1
|
de Queiroz LLG, de Mesquita EF, Sousa CDS, Pereira RF, Diniz JPC, de Melo AS, de Alencar RS, Dias GF, Soares VCDS, Mesquita FDO, Pires JPMM, Rodrigues SS, Lins LKS, Alves ADS, Araújo KTA, Costa Ferraz PDS. Foliar Silicon Alleviates Water Deficit in Cowpea by Enhancing Nutrient Uptake, Proline Accumulation, and Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2025; 14:1241. [PMID: 40284130 PMCID: PMC12030621 DOI: 10.3390/plants14081241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Silicon has emerged as a beneficial element in mitigating water deficit in various crops, although the underlying mechanisms still require further investigation. This study evaluated the foliar content of nutrients (N, P, K, and Ca) and proline, antioxidant activity, growth, water use efficiency, and yield of cowpea cultivars subjected to two irrigation depths (50% and 100% of crop evapotranspiration) and a foliar application of silicon (orthosilicic acid). A field experiment was conducted in a split-plot scheme using the randomized block design with four replications in a semi-arid region of northeastern Brazil. Silicon supplementation increased the foliar contents of N, P, and Ca; stimulated proline synthesis; and enhanced the activity of the SOD, CAT, and APX enzymes. These changes promoted growth, improved water use efficiency, and increased crop yield. The results indicate that foliar silicon application mitigates the effects of water deficit in cowpea plants while enhancing crop performance under full irrigation (100% of crop evapotranspiration), leading to higher yields even under favorable water conditions.
Collapse
Affiliation(s)
- Larissa Lanay Germano de Queiroz
- Graduate Program in Agricultural Sciences, Paraíba State University, Campina Grande 58429-500, PB, Brazil; (L.L.G.d.Q.); (P.d.S.C.F.)
| | - Evandro Franklin de Mesquita
- Department of Agrarian and Exact, Paraíba State University, Catolé do Rocha 58884-000, PB, Brazil; (E.F.d.M.); (C.d.S.S.); (J.P.C.D.); (V.C.d.S.S.); (J.P.M.M.P.); (S.S.R.); (L.K.S.L.); (A.d.S.A.); (K.T.A.A.)
| | - Caio da Silva Sousa
- Department of Agrarian and Exact, Paraíba State University, Catolé do Rocha 58884-000, PB, Brazil; (E.F.d.M.); (C.d.S.S.); (J.P.C.D.); (V.C.d.S.S.); (J.P.M.M.P.); (S.S.R.); (L.K.S.L.); (A.d.S.A.); (K.T.A.A.)
| | - Rennan Fernandes Pereira
- Graduate Program in Agricultural Sciences, Paraíba State University, Campina Grande 58429-500, PB, Brazil; (L.L.G.d.Q.); (P.d.S.C.F.)
| | - José Paulo Costa Diniz
- Department of Agrarian and Exact, Paraíba State University, Catolé do Rocha 58884-000, PB, Brazil; (E.F.d.M.); (C.d.S.S.); (J.P.C.D.); (V.C.d.S.S.); (J.P.M.M.P.); (S.S.R.); (L.K.S.L.); (A.d.S.A.); (K.T.A.A.)
| | - Alberto Soares de Melo
- Department of Biology, Paraíba State University, Campina Grande 58429-500, PB, Brazil; (A.S.d.M.); (R.S.d.A.); (G.F.D.)
| | - Rayanne Silva de Alencar
- Department of Biology, Paraíba State University, Campina Grande 58429-500, PB, Brazil; (A.S.d.M.); (R.S.d.A.); (G.F.D.)
| | - Guilherme Felix Dias
- Department of Biology, Paraíba State University, Campina Grande 58429-500, PB, Brazil; (A.S.d.M.); (R.S.d.A.); (G.F.D.)
| | - Vitória Carolina da Silva Soares
- Department of Agrarian and Exact, Paraíba State University, Catolé do Rocha 58884-000, PB, Brazil; (E.F.d.M.); (C.d.S.S.); (J.P.C.D.); (V.C.d.S.S.); (J.P.M.M.P.); (S.S.R.); (L.K.S.L.); (A.d.S.A.); (K.T.A.A.)
| | | | - José Philippe Martins Montenegro Pires
- Department of Agrarian and Exact, Paraíba State University, Catolé do Rocha 58884-000, PB, Brazil; (E.F.d.M.); (C.d.S.S.); (J.P.C.D.); (V.C.d.S.S.); (J.P.M.M.P.); (S.S.R.); (L.K.S.L.); (A.d.S.A.); (K.T.A.A.)
| | - Samuel Saldanha Rodrigues
- Department of Agrarian and Exact, Paraíba State University, Catolé do Rocha 58884-000, PB, Brazil; (E.F.d.M.); (C.d.S.S.); (J.P.C.D.); (V.C.d.S.S.); (J.P.M.M.P.); (S.S.R.); (L.K.S.L.); (A.d.S.A.); (K.T.A.A.)
| | - Lays Klécia Silva Lins
- Department of Agrarian and Exact, Paraíba State University, Catolé do Rocha 58884-000, PB, Brazil; (E.F.d.M.); (C.d.S.S.); (J.P.C.D.); (V.C.d.S.S.); (J.P.M.M.P.); (S.S.R.); (L.K.S.L.); (A.d.S.A.); (K.T.A.A.)
| | - Anailson de Sousa Alves
- Department of Agrarian and Exact, Paraíba State University, Catolé do Rocha 58884-000, PB, Brazil; (E.F.d.M.); (C.d.S.S.); (J.P.C.D.); (V.C.d.S.S.); (J.P.M.M.P.); (S.S.R.); (L.K.S.L.); (A.d.S.A.); (K.T.A.A.)
| | - Karoline Thays Andrade Araújo
- Department of Agrarian and Exact, Paraíba State University, Catolé do Rocha 58884-000, PB, Brazil; (E.F.d.M.); (C.d.S.S.); (J.P.C.D.); (V.C.d.S.S.); (J.P.M.M.P.); (S.S.R.); (L.K.S.L.); (A.d.S.A.); (K.T.A.A.)
| | - Patrícia da Silva Costa Ferraz
- Graduate Program in Agricultural Sciences, Paraíba State University, Campina Grande 58429-500, PB, Brazil; (L.L.G.d.Q.); (P.d.S.C.F.)
| |
Collapse
|
2
|
Wang Y, Zhu W, Zhang T, Liu Q, Zou M, Xie Y, Wang M, Wang TS, Pang Y, Jing T, Zhang R. Associations between serum trace elements and biological age acceleration in the Chinese elderly: A community-based study investigating the mediating role of inflammatory markers and the moderating effect of physical activity. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138273. [PMID: 40250274 DOI: 10.1016/j.jhazmat.2025.138273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Growing evidence suggests that environmental factors play a significant role in the aging process. We established the Klemera and Doubal Method biological age acceleration (KDM-BAA) by using the KDM as a biological age predictor to assess the trace elements (ELEs) role. Generalized Linear Model (GLM) was used to assess the associations between single ELE (trace element) and KDM-BAA. Restricted cubic splines (RCS) were used to assess the nonlinear relationship between elemental levels and KDM-BAA. Quantile G-Computation (QGC) regression was employed to explore the direction and weight. Weighted Quantile Sum (WQS) Regression was used to study the weights of different groups of ELEs. Bayesian Kernel Machine Regression (BKMR) was utilized to analyze the overall effect of mixed elemental exposure. Mediation analysis was conducted to investigate the role of intermediate biomarkers and the moderating effects of physical activity (PA) was used on the pathway. The results showed serum Copper (Cu) levels positively correlated with KDM-BAA, while Zinc (Zn) and Iron (Fe) negatively correlated with it, respectively. The mixture of Zn, Cobalt (Co), Selenium (Se), and Fe exhibited a significant overall negative effect. Additionally, PA could ease the association between Cu and KDM-BAA through impacting the inflammation level. This study provides novel insights into how inflammation mediates the association between ELEs exposure and KDM-BAA, while PA acts as a potential protective factor.
Collapse
Affiliation(s)
- Yan Wang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenyuan Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengqi Zou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yujia Xie
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengruo Wang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Tian Shuai Wang
- Shijiazhuang Great Wall Hospital of Integrated Traditional Chinese and Western Medicine, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
3
|
Kong M, Wang F, Jing H, Yang X, Chang X, Xu H, Liu X, Shen Y. Sustainable disease management in tomatoes: Fe 3O 4 nanoparticles as an eco-friendly alternative to conventional fungicides for Fusarium wilt control. PEST MANAGEMENT SCIENCE 2025. [PMID: 40119537 DOI: 10.1002/ps.8778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/04/2025] [Accepted: 03/05/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Fusarium wilt disease caused by the soil pathogen Fusarium oxysporum f. sp. lycopersici significantly impacts global tomato production. While conventional fungicides remain the primary control method, their high application volumes and environmental persistence necessitate alternative approaches. We hypothesize that magnetite nanoparticles (NPs) suppress fungal growth through a tripartite mechanism that disrupts membrane integrity at the nano-bio interface, generation of reactive oxygen species through iron-mediated catalysis, and perturbation of fungal iron homeostasis pathways. RESULTS In vitro studies demonstrated that 5 nm magnetite NPs exhibited superior antifungal activity with an EC₅₀ of 8.84 mg/L compared to Ningnanomycin at 84.77 mg/L. Comparative disease control efficacy under greenhouse conditions showed that magnetite NPs at 0.5 mg/L achieved 65% pathogen suppression versus Ningnanomycin at 71.4%, while requiring significantly lower application volumes of 180-360 g per hectare versus 4500-5850 mL per hectare. The NP treatment reduced disease index by 35.42%, alleviated root rot symptoms by 19.33%, and enhanced plant defense mechanisms through elevated reactive oxygen species accumulation and increased root iron content of 92.15%. CONCLUSION This study demonstrates that magnetite NPs provide competitive disease control efficacy against Fusarium wilt through multiple mechanistic pathways while reducing total chemical input. The dual functionality of direct pathogen suppression and enhanced plant defense activation, combined with lower application volumes, establishes these nanoparticles as a promising alternative to ecofriendly fungicides in tomato production systems. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengmeng Kong
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Fuli Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hairong Jing
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiaofang Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xianchao Chang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiaoyong Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yu Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Feng G, Li S, Yang X, Hu Y, Zhang X, Chen D, Liu W, Yu G, Nie G, Huang L, Zhang X. Integrative multi-omic analyses reveal the molecular mechanisms of silicon nanoparticles in enhancing hyperaccumulator under Pb stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125677. [PMID: 39805468 DOI: 10.1016/j.envpol.2025.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood. In this study, the candidate Pb-hyperaccumulator Lolium multiflorum was selected to investigate the toxicity of Pb and the mitigation of Pb stress by SiNPs. The application of SiNPs was able to enhance Pb enrichment and maintain proper photosynthesis and root growth of L. multiflorum. Transcriptomic and metabolomic analyses indicated that Pb exposure interfered with nitrogen metabolism and alanine, aspartate and glutamate metabolism pathways in roots, which changed the root exudate composition. Besides, SiNPs altered both the accumulation of metabolites and correlated gene expression in roots, further affecting root exudates and stimulating the defense system, consequently increasing Pb tolerance. Our findings both demonstrated that co-application of L. multiflorum with SiNPs has potential for phytoremediation of Pb-polluted soil and revealed the contributions of SiNP amendment to mitigating Pb toxicity, and provided a new strategy for phytoremediation of farmland ecosystems.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shunfeng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiangyu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Youshuang Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xianfang Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dongming Chen
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Guohui Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Liao R, Zhang W, Xu R, Li K, Wei W, Sheng R. Endophytic microbial communities and functional shifts in Hemarthria compressa grass in response to Silicon and Selenium amendment. BMC PLANT BIOLOGY 2025; 25:169. [PMID: 39924486 PMCID: PMC11808958 DOI: 10.1186/s12870-025-06178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Hemarthria compressa, a widely cultivated forage grass, is critical for supporting livestock production and maintaining the ecological balance in grassland ecosystems. Enhancing its stress resistance and productivity is crucial for sustainable grassland utilization and development. Silicon (Si) and Selenium (Se) are recognized as beneficial nutrients that promote plant growth and stress tolerance, and modulate of plant-microorganism interactions. However, the intricate linkages between the endophytes shifts and host grass growth induced by Si/Se amendments are poorly understood. In this study, a pot experiment was conducted to examine the effects of foliar-applied Si/Se on the growth and nutritional quality of H. compressa grass, as well as the composition, diversity and potential functions of endophytic bacteria in leaves. RESULTS Both Si and Se treatments significantly improved grass biomass by approximately 17%. Nutritional quality was also improved, with Si application increased plant Si and neutral detergent fiber contents by 25.6% and 5.8%, while Se significantly enhanced the grass Se content from 0.055 mg kg-1 to 0.636 mg kg-1. Furthermore, Si/Se amendments altered the structure of the leaf endophytic bacterial community, resulting in an increased alpha diversity and a more modularized co-occurrence network. Moreover, both Si and Se treatments enriched plant growth-promoting bacterial genera such as Brevundimonas and Truepera. Metabolic function analysis revealed that Si application promoted chlorophyllide biosynthesis by 152%, several carbon metabolism pathways by 35-152%, and redox-related pathways by 57-93%, while the starch biosynthesis pathway was downregulated by 79% of the endophytic bacterial community. In contrast, Se application mainly enhanced starch degradation, CMP-legionamine biosynthesis by 71% and TCA cycle-related pathways by 23-58%, while reducing L-threonine metabolism by 98%. These specific functional changes in the endophytic bacteria induced by Si/Se amendments were closely linked with the observed growth promotion and stress resistance of the host H. compressa grass. CONCLUSIONS Si and Se amendments not only enhanced the growth and nutritional quality of H. compressa grass, but also altered the community structure and functional traits of endophytic bacteria in grass. The enrichment of beneficial endophytes and the modification of community metabolic functions within the endophytic community may play important synergistic effects on improving grass growth.
Collapse
Affiliation(s)
- Rujia Liao
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhao Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Risheng Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ke Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Wenxue Wei
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Rong Sheng
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
6
|
de Jesus RA, Costa IM, Eguiluz KIB, Salazar-Banda GR. The role of biosilica and its potential for sensing technologies: A review. J Biotechnol 2025; 398:158-174. [PMID: 39730022 DOI: 10.1016/j.jbiotec.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21st century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications. Additionally, the biomineralization process-biosilicification-in living organisms like diatoms offers an eco-friendly pathway for silica production. Despite the potential applications of biosilica, research on its use in sensor technology remains limited. This review aims to address this gap by covering the primary methodologies for extracting silica from biomass, discussing key techniques for its characterization, and highlighting its potential for functionalization in diverse applications. Special emphasis is given to the utility of diatom-derived biosilicas in developing sensors for detecting gaseous molecules and biomolecules.
Collapse
Affiliation(s)
- Roberta Anjos de Jesus
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil.
| | - Ivani Meneses Costa
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| | - Katlin Ivon Barrios Eguiluz
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil
| | - Giancarlo Richard Salazar-Banda
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil
| |
Collapse
|
7
|
Xiong J, Yang X, Sun M, Zhang J, Ding L, Sun Z, Feng N, Zheng D, Zhao L, Shen X. Mitigation Effect of Exogenous Nano-Silicon on Salt Stress Damage of Rice Seedlings. Int J Mol Sci 2024; 26:85. [PMID: 39795944 PMCID: PMC11720159 DOI: 10.3390/ijms26010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings. The results demonstrated that NaCl stress markedly impeded the growth of rice seedlings after seven days of NaCl treatment. The foliar application of nano-silicon followed by NaCl stress alleviated the growth of rice seedlings, markedly improved the spatial conformation of the root system, and enhanced photosynthesis compared with that of NaCl stress alone. The activities of antioxidant enzymes were improved. The contents of antioxidants were increased, and the over-accumulation of ROS was reduced. Furthermore, the foliar application of nano-silicon was found to enhance the uptake of Si4+, K+, and Ca2+ in plants, while simultaneously reducing Na+ and Cl- accumulation. Additionally, the content of IAA, CTK, GA, JA, and SA was increased, and ABA was decreased. In conclusion, the foliar application of nano-silicon has been demonstrated to alleviate salt stress injury and improve the growth of rice seedlings.
Collapse
Affiliation(s)
- Jian Xiong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Xiaohui Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Minmin Sun
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Jianqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Linchong Ding
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Zhiyuan Sun
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Liming Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
| | - Xuefeng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| |
Collapse
|
8
|
Hailai Y, Liu Y, Yang Z, Li Y, Feng J, Li W, Sheng H. Silicon regulation of manganese homeostasis in plants: mechanisms and future prospective. FRONTIERS IN PLANT SCIENCE 2024; 15:1465513. [PMID: 39703551 PMCID: PMC11655192 DOI: 10.3389/fpls.2024.1465513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Manganese (Mn), a plant micronutrient element, is an important component of metalloprotein involved in multiple metabolic processes, such as photosynthesis and scavenging reactive oxygen species (ROS). Its disorder (deficiency or excess) affects the Mn-dependent metabolic processes and subsequent growth and development of plants. The beneficial element of Si has a variety of applications in agricultural fields for plant adaptation to various environmental stresses, including Mn disorder. The probable mechanisms for Si alleviation of Mn toxicity in plants are summarized as follows: (1) Si alters the rhizosphere acidification, root exudates and microorganisms to decrease the bioavailability of Mn in the rhizosphere; (2) Si down-regulates Mn transporter gene and reinforces the apoplastic barriers for inhibiting the Mn uptake and translocation; and (3) Si promotes the Mn deposition onto cell wall and Mn compartmentation into vacuole. Under Mn-deficient conditions, the probable mechanisms for Si promotion of Mn absorption in some plants remain an open question. Moreover, scavenging ROS is a common mechanism for Si alleviating Mn disorder. This minireview highlights the current understanding and future perspectives of Si regulation of manganese homeostasis in plants.
Collapse
Affiliation(s)
- Yuebu Hailai
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuan Liu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhengming Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ying Li
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jingqiu Feng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Wenbing Li
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huachun Sheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Chandon E, Nualkhao P, Vibulkeaw M, Tisarum R, Samphumphuang T, Sun J, Cha-Um S, Yooyongwech S. Mitigating excessive heat in Arabica coffee using nanosilicon and seaweed extract to enhance element homeostasis and photosynthetic recovery. BMC PLANT BIOLOGY 2024; 24:1064. [PMID: 39528925 PMCID: PMC11555975 DOI: 10.1186/s12870-024-05784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Global warming-related temperature increases have a substantial effect on plant and human health. The Arabica coffee plant is susceptible to growing in many places across the world where temperatures are rising. This study examines how nanosilicon and seaweed extracts can improve Arabica coffee plant resilience during heat stress treatment (49.0 ± 0.3 °C) by maintaining mineral homeostasis and photosynthetic ability upon recovery. RESULTS The principal component analysis arrangement of four treatments, nanosilicon (Si), seaweed extract (SWE), Si + SWE, and control (CT), showed each element ratio of magnesium, phosphorus, chloride, potassium, manganese, iron, copper, and zinc per silicon in ambient temperature and heat stress that found influenced upper shoot rather than basal shoot and root within 74.4% of largest feasible variance as first principal component. Magnesium and iron were clustered within the silicon group, with magnesium dominating and leading to a significant increase (p ≤ 0.05) in magnesium-to-silicon ratio in the upper shoot under heat conditions, especially in Si and Si + SWE treated plants (1.11 and 1.29 fold over SWE treated plant, respectively). The SWE and Si + SWE treated plants preserved chlorophyll content (15.01% and 28.67% over Si-treated plant, respectively) under heat stress, while the Si and Si + SWE treated plants restored photosynthetic efficiency (Fv/Fm) better than the SWE treated plant. CONCLUSIONS The concomitant of the Si + SWE treatment synergistically protected photosynthetic pigments and Fv/Fm by adjusting the magnesium-silicon homeostasis perspective in Arabica coffee to protect real-world agricultural practices and coffee cultivation under climate change scenarios.
Collapse
Affiliation(s)
- Ekkachak Chandon
- School of Interdisciplinary Studies (Kanchanaburi Campus), Mahidol University, Kanchanaburi, 71150, Thailand
| | - Patchawee Nualkhao
- School of Interdisciplinary Studies (Kanchanaburi Campus), Mahidol University, Kanchanaburi, 71150, Thailand
| | - Metee Vibulkeaw
- School of Interdisciplinary Studies (Kanchanaburi Campus), Mahidol University, Kanchanaburi, 71150, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Jianqiang Sun
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Suravoot Yooyongwech
- School of Interdisciplinary Studies (Kanchanaburi Campus), Mahidol University, Kanchanaburi, 71150, Thailand.
| |
Collapse
|
10
|
Coquerel R, Arkoun M, Trouverie J, Bernay B, Laîné P, Etienne P. Ionomic and proteomic changes highlight the effect of silicon supply on the nodules functioning of Trifolium incarnatum L. FRONTIERS IN PLANT SCIENCE 2024; 15:1462149. [PMID: 39568457 PMCID: PMC11576322 DOI: 10.3389/fpls.2024.1462149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Introduction Numerous studies have reported the beneficial effects of silicon (Si) in alleviating biotic or abiotic stresses in many plant species. However, the role of Si in Fabaceae facing environmental stress is poorly documented. The aim of this study is to investigate the effect of Si on physiological traits and nodulation efficiency in Trifolium incarnatum L. Methods Si was supplied (1.7 mM in the form of Na2SiO3) plants inoculated with Rhizobium leguminosarum bv trifolii and plant physiological traits and nodule ionomic and molecular traits were monitored over 25 days. Results Si supply promoted shoot biomass, the quantity of both Si and N in roots and shoots, and the number, biomass and density of nodules and their nitrogenase abundance which contribute to better dinitrogen (N2) fixation. Ionomic analysis of nodules revealed that Si supply increased the amount of several macroelements (potassium, phosphorus and sulfur) and microelements (copper, zinc and molybdenum) known to improve nodulation efficiency and N2 fixation. Finally, comparative proteomic analysis (+Si versus -Si) of nodules highlighted that Si modulated the proteome of both symbionts with 989 and 212 differentially accumulated proteins (DAPs) in the infected host root cells and their symbiont bacteria, respectively. Discussion Among the DAPs, the roles of those involved in nodulation and N2 fixation are discussed. For the first time, this study provides new insights into the effects of Si on both nodular partners and paves the way for a better understanding of the impact of Si on improving nodule function, and more specifically, on the nodules' N2-fixing capacity.
Collapse
Affiliation(s)
- Raphaël Coquerel
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial d'Innovation-Groupe Roullier, Saint-Malo, France
| | - Jacques Trouverie
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| | - Benoit Bernay
- Université de Caen Normandie, Plateforme Proteogen, US EMerode 4206, Caen, France
| | - Philippe Laîné
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| | - Philippe Etienne
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| |
Collapse
|
11
|
Behtash F, Mogheri F, Aghaee A, Seyed Hajizadeh H, Kaya O. Role of silicon in alleviating boron toxicity and enhancing growth and physiological traits in hydroponically cultivated Zea mays var. Merit. BMC PLANT BIOLOGY 2024; 24:550. [PMID: 38872083 DOI: 10.1186/s12870-024-05275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Boron (B) is a micronutrient, but excessive levels can cause phytotoxicity, impaired growth, and reduced photosynthesis. B toxicity arises from over-fertilization, high soil B levels, or irrigation with B-rich water. Conversely, silicon (Si) is recognized as an element that mitigates stress and alleviates the toxic effects of certain nutrients. In this study, to evaluate the effect of different concentrations of Si on maize under boron stress conditions, a factorial experiment based on a randomized complete block design was conducted with three replications in a hydroponic system. The experiment utilized a nutrient solution for maize var. Merit that contained three different boron (B) concentrations (0.5, 2, and 4 mg L-1) and three Si concentrations (0, 28, and 56 mg L-1). RESULTS Our findings unveiled that exogenous application of B resulted in a substantial escalation of B concentration in maize leaves. Furthermore, B exposure elicited a significant diminution in fresh and dry plant biomass, chlorophyll index, chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids, and membrane stability index (MSI). As the B concentration augmented, malondialdehyde (MDA) content and catalase (CAT) enzyme activity exhibited a concomitant increment. Conversely, the supplementation of Si facilitated an amelioration in plant fresh and dry weight, total carbohydrate, and total soluble protein. Moreover, the elevated activity of antioxidant enzymes culminated in a decrement in hydrogen peroxide (H2O2) and MDA content. In addition, the combined influence of Si and B had a statistically significant impact on the leaf chlorophyll index, total chlorophyll (a + b) content, Si and B accumulation levels, as well as the enzymatic activities of guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and H2O2 levels. These unique findings indicated the detrimental impact of B toxicity on various physiological and biochemical attributes of maize, while highlighting the potential of Si supplementation in mitigating the deleterious effects through modulation of antioxidant machinery and biomolecule synthesis. CONCLUSIONS This study highlights the potential of Si supplementation in alleviating the deleterious effects of B toxicity in maize. Increased Si consumption mitigated chlorophyll degradation under B toxicity, but it also caused a significant reduction in the concentrations of essential micronutrients iron (Fe), copper (Cu), and zinc (Zn). While Si supplementation shows promise in counteracting B toxicity, the observed decrease in Fe, Cu, and Zn concentrations warrants further investigation to optimize this approach and maintain overall plant nutritional status.
Collapse
Affiliation(s)
- Farhad Behtash
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Farima Mogheri
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran
| | - Ahmad Aghaee
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Ozkan Kaya
- Erzincan Horticultural Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Erzincan, 24060, Turkey.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
12
|
Li H, Wan L, Li C, Wang L, Zhu S, Chen X, Wang P. Hyperspectal imaging technology for phenotyping iron and boron deficiency in Brassica napus under greenhouse conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1351301. [PMID: 38855462 PMCID: PMC11157068 DOI: 10.3389/fpls.2024.1351301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
Introduction The micronutrient deficiency of iron and boron is a common issue affecting the growth of rapeseed (Brassica napus). In this study, a non-destructive diagnosis method for iron and boron deficiency in Brassica napus (genotype: Zhongshuang 11) using hyperspectral imaging technology was established. Methods The recognition accuracy was compared using the Fisher Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) recognition models. Recognition results showed that Multiple Scattering Correction (MSC) could be applied for the full band hyperspectral data processing, while the LDA models presented better performance on establishing the leaf iron and boron deficiency symptom recognition than the SVM models. Results The recognition accuracy of the training set reached 96.67%, and the recognition rate of the prediction set could be 91.67%. To improve the model accuracy, the Competitive Adaptive Reweighted Sampling algorithm (CARS) was added to construct the MSC-CARS-LDA model. 33 featured wavelengths were selected via CARS. The recognition accuracy of the MSC-CARS-LDA training set was 100%, while the recognition accuracy of the MSC-CARS-LDA prediction set was 95.00%. Discussion This study indicates that, it is capable to identify the iron and boron deficiency in rapeseed using hyperspectral imaging technology.
Collapse
Affiliation(s)
- Hui Li
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Long Wan
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
| | - Chengsong Li
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Chinese Academy of Agricultural Sciences & Southwest University, Chongqing, China
| | - Lihong Wang
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
| | - Shiping Zhu
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Pei Wang
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
13
|
Fang X, Yang D, Deng L, Zhang Y, Lin Z, Zhou J, Chen Z, Ma X, Guo M, Lu Z, Ma L. Phosphorus uptake, transport, and signaling in woody and model plants. FORESTRY RESEARCH 2024; 4:e017. [PMID: 39524430 PMCID: PMC11524236 DOI: 10.48130/forres-0024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus (P), a critical macronutrient for plant growth and reproduction, is primarily acquired and translocated in the form of inorganic phosphate (Pi) by roots. Pi deficiency is widespread in many natural ecosystems, including forest plantations, due to its slow movement and easy fixation in soils. Plants have evolved complex and delicate regulation mechanisms on molecular and physiological levels to cope with Pi deficiency. Over the past two decades, extensive research has been performed to decipher the underlying molecular mechanisms that regulate the Pi starvation responses (PSR) in plants. This review highlights the prospects of Pi uptake, transport, and signaling in woody plants based on the backbone of model and crop plants. In addition, this review also highlights the interactions between phosphorus and other mineral nutrients such as Nitrogen (N) and Iron (Fe). Finally, this review discusses the challenges and potential future directions of Pi research in woody plants, including characterizing the woody-specific regulatory mechanisms of Pi signaling and evaluating the regulatory roles of Pi on woody-specific traits such as wood formation and ultimately generating high Phosphorus Use Efficiency (PUE) woody plants.
Collapse
Affiliation(s)
- Xingyan Fang
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Deming Yang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Lichuan Deng
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Yaxin Zhang
- College of Landscape Architecture, Guangdong Eco-engineering Polytechinic, Guangzhou 510520, Guangdong Province, PR China
| | - Zhiyong Lin
- Fujian Academy of Forestry, Fuzhou 350012, Fujian Province, PR China
| | - Jingjing Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Zhichang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Xiangqing Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Meina Guo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaohua Lu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Liuyin Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| |
Collapse
|
14
|
Walczak-Skierska J, Krakowska-Sieprawska A, Monedeiro F, Złoch M, Pomastowski P, Cichorek M, Olszewski J, Głowacka K, Gużewska G, Szultka-Młyńska M. Silicon's Influence on Polyphenol and Flavonoid Profiles in Pea ( Pisum sativum L.) under Cadmium Exposure in Hydroponics: A Study of Metabolomics, Extraction Efficacy, and Antimicrobial Properties of Extracts. ACS OMEGA 2024; 9:14899-14910. [PMID: 38585133 PMCID: PMC10993280 DOI: 10.1021/acsomega.3c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Aneta Krakowska-Sieprawska
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Fernanda Monedeiro
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Paweł Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Mateusz Cichorek
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Jacek Olszewski
- Experimental
Education Unit, University of Warmia and
Mazury in Olsztyn, Plac Łódzki 1, Olsztyn 10-721, Poland
| | - Katarzyna Głowacka
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Gaja Gużewska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| | - Małgorzata Szultka-Młyńska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| |
Collapse
|
15
|
Wang S, Cheng H, Wei Y. Supplemental Silicon and Boron Alleviates Aluminum-Induced Oxidative Damage in Soybean Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:821. [PMID: 38592832 PMCID: PMC10975118 DOI: 10.3390/plants13060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Aluminum (Al) toxicity in acidic soils is a major abiotic stress that negatively impacts plant growth and development. The toxic effects of Al manifest primarily in the root system, leading to inhibited root elongation and functionality, which impairs the above-ground organs of the plant. Recent research has greatly improved our understanding of the applications of small molecule compounds in alleviating Al toxicity. This study aimed to investigate the role of boron (B), silicon (Si), and their combination in alleviating Al toxicity in soybeans. The results revealed that the combined application significantly improved the biomass and length of soybean roots exposed to Al toxicity compared to B and Si treatments alone. Our results also indicated that Al toxicity causes programmed cell death (PCD) in soybean roots, while B, Si, and their combination all alleviated the PCD induced by Al toxicity. The oxidative damage induced by Al toxicity was noticeably alleviated, as evidenced by lower MAD and H2O2 accumulation in the soybean roots treated with the B and Si combination. Moreover, B, Si, and combined B and Si significantly enhanced plant antioxidant systems by up-regulating antioxidant enzymes including CAT, POD, APX, and SOD. Overall, supplementation with B, Si, and their combination was found to alleviate oxidative damage and reduce PCD caused by Al toxicity, which may be one of the mechanisms by which they alleviate root growth inhibition due to Al toxicity. Our results suggest that supplementation with B, Si, and their combination may be an effective strategy to improve soybean growth and productivity against Al toxicity.
Collapse
Affiliation(s)
- Shuwei Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.W.); (H.C.)
| | - Haijing Cheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.W.); (H.C.)
| | - Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.W.); (H.C.)
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Chen X, Lu H, Ren Z, Zhang Y, Liu R, Zhang Y, Han X. Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland. PLANT DIVERSITY 2024; 46:256-264. [PMID: 38807914 PMCID: PMC11128833 DOI: 10.1016/j.pld.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2024]
Abstract
Tall clonal grasses commonly display competitive advantages with nitrogen (N) enrichment. However, it is currently unknown whether the height is derived from the vegetative or reproductive module. Moreover, it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization, and determines species diversity. In this study, the impacts on clonal grasses were studied in a field experiment employing two frequencies (twice a year vs. monthly) crossing with nine N addition rates in a temperate grassland, China. We found that the N addition decreased species frequency and increased extinction probability, but did not change the species colonization probability. A low frequency of N addition decreased species frequency and colonization probability, but increased extinction probability. Moreover, we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions. The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity, suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition. Overall, this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Haining Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Ruoxuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| |
Collapse
|
17
|
Vera-Maldonado P, Aquea F, Reyes-Díaz M, Cárcamo-Fincheira P, Soto-Cerda B, Nunes-Nesi A, Inostroza-Blancheteau C. Role of boron and its interaction with other elements in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1332459. [PMID: 38410729 PMCID: PMC10895714 DOI: 10.3389/fpls.2024.1332459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Boron (B) is an essential microelement for plants, and its deficiency can lead to impaired development and function. Around 50% of arable land in the world is acidic, and low pH in the soil solution decreases availability of several essential mineral elements, including B, magnesium (Mg), calcium (Ca), and potassium (K). Plants take up soil B in the form of boric acid (H3BO3) in acidic soil or tetrahydroxy borate [B(OH)4]- at neutral or alkaline pH. Boron can participate directly or indirectly in plant metabolism, including in the synthesis of the cell wall and plasma membrane, in carbohydrate and protein metabolism, and in the formation of ribonucleic acid (RNA). In addition, B interacts with other nutrients such as Ca, nitrogen (N), phosphorus (P), K, and zinc (Zn). In this review, we discuss the mechanisms of B uptake, absorption, and accumulation and its interactions with other elements, and how it contributes to the adaptation of plants to different environmental conditions. We also discuss potential B-mediated networks at the physiological and molecular levels involved in plant growth and development.
Collapse
Affiliation(s)
- Peter Vera-Maldonado
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Paz Cárcamo-Fincheira
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Braulio Soto-Cerda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Claudio Inostroza-Blancheteau
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
18
|
Sheng H, Lei Y, Wei J, Yang Z, Peng L, Li W, Liu Y. Analogy of silicon and boron in plant nutrition. FRONTIERS IN PLANT SCIENCE 2024; 15:1353706. [PMID: 38379945 PMCID: PMC10877001 DOI: 10.3389/fpls.2024.1353706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Silicon (Si) and boron (B) are a class of elements called metalloids, which have properties like metals and non-metals. Si is classified as a quasi-essential element, while B is a micronutrient element for plants. Nowadays, numerous discoveries have shown the analogy of silicon and boron in plant nutrition. In this minireview, the molecular mechanisms for the transport of these two metalloids are compared. We also discussed the chemical forms of Si and B and their functional similarity in response to environmental stresses in plants. In conclusion, it can be proposed that cell wall-bound silicon rather than silica might partially replace boron for plant growth, development, and stress responses, and the underlying mechanism is the Si contribution to B in its structural function.
Collapse
Affiliation(s)
- Huachun Sheng
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuyan Lei
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jing Wei
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhengming Yang
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Wenbing Li
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuan Liu
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Idoudi M, Slatni T, Laifa I, Rhimi N, Rabhi M, Hernández-Apaolaza L, Zorrig W, Abdelly C. Silicon (Si) mitigates the negative effects of iron deficiency in common bean (Phaseolus vulgaris L.) by improving photosystem activities and nutritional status. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108236. [PMID: 38064901 DOI: 10.1016/j.plaphy.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
Silicon (Si) is the second most abundant element in the Earth's crust after oxygen. Its beneficial impact on crop development and yield, particularly under stressful conditions such as iron (Fe) deficiency, has been well documented. Fe deficiency is a critical constraint that limits crop production globally. The objective of this study was to investigate the effects of silicon (Na2SiO3) on common bean (Phaseolus vulgaris L. 'Coco Rose' variety) under iron-deficient conditions. The common bean plants were subjected to six treatments, which included three sufficient iron treatments (50 μM Fe) each paired with three varying silicon concentrations (0, 0.25, and 0.5 mM Si), and three iron-deficient treatments (0.1 μM Fe) each associated with the same silicon concentrations (0, 0.25, and 0.5 mM Si). The results indicate that iron deficiency had a negative impact on almost all the measured parameters. However, under silicon treatments, especially with 0.5 mM Si, the depressive effects of iron deficiency were significantly mitigated. The addition of 0.5 mM Si alleviated leaf chlorosis and improved biomass production, nutritional status, photosynthetic pigment content, photosynthetic gas exchange, and photosystem (PSI and PSII) activities. Interestingly, a greater beneficial effect of silicon was observed on PSII compared to PSI. This was accompanied by a significant augmentation in leaf iron concentration by 42%. Therefore, by enhancing the photosystem activities and nutritional status, among other mechanisms, silicon is capable of mitigating the adverse effects of iron-deficient conditions, making it a successful and effective solution to cope with this nutritional stress.
Collapse
Affiliation(s)
- Mariem Idoudi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Faculty of Sciences of Tunis (FST), University of Tunis El Manar (UTM), 1060, Tunis, Tunisia
| | - Tarek Slatni
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Faculty of Sciences of Tunis (FST), University of Tunis El Manar (UTM), 1060, Tunis, Tunisia
| | - Israa Laifa
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Nassira Rhimi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Mokded Rabhi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Walid Zorrig
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia.
| | - Chedly Abdelly
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
20
|
Yan G, Jin H, Yin C, Hua Y, Huang Q, Zhou G, Xu Y, He Y, Liang Y, Zhu Z. Comparative effects of silicon and silicon nanoparticles on the antioxidant system and cadmium uptake in tomato under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166819. [PMID: 37673236 DOI: 10.1016/j.scitotenv.2023.166819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Cadmium (Cd) pollution is an important threat to agricultural production globally. Silicon (Si) and silicon nanoparticles (Si NPs) can mitigate Cd stress in plants. However, the mechanisms underlying the impacts of Si and Si NPs on Cd resistance, particularly in low-Si accumulators, remain inadequately understood. Accordingly, we conducted a comparative investigation into the roles of Si and Si NPs in regulating the antioxidant system (enzymes and antioxidants) and Cd uptake (influx rate, symplastic and apoplastic pathways) in tomato (a typical low-Si accumulator). The results revealed that Si and Si NPs improved tomato growth under Cd stress, and principal component analysis (PCA) demonstrated that Si NPs were more effective than Si. For oxidative damage, redundancy analysis (RDA) results showed that Si NPs ameliorated oxidative damage in both shoots and roots, whereas Si predominantly alleviated oxidative damage in roots. Simultaneously, Si and Si NPs regulated antioxidant enzymes and nonenzymatic antioxidants with distinct targets and strengths. Furthermore, Si and Si NPs decreased Cd concentration in tomato shoot, root, and xylem sap, while Si NPs induced a more significant decline in shoot and xylem sap Cd. Noninvasive microtest and quantitative estimation of trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic (PTS, an apoplastic tracer) showed that Si and Si NPs reduced the Cd influx rate and apoplastic Cd uptake, while Si NPs induced a more significant reduction. Moreover, Si regulated the expression of genes responsible for Cd uptake (NRAMP2 and LCT1) and compartmentalization (HMA3), while Si NPs reduced the expression of NRAMP2. In conjunction with RDA, the results showed that Si and Si NPs decreased Cd uptake mainly by regulating the symplastic and apoplastic pathways, respectively. Overall, our results indicate that Si NPs is more effective in promoting tomato growth and alleviating oxidative damage than Si in tomato under Cd stress by modulating the antioxidant system and reducing apoplastic Cd uptake.
Collapse
Affiliation(s)
- Guochao Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Han Jin
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Chang Yin
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuchen Hua
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Qingying Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Guanfeng Zhou
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yunmin Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yong He
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
21
|
Hussain B, Riaz L, Li K, Hayat K, Akbar N, Hadeed MZ, Zhu B, Pu S. Abiogenic silicon: Interaction with potentially toxic elements and its ecological significance in soil and plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122689. [PMID: 37804901 DOI: 10.1016/j.envpol.2023.122689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Abiogenic silicon (Si), though deemed a quasi-nutrient, remains largely inaccessible to plants due to its prevalence within mineral ores. Nevertheless, the influence of Si extends across a spectrum of pivotal plant processes. Si emerges as a versatile boon for plants, conferring a plethora of advantages. Notably, it engenders substantial enhancements in biomass, yield, and overall plant developmental attributes. Beyond these effects, Si augments the activities of vital antioxidant enzymes, encompassing glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), among others. It achieves through the augmentation of reactive oxygen species (ROS) scavenging gene expression, thus curbing the injurious impact of free radicals. In addition to its effects on plants, Si profoundly ameliorates soil health indicators. Si tangibly enhances soil vitality by elevating soil pH and fostering microbial community proliferation. Furthermore, it exerts inhibitory control over ions that could inflict harm upon delicate plant cells. During interactions within the soil matrix, Si readily forms complexes with potentially toxic metals (PTEs), encapsulating them through Si-PTEs interactions, precipitative mechanisms, and integration within colloidal Si and mineral strata. The amalgamation of Si with other soil amendments, such as biochar, nanoparticles, zeolites, and composts, extends its capacity to thwart PTEs. This synergistic approach enhances soil organic matter content and bolsters overall soil quality parameters. The utilization of Si-based fertilizers and nanomaterials holds promise for further increasing food production and fortifying global food security. Besides, gaps in our scientific discourse persist concerning Si speciation and fractionation within soils, as well as its intricate interplay with PTEs. Nonetheless, future investigations must delve into the precise functions of abiogenic Si within the physiological and biochemical realms of both soil and plants, especially at the critical juncture of the soil-plant interface. This review seeks to comprehensively address the multifaceted roles of Si in plant and soil systems during interactions with PTEs.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Kun Li
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Naveed Akbar
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | | | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
22
|
Cruzado-Tafur E, Orzoł A, Gołębiowski A, Pomastowski P, Cichorek M, Olszewski J, Walczak-Skierska J, Buszewski B, Szultka-Młyńska M, Głowacka K. Metal tolerance and Cd phytoremoval ability in Pisum sativum grown in spiked nutrient solution. JOURNAL OF PLANT RESEARCH 2023; 136:931-945. [PMID: 37676608 PMCID: PMC10587304 DOI: 10.1007/s10265-023-01493-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
In the presented study, the effects of cadmium (Cd) stress and silicon (Si) supplementation on the pea plant (Pisum sativum L.) were investigated. The tendency to accumulate cadmium in the relevant morphological parts of the plant (roots and shoots respectively)-bioaccumulation, the transfer of this element in the plant (translocation) and the physiological parameters of the plant through indicators of oxidative stress were determined. Model studies were carried out at pH values 6.0 and 5.0 plant growth conditions in the hydroponic cultivation. It was shown that Cd accumulates mostly in plant roots at both pH levels. However, the Cd content is higher in the plants grown at lower pH. The Cd translocation factor was below 1.0, which indicates that the pea is an excluder plant. The contamination of the plant growth environment with Cd causes the increased antioxidant stress by the growing parameters of the total phenolic content (TPC), polyphenol oxidase activity (PPO), the malondialdehyde (MDA) and lipid peroxidation (LP). The results obtained showed that the supplementation with Si reduces these parameters, thus lowering the oxidative stress of the plant. Moreover, supplementation with Si leads to a lower content of Cd in the roots and reduces bioaccumulation of Cd in shoots and roots of pea plants.
Collapse
Affiliation(s)
- Edith Cruzado-Tafur
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Aleksandra Orzoł
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
| | - Adrian Gołębiowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Mateusz Cichorek
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Jacek Olszewski
- Experimental Education Unit, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Justyna Walczak-Skierska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland.
| |
Collapse
|
23
|
Naeem M, Gill R, Gill SS, Singh K, Sofo A, Tuteja N. Editorial: Emerging contaminants and their effect on agricultural crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1296252. [PMID: 37941663 PMCID: PMC10628685 DOI: 10.3389/fpls.2023.1296252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Affiliation(s)
- M. Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Adriano Sofo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
24
|
de Faria Melo CC, Amaral DS, de Moura Zanine A, de Jesus Ferreira D, de Mello Prado R, de Cássia Piccolo M. Nanosilica enhances morphogenic and chemical parameters of Megathyrsus maximus grass under conditions of phosphorus deficiency and excess stress in different soils. BMC PLANT BIOLOGY 2023; 23:497. [PMID: 37845606 PMCID: PMC10580593 DOI: 10.1186/s12870-023-04521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Phosphorus (P) imbalances are a recurring issue in cultivated soils with pastures across diverse regions. In addition to P deficiency, the prevalence of excess P in soil has escalated, resulting in damage to pasture yield. In response to this reality, there is a need for well-considered strategies, such as the application of silicon (Si), a known element for alleviating plant stress. However, the influence of Si on the morphogenetic and chemical attributes of forage grasses grown in various soils remains uncertain. Consequently, this study aimed to assess the impact of P deficiency and excess on morphogenetic and chemical parameters, as well as digestibility, in Zuri guinea grass cultivated in Oxisol and Entisol soils. It also sought to determine whether fertigation with nanosilica could mitigate the detrimental effects of these nutritional stresses. Results revealed that P deficiency led to a reduction in tiller numbers and grass protein content, along with an increase in lignin content. Conversely, P excess resulted in higher proportions of dead material and lignin, a reduced mass leaf: stem ratio in plants, and a decrease in dry matter (DM) yield. Fertigation with Si improved tillering and protein content in deficient plants. In the case of P excess, Si reduced tiller mortality and lignin content, increased the mass leaf:stem ratio, and enhanced DM yield. This approach also increased yields in plants with sufficient P levels without affecting grass digestibility. Thus, Si utilization holds promise for enhancing the growth and chemical characteristics of forage grasses under P stress and optimizing yield in well-nourished, adapted plants, promoting more sustainable pasture yields.
Collapse
Affiliation(s)
- Cíntia Cármen de Faria Melo
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil.
| | - Danilo Silva Amaral
- Department of Engineering and Exact Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Anderson de Moura Zanine
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Daniele de Jesus Ferreira
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo (USP), 303 Centenário Avenue, Piracicaba, SP, 13400970, Brazil
| |
Collapse
|
25
|
Costa MG, de Mello Prado R, Dos Santos Sarah MM, de Souza AES, de Souza Júnior JP. Silicon mitigates K deficiency in maize by modifying C, N, and P stoichiometry and nutritional efficiency. Sci Rep 2023; 13:16929. [PMID: 37805565 PMCID: PMC10560233 DOI: 10.1038/s41598-023-44301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023] Open
Abstract
Potassium (K) deficiency in maize plants damages the nutritional functions of K. However, few studies have investigated the influence of K on C:N:P stoichiometry, the nutritional efficiency of these nutrients, and whether the mitigating effect of Si in plants under stress could act on these nutritional mechanisms involved with C, N, and P to mitigate K deficiency. Therefore, this study aimed to evaluate the impact of K deficiency in the absence and presence of Si on N and P uptake, C:N:P stoichiometric homeostasis, nutritional efficiency, photosynthetic rate, and dry matter production of maize plants. The experiment was conducted under controlled conditions using a 2 × 2 factorial scheme comprising two K concentrations: potassium deficiency (7.82 mg L-1) and potassium sufficiency (234.59 mg L-1). These concentrations were combined with the absence (0.0 mg L-1) and presence of Si (56.17 mg L-1), arranged in randomized blocks with five replicates. Potassium deficiency decreased stoichiometric ratios (C:N and C:P) and the plant's C, N, and P accumulation. Furthermore, it decreased the use efficiency of these nutrients, net photosynthesis, and biomass of maize plants. The results showed that Si supply stood out in K-deficient maize plants by increasing the C, N, and P accumulation. Moreover, it decreased stoichiometric ratios (C:N, C:P, N:P, C:Si, N:Si, and P:Si) and increased the efficiencies of uptake, translocation, and use of nutrients, net photosynthesis, and dry matter production of maize plants. Therefore, the low nutritional efficiency of C, N, and P caused by K deficiency in maize plants can be alleviated with the supply of 56.17 mg L-1 of Si in the nutrient solution. It changes C:N:P stoichiometry and favors the use efficiency of these nutrients, which enhances the photosynthesis and sustainability of maize.
Collapse
Affiliation(s)
- Milton Garcia Costa
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, Jaboticabal, 14884-900, Brazil.
| | - Renato de Mello Prado
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, Jaboticabal, 14884-900, Brazil
| | - Marcilene Machado Dos Santos Sarah
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, Jaboticabal, 14884-900, Brazil
| | - Antônia Erica Santos de Souza
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, Jaboticabal, 14884-900, Brazil
| | - Jonas Pereira de Souza Júnior
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, Jaboticabal, 14884-900, Brazil
| |
Collapse
|
26
|
Tian Y, Dong X, Fan Y, Yang D, Chen R. Hydrothermal alkaline synthesis and release properties of silicon compound fertiliser using high-ash coal slime. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99652-99665. [PMID: 37615911 DOI: 10.1007/s11356-023-29413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
High-ash coal slime is difficult to utilise as a boiler fuel, and its accumulation results in environmental pollution. In this study, we describe a new method for the preparation of high-ash coal slime silica compound fertiliser (HASF) using CaO-KOH mixed hydrothermal method to optimize the utilization of this industrial waste and relieve the pressure on the fertiliser industry. The coal slime (D0) used in this study and its dry basis ash content by 1 mol/L and 4 mol/L sulfuric acid pre-activation (D1, D4) were greater than 85%. The effective silicon content of D0, D1, and D4 silica compound fertilisers reached 30.24%, 31.24%, and 17.35%, respectively, and the sums of effective silica-calcium-potassium oxides were 57.28%, 58.87%, and 48.16%, respectively, under the optimal reaction conditions of 230 °C, 15 h, and 1 mol/L KOH, which met the market requirements, as determined using single-factor experiments. We used XRD, FTIR, and SEM-EDS analysis techniques to demonstrate that tobermorite and leucite were the main mineral phases of the compound fertiliser, and activated coal slime D4, which contains only quartz single crystals, required more demanding reaction conditions in the synthesis reaction. Subsequently, the cumulative release pattern of HASF silica was well described by the power function equation via repeated extraction and dissolution experiments, with the dissolution rate following D4 > D1 ≈ D0. Furthermore, 4 mol/L sulfuric acid pre-activation resulted in the enrichment of HASF combined with organic matter and increased the slow-release rate of HASF silica. Thus, the synthesized HASF could have potential application prospects in soil improvement and fertilisation.
Collapse
Affiliation(s)
- Yanfei Tian
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
- Shanxi Engineering Research Center of Ecological Mining, Taiyuan, 030024, China
| | - Xianshu Dong
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
- Shanxi Engineering Research Center of Ecological Mining, Taiyuan, 030024, China.
| | - Yuping Fan
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Dong Yang
- State Center for Research and Development of Oil Shale Exploitation, Beijing, 100083, China
- Key Laboratory of In Situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ruxia Chen
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
27
|
Kostic I, Nikolic N, Milanovic S, Milenkovic I, Pavlovic J, Paravinja A, Nikolic M. Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1265782. [PMID: 37705706 PMCID: PMC10495579 DOI: 10.3389/fpls.2023.1265782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. plurivora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.
Collapse
Affiliation(s)
- Igor Kostic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Nina Nikolic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Slobodan Milanovic
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Ivan Milenkovic
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Jelena Pavlovic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ana Paravinja
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miroslav Nikolic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Réthoré E, Ali N, Pluchon S, Hosseini SA. Silicon Enhances Brassica napus Tolerance to Boron Deficiency by the Remobilisation of Boron and by Changing the Expression of Boron Transporters. PLANTS (BASEL, SWITZERLAND) 2023; 12:2574. [PMID: 37447134 DOI: 10.3390/plants12132574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Boron (B) is an essential micronutrient for plants, and its deficiency is a widespread nutritional disorder, particularly in high-demanding crops like Brassica napus. Over the past few decades, silicon (Si) has been shown to mitigate plant nutrient deficiencies of different macro- and micro-nutrients. However, the work on B and Si cross-talk has mostly been focused on the alleviation of B toxicity by Si application. In the present study, we investigated the effect of Si application on rapeseed plants grown hydroponically under long-term B deficiency (20 days at 0.1 µM B). In addition, a B-uptake labelling experiment was conducted, and the expression of the genes involved in B uptake were monitored between 2 and 15 days of B shortage. The results showed that Si significantly improved rapeseed plant growth under B deficiency by 34% and 49% in shoots and roots, respectively. It also increased the expression level of BnaNIP5;1 and BOR1;2c in both young leaves and roots. The uptake labelling experiment showed the remobilization of previously fixed 11B from old leaves to new tissues. This study provides additional evidence of the beneficial effects of Si under conditions lacking B by changing the expression of the BnaNIP5;1 gene and by remobilizing 11B to young tissues.
Collapse
Affiliation(s)
- Elise Réthoré
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| | - Nusrat Ali
- Phys-Chem and Bio-Analytics R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint-Malo, France
| | - Sylvain Pluchon
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| | - Seyed Abdollah Hosseini
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| |
Collapse
|
29
|
Wadas W, Kondraciuk T. Effect of Silicon on Micronutrient Content in New Potato Tubers. Int J Mol Sci 2023; 24:10578. [PMID: 37445755 DOI: 10.3390/ijms241310578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Since silicon can improve nutrient uptake in plants, the effect of foliar silicon (sodium metasilicate) application on micronutrient content in early crop potato tuber was investigated. Silicon was applied at dosages of 23.25 g Si∙ha-1 or 46.50 g Si∙ha-1 (0.25 L∙ha-1 or 0.50 L∙ha-1 of Optysil) once at the leaf development stage (BBCH 14-16), or at the tuber initiation stage (BBCH 40-1), and twice, at the leaf development and tuber initiation stages. Potatoes were harvested 75 days after planting (the end of June). Foliar-applied silicon reduced the Fe concentration and increased Cu and Mn concentrations in early crop potato tubers under water deficit conditions but did not affect the Zn, B, or Si concentrations. The dosage and time of silicon application slightly affected the Fe and Cu concentration in the tubers. Under drought conditions, the highest Mn content in the tuber was observed when 46.50 g Si∙ha-1 was applied at the leaf development stage, whereas under periodic water deficits, it was highest with the application of the same silicon dosage at the tuber initiation stage (BBCH 40-41). The Si content in tubers was negatively correlated with the Fe and B content, and positively correlated with the Cu and Mn content.
Collapse
Affiliation(s)
- Wanda Wadas
- Institute of Agriculture and Horticulture, Siedlce University of Natural Sciences and Humanities, B. Prusa 14, 08-110 Siedlce, Poland
| | - Tomasz Kondraciuk
- Institute of Agriculture and Horticulture, Siedlce University of Natural Sciences and Humanities, B. Prusa 14, 08-110 Siedlce, Poland
| |
Collapse
|
30
|
de Faria Melo CC, Silva Amaral D, de Mello Prado R, de Moura Zanine A, de Jesus Ferreira D, de Cássia Piccolo M. Nanosilica modulates C:N:P stoichiometry attenuating phosphorus toxicity more than deficiency in Megathyrsus maximus cultivated in an Oxisol and Entisol. Sci Rep 2023; 13:10284. [PMID: 37355676 PMCID: PMC10290668 DOI: 10.1038/s41598-023-37504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Silicon (Si) nanoparticles can attenuate nutritional disorders caused by phosphorus in forages through nutritional homeostasis. This paper aims to evaluate the effects of P deficiency and toxicity in Megathyrsus maximus cultivated in two types of soils and to verify whether Si application via fertigation can mitigate these imbalances. The following two experiments were carried out: cultivation of forage plants in pots with Entisol and Oxisol, in a 3 × 2 factorial design, with three nutritional levels of phosphorus (deficient, adequate, and excessive) and two Si concentrations in the irrigation water (0 and 1.5 mmol L-1). Height, number of tillers, rate of leaf senescence, dry matter production, C:N, C:Si, C:P, and N:P ratios; and C, P, and N use efficiencies were evaluated in two growth cycles. P imbalances hampered carbon assimilation, C:N:P homeostasis, and dry matter production. Nanosilica fertigation promoted silicon uptake, improving C:N:P homeostasis and nutritional efficiency in plants under P deficiency and toxicity. Leaf senescence was reduced with addition of Si in plants grown in Oxisol in the three nutritional states of P. Silicon attenuated the stress caused by P toxicity in Entisol and Oxisol, improving production in plants without nutritional stress in Oxisol. The supply of Si nanoparticles in the cultivation of M. maximus can contribute to a more efficient and sustainable use of phosphorus in pastures.
Collapse
Affiliation(s)
- Cíntia Cármen de Faria Melo
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil.
| | - Danilo Silva Amaral
- Department of Engineering and Exact Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Anderson de Moura Zanine
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 Km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Daniele de Jesus Ferreira
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 Km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo (USP), 303 Centenário Avenue, Piracicaba, SP, 13400970, Brazil
| |
Collapse
|
31
|
Coquerel R, Arkoun M, Dupas Q, Leroy F, Laîné P, Etienne P. Silicon Supply Improves Nodulation and Dinitrogen Fixation and Promotes Growth in Trifolium incarnatum Subjected to a Long-Term Sulfur Deprivation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2248. [PMID: 37375874 DOI: 10.3390/plants12122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
In many crops species, sulfur (S) deprivation negatively affects growth, seed yield quality and plant health. Furthermore, silicon (Si) is known to alleviate many nutritional stresses but the effects of Si supply on plants subjected to S deficiency remain unclear and poorly documented. The objective of this study was to evaluate whether Si supply would alleviate the negative effects of S deprivation on root nodulation and atmospheric dinitrogen (N2) fixation capacity in Trifolium incarnatum subjected (or not) to long-term S deficiency. For this, plants were grown for 63 days in hydroponic conditions with (500 µM) or without S and supplied (1.7 mM) or not with Si. The effects of Si on growth, root nodulation and N2 fixation and nitrogenase abundance in nodules have been measured. The most important beneficial effect of Si was observed after 63 days. Indeed, at this harvest time, a Si supply increased growth, the nitrogenase abundance in nodules and N2 fixation in S-fed and S-deprived plants while a beneficial effect on the number and total biomass of nodules was only observed in S-deprived plants. This study shows clearly for the first time that a Si supply alleviates negative effects of S deprivation in Trifolium incarnatum.
Collapse
Affiliation(s)
- Raphaël Coquerel
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France
| | - Quentin Dupas
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| | - Fanny Leroy
- Plateau Technique d'Isotopie de Normandie (PLATIN'), Unité de Services EMERODE, Normandie Université, 14000 Caen, France
| | - Philippe Laîné
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| | - Philippe Etienne
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| |
Collapse
|
32
|
Mahawar L, Ramasamy KP, Suhel M, Prasad SM, Živčák M, Brestic M, Rastogi A, Skalicky M. Silicon nanoparticles: Comprehensive review on biogenic synthesis and applications in agriculture. ENVIRONMENTAL RESEARCH 2023:116292. [PMID: 37276972 DOI: 10.1016/j.envres.2023.116292] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Recent advancements in nanotechnology have opened new advances in agriculture. Among other nanoparticles, silicon nanoparticles (SiNPs), due to their unique physiological characteristics and structural properties, offer a significant advantage as nanofertilizers, nanopesticides, nanozeolite and targeted delivery systems in agriculture. Silicon nanoparticles are well known to improve plant growth under normal and stressful environments. Nanosilicon has been reported to enhance plant stress tolerance against various environmental stress and is considered a non-toxic and proficient alternative to control plant diseases. However, a few studies depicted the phytotoxic effects of SiNPs on specific plants. Therefore, there is a need for comprehensive research, mainly on the interaction mechanism between NPs and host plants to unravel the hidden facts about silicon nanoparticles in agriculture. The present review illustrates the potential role of silicon nanoparticles in improving plant resistance to combat different environmental (abiotic and biotic) stresses and the underlying mechanisms involved. Furthermore, our review focuses on providing the overview of various methods exploited in the biogenic synthesis of silicon nanoparticles. However, certain limitations exist in synthesizing the well-characterized SiNPs on a laboratory scale. To bridge this gap, in the last section of the review, we discussed the possible use of the machine learning approach in future as an effective, less labour-intensive and time-consuming method for silicon nanoparticle synthesis. The existing research gaps from our perspective and future research directions for utilizing SiNPs in sustainable agriculture development have also been highlighted.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | | | - Mohammad Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Marek Živčák
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
33
|
Whalen NS, Hunt TC, Erickson GM. Evapotranspiration-linked silica deposition in a basal tracheophyte plant (Lycopodiaceae: Lycopodiella alopecuroides): implications for the evolutionary origins of phytoliths. THE NEW PHYTOLOGIST 2023; 238:2224-2235. [PMID: 36869439 DOI: 10.1111/nph.18861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
Phytoliths, microscopic deposits of hydrated silica within plants, play a myriad of functional roles in extant tracheophytes - yet their evolutionary origins and the original selective pressures leading to their deposition remain poorly understood. To gain new insights into the ancestral condition of tracheophyte phytolith production and function, phytolith content was intensively assayed in a basal, morphologically conserved tracheophyte: the foxtail clubmoss Lycopodiella alopecuroides. Wet ashing was employed to perform phytolith extractions from every major anatomical region of L. alopecuroides. Phytolith occurrence was recorded, alongside abundance, morphometric information, and morphological descriptions. Phytoliths were recovered exclusively from the microphylls, which were apicodistally silicified into multiphytolith aggregates. Phytolith aggregates were larger and more numerous in anatomical regions engaging in greater evapotranspirational activity. The tissue distribution of L. alopecuroides phytoliths is inconsistent with the expectations of proposed adaptive hypotheses of phytolith evolutionary origin. Instead, it is hypothesized that phytoliths may have arisen incidentally in the L. alopecuroides-like ancestral plant, polymerizing from intraplant silicon accumulations arising via bulk flow and 'leaky' cellular micronutrient channels. This basal, nonadaptive phytolith formation model would provide the evolutionary 'raw material' for later modification into the useful, adaptative, phytolith deposits seen in later-diverging plant clades.
Collapse
Affiliation(s)
- Niall S Whalen
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Tyler C Hunt
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Gregory M Erickson
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| |
Collapse
|
34
|
Costa MG, Prado RDM, Santos Sarah MM, Souza Júnior JP, de Souza AES. Silicon, by promoting a homeostatic balance of C:N:P and nutrient use efficiency, attenuates K deficiency, favoring sustainable bean cultivation. BMC PLANT BIOLOGY 2023; 23:213. [PMID: 37095435 PMCID: PMC10124036 DOI: 10.1186/s12870-023-04236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In many regions of the world, K is being depleted from soils due to agricultural intensification a lack of accessibility, and the high cost of K. Thus, there is an urgent need for a sustainable strategy for crops in this environment. Si is an option for mitigating stress due to nutritional deficiency. However, the underlying effects of Si in mitigating K deficiency C:N:P homeostasis still remains unknown for bean plants. This is a species of great worldwide importance. Thus, this study aims to evaluate whether i) K deficiency modifies the homeostatic balance of C, N and P, and, if so, ii) Si supply can reduce damage caused to nutritional stoichiometry, nutrient use efficiency, and production of dry mass in bean plants. RESULTS K deficiency caused a reduction in the stoichiometric ratios C:N, C:P, and P:Si in shoots and C:N, C:P, C:Si, N:Si, and P:Si in roots, resulting in a decrease in K content and use efficiency and reducing biomass production. The application of Si in K-deficient plants modified the ratios C:N, C:Si, N:P, N:Si, and P:Si in shoots and C:N, C:P, C:Si, N:Si, N:P, and P:Si in roots, increasing the K content and efficiency, reducing the loss of biomass. In bean plants with K sufficiency, Si also changed the stoichiometric ratios C:N, C:P, C:Si, N:P, N:Si, and P:Si in shoots and C:N, C:Si, N:Si, and P:Si in roots, increasing K content only in roots and the use efficiency of C and P in shoots and C, N, and P in roots, increasing the biomass production only in roots. CONCLUSION K deficiency causes damage to the C:N:P homeostatic balance, reducing the efficiency of nutrient use and biomass production. However, Si is a viable alternative to attenuate these nutritional damages, favoring bean growth. The future perspective is that the use of Si in agriculture in underdeveloped economies with restrictions on the use of K will constitute a sustainable strategy to increase food security.
Collapse
Affiliation(s)
- Milton G Costa
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil.
| | - Renato de M Prado
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Marcilene M Santos Sarah
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Jonas P Souza Júnior
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Antonia Erica S de Souza
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| |
Collapse
|
35
|
Savic J, Pavlovic J, Stanojevic M, Bosnic P, Kostic Kravljanac L, Nikolic N, Nikolic M. Silicon Differently Affects Apoplastic Binding of Excess Boron in Wheat and Sunflower Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:1660. [PMID: 37111882 PMCID: PMC10144595 DOI: 10.3390/plants12081660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Monocots and dicots differ in their boron (B) requirement, but also in their capacity to accumulate silicon (Si). Although an ameliorative effect of Si on B toxicity has been reported in various crops, differences among monocots and dicots are not clear, in particular in light of their ability to retain B in the leaf apoplast. In hydroponic experiments under controlled conditions, we studied the role of Si in the compartmentation of B within the leaves of wheat (Triticum vulgare L.) as a model of a high-Si monocot and sunflower (Helianthus annuus L.) as a model of a low-Si dicot, with the focus on the leaf apoplast. The stable isotopes 10B and 11B were used to investigate the dynamics of cell wall B binding capacity. In both crops, the application of Si did not affect B concentration in the root, but significantly decreased the B concentration in the leaves. However, the application of Si differently influenced the binding capacity of the leaf apoplast for excess B in wheat and sunflower. In wheat, whose capacity to retain B in the leaf cell walls is lower than in sunflower, the continuous supply of Si is crucial for an enhancement of high B tolerance in the shoot. On the other hand, the supply of Si did not contribute significantly in the extension of the B binding sites in sunflower leaves.
Collapse
Affiliation(s)
- Jasna Savic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Jelena Pavlovic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Milos Stanojevic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
- Faculty of Sciences and Mathematics, University of Pristina in Kosovska Mitrovica, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia
| | - Predrag Bosnic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Ljiljana Kostic Kravljanac
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| |
Collapse
|
36
|
Bouranis DL, Stylianidis GP, Manta V, Karousis EN, Tzanaki A, Dimitriadi D, Bouzas EA, Siyiannis VF, Constantinou-Kokotou V, Chorianopoulou SN, Bloem E. Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods. PLANTS (BASEL, SWITZERLAND) 2023; 12:1272. [PMID: 36986960 PMCID: PMC10055910 DOI: 10.3390/plants12061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Broccoli serves as a functional food because it can accumulate selenium (Se), well-known bioactive amino-acid-derived secondary metabolites, and polyphenols. The chemical and physical properties of Se are very similar to those of sulfur (S), and competition between sulfate and selenate for uptake and assimilation has been demonstrated. Towards an efficient agronomic fortification of broccoli florets, the working questions were whether we could overcome this competition by exogenously applying the S-containing amino acids cysteine (Cys) or/and methionine (Met), or/and the precursors of Glucosinolate (GSL) types along with Se application. Broccoli plants were cultivated in a greenhouse and at the beginning of floret growth, we exogenously applied sodium selenate in the concentration gradient of 0, 0.2, 1.5, and 3.0 mM to study the impact of increased Se concentration on the organic S (Sorg) content of the floret. The Se concentration of 0.2 mM (Se0.2) was coupled with the application of Cys, Met, their combination, or a mixture of phenylalanine, tryptophane, and Met. The application took place through fertigation or foliar application (FA) by adding isodecyl alcohol ethoxylate (IAE) or a silicon ethoxylate (SiE) surfactant. Fresh biomass, dry mass, and Se accumulation in florets were evaluated, along with their contents of Sorg, chlorophylls (Chl), carotenoids (Car), glucoraphanin (GlRa), glucobrassicin (GlBra), glucoiberin (GlIb), and polyphenols (PPs), for the biofortification efficiency of the three application modes. From the studied selenium concentration gradient, the foliar application of 0.2 mM Se using silicon ethoxylate (SiE) as a surfactant provided the lowest commercially acceptable Se content in florets (239 μg or 0.3 μmol g-1 DM); it reduced Sorg (-45%), GlIb (-31%), and GlBr (-27%); and it increased Car (21%) and GlRa (27%). Coupled with amino acids, 0.2 mM Se provided commercially acceptable Se contents per floret only via foliar application. From the studied combinations, that of Met,Se0.2/FA,IAE provided the lowest Se content per floret (183 μg or 0.2 μmol g-1 DM) and increased Sorg (35%), Car (45%), and total Chl (27%), with no effect on PPs or GSLs. Cys,Met,Se0.2/FA,IAE and amino acid mix,Se0.2/FA,IAE increased Sorg content, too, by 36% and 16%, respectively. Thus, the foliar application with the IAE surfactant was able to increase Sorg, and methionine was the amino acid in common in these treatments, with varying positive effects on carotenoids and chlorophylls. Only the Cys,Met,Se0.2 combination presented positive effects on GSLs, especially GlRa, but it reduced the fresh mass of the floret. The foliar application with SiE as a surfactant failed to positively affect the organic S content. However, in all studied combinations of Se 0.2 mM with amino acids, the Se content per floret was commercially acceptable, the yield was not affected, the content of GSLs was increased (especially that of GlRa and GlIb), and PPs were not affected. The content of GlBr decreased except for the treatment with methionine (Met,Se0.2/FA,SiE) where GlBr remained unaffected. Hence, the combination of Se with the used amino acids and surfactants can provide enhanced biofortification efficiency in broccoli by providing florets as functional foods with enhanced functional properties.
Collapse
Affiliation(s)
- Dimitris L. Bouranis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
- PlanTerra Institute for Plant Nutrition & Soil Quality, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Georgios P. Stylianidis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Vassiliki Manta
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Evangelos N. Karousis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Andriani Tzanaki
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | - Emmanuel A. Bouzas
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Violetta Constantinou-Kokotou
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Styliani N. Chorianopoulou
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
- PlanTerra Institute for Plant Nutrition & Soil Quality, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Elke Bloem
- Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116 Braunschweig, Germany
| |
Collapse
|
37
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan/silica: A hybrid formulation to mitigate phytopathogens. Int J Biol Macromol 2023; 239:124192. [PMID: 36996949 DOI: 10.1016/j.ijbiomac.2023.124192] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Long-term and indiscriminate use of synthetic pesticides to mitigate plant pathogens have created serious issues of water health, soil contamination, non-target organisms, resistant species, and unpredictable environmental and human health hazards. These constraints have forced scientists to develop alternative plant disease management strategies to reduce synthetic chemical' dependency. During the last 20 years, biological agents and resistance elicitors have been the most important used alternatives. Silica-based materials/chitosan with a dual mode of action have been proposed as promising alternatives to prevent plant diseases through direct and indirect mechanisms. Moreover, the combined application of nano-silica and chitosan, due to their controllable morphology, high loading capacity, low toxicity, and efficient encapsulation, act as suitable carriers for biological agents, pesticides, and essential oils, making them proper candidates for mitigation of phytopathogens. Based on this potential, this literature study reviewed the silica and chitosan properties and their function in the plant. It also assessed their role in the fighting against soil and aerial phytopathogens, directly and indirectly, as novel hybrid formulations in future managing platforms.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
38
|
Kutasy E, Diósi G, Buday-Bódi E, Nagy PT, Melash AA, Forgács FZ, Virág IC, Vad AM, Bytyqi B, Buday T, Csajbók J. Changes in Plant and Grain Quality of Winter Oat ( Avena sativa L.) Varieties in Response to Silicon and Sulphur Foliar Fertilisation under Abiotic Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040969. [PMID: 36840318 PMCID: PMC9967263 DOI: 10.3390/plants12040969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 05/10/2023]
Abstract
In order to investigate the abiotic stress (drought) tolerance of oat (Avena sativa L.) with silicon and sulphur foliar fertilisation treatments, and monitor the effect of the treatments on the physiology, production, stress tolerance, plant, and grain quality of winter oat varieties, a field experiment was conducted in the growing season of 2020-2021. As a continuation of our article, published in another Special Issue of Plants, in this publication we evaluate the effect of silicon and sulphur treatments on the quality of winter oats. The whole grain sulphur content was significantly different between varieties. The foliar fertiliser treatments caused greater differences in both the carbon and nitrogen, and sulphur contents in the green plant samples, compared to the differences measured in the grain. Foliar treatments had a significant effect on the sulphur content of both plant samples and grains. Significant differences in the Al, Ba, Ca, Cu, Fe, K, Mn, Mo, Na, Ni, P, Pb, Sr, and Zn contents of oat grains were measured, both between treatments and between varieties. Winter oat varieties did not respond equally to the foliar fertiliser treatments in terms of either macronutrient or micronutrient content. When P, K, Ca, Mg, and S were summarised, the highest values were in the control plots. Significant differences in protein content were identified between winter oat varieties in response to the treatments, but the varieties did not respond in the same way to different foliar fertiliser treatments. Based on our results, we recommend the use of foliar fertilisation in oats in drought-prone areas.
Collapse
Affiliation(s)
- Erika Kutasy
- Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| | - Gerda Diósi
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Erika Buday-Bódi
- Institute of Water and Environmental Management, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Péter Tamás Nagy
- Institute of Water and Environmental Management, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Anteneh Agezew Melash
- Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Fanni Zsuzsa Forgács
- Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Csaba Virág
- Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Miklós Vad
- Institutes for Agricultural Research and Educational Farm, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bekir Bytyqi
- Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Buday
- Department of Mineralogy and Geology, Institute of Earth Sciences, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - József Csajbók
- Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
39
|
Nikolić D, Bosnić D, Samardžić J. Silicon in action: Between iron scarcity and excess copper. FRONTIERS IN PLANT SCIENCE 2023; 14:1039053. [PMID: 36818840 PMCID: PMC9935840 DOI: 10.3389/fpls.2023.1039053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Essential micronutrients belonging to the transition metals, such as Fe and Cu, are indispensable for plant growth and stress tolerance; however, when present in excess, they can become potentially dangerous producers of reactive oxygen species. Therefore, their homeostases must be strictly regulated. Both microelement deficiencies and elevated concentrations of heavy metals in the soil are global problems that reduce the nutritional value of crops and seriously affect human health. Silicon, a beneficial element known for its protective properties, has been reported to alleviate the symptoms of Cu toxicity and Fe deficiency stress in plants; however, we are still far from a comprehensive understanding of the underlying molecular mechanisms. Although Si-mediated mitigation of these stresses has been clearly demonstrated for some species, the effects of Si vary depending on plant species, growing conditions and experimental design. In this review, the proposed mechanistic models explaining the effect of Si are summarized and discussed. Iron and copper compete for the common metal transporters and share the same transport routes, hence, inadequate concentration of one element leads to disturbances of another. Silicon is reported to beneficially influence not only the distribution of the element supplied below or above the optimal concentration, but also the distribution of other microelements, as well as their molar ratios. The influence of Si on Cu immobilization and retention in the root, as well as Si-induced Fe remobilization from the source to the sink organs are of vital importance. The changes in cellular Cu and Fe localization are considered to play a crucial role in restoring homeostasis of these microelements. Silicon has been shown to stimulate the accumulation of metal chelators involved in both the mobilization of deficient elements and scavenging excess heavy metals. Research into the mechanisms of the ameliorative effects of Si is valuable for reducing mineral stress in plants and improving the nutritional value of crops. This review aims to provide a thorough and critical overview of the current state of knowledge in this field and to discuss discrepancies in the observed effects of Si and different views on its mode of action.
Collapse
|
40
|
Costa MG, de M Prado R, Sarah MMS, Palaretti LF, de C Piccolo M, Souza Júnior JP. New approaches to the effects of Si on sugarcane ratoon under irrigation in Quartzipsamments, Eutrophic Red Oxisol, and Dystrophic Red Oxisol. BMC PLANT BIOLOGY 2023; 23:51. [PMID: 36694112 PMCID: PMC9872329 DOI: 10.1186/s12870-023-04077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/19/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND C:N:P homeostasis in plants guarantees optimal levels of these nutrients in plant metabolism. H However, one of the causes to the effects of deficit irrigation is the loss of C:N:P homeostasis in leaves and stems that causes reduction in the growth of sugarcane. Being able to measure the impact of water deficit on C:N:P homeostasis in plants from the stoichiometric ratios of the concentrations of these nutrients in leaves and stems. This loss causes a decrease in nutritional efficiency, but can be mitigated with the use of silicon. Silicon favors the homeostasis of these nutrients and crop productivity. The magnitude of this benefit depends on the absorption of Si by the plant and Si availability in the soil, which varies with the type of soil used. Thus, this study aims to evaluate whether the application of Si via fertigation is efficient in increasing the absorption of Si and whether it is capable of modifying the homeostatic balance of C:N:P of the plant, causing an increase in nutritional efficiency and consequently in the production of biomass in leaves and stems of sugarcane ratoon cultivated with deficient and adequate irrigations in different tropical soils. RESULTS Water deficit caused biological losses in concentrations and accumulation of C, N, and P, and reduced the nutrient use efficiency and biomass production of sugarcane plants cultivated in three tropical soils due to disturbances in the stoichiometric homeostasis of C:N:P. The application of Si increased the concentration and accumulation of Si, C, N, and P and their use efficiency and reduced the biological damage caused by water deficit due to the modification of homeostatic balance of C:N:P by ensuring sustainability of the production of sugarcane biomass in tropical soils. However, the intensity of attenuation of such deleterious effects stood out in plants cultivated in Eutrophic Red Oxisols. Si contributed biologically by improving the performance of sugarcane ratoon with an adequate irrigation due to the optimization of stoichiometric ratios of C:N:P; increased the accumulation and the use efficiency of C, N, and P, and promoted production gains in biomass of sugarcane in three tropical soils. CONCLUSION Our study shows that fertigation with Si can mitigate the deleterious effects of deficient irrigation or potentiate the beneficial effects using an adequate irrigation system due to the induction of a new stoichiometric homeostasis of C:N:P, which in turn improves the nutritional efficiency of sugarcane cultivated in tropical soils.
Collapse
Affiliation(s)
- Milton G Costa
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil.
| | - Renato de M Prado
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Marcilene M Santos Sarah
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Luiz F Palaretti
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Marisa de C Piccolo
- Nuclear Energy Center in Agriculture, University of São Paulo (USP), Av. Centenário, 303, Piracicaba, São Paulo, 13400-970, Brazil
| | - Jonas P Souza Júnior
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| |
Collapse
|
41
|
Long L, Huang N, Liu X, Gong L, Xu M, Zhang S, Chen C, Wu J, Yang G. Enhanced silicate remediation in cadmium-contaminated alkaline soil: Amorphous structure improves adsorption performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116760. [PMID: 36427368 DOI: 10.1016/j.jenvman.2022.116760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Silicates have been used as soil heavy metal passivators, but low remediation efficiency limited their development. In order to solve this problem, in this paper, an economical and environmentally friendly amorphous iron silicate was prepared by a simple co-precipitation method. It could be proved from the passivation experiments that the remediation efficiency of amorphous iron silicate (AIS) on Cd-contaminated soil was better than that of natural silicates (montmorillonite and diatomite), which reflected the superiority of amorphous materials. Plant experiments showed that AIS could effectively inhibit the absorption and accumulation of Cd2+ in the edible parts of garlic. In addition, it may effectively reduce the potential ecological risk assessment of soil, and its immobilization mechanism of Cd2+ includes electrostatic adsorption, co-precipitation, ion exchange, and complexation of surface functional groups. This study demonstrates the advantages of amorphous iron silicate as a new functional material in the remediation of Cd-contaminated soil and provides a reference for the development and application of environment-friendly passivators.
Collapse
Affiliation(s)
- Lulu Long
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Sichuan, 611130, China.
| | - Na Huang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Sichuan, 611130, China
| | - Xin Liu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Sichuan, 611130, China
| | - Li Gong
- Sichuan Keyuan Testing Center of Engineering Technology, Chengdu, 610091, China
| | - Min Xu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Sichuan, 611130, China
| | - Shirong Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Sichuan, 611130, China
| | - Chao Chen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Sichuan, 611130, China
| | - Jun Wu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Sichuan, 611130, China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Sichuan, 611130, China.
| |
Collapse
|
42
|
Luís Oliveira Cunha M, de Mello Prado R. Synergy of Selenium and Silicon to Mitigate Abiotic Stresses: a Review. GESUNDE PFLANZEN 2023; 75:1-14. [PMID: 38625279 PMCID: PMC9838374 DOI: 10.1007/s10343-022-00826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/19/2022] [Indexed: 04/17/2024]
Abstract
It is evident the increase in the occurrence of different stresses that impact agriculture and so there has been an increase in research to study stress mitigators including silicon (Si) and selenium (Se). However, the great challenge to be answered would be to assess whether it is possible to maximize these benefits by combining these two elements. Therefore, this review focused on discussing the feasibility of combining Se and Si in mitigating abiotic stresses and also measuring gains in yield and quality of agricultural products. These are the main challenges of plant mineral nutrition with these two elements for sustainable cultivation, ensuring food security with the possibility of improving human health. As the mode of application of an element can change absorption and assimilation processes and consequently the plant's response, it is important to consider research with supply of these elements via the foliar and root route. Thus, we highlighted the potential of the combined application of Se and Si and whether or not they are relevant to overcome the individual application in stress mitigation or even in plants without stress. In addition, we pointed out new directions for research on this topic in order to reinforce the combined use of stress relievers and their potential benefit to crop plants.
Collapse
Affiliation(s)
- Matheus Luís Oliveira Cunha
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, 14884-900 Jaboticabal-SP, Brazil
| | - Renato de Mello Prado
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, 14884-900 Jaboticabal-SP, Brazil
| |
Collapse
|
43
|
Raza T, Abbas M, Amna, Imran S, Khan MY, Rebi A, Rafie-Rad Z, Eash NS. Impact of Silicon on Plant Nutrition and Significance of Silicon Mobilizing Bacteria in Agronomic Practices. SILICON 2023; 15:3797-3817. [PMCID: PMC9876760 DOI: 10.1007/s12633-023-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/13/2023] [Indexed: 08/01/2023]
Abstract
Globally, rejuvenation of soil health is a major concern due to the continuous loss of soil fertility and productivity. Soil degradation decreases crop yields and threatens global food security. Improper use of chemical fertilizers coupled with intensive cultivation further reduces both soil health and crop yields. Plants require several nutrients in varying ratios that are essential for the plant to complete a healthy growth and development cycle. Soil, water, and air are the sources of these essential macro- and micro-nutrients needed to complete plant vegetative and reproductive cycles. Among the essential macro-nutrients, nitrogen (N) plays a significant in non-legume species and without sufficient plant access to N lower yields result. While silicon (Si) is the 2nd most abundant element in the Earth’s crust and is the backbone of soil silicate minerals, it is an essential micro-nutrient for some plants. Silicon is just beginning to be recognized as an important micronutrient to some plant species and, while it is quite abundant, Si is often not readily available for plant uptake. The manufacturing cost of synthetic silica-based fertilizers is high, while absorption of silica is quite slow in soil for many plants. Rhizosphere biological weathering processes includes microbial solubilization processes that increase the dissolution of minerals and increases Si availability for plant uptake. Therefore, an important strategy to improve plant silicon uptake could be field application of Si-solubilizing bacteria. In this review, we evaluate the role of Si in seed germination, growth, and morphological development and crop yield under various biotic and abiotic stresses, different pools and fluxes of silicon (Si) in soil, and the bacterial genera of the silicon solubilizing microorganisms. We also elaborate on the detailed mechanisms of Si-solubilizing/mobilizing bacteria involved in silicate dissolution and uptake by a plant in soil. Last, we discuss the potential of silicon and silicon solubilizing/mobilizing to achieve environmentally friendly and sustainable crop production.
Collapse
Affiliation(s)
- Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | | | - Amna
- Department of Plant Sciences, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
| | - Shakeel Imran
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yahya Khan
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ansa Rebi
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Zeinab Rafie-Rad
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Neal S. Eash
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| |
Collapse
|
44
|
Verma KK, Song XP, Li DM, Singh M, Wu JM, Singh RK, Sharma A, Zhang BQ, Li YR. Silicon and soil microorganisms improve rhizospheric soil health with bacterial community, plant growth, performance and yield. PLANT SIGNALING & BEHAVIOR 2022; 17:2104004. [PMID: 35943127 PMCID: PMC9364706 DOI: 10.1080/15592324.2022.2104004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The interaction of silicon and soil microorganisms stimulates crop enhancement to ensure sustainable agriculture. Silicon may potentially increase nutrient availability in rhizosphere with improved plants' growth, development as it does not produce phytotoxicity. The rhizospheric microbiome accommodates a variety of microbial species that live in a small area of soil directly associated with the hidden half plants' system. Plant growth-promoting rhizobacteria (PGPR) play a major role in plant development in response to adverse climatic conditions. PGPRs may enhance the growth, quality, productivity in variety of crops, and mitigate abiotic stresses by reprogramming stress-induced physiological variations in plants via different mechanisms, such as synthesis of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, exopolysaccharides, volatile organic compounds, atmospheric nitrogen fixation, and phosphate solubilization. Our article eye upon interactions of silicon and plant microbes which seems to be an opportunity for sustainable agriculture for series of crops and cropping systems in years to come, essential to safeguard the food security for masses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Dong-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Jian-Ming Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
45
|
Borak B, Gediga K, Piszcz U, Sacała E. Foliar Fertilization by the Sol-Gel Particles Containing Cu and Zn. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:165. [PMID: 36616075 PMCID: PMC9824736 DOI: 10.3390/nano13010165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Silica particles with the size of 150-200 nm containing Ca, P, Cu or Zn ions were synthesized with the sol-gel method and tested as a foliar fertilizer on three plant species: maize Zea mays, wheat Triticum sativum and rape Brassica napus L. var napus growing on two types of soils: neutral and acidic. The aqueous suspensions of the studied particles were sprayed on the chosen leaves and also on the whole tested plants. At a specific stage of plant development determined according to the BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) scale, the leaves and the whole plants were harvested and dried, and the content of Cu and Zn was determined with the AAS (atomic absorption spectroscopy) method. The engineered particles were compared with a water solution of CuSO4 and ZnSO4 (0.1%) used as a conventional fertilizer. In many cases, the copper-containing particles improved the metal supply to plants more effectively than the CuSO4. The zinc-containing particles had less effect on both the growth of plants and the metal concentration in the plants. All the tested particles were not toxic to the examined plants, although some of them caused a slight reduction in plants growth.
Collapse
Affiliation(s)
- Beata Borak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego Str. 25, 50-370 Wroclaw, Poland
| | - Krzysztof Gediga
- Department of Plant Nutrition, Institute of Soil Science, Plant Nutrition and Environmental Protection, The Faculty of Life Sciences and Technology, Grunwaldzka Str. 53, 50-357 Wroclaw, Poland
| | - Urszula Piszcz
- Department of Plant Nutrition, Institute of Soil Science, Plant Nutrition and Environmental Protection, The Faculty of Life Sciences and Technology, Grunwaldzka Str. 53, 50-357 Wroclaw, Poland
| | - Elżbieta Sacała
- Department of Plant Nutrition, Institute of Soil Science, Plant Nutrition and Environmental Protection, The Faculty of Life Sciences and Technology, Grunwaldzka Str. 53, 50-357 Wroclaw, Poland
| |
Collapse
|
46
|
Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient poor grassland ecosystem soils. Sci Rep 2022; 12:12601. [PMID: 35871260 PMCID: PMC9308775 DOI: 10.1038/s41598-022-16949-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Understanding the role of soil microbes and their associated extracellular enzymes in long-term grassland experiments presents an opportunity for testing relevant ecological questions on grassland nutrient dynamics and functioning. Veld fertilizer trials initiated in 1951 in South Africa were used to assess soil functional microbial diversity and their metabolic activities in the nutrient-poor grassland soils. Phosphorus and liming trials used for this specific study comprised of superphosphate (336 kg ha−1) and dolomitic lime (2250 kg ha−1) (P + L), superphosphate (336 kg ha−1) (+ P) and control trials. These soils were analyzed for their nutrient concentrations, pH, total cations and exchange acidity, microflora and extracellular enzyme activities. The analysed soil characteristics showed significant differences except nitrogen (N) and organic carbon (C) concentrations showing no significant differences. P-solubilizing, N-cycling and N-fixing microbial diversity varied among the different soil treatments. β-glucosaminidase enzyme activity was high in control soils compared to P-fertilized and limed soils. Alkaline phosphatase showed increased activity in P-fertilized soils, whereas acid phosphatase showed increased activity in control soils. Therefore, the application of superphosphate and liming influences the relative abundance of bacterial communities with nutrient cycling and fixing functions which account for nutrient bioavailability in acidic and nutrient stressed grassland ecosystem soils.
Collapse
|
47
|
Carvalho LTDS, Prado RDM, Da Silva JLF, Ferreira PM, Antonio RI. Impact of Nanotechnology from Nanosilica to Mitigate N and P Deficiencies Favoring the Sustainable Cultivation of Sugar Beet. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224038. [PMID: 36432323 PMCID: PMC9694533 DOI: 10.3390/nano12224038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/08/2023]
Abstract
This research aimed to study the effects of the nanosilica supply on Si absorption and the physiological and nutritional aspects of beet plants with N and P deficiencies cultivated in a nutrient solution. Two experiments were performed with treatments arranged in a 2 × 2 factorial scheme in randomized blocks with five replications. The first experiment was carried out on plants under a N deficiency and complete (complete solution with all nutrients), combined with the absence of Si (0 mmol L-1) and the presence of Si (2.0 mmol L-1). In the other experiment, the plants were cultivated in a nutrient solution with a P deficiency and complete, combined with the absence (0 mmol L-1) and the presence of Si (2.0 mmol L-1). The beet crop was sensitive to the N and P deficiencies because they sustained important physiological damage. However, using nanosilica via fertigation could reverse the damage. Using nanotechnology from nanosilica constituted a sustainable strategy to mitigate the damage due to a deficiency in the beet crop of the two most limiting nutrients by optimizing the physiological processes, nutritional efficiency, and growth of the plants without environmental risks. The future perspective is the feasibility of nanotechnology for food security.
Collapse
|
48
|
Sut S, Malagoli M, Dall’Acqua S. Foliar Application of Silicon in Vitis vinifera: Targeted Metabolomics Analysis as a Tool to Investigate the Chemical Variations in Berries of Four Grapevine Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:2998. [PMID: 36365453 PMCID: PMC9654429 DOI: 10.3390/plants11212998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Silicon (Si) is a beneficial element for the growth of various crops, but its effect on plant metabolism is still not completely elucidated. Even if Si is not classified as an essential element for plants, the literature has reported its beneficial effects in a variety of species. In this work, the influence of Si foliar application on berry composition was evaluated on four grapevine cultivars. The berries of Teroldego and Oseleta (red grapes) and Garganega and Chardonnay (white grapes) were analyzed after foliar application of silicon by comparing the treated and control groups. A targeted metabolomic approach was used that focused on secondary metabolites, amino acids, sugars, and tartaric acid. Measurements were performed using liquid chromatography coupled with a diode array detector and mass spectrometry (LC-DAD-MSn), a LC-evaporative light scattering detector (ELDS), and LC-MS/MS methods specific for the analysis of each class of constituents. After the data collection, multivariate models, PCA, PLS-DA, OPLS-DA, were elaborated to evaluate the effect of Si application in the treated vs. control samples. Results were different for each grape cultivar. A significant increase in anthocyanins was observed in the Oseleta cultivar, with 0.48 mg g-1 FW in the untreated samples vs. 1.25 mg g-1 FW in the Si-treated samples. In Garganega, Si treatment was correlated with increased proline levels. In Chardonnay, the Si application was related to decreased tartaric acid. The results of this work show for the first time that Si induces cultivar specific changes in the berry composition in plants cultivated without an evident abiotic or biotic stress.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy
| | - Mario Malagoli
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Viale dell’Università 16, 35020 Padova, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy
| |
Collapse
|
49
|
Fallah N, Pang Z, Dong F, Zhou Y, Lin W, Fabrice KMA, Hu C, Yuan Z. Niche differentiation modulates metabolites abundance and composition in silicon fertilizer amended soil during sugarcane growth. BMC PLANT BIOLOGY 2022; 22:497. [PMID: 36280810 PMCID: PMC9590199 DOI: 10.1186/s12870-022-03880-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/10/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND As one of the vital crops globally, sugarcane (Saccharum officinarum L.) has been one of model crops for conducting metabolome research. Although many studies have focused on understanding bioactive components in specific sugarcane tissues, crucial questions have been left unanswered about the response of metabolites to niche differentiation such as different sugarcane tissues (leaf, stem and root), and soil regions (rhizosphere and bulk) under silicon (Si) amended soils. Here, nontargeted metabolite profiling method was leveraged to assess the similarities and differences in the abundance and community composition of metabolites in the different sugarcane and soil compartments. Identify the compartment-specific expression patterns of metabolites, and their association with cane agronomic traits and edaphic factors. We also investigated the response of sugarcane agronomic traits and edaphic factors to Si amended soil. RESULTS We found that Si fertilizer exhibited the advantages of overwhelmingly promoting the height and theoretical production of cane, and profoundly increased soil Si content by 24.8 and 27.0%, while soil available potassium (AK) was enhanced by 3.07 and 2.67 folds in the bulk and rhizosphere soils, respectively. It was also noticed that available phosphorus (AP) in the rhizosphere soil tremendously increased by 105.5%. We detected 339 metabolites in 30 samples using LC-MS/MS analyses, 161 of which were classified and annotated, including organooxygen compounds (19.9%), carboxylic acids and derivatives (15.5%), fatty acyls (15.5%), flavonoids (4.4%), phenols (4.4%), and benzene and substituted derivatives (3.7%). In addition, the total percentages covered by these core metabolites in each compartment ranged from 94.0% (bulk soil) to 93.4% (rhizosphere soil), followed by 87.4% (leaf), 81.0% (root) and 80.5% (stem), suggesting that these bioactive compounds may have migrated from the belowground tissues and gradually filtered in various aboveground niches of the plant. We also observed that the variations and enrichment of metabolites abundance and community were compartment-specific. Furthermore, some key bioactive compounds were markedly associated with plant growth parameters and soil edaphic. CONCLUSION Taken together, we hypothesized that Si utilization can exhibit the advantage of enhancing edaphic factors and cane agronomic traits, and variations in metabolites community are tissue-specific.
Collapse
Affiliation(s)
- Nyumah Fallah
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fei Dong
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongmei Zhou
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kabore Manegdebwaoga Arthur Fabrice
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugar Industry, Nanning, 530000, China.
| |
Collapse
|
50
|
Sun S, Yang Z, Song Z, Wang N, Guo N, Niu J, Liu A, Bai B, Ahammed GJ, Chen S. Silicon enhances plant resistance to Fusarium wilt by promoting antioxidant potential and photosynthetic capacity in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1011859. [PMID: 36311065 PMCID: PMC9608603 DOI: 10.3389/fpls.2022.1011859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 06/07/2023]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Fo), is a severe soil-borne disease affecting cucumber production worldwide, particularly under monocropping in greenhouses. Silicon (Si) plays an important role in improving the resistance of crops to Fusarium wilt, but the underlying mechanism is largely unclear. Here, an in vitro study showed that 3 mmol·l-1 Si had the best inhibitory effect on the mycelial growth of F. oxysporum in potato dextrose agar (PDA) culture for 7 days. Subsequently, the occurrence of cucumber wilt disease and its mechanisms were investigated upon treatments with exogenous silicon under soil culture. The plant height, stem diameter, root length, and root activity under Si+Fo treatment increased significantly by 39.53%, 94.87%, 74.32%, and 95.11% compared with Fo only. Importantly, the control efficiency of Si+Fo was 69.31% compared with that of Fo treatment. Compared with Fo, the activities of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) significantly increased by 148.92%, 26.47%, and 58.54%, while the contents of H2O2, O 2 · - , and malondialdehyde (MDA) notably decreased by 21.67%, 59.67%, and 38.701%, respectively, in roots of cucumber plants treated with Si + Fo. Compared with Fo treatment, the net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum RuBisCO carboxylation rates (Vcmax), maximum RuBP regeneration rates (Jmax), and activities of ribulose-1,5-bisphosphate carboxylase (RuBisCO), fructose-1,6-bisphosphatase (FBPase), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the expression of FBPA, TPI, SBPase, and FBPase in Si+Fo treatment increased significantly. Furthermore, Si alleviated stomatal closure and enhanced endogenous silicon content compared with only Fo inoculation. The study results suggest that exogenous silicon application improves cucumber resistance to Fusarium wilt by stimulating the antioxidant system, photosynthetic capacity, and stomatal movement in cucumber leaves. This study brings new insights into the potential of Si application in boosting cucumber resistance against Fusarium wilt with a bright prospect for Si use in cucumber production under greenhouse conditions.
Collapse
Affiliation(s)
- Shuangsheng Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhengkun Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiyu Song
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Nannan Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ning Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Jinghan Niu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Bing Bai
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, China
- Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang, China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, China
- Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang, China
| |
Collapse
|