, Amaresan N, Kaushik D, Krishnamurthy R, Sharma A. Seed bacterization with siderophore-producing bacteria: a strategy to enhance growth and alkaloid content in Catharanthus roseus. World J Microbiol Biotechnol 2025; 41:42. [PMID: 39831919 DOI: 10.1007/s11274-025-04257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Catharanthus roseus is a medicinal plant widely known for producing monoterpenoid indole alkaloids (MIAs), including therapeutic compounds such as vinblastine and vincristine, which are crucial for cancer treatment. However, the naturally low concentration of these alkaloids in plant tissues poses a significant challenge for large-scale production. This study explores the application of siderophore-producing bacteria for seed bacterization of Catharanthus roseus to enhance the production of MIAs, including vindoline, catharanthine, and vinblastine. Utilizing High-Performance Liquid Chromatography (HPLC), we observed a significant increase in the concentration of these alkaloids in bacterized plants compared to controls. FTIR spectra of treated plants showed strong correlations with standard alkaloid mixtures, confirming higher alkaloid accumulation. Our findings demonstrate that bacterial siderophores play a vital role in optimizing iron uptake, which is crucial for secondary metabolite biosynthesis. This research highlights the potential of using microbial biotechnology to improve the yield of valuable pharmaceutical compounds in medicinal plants. Enhancing the biosynthetic pathways of MIAs offers a sustainable and efficient strategy for boosting the production of key therapeutic alkaloids in Catharanthus roseus, paving the way for advanced biotechnological applications in plant-based drug production.
Collapse
Affiliation(s)
- Vyoma Mistry
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Sapna Chandwani
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Natarajan Amaresan
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Deepti Kaushik
- Department of Business and Management, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Ramar Krishnamurthy
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
11
|
Joubert O, Arnault G, Barret M, Simonin M. Sowing success: ecological insights into seedling microbial colonisation for robust plant microbiota engineering. TRENDS IN PLANT SCIENCE 2025; 30:21-34. [PMID: 39406642 DOI: 10.1016/j.tplants.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025]
Abstract
Manipulating the seedling microbiota through seed or soil inoculations has the potential to improve plant health. Mixed in-field results have been attributed to a lack of consideration for ecological processes taking place during seedling microbiota assembly. In this opinion article, we (i) assess the contribution of ecological processes at play during seedling microbiota assembly (e.g., propagule pressure and priority effects); (ii) investigate how life history theory can help us identify microbial traits involved in successful seedling colonisation; and (iii) suggest how different plant microbiota engineering methods could benefit from a greater understanding of seedling microbiota assembly processes. Finally, we propose several research hypotheses and identify outstanding questions for the plant microbiota engineering community.
Collapse
Affiliation(s)
- Oscar Joubert
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Cedex 07 Lyon, France; Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| | - Gontran Arnault
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Matthieu Barret
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| |
Collapse
|
12
|
Zheng X, Huang Y, Lin X, Chen Y, Fu H, Liu C, Chu D, Yang F. Effects of Marquandomyces marquandii SGSF043 on the Germination Activity of Chinese Cabbage Seeds: Evidence from Phenotypic Indicators, Stress Resistance Indicators, Hormones and Functional Genes. PLANTS (BASEL, SWITZERLAND) 2024; 14:58. [PMID: 39795318 PMCID: PMC11722606 DOI: 10.3390/plants14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/13/2025]
Abstract
In this study, the effect of Metarhizium spp. M. marquandii on the seed germination of cabbage, a cruciferous crop, was investigated. The effects of this strain on the seed germination vigor, bud growth and physiological characteristics of Chinese cabbage were analyzed by a seed coating method. The results showed the following: (1) The coating agent M. marquandii SGSF043 could significantly improve the germination activity of Chinese cabbage seeds. (2) The strain concentration in the seed coating agent had different degrees of regulation on the antioxidase system of the buds, indicating that it could activate the antioxidant system and improve the antioxidant ability of the buds. (3) When the concentration of M. marquandii SGSF043 was 5.6 × 106 CFU/mL (average per grain), the effect of M. marquandii SGSF043 on the leaf hormones Indole Acetic Acid (IAA), Gibberellic Acid (GA) and Abscisic Acid (ABA) of Chinese cabbage seedlings was significantly higher than that of other treatment groups, indicating that the strain could optimize the level of plant hormones. (4) M. marquandii SGSF043 could induce the expression of stress-resistance-related genes in different tissue parts of Chinese cabbage and improve the growth-promoting stress resistance of buds. This study showed that M. marquandii SGSF043 could not only improve the germination vitality of Chinese cabbage seeds but also enhance the immunity of young buds. The results provide a theoretical basis for the application potential of Metarhizium marquandii in agricultural production.
Collapse
Affiliation(s)
- Xu Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.Z.); (Y.H.); (X.L.); (Y.C.); (C.L.)
| | - Yuxia Huang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.Z.); (Y.H.); (X.L.); (Y.C.); (C.L.)
| | - Xinpeng Lin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.Z.); (Y.H.); (X.L.); (Y.C.); (C.L.)
| | - Yuanlong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.Z.); (Y.H.); (X.L.); (Y.C.); (C.L.)
| | - Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.Z.); (Y.H.); (X.L.); (Y.C.); (C.L.)
| | - Chunguang Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.Z.); (Y.H.); (X.L.); (Y.C.); (C.L.)
| | - Dong Chu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.Z.); (Y.H.); (X.L.); (Y.C.); (C.L.)
| |
Collapse
|
13
|
Mousa S, Nyaruaba R, Yang H, Wei H. Engineering seed microenvironment with embedded bacteriophages and plant growth promoting rhizobacteria. BMC Microbiol 2024; 24:503. [PMID: 39604853 PMCID: PMC11600732 DOI: 10.1186/s12866-024-03657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Engineering the seed microenvironment with embedded bacteriophages and Plant Growth Promoting Rhizobacteria (PGPR) shows promise for enhancing germination, mitigating biotic and abiotic stressors, and improving resilience under challenging environmental conditions. This study aimed to enhance potato seed germination and control bacterial wilt caused by Ralstonia solanacearum and salinity by using novel technology to encapsulate, preserve, and deliver phage therapy and rhizobacteria. RESULTS Silk fibroin and trehalose biomaterial combined with the phage P-PSG11 and Pseudomonas lalkuanensis were applied to potato seeds. A pot experiment was conducted to investigate pathogen suppression, salt tolerance, and plant growth enhancement. The combination of silk and trehalose effectively preserved both phage and bacteria for ≥ 8 weeks, maintaining both phage titers and bacterial colony counts. Seeds coated with the P-PSG11 and P. lalkuanensis mixture exhibited the highest germination rate at 93.5%, followed by P. lalkuanensis at 86.3%. In vivo evaluations showed significant increases in root length (72.7%, 61.0%, and 22.5%), plant height (71.5%, 65.1%, and 8.2%), and dry matter (129.1%, 125.7%, and 13.1%) for the P-PSG11 and P. lalkuanensis mixture, P. lalkuanensis, and P-PSG11, respectively. The incidence of wilt was significantly reduced by 88.2% and 81.2%, and salinity was mitigated by 83.3% and 79.2% for the P-PSG11 and P. lalkuanensis mixture and P. lalkuanensis treatment, respectively, compared to the control (p < 0.001). The viability of preserved P-PSG11 and P. lalkuanensis was confirmed after one year using phage titers and bacterial colonies. CONCLUSION This innovative approach enhanced plant growth, promoted seed germination, controlled wilt disease, and mitigated soil salinity.
Collapse
Grants
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
Collapse
Affiliation(s)
- Samar Mousa
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Faculty of Agriculture, Agricultural Botany Department, Suez Canal University, Ismailia, Egypt
| | - Raphael Nyaruaba
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- International College, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Santos F, Melkani S, Oliveira-Paiva C, Bini D, Pavuluri K, Gatiboni L, Mahmud A, Torres M, McLamore E, Bhadha JH. Biofertilizer use in the United States: definition, regulation, and prospects. Appl Microbiol Biotechnol 2024; 108:511. [PMID: 39531072 PMCID: PMC11557716 DOI: 10.1007/s00253-024-13347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The increasing demand for sustainable food production has driven a surge in the use and commercialization of biological inputs, including biofertilizers. In this context, biofertilizers offer potential benefits for nutrient use efficiency, crop yield and sustainability. However, inconsistent definition of the term "biofertilizer" and regulations, particularly in the USA, hinder market growth and consumer confidence. While the European Union, and countries like Brazil, India, and China have made progress in this area, the USA market, projected to exceed $1 billion by 2029, lacks clear guidelines for biofertilizer production and sale. The USA market is dominated by Rhizobium genus, Mycorrhizae fungi, and Azospirillum species and based products targeting various crops. Although there is a growing and promising market for the use of biofertilizers, there are still many challenges to overcome, and to fully realize the potential of biofertilizers, future research should focus on modes of action, specific claims, and robust regulations that must be established. KEY POINTS: • The term "biofertilizer" lacks a universally accepted definition • It is necessary establishing a national regulation for biofertilizers in the USA • The biofertilizer market is growing fast and the biggest one is in America.
Collapse
Affiliation(s)
- Flavia Santos
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Suraj Melkani
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | | | - Daniel Bini
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Kiran Pavuluri
- International Fertilizer Development Center, Muscle Shoals, AL, USA
| | - Luke Gatiboni
- North Carolina State Extension, North Carolina State University, Raleigh, NC, USA
| | - Anik Mahmud
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | - Maria Torres
- Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Eric McLamore
- Agricultural Sciences, Clemson University, Clemson, SC, USA
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - Jehangir H Bhadha
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA.
| |
Collapse
|
15
|
Abdukerim R, Li L, Li JH, Xiang S, Shi YX, Xie XW, Chai AL, Fan TF, Li BJ. Coating seeds with biocontrol bacteria-loaded sodium alginate/pectin hydrogel enhances the survival of bacteria and control efficacy against soil-borne vegetable diseases. Int J Biol Macromol 2024; 279:135317. [PMID: 39245117 DOI: 10.1016/j.ijbiomac.2024.135317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Microbial seed coatings serve as effective, labor-saving, and ecofriendly means of controlling soil-borne plant diseases. However, the survival of microbial agents on seed surfaces and in the rhizosphere remains a crucial challenge. In this work, we embedded a biocontrol bacteria (Bacillus subtilis ZF71) in sodium alginate (SA)/pectin (PC) hydrogel as a seed coating agent to control Fusarium root rot in cucumber. The formula of SA/PC hydrogel was optimized with the highest coating uniformity of 90 % in cucumber seeds. SA/PC hydrogel was characterized using rheological, gel content, and water content tests, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. Bacillus subtilis ZF71 within the SA/PC hydrogel network formed a biofilm-like structure with a high viable cell content (8.30 log CFU/seed). After 37 days of storage, there was still a high number of Bacillus subtilis ZF71 cells (7.23 log CFU/seed) surviving on the surface of cucumber seeds. Pot experiments revealed a higher control efficiency against Fusarium root rot in ZF71-SA/PC cucumber seeds (53.26 %) compared with roots irrigated with a ZF71 suspension. Overall, this study introduced a promising microbial seed coating strategy based on biofilm formation that improved performance against soil-borne plant diseases.
Collapse
Affiliation(s)
- Rizwangul Abdukerim
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun-Hui Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Xia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A-Li Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Teng-Fei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bao-Ju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Szparaga A, Czerwińska E, Kapusta I, Piepiórka-Stepuk J, Zaguła G, Szparaga Ł, Caruso G, Erlichowska B, Deszcz E. The insights into the activity of the extracts from Polygonum aviculare L. and Pseudomonas fluorescens for enhancing and modeling seed germination and seedling growth of Melilotus officinalis L. Lam. SOUTH AFRICAN JOURNAL OF BOTANY 2024; 174:510-524. [DOI: 10.1016/j.sajb.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Zhang K, Han X, Fu Y, Khan Z, Zhang B, Bi J, Hu L, Luo L. Biochar coating promoted rice growth under drought stress through modulating photosynthetic apparatus, chloroplast ultrastructure, stomatal traits and ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109145. [PMID: 39321623 DOI: 10.1016/j.plaphy.2024.109145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Drought hampers agricultural production by constraining crop growth and development. Nevertheless, there has been limited exploration regarding the effect of biochar coating in enhancing seed germination under drought conditions and understanding its underlying mechanisms. To fill this gap and clarify the pathway to drought resistance, the current research investigated the protective effectiveness of BC on seedling establishment and subsequent growth of rice under drought conditions. Results showed that BC notably elevated emergence rate (5.5%), shoot length (27.4%), root length (33.4%), plant height (19.6/10.3%), leaf area (69.8/71.7%), and plant biomass (85.7/67.9%) after 15/30 days under drought conditions compared to the control. Biochar coating facilitated the maintenance of a stable chloroplast structure, reduced chlorophyll degradation, and sustained cell expansion. This contributed to the improvement of stomatal characteristics on both adaxial and abaxial leaf surfaces during drought stress, encompassing enhancements in stomatal density and aperture. The preservation of stomatal opening led to an increased photosynthetic capacity, thereby fostering elevated photosynthetic activity and heightened plant biomass under stressful conditions. Simultaneously, BC treatment significantly diminished the production of reactive oxygen species, preserved cell membrane integrity, and augmented the accumulation of osmotic protectants. These outcomes signify that biochar coating mitigates the deleterious impacts of drought stress on photosynthesis, stomatal aperture, chloroplast ultrastructure, osmotic regulation, and redox homeostasis in plants through specific water and nutrient regulation. Consequently, this enhances the tolerance and growth of rice under drought stress.
Collapse
Affiliation(s)
- Kangkang Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China
| | - Xiaomeng Han
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanfeng Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Biaojin Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Liyong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Lijun Luo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China.
| |
Collapse
|
18
|
Gong M, Han W, Jiang Y, Yang X, He J, Kong M, Huo Q, Lv G. Physiological and transcriptomic analysis reveals the coating of microcapsules embedded with bacteria can enhance wheat salt tolerance. BMC PLANT BIOLOGY 2024; 24:1004. [PMID: 39448914 PMCID: PMC11515405 DOI: 10.1186/s12870-024-05718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Salt stress is one of the most important abiotic stress factors limiting crop production. Therefore, improving the stress resistance of seeds is very important for crop growth. Our previous studies have shown that using microcapsules encapsulating bacteria (Pontibacter actiniarum DSM 19842) as seed coating for wheat can alleviate salt stress. In this study, the genes and pathways involved in the response of wheat to salt stress were researched further. The results showed that compared with the control, the coating can improve osmotic stress and decrease oxidative damage by increasing the content of proline (29.1%), the activity of superoxide dismutase (SOD) (94.2%), peroxidase (POD) (45.7%) and catalase (CAT) (3.3%), reducing the content of hydrogen peroxide (H2O2) (39.8%) and malondialdehyde (MDA) (45.9%). In addition, ribonucleic acid (RNA) sequencing data showed that 7628 differentially expressed genes (DEGs) were identified, and 4426 DEGs up-regulated, 3202 down-regulated in the coated treatment. Many DEGs related to antioxidant enzymes were up-regulated, indicating that coating can promote the expression of antioxidant enzyme-related genes and alleviate oxidative damage under salt stress. The differential gene expression analysis demonstrated up-regulation of 27 genes and down-regulation of 20 genes. Transcription factor families, mostly belonging to bHLH, MYB, B3, NAC, and WRKY. Overall, this seed coating can promote the development of sustainable agriculture in saline soil.
Collapse
Affiliation(s)
- Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Wei Han
- Shandong Agri-tech Extension Center, Jinan, 250013, China
| | - Yawen Jiang
- College of Resources and Environmental Sciences, Shanxi Agricultural University, Taiyuan, 030801, China
| | - Xi Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China.
- National Saline-alkali Soil Comprehensive Utilization Technology Innovation Center, Dongying, 257000, China.
| |
Collapse
|
19
|
Jeong E, Abdellaoui N, Lim JY, Seo JA. The presence of a significant endophytic fungus in mycobiome of rice seed compartments. Sci Rep 2024; 14:23367. [PMID: 39375368 PMCID: PMC11458573 DOI: 10.1038/s41598-024-73550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Seed microbial communities have been known to have a crucial role in the life cycle of a plant. In this study, we examined the distribution of the fungal communities in three compartments (husk, brown rice, and milled rice) of the fourteen rice seed samples. Ten fungal genera distributed throughout the three compartments of the rice seeds were identified as the core mycobiome of the rice seeds, regardless of collecting regions or cultivars. Based on the diversity analysis, the distribution of the fungal community in milled rice was found to be more diversified, evenly distributed, and differently clustered from the other two compartments. Among the core mycobiome, Moesziomyces dominated almost 80% of the fungal communities in the outer compartments of rice seeds, whereas the abundances of other endophytic pathogenic fungi declined. Our results provide that antagonistic yeast Moesziomyces may be able to control the endogenous pathogenic fungal communities in rice seeds, hence maintaining the quality of rice seeds. In addition, the distribution of fungal communities differs depending on the rice seed's compartment, indicating that the compartment can affect the distribution of the seed microbial community.
Collapse
Affiliation(s)
- Eunji Jeong
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Najib Abdellaoui
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Ma X, Liu M, Hou Z, Guo M, Yu Z, Tong X, Liu H, Guo F. Optimization of process parameters for Trifolium pratense L. seed granulation coating using GA-BP neural network. Heliyon 2024; 10:e38003. [PMID: 39328543 PMCID: PMC11425166 DOI: 10.1016/j.heliyon.2024.e38003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Regarding the issue of low granulation qualification rates during the granulation coating of red clover seeds, this study theoretically analyzed the force conditions of seeds and powder particles under the action of liquid to obtain the main factors affecting seed coating quality. During the seed granulation coating process, an intermittent powder supply method combined with continuous liquid supply was utilized to control the ratio of powder to liquid. Using the granulation qualification rate as the evaluation index, single-factor experiments were conducted to investigate the effects of coating pan fill ratio, single powder supply amount, powder supply interval, and liquid supply amount on the quality of red clover seed granulation coating. Based on the results of the single-factor experiments, orthogonal experiments were conducted, revealing that the interaction of factors would influence the experimental results. To further optimize the quality of seed granulation coating, the mechanisms of powder and liquid in the adhesion process on granulation coating were explored. Orthogonal experiments were conducted on the process parameters of the granulation coating machine, and the GA-BP model was employed for optimization and solution. The optimal process parameter combination obtained was a coating pan fill ratio of 33.78 %, a single powder supply amount of 5.17 g, a powder supply interval of 7.7 s, and a liquid supply amount of 0.42 mL/s. Under this optimal parameter combination, granulation coating experiments with red clover seeds were performed, and the seed granulation coating quality was relatively high, with a granulation qualification rate of 97.7 %. The research results can provide a reference for optimization experiments on coating irregular seeds.
Collapse
Affiliation(s)
- Xuejie Ma
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Min Liu
- College Engineering and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhanfeng Hou
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Engineering Research Center of Intelligent Equipment for the Entire Process of Forage and Feed Production, Hohhot, 010018, China
| | - Mengjun Guo
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhihong Yu
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xin Tong
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haiyang Liu
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fang Guo
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
21
|
Tarchoun N, Saadaoui W, Hamdi K, Falleh H, Pavli O, Ksouri R, Petropoulos SA. Seed Priming and Biopriming in Two Squash Landraces ( Cucurbita maxima Duchesne) from Tunisia: A Sustainable Strategy to Promote Germination and Alleviate Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2464. [PMID: 39273948 PMCID: PMC11397125 DOI: 10.3390/plants13172464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
In recent years, seed priming has gained interest, with researchers aiming to enhance seed germination and early growth, especially under abiotic stress conditions. In this study, seeds from two squash landraces (Cucurbita maxima Duchesne; i.e., Galaoui large seeds (Galaoui hereafter) and Batati green (Batati hereafter)) were subjected to different priming methods ((a) 0.3% and 0.4% KNO3 (halopriming); (b) 0.1% and 0.2% GA3 (hormopriming); (c) inoculation with Trichoderma spp. (T. harzianum, T. viride, and T. virens), Bacillus subtilis, and Pseudomonas fluorescens (biopriming) in order to promote germination parameters and seedling growth under salinity stress (0, 100, and 200 mM of NaCl). Our findings indicate the better performance of primed seeds compared to the untreated ones in terms of germination and seedling growth traits, although a varied response depending on the priming method and the landrace was observed. The highest germination percentage (GP) and the lowest mean germination time (MGT) were observed in 0.4% KNO3-primed seeds. The positive effects of 0.4% KNO3 were also depicted in all traits related to seedling growth and the seedling vigor index (SVI), indicating its effectiveness as a priming agent in squash seeds. Under salinity stress conditions, priming with 0.4% KNO3 significantly improved the germination and seedling growth traits for both landraces, while the application of 0.2% GA3 at high salinity significantly improved photosynthetic quantum yield (Fv/Fm ratio). Regarding the effects of biopriming in germination and seedling growth traits, our results indicate that T. harzianum and B. subtilis were the most effective bioagents in promoting germination and seedling growth in Galaoui and Batati seeds, respectively. In conclusion, our findings provide important information regarding the practice of using priming and biopriming agents to enhance the germination and seedling growth capacity of squash seeds, as well to mitigate the negative effects of salinity stress at the critical stages of germination and early growth.
Collapse
Affiliation(s)
- Néji Tarchoun
- Research Laboratory LR21AGR05, High Agronomic Institute of Chott Mariem, Sousse University, Sousse 4042, Tunisia
| | - Wassim Saadaoui
- Research Laboratory LR21AGR05, High Agronomic Institute of Chott Mariem, Sousse University, Sousse 4042, Tunisia
| | - Khawla Hamdi
- Research Laboratory LR21AGR05, High Agronomic Institute of Chott Mariem, Sousse University, Sousse 4042, Tunisia
| | - Hanen Falleh
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Ourania Pavli
- Laboratory of Genetics and Plant Breeding, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Spyridon A Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| |
Collapse
|
22
|
Berruto CA, Demirer GS. Engineering agricultural soil microbiomes and predicting plant phenotypes. Trends Microbiol 2024; 32:858-873. [PMID: 38429182 DOI: 10.1016/j.tim.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can improve crop yields, nutrient use efficiency, plant tolerance to stressors, and confer benefits to future generations of crops grown in the same soil. Unlocking the potential of microbial communities in the rhizosphere and endosphere is therefore of great interest for sustainable agriculture advancements. Before plant microbiomes can be engineered to confer desirable phenotypic effects on their plant hosts, a deeper understanding of the interacting factors influencing rhizosphere community structure and function is needed. Dealing with this complexity is becoming more feasible using computational approaches. In this review, we discuss recent advances at the intersection of experimental and computational strategies for the investigation of plant-microbiome interactions and the engineering of desirable soil microbiomes.
Collapse
Affiliation(s)
- Chiara A Berruto
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
23
|
Szczygieł T, Koziróg A, Otlewska A. Synthetic and Natural Antifungal Substances in Cereal Grain Protection: A Review of Bright and Dark Sides. Molecules 2024; 29:3780. [PMID: 39202859 PMCID: PMC11357261 DOI: 10.3390/molecules29163780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Molds pose a severe challenge to agriculture because they cause very large crop losses. For this reason, synthetic fungicides have been used for a long time. Without adequate protection against pests and various pathogens, crop losses could be as high as 30-40%. However, concerns mainly about the environmental impact of synthetic antifungals and human health risk have prompted a search for natural alternatives. But do natural remedies only have advantages? This article reviews the current state of knowledge on the use of antifungal substances in agriculture to protect seeds against phytopathogens. The advantages and disadvantages of using both synthetic and natural fungicides to protect cereal grains were discussed, indicating specific examples and mechanisms of action. The possibilities of an integrated control approach, combining cultural, biological, and chemical methods are described, constituting a holistic strategy for sustainable mold management in the grain industry.
Collapse
Affiliation(s)
- Tomasz Szczygieł
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
- Interdisciplinary Doctoral School, Lodz University of Technology, 90-530 Lodz, Poland
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
| |
Collapse
|
24
|
Mirmajlessi M, Najdabbasi N, Sigillo L, Haesaert G. An implementation framework for evaluating the biocidal potential of essential oils in controlling Fusarium wilt in spinach: from in vitro to in planta. FRONTIERS IN PLANT SCIENCE 2024; 15:1444195. [PMID: 39239191 PMCID: PMC11376204 DOI: 10.3389/fpls.2024.1444195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. spinaciae, causes a significant challenge on vegetative spinach and seed production. Addressing this issue necessitates continuous research focused on innovative treatments and protocols through comprehensive bioassays. Recent studies have highlighted the potential of plant-based compounds in controlling fungal diseases. The present work aims to conduct a series of experiments, encompassing both in vitro and in planta assessments, to investigate the biocontrol capabilities of different essential oils (EOs) at various application rates, with the ultimate goal of reducing the incidence of Fusarium wilt in spinach. The inhibitory effect of four plant EOs (marjoram, thyme, oregano, and tea tree) was initially assessed on the spore germination of five unknown Fusarium strains. The outcomes revealed diverse sensitivities of Fusarium strains to EOs, with thyme exhibiting the broadest inhibition, followed by oregano at the highest concentration (6.66 μL/mL) in most strains. The tested compounds displayed a diverse range of median effective dose (ED50) values (0.69 to 7.53 µL/mL), with thyme and oregano consistently showing lower ED50 values. The direct and indirect inhibitory impact of these compounds on Fusarium mycelial growth ranged from ~14% to ~100%, wherein thyme and oregano consistently exhibiting the highest effectiveness. Following the results of five distinct inoculation approaches and molecular identification, the highly pathogenic strain F-17536 (F. oxysporum f.sp. spinaciae) was chosen for Fusarium wilt assessment in spinach seedlings, employing two promising EO candidates through seed and soil treatments. Our findings indicate that colonized grain (CG) proved to be a convenient and optimal inoculation method for consistent Fusarium wilt assessment under greenhouse conditions. Seed treatments with thyme and oregano EOs consistently resulted in significantly better disease reduction rates, approximately 54% and 36% respectively, compared to soil treatments (P > 0.05). Notably, thyme, applied at 6.66 µL/mL, exhibited a favorable emergence rate (ERI), exceeding seven, in both treatments, emphasizing its potential for effective disease control in spinach seedlings without inducing phytotoxic effects. This study successfully transitions from in vitro to in planta experiments, highlighting the potential incorporation of EOs into integrated disease management for Fusarium wilt in spinach production.
Collapse
Affiliation(s)
- Mahyar Mirmajlessi
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Neda Najdabbasi
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Loredana Sigillo
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Geert Haesaert
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| |
Collapse
|
25
|
Langlet R, Valentin R, Morard M, Raynaud CD. Transitioning to Microplastic-Free Seed Coatings: Challenges and Solutions. Polymers (Basel) 2024; 16:1969. [PMID: 39065285 PMCID: PMC11280678 DOI: 10.3390/polym16141969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This review addresses the issue of replacing manufactured microplastics in seed coatings used in agriculture. Firstly, it focuses on the policy and regulatory actions taken on microplastics at a global level. There is no consensus within the scientific community on the definition of a microplastic and, more generally, on the classification of plastic debris. Nevertheless, several decision schemes have been proposed in an attempt to define the notion of microplastics. The different criteria relevant to this definition, such as the size, physical state, chemical structure, origin, and persistence of microplastics, are discussed, with a comparison being made between the REACH regulation and the scientific literature. Seed production and processing are also discussed, with the functions of seed coatings being explained in order to gain a better understanding of the properties to be considered in a substitution strategy for currently used microplastics. The main challenges are multiple; substitutes must provide the same performance as microplastics: (i) improving the adherence of the treatment to the seed, (ii) distributing the treatment more evenly over the seed, (iii) reducing the amount of dust-off when handling treated seed, and (iv) improving the seed flowability, which is particularly important during the sowing stage, all while preserving the physiological properties of the seed. Substitute polymers are proposed according to the desired performance and functional properties: two main chemical families of biopolymers were identified in the literature: polysaccharides and proteins. Among them, 13 and 6 polymers, respectively, complied with REACH regulation, demonstrating adhesion, dust reduction performances, and preservation of seed physiological quality in particular. This work aims to guide future studies on microplastic substitution in seed coatings, and to highlight research needs in this area. It is based on an analysis and discussion of the literature, identifying and listing potential substitutes.
Collapse
Affiliation(s)
- Rozenn Langlet
- Laboratoire de Chimie Agro-Industrielle (LCA), Univeristé de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France; (R.L.); (R.V.)
- Bois Valor, OLMIX, 13 rue Jean Mermoz, 81160 Saint-Juéry, France;
| | - Romain Valentin
- Laboratoire de Chimie Agro-Industrielle (LCA), Univeristé de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France; (R.L.); (R.V.)
| | - Marie Morard
- Bois Valor, OLMIX, 13 rue Jean Mermoz, 81160 Saint-Juéry, France;
| | - Christine Delgado Raynaud
- Laboratoire de Chimie Agro-Industrielle (LCA), Univeristé de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France; (R.L.); (R.V.)
- Centre d’Application et de Traitement des Agro-Ressources (CATAR), Toulouse INP, 31030 Toulouse, France
| |
Collapse
|
26
|
Gallegos-Cedillo VM, Nájera C, Signore A, Ochoa J, Gallegos J, Egea-Gilabert C, Gruda NS, Fernández JA. Analysis of global research on vegetable seedlings and transplants and their impacts on product quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4950-4965. [PMID: 38294182 DOI: 10.1002/jsfa.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Previous research has established that using high-quality planting material during the early phase of vegetable production significantly impacts success and efficiency, leading to improved crop performance, faster time to harvest and better profitability. In the present study, we conducted a global analysis of vegetable seedlings and transplants, providing a comprehensive overview of research trends in seedling and transplant production to enhance the nutritional quality of vegetables. RESULTS The analysis involved reviewing and quantitatively analysing 762 articles and 5248 keywords from the Scopus database from 1971 to 2022. We used statistical, mathematical and clustering tools to analyse bibliometrics and visualise the most relevant research topics. A visualisation map was generated to identify the evolution of keywords used in the articles, resulting in five clusters for further analysis. Our study highlights the importance of the size of seed trays for the type of crop, the mechanical seeder used and the greenhouse facilities to produce desirable transplants. We identified grafting and light-emitting diode (LED) lighting technology as rapidly expanding technologies in vegetable seedlings and transplant production used to promote plant qualitative profile. CONCLUSION There is a need for sustainable growing media to optimise resources and reduce input use. Thus, applying grafting, LED artificial lighting, biostimulants, biofortification and plant growth-promoting microorganisms in seedling production can enhance efficiency and promote sustainable vegetable nutritional quality by accumulating biocompounds. Further research is needed to explore the working mechanisms and devise novel strategies to enhance the product quality of vegetables, commencing from the early stages of food production. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Victor M Gallegos-Cedillo
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
- Department of Engineering, CIAIMBITAL Research Centre, University of Almería, Almería, Spain
| | - Cinthia Nájera
- Department of Agronomy, University of Almería, Almería, Spain
- Department of Soil and Water Conservation and Organic Wastes Management, CEBAS-CSIC, Murcia, Spain
| | - Angelo Signore
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jesús Ochoa
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Jesús Gallegos
- Department of Engineering, CIAIMBITAL Research Centre, University of Almería, Almería, Spain
| | - Catalina Egea-Gilabert
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Nazim S Gruda
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
- Department of Horticultural Sciences, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Juan A Fernández
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| |
Collapse
|
27
|
Miljaković D, Marinković J, Tamindžić G, Milošević D, Ignjatov M, Karačić V, Jakšić S. Bio-Priming with Bacillus Isolates Suppresses Seed Infection and Improves the Germination of Garden Peas in the Presence of Fusarium Strains. J Fungi (Basel) 2024; 10:358. [PMID: 38786713 PMCID: PMC11122518 DOI: 10.3390/jof10050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Seed infection caused by Fusarium spp. is one of the major threats to the seed quality and yield of agricultural crops, including garden peas. The use of Bacillus spp. with multiple antagonistic and plant growth-promoting (PGP) abilities represents a potential disease control strategy. This study was performed to evaluate the biocontrol potential of new Bacillus spp. rhizosphere isolates against two Fusarium strains affecting garden peas. Six Bacillus isolates identified by 16S rDNA sequencing as B. velezensis (B42), B. subtilis (B43), B. mojavensis (B44, B46), B. amyloliquefaciens (B50), and B. halotolerans (B66) showed the highest in vitro inhibition of F. proliferatum PS1 and F. equiseti PS18 growth (over 40%). The selected Bacillus isolates possessed biosynthetic genes for endoglucanase (B42, B43, B50), surfactin (B43, B44, B46), fengycin (B44, B46), bacillomycin D (B42, B50), and iturin (B42), and were able to produce indole-3-acetic acid (IAA), siderophores, and cellulase. Two isolates, B. subtilis B43 and B. amyloliquefaciens B50, had the highest effect on final germination, shoot length, root length, shoot dry weight, root dry weight, and seedling vigor index of garden peas as compared to the control. Their individual or combined application reduced seed infection and increased seed germination in the presence of F. proliferatum PS1 and F. equiseti PS18, both after seed inoculation and seed bio-priming. The most promising results were obtained in the cases of the bacterial consortium, seed bio-priming, and the more pathogenic strain PS18. The novel Bacillus isolates may be potential biocontrol agents intended for the management of Fusarium seed-borne diseases.
Collapse
Affiliation(s)
- Dragana Miljaković
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Jelena Marinković
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Gordana Tamindžić
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Dragana Milošević
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Maja Ignjatov
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Vasiljka Karačić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia;
| | - Snežana Jakšić
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| |
Collapse
|
28
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
29
|
Akram W, Waqar S, Hanif S, Anjum T, Aftab ZEH, Li G, Ali B, Rizwana H, Hassan A, Rehman A, Munir B, Umer M. Comparative Effect of Seed Coating and Biopriming of Bacillus aryabhattai Z-48 on Seedling Growth, Growth Promotion, and Suppression of Fusarium Wilt Disease of Tomato Plants. Microorganisms 2024; 12:792. [PMID: 38674736 PMCID: PMC11052163 DOI: 10.3390/microorganisms12040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Beneficial plant microbes can enhance the growth and quality of field crops. However, the benefits of microbes using cheap and efficient inoculation methods are still uncommon. Seed coating with biocontrol agents can reduce the amount of inocula along with having the potential for large-scale application. Hence, in this research work, the comparative potential of tomato seed coating and biopriming with Bacillus aryabhattai Z-48, harboring multiple plant-beneficial traits, to suppress Fusarium wilt disease along with its beneficial effect on seedling and plant growth promotion was analyzed. Among two bacterial strains, B. aryabhattai Z-48 was able to antagonize the mycelial growth of Fusarium oxysporum f.sp. lycopersici in vitro and its application as a seed coating superiorly benefited seedling traits like the germination percentage, vigor index, and seedling growth index along with a reduced germination time. The seed coating with B. aryabhattai Z-48 resulted in significant increases in the shoot length, root length, dry biomass, and total chlorophyll contents when compared with the bioprimed seeds with the same bacterial strain and non-inoculated control plants. The seed coating with B. aryabhattai Z-48 significantly reduced the disease index (>60%) compared with the pathogen control during pot trials. Additionally, the seed coating with B. aryabhattai Z-48 resulted in a significantly higher production of total phenolics, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase enzyme in tomato plants. The GC/MS-based non-targeted metabolic profiling indicated that the seed coating with B. aryabhattai Z-48 could cause large-scale metabolite perturbations in sugars, sugar alcohols, amino acids, and organic acids to increase the fitness of tomato plants against biotic stress. Our study indicates that a tomato seed coating with B. aryabhattai Z-48 can improve tomato growth and suppress Fusarium wilt disease effectively under conventional agricultural systems.
Collapse
Affiliation(s)
- Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Sara Waqar
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Sana Hanif
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Zill-e-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Basharat Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan;
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Ali Hassan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Areeba Rehman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Muhammad Umer
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| |
Collapse
|
30
|
Osborne MG, Simons AL, Molano G, Tolentino B, Singh A, Arismendi GJM, Alberto F, Nuzhdin SV. Investigating the relationship between microbial network features of giant kelp "seedbank" cultures and subsequent farm performance. PLoS One 2024; 19:e0295740. [PMID: 38536857 PMCID: PMC10971754 DOI: 10.1371/journal.pone.0295740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/28/2023] [Indexed: 05/01/2024] Open
Abstract
Microbial inoculants can increase the yield of cultivated crops and are successful in independent trials; however, efficacy drops in large-scale applications due to insufficient consideration of microbial community dynamics. The structure of microbiomes, in addition to the impact of individual taxa, is an important factor to consider when designing growth-promoting inoculants. Here, we investigate the microbial network and community assembly patterns of Macrocystis pyrifera gametophyte germplasm cultures (collectively referred to as a "seedbank") used to cultivate an offshore farm in Santa Barbara, California, and identify network features associated with increased biomass of mature sporophytes. We found that [1] several network features, such as clustering coefficient and edge ratios, significantly vary with biomass outcomes; [2] gametophytes that become low- or high-biomass sporophytes have different hub taxa; and [3] microbial community assembly of gametophyte germplasm cultures is niche-driven. Overall, this study describes microbial community dynamics in M. pyrifera germplasm cultures and ultimately supports the development of early life stage inoculants that can be used on seaweed cultivars to increase biomass yield.
Collapse
Affiliation(s)
- Melisa G. Osborne
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Ariel Levi Simons
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Gary Molano
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Bernadeth Tolentino
- Department of Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Anupam Singh
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States of America
| | | | - Filipe Alberto
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Sergey V. Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
31
|
Grosu E, Singh Rathore D, Garcia Cabellos G, Enright AM, Mullins E. Ensifer adhaerens strain OV14 seed application enhances Triticum aestivum L. and Brassica napus L. development. Heliyon 2024; 10:e27142. [PMID: 38495150 PMCID: PMC10943344 DOI: 10.1016/j.heliyon.2024.e27142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Given the challenges imposed by climate change and societal challenges, the European Union established ambitious goals as part of its Farm to Fork (F2F) strategy. Focussed on accelerating the transition to systems of sustainable food production, processing and consumption, a key element of F2F is to reduce the use of fertilisers by at least 20% and plant protection products by up to 50% by 2030. In recent years, a substantial body of research has highlighted the potential impact of microbial-based applications to support crop production practices through both biotic/abiotic stresses via maintaining or even improving yields and reducing reliance on intensive chemical inputs. Here, we have characterised the ability of a new soil-borne free-living bacterium strain Ensifer adhaerens OV14 (EaOV14) to significantly enhance crop vigour index by up to 50% for monocot (wheat, Triticum aestivum L., p < 0.0001) and by up to 40% for dicot (oilseed rape, Brassica napus L., p < 0.0001) species under in-vitro conditions (n = 360 seedlings/treatment). The beneficial effect was further studied under controlled glasshouse growing conditions (n = 60 plants/treatment) where EaOV14 induced significantly increased seed yield of spring oilseed rape compared to the controls (p < 0.0001). Moreover, using bespoke rhizoboxes, enhanced root architecture (density, roots orientation, roots thickness etc.) was observed for spring oilseed rape and winter wheat, with the median number of roots 55% and 33% higher for oilseed rape and wheat respectively, following EaOV14 seed treatment compared to the control. In addition, EaOV14 treatment increased root tip formation and root volume, suggesting the formation of a more robust root system architecture post-seed treatment. However, like other microbial formulations, the trade-offs associated with field translation, such as loss or limited functionality due to inoculum formulation or environmental distress, need further investigation. Moreover, the delivery method requires further optimisation to identify the optimal inoculum formulation that will maximise the expected beneficial impact on yield under field growing conditions.
Collapse
Affiliation(s)
- Elena Grosu
- Crop Science Department, Teagasc, Oak Park, Carlow, Ireland
- EnviroCORE, South East Technological University Carlow, Kilkenny Road, Carlow, Ireland
| | | | | | - Anne-Marie Enright
- EnviroCORE, South East Technological University Carlow, Kilkenny Road, Carlow, Ireland
| | - Ewen Mullins
- Crop Science Department, Teagasc, Oak Park, Carlow, Ireland
| |
Collapse
|
32
|
Arnault G, Marais C, Préveaux A, Briand M, Poisson AS, Sarniguet A, Barret M, Simonin M. Seedling microbiota engineering using bacterial synthetic community inoculation on seeds. FEMS Microbiol Ecol 2024; 100:fiae027. [PMID: 38503562 PMCID: PMC10977042 DOI: 10.1093/femsec/fiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.
Collapse
Affiliation(s)
- Gontran Arnault
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Coralie Marais
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne-Sophie Poisson
- Groupe d’Étude et de Contrôle des Variétés et des Semences (GEVES), 49070, Beaucouzé, France
| | - Alain Sarniguet
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Matthieu Barret
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie Simonin
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
33
|
Quiroga S, Rosado-Porto D, Ratering S, Rekowski A, Schulz F, Krutych M, Zörb C, Schnell S. Long-term detection of Hartmannibacter diazotrophicus on winter wheat and spring barley roots under field conditions revealed positive correlations on yield parameters with the bacterium abundance. FEMS Microbiol Ecol 2024; 100:fiae023. [PMID: 38366928 PMCID: PMC10939331 DOI: 10.1093/femsec/fiae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Monitoring of bioinoculants once released into the field remains largely unexplored; thus, more information is required about their survival and interactions after root colonization. Therefore, specific primers were used to perform a long-term tracking to elucidate the effect of Hartmannibacter diazotrophicus on wheat and barley production at two experimental organic agriculture field stations. Three factors were evaluated: organic fertilizer application (with and without), row spacing (15 and 50 cm), and bacterial inoculation (H. diazotrophicus and control without bacteria). Hartmannibacter diazotrophicus was detected by quantitative polymerase chain reaction on the roots (up to 5 × 105 copies g-1 dry weight) until advanced developmental stages under field conditions during two seasons, and mostly in one farm. Correlation analysis showed a significant effect of H. diazotrophicus copy numbers on the yield parameters straw yield (increase of 453 kg ha-1 in wheat compared to the mean) and crude grain protein concentration (increase of 0.30% in wheat and 0.80% in barley compared to the mean). Our findings showed an apparently constant presence of H. diazotrophicus on both wheat and barley roots until 273 and 119 days after seeding, respectively, and its addition and concentration in the roots are associated with higher yields in one crop.
Collapse
Affiliation(s)
- Santiago Quiroga
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - David Rosado-Porto
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, 080002 Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Azin Rekowski
- Institute of Crop Science, Quality of Plant Products, 340e, University of Hohenheim, 70593 Stuttgart, Germany
| | - Franz Schulz
- Department of Agronomy and Plant Breeding II, Justus-Liebig University Giessen, 35394 Giessen, Germany
| | - Marina Krutych
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, 340e, University of Hohenheim, 70593 Stuttgart, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
34
|
Usmanova A, Brazhnikova Y, Omirbekova A, Kistaubayeva A, Savitskaya I, Ignatova L. Biopolymers as Seed-Coating Agent to Enhance Microbially Induced Tolerance of Barley to Phytopathogens. Polymers (Basel) 2024; 16:376. [PMID: 38337265 DOI: 10.3390/polym16030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Infections of agricultural crops caused by pathogen ic fungi are among the most widespread and harmful, as they not only reduce the quantity of the harvest but also significantly deteriorate its quality. This study aims to develop unique seed-coating formulations incorporating biopolymers (polyhydroxyalkanoate and pullulan) and beneficial microorganisms for plant protection against phytopathogens. A microbial association of biocompatible endophytic bacteria has been created, including Pseudomonas flavescens D5, Bacillus aerophilus A2, Serratia proteamaculans B5, and Pseudomonas putida D7. These strains exhibited agronomically valuable properties: synthesis of the phytohormone IAA (from 45.2 to 69.2 µg mL-1), antagonistic activity against Fusarium oxysporum and Fusarium solani (growth inhibition zones from 1.8 to 3.0 cm), halotolerance (5-15% NaCl), and PHA production (2.77-4.54 g L-1). A pullulan synthesized by Aureobasidium pullulans C7 showed a low viscosity rate (from 395 Pa·s to 598 Pa·s) depending on the concentration of polysaccharide solutions. Therefore, at 8.0%, w/v concentration, viscosity virtually remained unchanged with increasing shear rate, indicating that it exhibits Newtonian flow behavior. The effectiveness of various antifungal seed coating formulations has been demonstrated to enhance the tolerance of barley plants to phytopathogens.
Collapse
Affiliation(s)
- Aizhamal Usmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Yelena Brazhnikova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Anel Omirbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Aida Kistaubayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Irina Savitskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Lyudmila Ignatova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| |
Collapse
|
35
|
Yates P, Janiol J, Li C, Song BH. Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management. PLANTS (BASEL, SWITZERLAND) 2024; 13:319. [PMID: 38276776 PMCID: PMC10819391 DOI: 10.3390/plants13020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose growing threats to human and environmental health; therefore, alternative SCN management strategies are urgently needed. Preliminary findings show that phenolic acids are significantly induced during SCN infection and exhibit effective nematocidal activities in vitro. However, it is unclear whether these effects occur in planta or elicit any negative effects on plant growth traits. Here, we employed a phytochemical-based seed coating application on soybean seeds using phenolic acid derivatives (4HBD; 2,3DHBA) at variable concentrations and examined SCN inhibition against two SCN types. Moreover, we also examined plant growth traits under non-infected or SCN infected conditions. Notably, 2,3DHBA significantly inhibited SCN abundance in Race 2-infected plants with increasingly higher chemical doses. Interestingly, neither compound negatively affected soybean growth traits in control or SCN-infected plants. Our findings suggest that a phytochemical-based approach could offer an effective, more environmentally friendly solution to facilitate current SCN management strategies and fast-track the development of biopesticides to sustainably manage devastating pests such as SCN.
Collapse
Affiliation(s)
- Ping Yates
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA; (P.Y.)
| | - Juddy Janiol
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA; (P.Y.)
| | - Changbao Li
- Syngenta Crop Protection LLC, 9 Davis Drive, Durham, NC 27709, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA; (P.Y.)
| |
Collapse
|
36
|
Ilyas U, du Toit LJ, Hajibabaei M, McDonald MR. Influence of plant species, mycorrhizal inoculant, and soil phosphorus level on arbuscular mycorrhizal communities in onion and carrot roots. FRONTIERS IN PLANT SCIENCE 2024; 14:1324626. [PMID: 38288412 PMCID: PMC10823018 DOI: 10.3389/fpls.2023.1324626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ancient and ecologically important symbionts that colonize plant roots. These symbionts assist in the uptake of water and nutrients, particularly phosphorus, from the soil. This important role has led to the development of AMF inoculants for use as biofertilizers in agriculture. Commercial mycorrhizal inoculants are increasingly popular to produce onion and carrot, but their specific effects on native mycorrhizal communities under field conditions are not known. Furthermore, adequate availability of nutrients in soils, specifically phosphorus, can reduce the diversity and abundance of AMF communities in the roots. The type of crop grown can also influence the composition of AMF communities colonizing the plant roots. This study aimed to investigate how AMF inoculants, soil phosphorus levels, and plant species influence the diversity of AMF communities that colonize the roots of onion and carrot plants. Field trials were conducted on high organic matter (muck) soil in the Holland Marsh, Ontario, Canada. The treatments included AMF-coated seeds (three to five propagules of Rhizophagus irregularis per seed) and non-treated onion and carrot seeds grown in soil with low (~46 ppm) and high (~78 ppm) phosphorus levels. The mycorrhizal communities colonizing the onion and carrot roots were identified by Illumina sequencing. Five genera, Diversispora, Claroideoglomus, Funneliformis, Rhizophagus, and Glomus, were identified in roots of both plant species. AMF communities colonizing carrot roots were more diverse and richer than those colonizing onion roots. Diversispora and Funneliformis had a 1.3-fold and 2.9-fold greater abundance, respectively, in onion roots compared to carrots. Claroideoglomus was 1.4-fold more abundant in carrot roots than in onions. Inoculation with R. irregularis increased the abundance and richness of Rhizophagus in AMF communities of onion roots but not in carrot roots. The soil phosphorus level had no effect on the richness and diversity of AMF in the roots of either crop. In summary, AMF inoculant and soil phosphorus levels influenced the composition of AMF communities colonizing the roots of onion and carrot plants, but the effects varied between plant species.
Collapse
Affiliation(s)
- Umbrin Ilyas
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Lindsey J. du Toit
- Northwestern Washington Research and Extension Center, Department of Plant Pathology, Washington State University, Mount Vernon, WA, United States
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Mary Ruth McDonald
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
Gressel J. Four pillars are required to support a successful biocontrol fungus. PEST MANAGEMENT SCIENCE 2024; 80:35-39. [PMID: 36810888 DOI: 10.1002/ps.7417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Despite biocontrol conceptually being a useful way to control specific pests, there are very few products that are used beyond the glasshouse level, into the field. Only if organisms meet four criteria (four pillars) will they be widely used in the field to replace or augment conventional agrichemicals. (i) The virulence of the biocontrol agent must be enhanced to overcome evolutionary barriers either by mixing with synergistic chemicals or with one or more organisms, and/or by mutagenic or transgenic enhancing of virulence of the biocontrol fungus. (ii) Inoculum production must be cost-effective; many inocula are produced by expensive, labour-intensive solid-phase fermentation. (iii) Inocula must be formulated both to have long shelf life of inocula as well as being formulated to establish on, and control the target pest. Usually spores are formulated, while chopped mycelia from liquid culture are cheaper to produce and are immediately active upon application. (iv) After fulfilling these three criteria, the product must be biosafe: not produce mammalian toxins that affect users and consumers, and have a host range that does not include crops and beneficial organisms, and in most cases that it will not spread from application sites or have environmental residues beyond those needed to control the target pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Nunes MR, Agostinetto L, da Rosa CG, Sganzerla WG, Pires MF, Munaretto GA, Rosar CR, Bertoldi FC, Barreto PLM, Veeck APDL, Zinger FD. Application of nanoparticles entrapped orange essential oil to inhibit the incidence of phytopathogenic fungi during storage of agroecological maize seeds. Food Res Int 2024; 175:113738. [PMID: 38129048 DOI: 10.1016/j.foodres.2023.113738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The demand for sustainable, healthy, and pesticide-free food has grown in recent years. Agroecological seeds cannot receive chemical treatment, as pesticides present toxicological and environmental risks, requiring the development of alternative methods for disease control, such as the use of essential oils. In this study, orange essential oil was extracted and encapsulated in zein nanoparticles by the nanoprecipitation method. The nanoparticles were tested for the antifungal activity on agroecological maize seeds and for the mycelial sensitivity of Stenocarpella macrospora. The synthesized nanoparticles presented good encapsulation efficiency (99 %) of orange essential oil rich in D-limonene, conferring high antioxidant activity to the loaded nanoparticles. The release profile indicated a pseudo-Fickian mechanism governed by diffusion, explained according to the Korsmeyer-Peppas model. The dynamic light scattering, and transmission electron microscopy showed spherical nanoparticles with particle size lower than 200 nm. The nanoparticles containing orange essential oil inhibited the incidence of Fusarium during the storage of agroecological maize seeds. The mycelial sensitivity against Stenocarpella macrospora showed that the encapsulated essential oil was more effective in inhibiting the fungus when compared to the non-encapsulated oil. Therefore, the nanoparticles containing encapsulated orange essential oil can be effectively applied as an antifungal material for the conservation of agroecological maize seeds, contributing to the development of sustainable agricultural biotechnology with pesticide-free products.
Collapse
Affiliation(s)
- Michael Ramos Nunes
- Federal Institute of Santa Catarina (IFSC), Campus Lages, 88506-400 Lages, SC, Brazil.
| | - Lenita Agostinetto
- Program in Environment and Health, University of Planalto Catarinense (UNIPLAC), 88509-900 Lages, SC, Brazil
| | - Cleonice Gonçalves da Rosa
- Program in Environment and Health, University of Planalto Catarinense (UNIPLAC), 88509-900 Lages, SC, Brazil
| | | | | | | | - Cristina Rosa Rosar
- Program in Environment and Health, University of Planalto Catarinense (UNIPLAC), 88509-900 Lages, SC, Brazil
| | - Fabiano Cleber Bertoldi
- Agricultural Research and Rural Extension of Santa Catarina (EPAGRI), Itajaí, SC 88318-112, Brazil
| | - Pedro Luiz Manique Barreto
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil
| | | | | |
Collapse
|
39
|
Davies KG, Mohan S, Phani V, Srivastava A. Exploring the mechanisms of host-specificity of a hyperparasitic bacterium ( Pasteuria spp.) with potential to control tropical root-knot nematodes ( Meloidogyne spp.): insights from Caenorhabditis elegans. Front Cell Infect Microbiol 2023; 13:1296293. [PMID: 38173791 PMCID: PMC10761439 DOI: 10.3389/fcimb.2023.1296293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Plant-parasitic nematodes are important economic pests of a range of tropical crops. Strategies for managing these pests have relied on a range of approaches, including crop rotation, the utilization of genetic resistance, cultural techniques, and since the 1950's the use of nematicides. Although nematicides have been hugely successful in controlling nematodes, their toxicity to humans, domestic animals, beneficial organisms, and the environment has raised concerns regarding their use. Alternatives are therefore being sought. The Pasteuria group of bacteria that form endospores has generated much interest among companies wanting to develop microbial biocontrol products. A major challenge in developing these bacteria as biocontrol agents is their host-specificity; one population of the bacterium can attach to and infect one population of plant-parasitic nematode but not another of the same species. Here we will review the mechanism by which infection is initiated with the adhesion of endospores to the nematode cuticle. To understand the genetics of the molecular processes between Pasteuria endospores and the nematode cuticle, the review focuses on the nature of the bacterial adhesins and how they interact with the nematode cuticle receptors by exploiting new insights gained from studies of bacterial infections of Carnorhabditis elegans. A new Velcro-like multiple adhesin model is proposed in which the cuticle surface coat, which has an important role in endospore adhesion, is a complex extracellular matrix containing glycans originating in seam cells. The genes associated with these seam cells appear to have a dual role by retaining some characteristics of stem cells.
Collapse
Affiliation(s)
- Keith G. Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, India
| | - Arohi Srivastava
- Dr. D. Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
40
|
Jarrar H, El-Keblawy A, Ghenai C, Abhilash PC, Bundela AK, Abideen Z, Sheteiwy MS. Seed enhancement technologies for sustainable dryland restoration: Coating and scarification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166150. [PMID: 37595910 DOI: 10.1016/j.scitotenv.2023.166150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/20/2023]
Abstract
High temperatures, soil salinity, a lack of available water, loose soils with reduced water holding, and low soil fertility are obstacles to restoration efforts in degraded drylands and desert ecosystems. Improved soil physical and chemical properties, seed germination and seedling recruitment, and plant growth are all proposed as outcomes of seed enhancement technologies (SETs). Seed priming, seed coating, and seed scarification are three SETs' methods for promoting seed germination and subsequent plant development under unfavorable environmental conditions. Various subtypes can be further classified within these three broad groups. The goals of this review are to (1) develop a general classification of coating and scarification SETs, (2) facilitate the decision-making process to adopt suitable SETs for arid lands environments, and (3) highlight the benefits of coating and scarification SETs in overcoming biotic and abiotic challenges in ecological restoring degraded dryland. For rehabilitating degraded lands and restoring drylands, it is recommended to 1) optimize SETs that have been used effectively for a long time, particularly those associated with seed physiological enhancement and seed microenvironment, 2) integrate coating and scarification to overcome different biotic and abiotic constraints, and 3) apply SET(s) to a mixture of seeds from various species and sizes. However, more research should be conducted on developing SETs for large-scale use to provide the required seed tonnages for dryland restoration.
Collapse
Affiliation(s)
- Heba Jarrar
- Renewable Energy and Energy Efficiency Research Group, Research Institute for Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Chaouki Ghenai
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - P C Abhilash
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Amit Kumar Bundela
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
41
|
Khan A, Singh AV, Gautam SS, Agarwal A, Punetha A, Upadhayay VK, Kukreti B, Bundela V, Jugran AK, Goel R. Microbial bioformulation: a microbial assisted biostimulating fertilization technique for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1270039. [PMID: 38148858 PMCID: PMC10749938 DOI: 10.3389/fpls.2023.1270039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023]
Abstract
Addressing the pressing issues of increased food demand, declining crop productivity under varying agroclimatic conditions, and the deteriorating soil health resulting from the overuse of agricultural chemicals, requires innovative and effective strategies for the present era. Microbial bioformulation technology is a revolutionary, and eco-friendly alternative to agrochemicals that paves the way for sustainable agriculture. This technology harnesses the power of potential microbial strains and their cell-free filtrate possessing specific properties, such as phosphorus, potassium, and zinc solubilization, nitrogen fixation, siderophore production, and pathogen protection. The application of microbial bioformulations offers several remarkable advantages, including its sustainable nature, plant probiotic properties, and long-term viability, positioning it as a promising technology for the future of agriculture. To maintain the survival and viability of microbial strains, diverse carrier materials are employed to provide essential nourishment and support. Various carrier materials with their unique pros and cons are available, and choosing the most appropriate one is a key consideration, as it substantially extends the shelf life of microbial cells and maintains the overall quality of the bioinoculants. An exemplary modern bioformulation technology involves immobilizing microbial cells and utilizing cell-free filters to preserve the efficacy of bioinoculants, showcasing cutting-edge progress in this field. Moreover, the effective delivery of bioformulations in agricultural fields is another critical aspect to improve their overall efficiency. Proper and suitable application of microbial formulations is essential to boost soil fertility, preserve the soil's microbial ecology, enhance soil nutrition, and support crop physiological and biochemical processes, leading to increased yields in a sustainable manner while reducing reliance on expensive and toxic agrochemicals. This manuscript centers on exploring microbial bioformulations and their carrier materials, providing insights into the selection criteria, the development process of bioformulations, precautions, and best practices for various agricultural lands. The potential of bioformulations in promoting plant growth and defense against pathogens and diseases, while addressing biosafety concerns, is also a focal point of this study.
Collapse
Affiliation(s)
- Amir Khan
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Ajay Veer Singh
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Shiv Shanker Gautam
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Aparna Agarwal
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Arjita Punetha
- School of Environmental Science and Natural Resource, Dehradun, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agriculture University, Samastipur, India
| | - Bharti Kukreti
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Vindhya Bundela
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Garhwal Regional Centre, Srinager, Uttarakhand, India
| | - Reeta Goel
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
42
|
Singh P, Vaishnav A, Liu H, Xiong C, Singh HB, Singh BK. Seed biopriming for sustainable agriculture and ecosystem restoration. Microb Biotechnol 2023; 16:2212-2222. [PMID: 37490280 PMCID: PMC10686123 DOI: 10.1111/1751-7915.14322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
The utilization of microbial inoculants in the realm of sustainable agricultural and ecosystem restoration has witnessed a surge in recent decades. This rise is largely attributed to advancements in our understanding of plant-microbe interactions, the urgency to reduce the dependence on agrochemicals and the growing societal demand for sustainable strategies in ecosystem management. However, despite the rapid growth of bio-inoculants sector, certain limitations persist concerning their efficacy and performance under the field condition. Here, we propose that seed biopriming, an effective microbial inoculant technique integrating both biological agents (the priming of beneficial microbes on seeds) and physiological aspects (hydration of seeds for improved metabolically activity), has a significant potential to mitigate these limitations. This method increases the protection of seeds against soil-borne pathogens and soil pollutants, such as salts and heavy metals, while promoting germination rate and uniformity, leading to overall improved primary productivity and soil health. Furthermore, we argue that a microbial coating on seeds can facilitate transgenerational associations of beneficial microbes, refine plant and soil microbiomes, and maintain soil legacies of beneficial microflora. This review article aims to improve our understanding of the seed biopriming approach as a potent and valuable tool in achieving sustainable agriculture and successful ecosystem restoration.
Collapse
Affiliation(s)
- Prachi Singh
- Rabindranath Tagore Agriculture College, DeogharBirsa Agriculture UniversityRanchiJharkhandIndia
| | - Anukool Vaishnav
- Department of BiotechnologyGLA UniversityMathuraUttar PradeshIndia
| | - Hongwei Liu
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Chao Xiong
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | | | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
43
|
Nacoon S, Seemakram W, Gateta T, Theerakulpisut P, Sanitchon J, Kuyper TW, Boonlue S. Accumulation of Health-Promoting Compounds in Upland Black Rice by Interacting Mycorrhizal and Endophytic Fungi. J Fungi (Basel) 2023; 9:1152. [PMID: 38132753 PMCID: PMC10744396 DOI: 10.3390/jof9121152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
There is an increasing interest in finding eco-friendly and safe approaches to increase agricultural productivity and deliver healthy foods. Arbuscular mycorrhizal fungi (AMF) and endophytic fungi (EPF) are important components of sustainable agriculture in view of their ability to increase productivity and various plant secondary metabolites with health-promoting effects. In a pot experiment, our main research question was to evaluate the additive and synergistic effects of an AMF and four root-endophytic fungi on plant performance and on the accumulation of health-promoting secondary compounds. Plant growth varied between the treatments with both single inoculants and co-inoculation of an AMF and four EPF strains. We found that inoculation with a single EPF positively affected the growth and biomass production of most of the plant-endophyte consortia examined. The introduction of AMF into this experiment (dual inoculation) had a beneficial effect on plant growth and yield. AMF, Rhizophagus variabilis KS-02 co-inoculated with EPF, Trichoderma zelobreve PBMP16 increased the highest biomass, exceeding the growth rate of non-inoculated plants. Co-inoculated R. variabilis KS-02 and T. zelobreve PBMP16 had significantly greater beneficial effects on almost all aspects of plant growth, photosynthesis-related parameters, and yield. It also promoted root growth quality and plant nutrient uptake. The phenolic compounds, anthocyanin, and antioxidant capacity in rice seeds harvested from plants co-inoculated with AMF and EPF were dramatically increased compared with those from non-inoculated plants. In conclusion, our results indicated that EPF and AMF contributed to symbiosis in Maled Phai cultivar and were coordinately involved in promoting plant growth performance under a pot trial.
Collapse
Affiliation(s)
- Sabaiporn Nacoon
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
| | - Wasan Seemakram
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
| | - Thanawan Gateta
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
| | - Piyada Theerakulpisut
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Salt-Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jirawat Sanitchon
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Thomas W. Kuyper
- Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands;
| | - Sophon Boonlue
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
- Salt-Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
44
|
Zhang K, Han X, Fu Y, Zhou Y, Khan Z, Bi J, Hu L, Luo L. Biochar Coating as a Cost-Effective Delivery Approach to Promoting Seed Quality, Rice Germination, and Seedling Establishment. PLANTS (BASEL, SWITZERLAND) 2023; 12:3896. [PMID: 38005793 PMCID: PMC10674834 DOI: 10.3390/plants12223896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The application of high-quality seeds ensures successful crop establishment, healthy growth, and improved production in both quantity and quality. Recently, biochar-based seed coating has been recognized as a new, effective, and environmentally friendly method to enhance seed quality, seedling uniformity, and nutrient availability. To study the impact of biochar coating on the surface mechanical properties of coated seeds, rice emergence and growth, and related physical and physiological metabolic events, laboratory experiments were performed on two water-saving and drought-resistance rice (WDR) varieties (Huhan1512 and Hanyou73) using biochar formulations with varying contents (20%-60%). The results showed that the appropriate concentration of biochar significantly improved emergence traits and seedling performance of the two rice varieties, compared to the uncoated treatment, and that the optimal percentage of biochar coating was 30% (BC30). On average, across both varieties, BC30 enhanced emergence rate (9.5%), emergence index (42.9%), shoot length (19.5%), root length (23.7%), shoot dry weight (25.1%), and root dry weight (49.8%). The improved germination characteristics and vigorous seedling growth induced by biochar coating were strongly associated with higher water uptake by seeds, increased α-amylase activity and respiration rate, and enhanced accumulation of soluble sugar and soluble protein. Moreover, the evaluation results of mechanical properties related to seed coating quality found that increasing the proportion of biochar in the coating blend decreased the integrity and compressive strength of the coated seeds and reduced the time required for coating disintegration. In conclusion, biochar coating is a cost-effective strategy for enhancing crop seed quality and seedling establishment.
Collapse
Affiliation(s)
- Kangkang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Xiaomeng Han
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
| | - Yanfeng Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Yu Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Liyong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
| | - Lijun Luo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| |
Collapse
|
45
|
Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NAI, Saidi NB, Yusof MT. A laudable strategy to manage bacterial panicle blight disease of rice using biocontrol agents. J Basic Microbiol 2023; 63:1180-1195. [PMID: 37348082 DOI: 10.1002/jobm.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Bacterial panicle blight (BPB) disease is a dreadful disease in rice-producing countries. Burkholderia glumae, a Gram-negative, rod-shaped, and flagellated bacterium was identified as the primary culprit for BPB disease. In 2019, the disease was reported in 18 countries, and to date, it has been spotted in 26 countries. Rice yield has been reduced by up to 75% worldwide due to this disease. Interestingly, the biocontrol strategy offers a promising alternative to manage BPB disease. This review summarizes the management status of BPB disease using biological control agents (BCA). Bacteria from the genera Bacillus, Burkholderia, Enterobacter, Pantoea, Pseudomonas, and Streptomyces have been examined as BCA under in vitro, glasshouse, and field conditions. Besides bacteria, bacteriophages have also been reported to reduce BPB pathogens under in vitro and glasshouse conditions. Here, the overview of the mechanisms of bacteria and bacteriophages in controlling BPB pathogens is addressed. The applications of BCA using various delivery methods could effectively manage BPB disease to benefit the agroecosystems and food security.
Collapse
Affiliation(s)
- Mohamad S Ngalimat
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Erneeza Mohd Hata
- Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Dzarifah Zulperi
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti I Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd R Ismail
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur A I Mohd Zainudin
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noor B Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd T Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
46
|
Abdukerim R, Xiang S, Shi Y, Xie X, Li L, Chai A, Li B, Fan T. Seed Pelleting with Gum Arabic-Encapsulated Biocontrol Bacteria for Effective Control of Clubroot Disease in Pak Choi. PLANTS (BASEL, SWITZERLAND) 2023; 12:3702. [PMID: 37960058 PMCID: PMC10647673 DOI: 10.3390/plants12213702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Clubroot is one of the most serious soil-borne diseases on crucifer crops worldwide. Seed treatment with biocontrol agents is an effective and eco-friendly way to control clubroot disease. However, there is a big challenge to inoculating the seed with bacterial cells through seed pelleting due to the harsh environment on the seed surface or in the rhizosphere. In this study, a method for microbial seed pelleting was developed to protect pak choi seedlings against clubroot disease. Typically, a biocontrol bacterium, Paenibacillus polymyxa ZF129, was encapsulated by the spray-drying method with gum arabic as wall material, and then pak choi seeds were pelleted with the microencapsulated Paenibacillus polymyxa ZF129 (ZF129m). The morphology, storage stability, and release behavior of ZF129 microcapsules were evaluated. Compared with the naked Paenibacillus polymyxa ZF129 cells, encapsulated ZF129 cells showed higher viability during ambient storage on pak choi seeds. Moreover, ZF129m-pelleted seeds showed higher control efficacy (71.23%) against clubroot disease than that of nonencapsulated ZF129-pelleted seeds (61.64%) in pak choi. Seed pelleting with microencapsulated biocontrol Paenibacillus polymyxa ZF129 proved to be an effective and eco-friendly strategy for the control of clubroot disease in pak choi.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.A.); (S.X.); (Y.S.); (X.X.); (L.L.); (A.C.)
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.A.); (S.X.); (Y.S.); (X.X.); (L.L.); (A.C.)
| |
Collapse
|
47
|
Abd-el-kareem F, Saied NM, Elshahawy IE, Abd-elgawad M. Soil bio-solarization and Trichoderma asperellum suppress black root rot disease and increase strawberry yield.. [DOI: 10.21203/rs.3.rs-3096529/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Trichoderma asperellum applied as pellets, disks, or spore suspension against the causal agents of strawberry-black root rot disease represented by three fungal species was tested. The pellets/disks could significantly reduce the growth area of the pathogenic fungi Rhizoctonia solani, Fusarium solani, and Macrophomina phaseolina in vitro. Solarization via mulching soil with transparent polyethylene sheets could affect these pathogens. It reduced the counts of the fungi buried in cloth bags at 1–10 cm of soil surface by 70, 65, and 65% for R. solani, F. solani, and M. phaseolina, respectively relative to unmulched soil. Yet, the more depths of bags in soil, the less the mulching affects the three pathogens. In two field experiments, the disease incidence and severity were more reduced when T. asperellum pellets/suspension was integrated with bio-solarization (mulching soon after bio-fumigation with Al-Abour Compost®)) than any single treatment. The highest reductions obtained by T. asperellum pellets combined with bio-solarization averaged 75 and 73.8%, respectively. Bio-solarization with Actamyl affected the disease incidence/severity to a lesser extent. All tested treatments significantly boosted yield of strawberry plants. Strawberry yield and activities of the pathogenesis-related proteins peroxidase and chitinase showed favorable responses almost parallel to the extent of reduction in the disease incidence and severity caused by all treatments. The highest yield increase achieved via combining T. asperellum pellets with bio-solarization was 160.8%. Our results support hypothetical biocontrol potential that T. asperellum and bio-solarization together with adequate phytosanitary measures can reliably control strawberry-black root rot disease and enhance strawberry yield.
Collapse
|
48
|
Sun Y, Cai D, Qin D, Chen J, Su Y, Zheng X, Meng Z, Zhang J, Xiong L, Dong Z, Cheng P, Peng X, Yu G. The plant protection preparation GZM improves crop immunity, yield, and quality. iScience 2023; 26:106819. [PMID: 37250797 PMCID: PMC10212988 DOI: 10.1016/j.isci.2023.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Lauryl alcohol, a natural compound found in plants and other organisms, is widely used to make surfactants, food, and pharmaceuticals. GZM, a plant protection preparation with lauryl alcohol as its major component is thought to establish a physical barrier on the plant surface, but its physiological functions are unknown. Here, we show that GZM improves the performance of peanut (Arachis hypogaea) plants in both the laboratory and the field. We demonstrate that the treatment with GZM or lauryl alcohol raises the contents of several specific lysophospholipids and induces the biosynthesis of phenylpropanoids, flavonoids, and wax in various plant species. In the field, GZM improves crop immunity, yield, and quality. In addition, GZM and lauryl alcohol can inhibit the growth of some pathogenic fungi. Our findings provide insights into the physiological and biological effects of GZM treatment on plants and show that GZM and lauryl alcohol are promising preparations in agricultural production.
Collapse
Affiliation(s)
- Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dianxian Cai
- Laboratory of Plant Health, Zhuhai Runnong Science and Technology Co. Ltd, Zhuhai 519000, China
| | - Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jialiang Chen
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yutong Su
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaoying Zheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhen Meng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lina Xiong
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
| | - Xiaoming Peng
- Laboratory of Plant Health, Zhuhai Runnong Science and Technology Co. Ltd, Zhuhai 519000, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
49
|
Xie P, Yang S, Liu X, Zhang T, Zhao X, Wen T, Zhang J, Xue C, Shen Q, Yuan J. Learning from Seed Microbes: Trichoderma Coating Intervenes in Rhizosphere Microbiome Assembly. Microbiol Spectr 2023; 11:e0309722. [PMID: 37195176 PMCID: PMC10269462 DOI: 10.1128/spectrum.03097-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Seed-associated microbiomes can impact the later colonization of a plant rhizosphere microbiome. However, there remains little insight into the underlying mechanisms concerning how alterations in the composition of the seed microbiome may intervene in the assembly of a rhizosphere microbiome. In this study, the fungus Trichoderma guizhouense NJAU4742 was introduced to both maize and watermelon seed microbiomes by seed coating. Application was found to significantly promote seed germination and improve plant growth and rhizosphere soil quality. The activities of acid phosphatase, cellulase, peroxidase, sucrase, and α-glucosidase increased significantly in two crops. The introduction of Trichoderma guizhouense NJAU4742 also led to a decrease in the occurrence of disease. Coating with T. guizhouense NJAU4742 did not alter the alpha diversities of the bacterial and fungal communities but formed a key network module that contained both Trichoderma and Mortierella. This key network module comprised of these potentially beneficial microorganisms was positively linked with the belowground biomass and activities of rhizosphere soil enzymes but negatively correlated with disease incidence. Overall, this study provides insights into plant growth promotion and plant health maintenance via seed coating in order to influence the rhizosphere microbiome. IMPORTANCE Seed-associated microbiomes can impact the rhizosphere microbiome assembly and function display. However, there remains little insight into the underlying mechanisms concerning how alterations in the composition of the seed microbiome with the beneficial microbes may intervene in the assembly of a rhizosphere microbiome. Here, we introduced T. guizhouense NJAU4742 to the seed microbiome by seed coating. This introduction led to a decrease in the occurrence of disease and an increase in plant growth; furthermore, it formed a key network module that contained both Trichoderma and Mortierella. Our study provides insights into plant growth promotion and plant health maintenance via seed coating in order to influence the rhizosphere microbiome.
Collapse
Affiliation(s)
- Penghao Xie
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shengdie Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xinyuan Zhao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tao Wen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jian Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Green Intelligent Fertilizer Innovation, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
| | - Chao Xue
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jun Yuan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Turkan S, Mierek-Adamska A, Kulasek M, Konieczna WB, Dąbrowska GB. New seed coating containing Trichoderma viride with anti-pathogenic properties. PeerJ 2023; 11:e15392. [PMID: 37283892 PMCID: PMC10239620 DOI: 10.7717/peerj.15392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
Background To ensure food security in the face of climate change and the growing world population, multi-pronged measures should be taken. One promising approach uses plant growth-promoting fungi (PGPF), such as Trichoderma, to reduce the usage of agrochemicals and increase plant yield, stress tolerance, and nutritional value. However, large-scale applications of PGPF have been hampered by several constraints, and, consequently, usage on a large scale is still limited. Seed coating, a process that consists of covering seeds with low quantities of exogenous materials, is gaining attention as an efficient and feasible delivery system for PGPF. Methods We have designed a new seed coating composed of chitin, methylcellulose, and Trichoderma viride spores and assessed its effect on canola (Brassica napus L.) growth and development. For this purpose, we analyzed the antifungal activity of T. viride against common canola pathogenic fungi (Botrytis cinerea, Fusarium culmorum, and Colletotrichum sp.). Moreover, the effect of seed coating on germination ratio and seedling growth was evaluated. To verify the effect of seed coating on plant metabolism, we determined superoxide dismutase (SOD) activity and expression of the stress-related RSH (RelA/SpoT homologs). Results Our results showed that the T. viride strains used for seed coating significantly restricted the growth of all three pathogens, especially F. culmorum, for which the growth was inhibited by over 40%. Additionally, the new seed coating did not negatively affect the ability of the seeds to complete germination, increased seedling growth, and did not induce the plant stress response. To summarize, we have successfully developed a cost-effective and environmentally responsible seed coating, which will also be easy to exploit on an industrial scale.
Collapse
Affiliation(s)
- Sena Turkan
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Milena Kulasek
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Wiktoria B. Konieczna
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|