1
|
Zhang H, Fan G, Leng D, Liu S, Cai L. Graphene Oxide Nanosheets for Delivery of RNAi and Plant Immune Stimulation for Sustained Protection against Plant Viruses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11110-11120. [PMID: 40266879 DOI: 10.1021/acs.jafc.4c12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Given the dearth of effective antiviral drugs, the exogenous delivery of dsRNA for RNAi against plant viral diseases holds great promise. Here, we present an effective delivery approach of dsRNA utilizing graphene oxide nanosheets (GONs) on mature plant leaves via a spray. Our method achieves rapid and sustained gene knockdown, reducing the level of the target gene to 46% by day 2, and continuously releases dsRNA for at least 6 days. The coupling of GONs with specific fragments of coat protein and replicase gene dsRNA exhibited a superior antiviral effect compared to specific fragments of RNA-dependent replicase and movement protein. The coupling of GONs with the specific fragment of the replicase gene even has 87.2% protection against TMV. Moreover, the nanocomplex GONs@dsRNA can also stimulate plant immunity through bursts of reactive oxygen species without harming growth. Overall, our findings present a robust and convenient tool for plant virus control.
Collapse
Affiliation(s)
- Hongbao Zhang
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Guangjin Fan
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Dongwei Leng
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Shuaikang Liu
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Lin Cai
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| |
Collapse
|
2
|
Favaretto F, Matsumura EE, Ferriol I, Chitarra W, Nerva L. The four Ws of viruses: Where, Which, What and Why - A deep dive into viral evolution. Virology 2025; 606:110476. [PMID: 40073500 DOI: 10.1016/j.virol.2025.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/05/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
For centuries, humanity has been captivated by evolution, seeking to unravel the origins of life and identify past patterns with future applications. Viruses, despite their obligate parasitic nature, are the most adaptable biological entities, surpassing cellular life in their variability and adaptability. While many theories about viral evolution exist, a consensus on their origins remains elusive. The quasispecies theory, however, has emerged as a leading framework for understanding viral evolution and, indirectly, their variability and adaptability. This theory illuminates how viruses regulate behaviours such as host range and their symbiotic or antagonistic interactions with hosts. This review delves into the most substantiated theories of viral evolution, addressing four fundamental questions relevant to virus ecology: Where did viruses originate? What factors drive viral evolution? What determines the virus host range? And why do viruses adopt pathogenic or mutualistic strategies? We will provide a comprehensive and up-to-date analysis that integrates diverse theoretical perspectives with empirical data, providing a holistic view of viral evolution and its implications for viral behaviour.
Collapse
Affiliation(s)
- Francesco Favaretto
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; University of Padua, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis, Viale dell'Università 16, 35020, Legnaro, Pd, Italy
| | - Emilyn E Matsumura
- Laboratory of Virology, Wageningen University and Research, 6700 AA 8 Wageningen, the Netherlands
| | - Inmaculada Ferriol
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Calle Serrano 115 apdo, 28006, Madrid, Spain
| | - Walter Chitarra
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (IPSP-CNR), Strada delle Cacce, 73, 10135, Torino, TO, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (IPSP-CNR), Strada delle Cacce, 73, 10135, Torino, TO, Italy.
| |
Collapse
|
3
|
Bredow M, Khwanbua E, Sartor Chicowski A, Qi Y, Breitzman MW, Holan KL, Liu P, Graham MA, Whitham SA. Elevated CO 2 alters soybean physiology and defense responses, and has disparate effects on susceptibility to diverse microbial pathogens. THE NEW PHYTOLOGIST 2025. [PMID: 39788902 DOI: 10.1111/nph.20364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Increasing atmospheric CO2 levels have a variety of effects that can influence plant responses to microbial pathogens. However, these responses are varied, and it is challenging to predict how elevated CO2 (eCO2) will affect a particular plant-pathogen interaction. We investigated how eCO2 may influence disease development and responses to diverse pathogens in the major oilseed crop, soybean. Soybean plants grown in ambient CO2 (aCO2, 419 parts per million (ppm)) or in eCO2 (550 ppm) were challenged with bacterial, viral, fungal, and oomycete pathogens. Disease severity, pathogen growth, gene expression, and molecular plant defense responses were quantified. In eCO2, plants were less susceptible to Pseudomonas syringae pv. glycinea (Psg) but more susceptible to bean pod mottle virus, soybean mosaic virus, and Fusarium virguliforme. Susceptibility to Pythium sylvaticum was unchanged, although a greater loss in biomass occurred in eCO2. Reduced susceptibility to Psg was associated with enhanced defense responses. Increased susceptibility to the viruses was associated with reduced expression of antiviral defenses. This work provides a foundation for understanding how future eCO2 levels may impact molecular responses to pathogen challenges in soybean and demonstrates that microbes infecting both shoots and roots are of potential concern in future climatic conditions.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| | - Ekkachai Khwanbua
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| | - Aline Sartor Chicowski
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| | - Yunhui Qi
- Department of Statistics, Iowa State University, Ames, 50011, IA, USA
| | - Matthew W Breitzman
- W. M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, 50011, IA, USA
| | - Katerina L Holan
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, 50011, IA, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, 50011, IA, USA
| | - Michelle A Graham
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, 50011, IA, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| |
Collapse
|
4
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Ayyoub A, Yu X, Zhang X, Gao C, Li J, Yin S, Chen S, Liesche J. Drought-dependent regulation of cell coupling in Arabidopsis leaf epidermis requires plasmodesmal protein NHL12. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7019-7030. [PMID: 39240133 PMCID: PMC11630015 DOI: 10.1093/jxb/erae370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/13/2024] [Indexed: 09/07/2024]
Abstract
The cytoplasm of most plant cells is connected by membrane-lined cell wall channels, the plasmodesmata (PD). Dynamic regulation of sugar, hormone, and protein diffusion through PD is essential for plant development and stress responses. Understanding this regulation requires knowledge of factors and mechanisms that control PD permeability through the modulation of callose levels in the cell wall around PD openings. We investigated PD regulation in leaf epidermal cells in relation to drought stress in Arabidopsis. PD-mediated cell wall permeability was decreased by drought stress and the hormone abscisic acid (ABA), and we tested how this related to several PD-associated genes with drought-responsive expression. Mutants of NON-RACE SPECIFIC DISEASE RESISTANCE/HIN1 HAIRPIN-INDUCED-LIKE 12 (NHL12) showed relatively low PD permeability that was unaffected by drought or ABA treatment. Overexpression of NHL12 in Nicotiana benthamiana epidermal cells increased PD permeability. Moreover, we showed that NHL12 can potentially interact with the callose synthase regulator NHL3 and we explored the effect of NHL12 abundance and/or lower interface permeability on ABA signaling genes. Our results indicate that NHL12 is a drought-responsive negative regulator of PD callose levels and, thereby, interface permeability. Results are discussed in relation to PD function during drought stress and the regulation of intercellular transport.
Collapse
Affiliation(s)
- Anam Ayyoub
- College of Life Sciences, Northwest A&F University, 712100 Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, 712100 Yangling, China
| | - Xiuyuan Yu
- College of Life Sciences, Northwest A&F University, 712100 Yangling, China
| | - Xingjian Zhang
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Chen Gao
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jiazhou Li
- College of Life Sciences, Northwest A&F University, 712100 Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, 712100 Yangling, China
| | - Shijiao Yin
- College of Life Sciences, Northwest A&F University, 712100 Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, 712100 Yangling, China
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, 712100 Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, 712100 Yangling, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, 712100 Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, 712100 Yangling, China
- Institute of Biology, University of Graz, 8010 Graz, Austria
| |
Collapse
|
6
|
Angelotti F, Hamada E, Bettiol W. A Comprehensive Review of Climate Change and Plant Diseases in Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2447. [PMID: 39273931 PMCID: PMC11396851 DOI: 10.3390/plants13172447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country's special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant diseases and discusses its main challenges in light of Brazil's diverse agricultural landscape. To assess the risk of diseases caused by fungi, bacteria, viruses, oomycetes, nematodes, and spiroplasms, we surveyed 304 pathosystems across 32 crops of economic importance from 2005 to 2022. Results show that diseases caused by fungi account for 79% of the pathosystems evaluated. Predicting the occurrence of diseases in a changing climate is a complex challenge, and the continuity of this work is strategic for Brazil's agricultural defense. The future risk scenarios analyzed here aim to help guide disease mitigation for cropping systems. Despite substantial progress and ongoing efforts, further research will be needed to effectively prevent economic and environmental damage.
Collapse
Affiliation(s)
- Francislene Angelotti
- Embrapa Semi-Arid, Brazilian Agricultural Research Corporation, Petrolina 56302-970, Brazil
| | - Emília Hamada
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| | - Wagner Bettiol
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| |
Collapse
|
7
|
Vega-Heredia S, Giffard-Mena I, Reverter M. Bacterial and viral co-infections in aquaculture under climate warming: co-evolutionary implications, diagnosis, and treatment. DISEASES OF AQUATIC ORGANISMS 2024; 158:1-20. [PMID: 38602294 DOI: 10.3354/dao03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.
Collapse
Affiliation(s)
- Sarahí Vega-Heredia
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, México, Egresada del Programa de Ecología Molecular y Biotecnología, carretera transpeninsular Ensenada-Tijuana No. 3917, C.P. 22860, México
| | - Ivone Giffard-Mena
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, México
| | - Miriam Reverter
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Devon PL4 8AA, UK
| |
Collapse
|
8
|
Lusiastuti AM, Suhermanto A, Hastilestari BR, Suryanto S, Mawardi M, Sugiani D, Syahidah D, Sudaryatma PE, Caruso D. Impact of temperature on the virulence of Streptococcus agalactiae in Indonesian aquaculture: A better vaccine design is required. Vet World 2024; 17:682-689. [PMID: 38680157 PMCID: PMC11045521 DOI: 10.14202/vetworld.2024.682-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024] Open
Abstract
Due to their poikilothermic nature, fish are very sensitive to changes in temperature. Due to climate change, the average global temperature has increased by 1.5°C in the last century, which may have caused an increase in farmed fish mortality recently. Predictions using the model estimate that a 1°C increase in temperature could cause 3%-4% and 4%-6% mortality due to infectious diseases in organisms living in warm and temperate waters, respectively. There is a need to determine whether there is a relationship between increasing environmental temperature and disease virulence. This review examines the influence and impact of increasing temperatures due to climate change on the physiology and pathogenicity of Streptococcus agalactiae, which causes streptococcosis in tilapia and causes significant economic losses. Changes in the pathogenicity of S. agalactiae, especially its virulence properties due to increasing temperature, require changes in the composition design of the fish vaccine formula to provide better protection through the production of protective antibodies.
Collapse
Affiliation(s)
- Angela Mariana Lusiastuti
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - Achmad Suhermanto
- The Marine and Fisheries Polytechnic Karawang, The Ministry of Marine Affairs and Fisheries Indonesia
| | | | - Suryanto Suryanto
- Research Center for Fisheries, National Research and Innovation Agency, Indonesia
| | - Mira Mawardi
- Main Center for Freshwater Aquaculture – The Ministry of Marine Affairs and Fisheries, Jl. Selabintana No. 37, Selabatu, Kec. Cikole, Kota Sukabumi, Jawa Barat 43114, Indonesia
| | - Desy Sugiani
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - Dewi Syahidah
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | | | - Domenico Caruso
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
9
|
Zvereva AS, Klingenbrunner M, Teige M. Calcium signaling: an emerging player in plant antiviral defense. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1265-1273. [PMID: 37940194 PMCID: PMC10901205 DOI: 10.1093/jxb/erad442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Calcium is a universal messenger in different kingdoms of living organisms and regulates most physiological processes, including defense against pathogens. The threat of viral infections in humans has become very clear in recent years, and this has triggered detailed research into all aspects of host-virus interactions, including the suppression of calcium signaling in infected cells. At the same time, however, the threat of plant viral infections is underestimated in society, and research in the field of calcium signaling during plant viral infections is scarce. Here we highlight an emerging role of calcium signaling for antiviral protection in plants, in parallel with the known evidence from studies of animal cells. Obtaining more knowledge in this domain might open up new perspectives for future crop protection and the improvement of food security.
Collapse
Affiliation(s)
- Anna S Zvereva
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Michael Klingenbrunner
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Markus Teige
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
10
|
Yıldırım K, Miladinović D, Sweet J, Akin M, Galović V, Kavas M, Zlatković M, de Andrade E. Genome editing for healthy crops: traits, tools and impacts. FRONTIERS IN PLANT SCIENCE 2023; 14:1231013. [PMID: 37965029 PMCID: PMC10641503 DOI: 10.3389/fpls.2023.1231013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
Crop cultivars in commercial use have often been selected because they show high levels of resistance to pathogens. However, widespread cultivation of these crops for many years in the environments favorable to a pathogen requires durable forms of resistance to maintain "healthy crops". Breeding of new varieties tolerant/resistant to biotic stresses by incorporating genetic components related to durable resistance, developing new breeding methods and new active molecules, and improving the Integrated Pest Management strategies have been of great value, but their effectiveness is being challenged by the newly emerging diseases and the rapid change of pathogens due to climatic changes. Genome editing has provided new tools and methods to characterize defense-related genes in crops and improve crop resilience to disease pathogens providing improved food security and future sustainable agricultural systems. In this review, we discuss the principal traits, tools and impacts of utilizing genome editing techniques for achieving of durable resilience and a "healthy plants" concept.
Collapse
Affiliation(s)
- Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Türkiye
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jeremy Sweet
- Sweet Environmental Consultants, Cambridge, United Kingdom
| | - Meleksen Akin
- Department of Horticulture, Iğdır University, Iğdır, Türkiye
| | - Vladislava Galović
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Eugenia de Andrade
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| |
Collapse
|
11
|
Li YK, Xiong RF, Wu QY, Yao S, Qu X, Huang ZH, Su YL, Wu YP, Dong M, Zhou M, Hu QF. C-Alkylated flavonoids from the whole plants of Desmodium caudatum and their anti-TMV activity. PEST MANAGEMENT SCIENCE 2023; 79:3721-3730. [PMID: 37253683 DOI: 10.1002/ps.7589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Natural products are important sources of biopesticides to control plant virus, and flavonoids are identified as promising anti-tobacco mosaic virus (TMV) agents. Since Desmodium caudatum is a rich source of flavonoids, this study focuses on the discovery of the new anti-TMV active flavonoids from D. caudatum and their possible mode of action. RESULTS Three new (compounds 1-3) and nine known (compounds 4-12) C-alkylated flavonoids were isolated from D. caudatum. To the best of our knowledge, the framework of 1-3 was reported in natural products for the first time. In addition, 1-3, 5, and 6 showed notable anti-TMV activity with inhibition rates in the range of 35.8-64.3% at a concentration of 50 μg/mL, and these rates are higher than that of positive control (with inhibition rates of 34.6% ± 2.8). In addition, the structure-activity relationship study revealed that the (pyrrol-2-yl)methyl moiety on flavone can significantly increases the activity. This result is helpful to find new anti-TMV inhibitors. CONCLUSION C-Alkylated flavonoids showed potent activities against TMV with multiple modes of actions. The increase of defense-related enzyme activities, up-regulate the expression of defense related genes, down-regulate the expression of Hsp70 protein by inhibiting the related Hsp genes that are involved in tobacco resistance to TMV. By the actions mentioned earlier, the infection of TMV was influenced, thereby achieving the effects of control of TMV. The successful isolation of the earlier-mentioned flavonoids provide the new source of biopesticides to TMV proliferation, and also contribute to the utilization of D. caudatum. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yin-Ke Li
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, China
| | - Rui-Feng Xiong
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, China
- Yunnan Cigar Tobacco Team, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Qing-Yang Wu
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, China
- Yunnan Cigar Tobacco Team, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Sui Yao
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, China
| | - Xing Qu
- Yunnan Cigar Tobacco Team, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- Technology center, Yuxi Company of Yunnan Tobacco Company, Yuxi, China
| | - Zhi-Hua Huang
- Yunnan Cigar Tobacco Team, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- Technology center, Yuxi Company of Yunnan Tobacco Company, Yuxi, China
| | - Yu-Long Su
- Yunnan Cigar Tobacco Team, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- Technology center, Yuxi Company of Yunnan Tobacco Company, Yuxi, China
| | - Yu-Ping Wu
- Yunnan Cigar Tobacco Team, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Miao Dong
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, China
| | - Min Zhou
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, China
| | - Qiu-Fen Hu
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, China
| |
Collapse
|
12
|
Jeger M, Hamelin F, Cunniffe N. Emerging Themes and Approaches in Plant Virus Epidemiology. PHYTOPATHOLOGY 2023; 113:1630-1646. [PMID: 36647183 DOI: 10.1094/phyto-10-22-0378-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant diseases caused by viruses share many common features with those caused by other pathogen taxa in terms of the host-pathogen interaction, but there are also distinctive features in epidemiology, most apparent where transmission is by vectors. Consequently, the host-virus-vector-environment interaction presents a continuing challenge in attempts to understand and predict the course of plant virus epidemics. Theoretical concepts, based on the underlying biology, can be expressed in mathematical models and tested through quantitative assessments of epidemics in the field; this remains a goal in understanding why plant virus epidemics occur and how they can be controlled. To this end, this review identifies recent emerging themes and approaches to fill in knowledge gaps in plant virus epidemiology. We review quantitative work on the impact of climatic fluctuations and change on plants, viruses, and vectors under different scenarios where impacts on the individual components of the plant-virus-vector interaction may vary disproportionately; there is a continuing, sometimes discordant, debate on host resistance and tolerance as plant defense mechanisms, including aspects of farmer behavior and attitudes toward disease management that may affect deployment in crops; disentangling host-virus-vector-environment interactions, as these contribute to temporal and spatial disease progress in field populations; computational techniques for estimating epidemiological parameters from field observations; and the use of optimal control analysis to assess disease control options. We end by proposing new challenges and questions in plant virus epidemiology.
Collapse
Affiliation(s)
- Mike Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, U.K
| | - Fred Hamelin
- IGEPP INRAE, University of Rennes, Rennes, France
| | - Nik Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, U.K
| |
Collapse
|
13
|
Jeger MJ, Fielder H, Beale T, Szyniszewska AM, Parnell S, Cunniffe NJ. What Can Be Learned by a Synoptic Review of Plant Disease Epidemics and Outbreaks Published in 2021? PHYTOPATHOLOGY 2023; 113:1141-1158. [PMID: 36935375 DOI: 10.1094/phyto-02-23-0069-ia] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A synoptic review of plant disease epidemics and outbreaks was made using two complementary approaches. The first approach involved reviewing scientific literature published in 2021, in which quantitative data related to new plant disease epidemics or outbreaks were obtained via surveys or similar methodologies. The second approach involved retrieving new records added in 2021 to the CABI Distribution Database, which contains over a million global geographic records of organisms from over 50,000 species. The literature review retrieved 186 articles, describing studies in 62 categories (pathogen species/species complexes) across more than 40 host species on six continents. Pathogen species with more than five articles were Bursaphelenchus xylophilus, 'Candidatus Liberibacter asiaticus', cassava mosaic viruses, citrus tristeza virus, Erwinia amylovora, Fusarium spp. complexes, F. oxysporum f. sp. cubense, Magnaporthe oryzae, maize lethal necrosis co-infecting viruses, Meloidogyne spp. complexes, Pseudomonas syringae pvs., Puccinia striiformis f. sp. tritici, Xylella fastidiosa, and Zymoseptoria tritici. Automated searches of the CABI Distribution Database identified 617 distribution records new in 2021 of 283 plant pathogens. A further manual review of these records confirmed 15 pathogens reported in new locations: apple hammerhead viroid, apple rubbery wood viruses, Aphelenchoides besseyi, Biscogniauxia mediterranea, 'Ca. Liberibacter asiaticus', citrus tristeza virus, Colletotrichum siamense, cucurbit chlorotic yellows virus, Erwinia rhapontici, Erysiphe corylacearum, F. oxysporum f. sp. cubense Tropical race 4, Globodera rostochiensis, Nothophoma quercina, potato spindle tuber viroid, and tomato brown rugose fruit virus. Of these, four pathogens had at least 25% of all records reported in 2021. We assessed two of these pathogens-tomato brown rugose fruit virus and cucurbit chlorotic yellows virus-to be actively emerging in/spreading to new locations. Although three important pathogens-'Ca. Liberibacter asiaticus', citrus tristeza virus, and F. oxysporum f. sp. cubense-were represented in the results of both our literature review and our interrogation of the CABI Distribution Database, in general, our dual approaches revealed distinct sets of plant disease outbreaks and new records, with little overlap. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Ascot, U.K
| | | | | | | | - Stephen Parnell
- Warwick Crop Centre, University of Warwick, Wellesbourne Campus, Warwick, U.K
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, U.K
| |
Collapse
|
14
|
Cha JY, Uddin S, Macoy DM, Shin GI, Jeong SY, Ali I, Hwang JW, Ji MG, Lee SC, Park JH, Sultana M, Ryu GR, Ahn G, Lee SY, Kim MG, Kim WY. Nucleoredoxin gene SINRX1 negatively regulates tomato immunity by activating SA signaling pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107804. [PMID: 37269823 DOI: 10.1016/j.plaphy.2023.107804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
The tomato (Solanum lycopersicum) is widely consumed globally and renowned for its health benefits, including the reduction of cardiovascular disease and prostate cancer risk. However, tomato production faces significant challenges, particularly due to various biotic stresses such as fungi, bacteria, and viruses. To address this challenges, we employed the CRISPR/Cas9 system to modify the tomato NUCLEOREDOXIN (SlNRX) genes (SlNRX1 and SlNRX2) belonging to the nucleocytoplasmic THIOREDOXIN subfamily. CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1) plants exhibited resistance against bacterial leaf pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326, as well as the fungal pathogen Alternaria brassicicola. However, the slnrx2 plants did not display resistance. Notably, the slnrx1 demonstrated elevated levels of endogenous salicylic acid (SA) and reduced levels of jasmonic acid after Psm infection, in comparison to both wild-type (WT) and slnrx2 plants. Furthermore, transcriptional analysis revealed that genes involved in SA biosynthesis, such as ISOCHORISMATE SYNTHASE 1 (SlICS1) and ENHANCED DISEASE SUSCEPTIBILITY 5 (SlEDS5), were upregulated in slnrx1 compared to WT plants. In addition, a key regulator of systemic acquired resistance, PATHOGENESIS-RELATED 1 (PR1), exhibited increased expression in slnrx1 compared to WT. These findings suggest that SlNRX1 acts as a negative regulator of plant immunity, facilitating infection by the Psm pathogen through interference with the phytohormone SA signaling pathway. Thus, targeted mutagenesis of SlNRX1 is a promising genetic means to enhance biotic stress resistance in crop breeding.
Collapse
Affiliation(s)
- Joon Yung Cha
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shahab Uddin
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Donah Mary Macoy
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Imdad Ali
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ji-Won Hwang
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myung Geun Ji
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Cheol Lee
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Marium Sultana
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeong Ryul Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeongik Ahn
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
15
|
Combe M, Reverter M, Caruso D, Pepey E, Gozlan RE. Impact of Global Warming on the Severity of Viral Diseases: A Potentially Alarming Threat to Sustainable Aquaculture Worldwide. Microorganisms 2023; 11:1049. [PMID: 37110472 PMCID: PMC10146364 DOI: 10.3390/microorganisms11041049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
With an ever-increasing human population, food security remains a central issue for the coming years. The magnitude of the environmental impacts of food production has motivated the assessment of the environmental and health benefits of shifting diets, from meat to fish and seafood. One of the main concerns for the sustainable development of aquaculture is the emergence and spread of infectious animal diseases in a warming climate. We conducted a meta-analysis to investigate the influence of global warming on mortality due to viral infections in farmed aquatic animals. We found a positive trend between increasing temperature and increasing viral virulence, with an increase in water temperature of 1 °C resulting in an increase in mortality of 1.47-8.33% in OsHV-1 infected oysters, 2.55-6.98% in carps infected with CyHV-3 and 2.18-5.37% in fishes infected with NVVs. We suggest that global warming is going to pose a risk of viral disease outbreaks in aquaculture and could compromise global food security.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
| | - Miriam Reverter
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Domenico Caruso
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
| | - Elodie Pepey
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
- CIRAD, UMR ISEM, 34398 Montpellier, France
| | | |
Collapse
|
16
|
Sett S, Prasad A, Prasad M. Resistance genes on the verge of plant-virus interaction. TRENDS IN PLANT SCIENCE 2022; 27:1242-1252. [PMID: 35902346 DOI: 10.1016/j.tplants.2022.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Viruses are acellular pathogens that cause severe infections in plants, resulting in worldwide crop losses every year. The lack of chemical agents to control viral diseases exacerbates the situation. Thus, to devise proper management strategies, it is important that the defense mechanisms of plants against viruses are understood. Resistance (R) genes regulate plant defense against invading pathogens by eliciting a hypersensitive response (HR). Compatible interaction between plant R gene and viral avirulence (Avr) protein activates the necrotic cell death response at the site of infection, resulting in the cessation of disease. Here, we review different aspects of R gene-mediated dominant resistance against plant viruses in dicotyledonous plants and possible ways for developing crops with better disease resistance.
Collapse
Affiliation(s)
- Susmita Sett
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
17
|
Affonso de Oliveira JF, Chan SK, Omole AO, Agrawal V, Steinmetz NF. In Vivo Fate of Cowpea Mosaic Virus In Situ Vaccine: Biodistribution and Clearance. ACS NANO 2022; 16:18315-18328. [PMID: 36264973 PMCID: PMC9840517 DOI: 10.1021/acsnano.2c06143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a nucleoprotein nanoparticle that functions as a highly potent immunomodulator when administered intratumorally and is used as an in situ vaccine. CPMV in situ vaccination remodels the tumor microenvironment and primes a highly potent, systemic, and durable antitumor immune response against the treated and untreated, distant metastatic sites (abscopal effect). Potent efficacy was demonstrated in multiple tumor mouse models and, most importantly, in canine cancer patients with spontaneous tumors. Data indicate that presence of anti-CPMV antibodies are not neutralizing and that in fact opsonization leads to enhanced efficacy. Plant viruses are part of the food chain, but to date, there is no information on human exposure to CPMV. Therefore, patient sera were tested for the presence of immunoglobulins against CPMV, and indeed, >50% of deidentified patient samples tested positive for CPMV antibodies. To get a broader sense of plant virus exposure and immunogenicity in humans, we also tested sera for antibodies against tobacco mosaic virus (>90% patients tested positive), potato virus X (<20% patients tested positive), and cowpea chlorotic mottle virus (no antibodies were detected). Further, patient sera were analyzed for the presence of antibodies against the coliphage Qβ, a platform technology currently undergoing clinical trials for in situ vaccination; we found that 60% of patients present with anti-Qβ antibodies. Thus, data indicate human exposure to CPMV and other plant viruses and phages. Next, we thought to address agronomical safety; i.e., we examined the fate of CPMV after intratumoral treatment and oral gavage (to mimic consumption by food). Because live CPMV is used, an important question is whether there is any evidence of shedding of infectious particles from mice or patients. CPMV is noninfectious toward mammals; however, it is infectious toward plants including black-eyed peas and other legumes. Biodistribution data in tumor-bearing and healthy mice indicate little leaching from tumors and clearance via the reticuloendothelial system followed by biliary excretion. While there was evidence of shedding of RNA in stool, there was no evidence of infectious particles when plants were challenged with stool extracts, thus indicating agronomical safety. Together these data aid the translational development of CPMV as a drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Anthony O Omole
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Vanshika Agrawal
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| |
Collapse
|
18
|
Kestel JH, Field DL, Bateman PW, White NE, Allentoft ME, Hopkins AJM, Gibberd M, Nevill P. Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157556. [PMID: 35882340 DOI: 10.1016/j.scitotenv.2022.157556] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world's food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security.
Collapse
Affiliation(s)
- Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia.
| | - David L Field
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Philip W Bateman
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Behavioural Ecology Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Anna J M Hopkins
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Mark Gibberd
- Centre for Crop Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
19
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
20
|
Richert-Pöggeler KR, Iskra-Caruana ML, Kishima Y. Editorial: DNA virus and host plant interactions from antagonism to endogenization. FRONTIERS IN PLANT SCIENCE 2022; 13:1014516. [PMID: 36161005 PMCID: PMC9493344 DOI: 10.3389/fpls.2022.1014516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Katja R. Richert-Pöggeler
- Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | | | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. STRESS BIOLOGY 2022; 2:37. [PMID: 37676437 PMCID: PMC10442010 DOI: 10.1007/s44154-022-00058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 09/08/2023]
Abstract
Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions. Among climate-changing variables, temperature increase is viewed as an important factor that affects virus epidemics, which may in turn require more efficient disease management. In this review, we discuss the effect of elevated temperature on virus epidemics at both macro- and micro-climatic levels. This includes the temperature effects on virus spread both within and between host plants. Furthermore, we focus on the involvement of molecular mechanisms associated with temperature effects on plant defence to viruses in both susceptible and resistant plants. Considering various mechanisms proposed in different pathosystems, we also offer a view of the possible opportunities provided by RNA -based technologies for virus control at elevated temperatures. Recently, the potential of these technologies for topical field applications has been strengthened through a combination of genetically modified (GM)-free delivery nanoplatforms. This approach represents a promising and important climate-resilient substitute to conventional strategies for managing plant virus diseases under global warming scenarios. In this context, we discuss the knowledge gaps in the research of temperature effects on plant-virus interactions and limitations of RNA-based emerging technologies, which should be addressed in future studies.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Christopher A Brosnan
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ralf G Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
22
|
Silva FDA, Fontes EPB. Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein System for Resistance Against Plant Viruses: Applications and Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:904829. [PMID: 35693174 PMCID: PMC9178237 DOI: 10.3389/fpls.2022.904829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Different genome editing approaches have been used to engineer resistance against plant viruses. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas; CRISPR/Cas) systems to create pinpoint genetic mutations have emerged as a powerful tool for molecular engineering of plant immunity and increasing resistance against plant viruses. This review presents (i) recent advances in engineering resistance against plant viruses by CRISPR/Cas and (ii) an overview of the potential host factors as targets for the CRISPR/Cas system-mediated broad-range resistance and immunity. Applications, challenges, and perspectives in enabling the CRISPR/Cas system for crop protection are also outlined.
Collapse
|
23
|
Nie WF, Xing E, Wang J, Mao Y, Ding X, Guo J. Emerging Strategies Mold Plasticity of Vegetable Plants in Response to High Temperature Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:959. [PMID: 35406939 PMCID: PMC9002854 DOI: 10.3390/plants11070959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
As a result of energy consumption and human activities, a large amount of carbon dioxide emissions has led to global warming, which seriously affects the growth and development of plants. Vegetables are an indispensable part of people's diet. In the plant kingdom, a variety of vegetables are highly sensitive to climate change. For them, an increase of just a few degrees above their optimum temperature threshold can result in a loss of yield and quality. Emerging strategies such as practice management and breeding varieties in response to above-optimal temperatures are critical for abiotic stress resistance of vegetable crops. In this study, the function and application of multiple strategies, including breeding improvement, epigenetic modification directed generation of alleles, gene editing techniques, and accumulation of mutations in multigenerational adaptation to abiotic stress, were discussed in vegetable crops. It is believed to be meaningful for plants to build plasticity under high temperature stress, thus generating more genetic structures for heat resistant traits in vegetable products.
Collapse
Affiliation(s)
- Wen-Feng Nie
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (E.X.); (J.W.); (Y.M.)
| | - Enjie Xing
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (E.X.); (J.W.); (Y.M.)
| | - Jinyu Wang
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (E.X.); (J.W.); (Y.M.)
| | - Yueying Mao
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (E.X.); (J.W.); (Y.M.)
| | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianfei Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
24
|
R-BPMV-Mediated Resistance to Bean pod mottle virus in Phaseolus vulgaris L. Is Heat-Stable but Elevated Temperatures Boost Viral Infection in Susceptible Genotypes. Viruses 2021; 13:v13071239. [PMID: 34206842 PMCID: PMC8310253 DOI: 10.3390/v13071239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
In the context of climate change, elevated temperature is a major concern due to the impact on plant–pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant–virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.
Collapse
|