1
|
Jwa NS, Hwang BK. Ferroptosis in plant immunity. PLANT COMMUNICATIONS 2025; 6:101299. [PMID: 40057824 DOI: 10.1016/j.xplc.2025.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/13/2025]
Abstract
Plant cell death is mediated by calcium, iron, and reactive oxygen species (ROS) signaling in plant immunity. The reconstruction of a nucleotide-binding leucine-rich-repeat receptor (NLR) supramolecular structure, called the resistosome, is intimately involved in the hypersensitive response (HR), a type of cell death involved in effector-triggered immunity (ETI). Iron is a crucial redox catalyst in various cellular reactions. Ferroptosis is a regulated, non-apoptotic form of iron- and ROS-dependent cell death in plants. Pathogen infections trigger iron accumulation and ROS bursts in plant cells, leading to lipid peroxidation via the Fenton reaction and subsequent ferroptosis in plant cells similar to that in mammalian cells. The small-molecule inducer erastin triggers iron-dependent lipid ROS accumulation and glutathione depletion, leading to HR cell death in plant immunity. Calcium (Ca2+) is another major mediator of plant immunity. Cytoplasmic Ca2+ influx through calcium-permeable channels, the resistosomes, mediates iron- and ROS-dependent ferroptotic cell death under reduced glutathione reductase (GR) expression levels in the ETI response. Acibenzolar-S-methyl (ASM), a plant defense activator, enhances Ca2+ influx, ROS and iron accumulation, and lipid peroxidation to trigger ferroptotic cell death. These breakthroughs suggest a potential role for Ca2+ signaling in ferroptosis and its coordination with iron and ROS signaling in plant immunity. In this review, we highlight the essential roles of calcium, iron, and ROS signaling in ferroptosis during plant immunity and discuss advances in the understanding of how Ca2+-mediated ferroptotic cell death orchestrates effective plant immune responses against invading pathogens.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea.
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
2
|
Wang W, Zhang X, Zhang Y, Zhang Z, Yang C, Cao W, Liang Y, Zhou Q, Hu Q, Zhang Y, Wang Y, Xing Y, Qian W, Yao N, Xu N, Liu J. Single-Cell and Spatial Transcriptomics Reveals a Stereoscopic Response of Rice Leaf Cells to Magnaporthe oryzae Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416846. [PMID: 40123572 PMCID: PMC12097076 DOI: 10.1002/advs.202416846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Infection by the fungal pathogen Magnaporthe oryzae elicits dynamic responses in rice. Utilizing an integrated approach of single-cell and spatial transcriptomics, a 3D response is uncovered within rice leaf cells to M. oryzae infection. A comprehensive rice leaf atlas is constructed from 236 708 single-cell transcriptomes, revealing heightened expression of immune receptors, namely Pattern Recognition Receptors (PRRs) and Nucleotide-binding site and leucine-rich repeat (NLRs) proteins, within vascular tissues. Diterpene phytoalexins biosynthesis genes are dramatically upregulated in procambium cells, leading to an accumulation of these phytoalexins within vascular bundles. Consistent with these findings, microscopic observations confirmed that M. oryzae is prone to target leaf veins for invasion, yet is unable to colonize further within vascular tissues. Following fungal infection, basal defenses are extensively activated in rice cells, as inferred from trajectory analyses. The spatial transcriptomics reveals that rice leaf tissues toward leaf tips display stronger immunity. Characterization of the polarity gene OsHKT9 suggests that potassium transport plays a critical role in resisting M. oryzae infection by expression along the longitudinal axis, where the immunity is stronger toward leaf tip. This work uncovers that there is a cell-specific and multi-dimensional (local and longitudinal) immune response to a fungal pathogen infection.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Xianyu Zhang
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Yong Zhang
- School of Computer ScienceNorthwestern Polytechnical UniversityXi'an710129China
| | | | - Chang Yang
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Wen Cao
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Yuqin Liang
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Qinzheng Zhou
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Qian Hu
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Yimai Zhang
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Yu Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovation Academy for Seed DesignChinese Academy of SciencesBeijing100101China
| | - Yingying Xing
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Wenfeng Qian
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovation Academy for Seed DesignChinese Academy of SciencesBeijing100101China
| | - Nan Yao
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Ning Xu
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Jun Liu
- State Key Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| |
Collapse
|
3
|
Ren N, Zhang G, Yang X, Chen J, Ni L, Jiang M. MAPKKK28 functions upstream of the MKK1-MPK1 cascade to regulate abscisic acid responses in rice. PLANT, CELL & ENVIRONMENT 2024; 47:5140-5157. [PMID: 39166350 DOI: 10.1111/pce.15095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
The mitogen-activated protein kinase (MAPK) cascade (MAPKKK-MAPKK-MAPK) plays a critical role in biotic and abiotic stress responses and abscisic acid (ABA) signalling. A previous study has shown that the ABA-activated MKK1-MPK1 cascade is essential in regulating ABA response and stress tolerance in rice. However, the specific MAPKKK upstream of the MKK1-MPK1 cascade in ABA signalling remains unknown. Here, we identified that MAPKKK28, a previously uncharacterized member of the rice MEKK family, is involved in regulating ABA responses, including seed germination, root growth, stomatal closure, and the tolerance to oxidative stress and osmotic stress. We found that MAPKKK28 directly interacts with and phosphorylates MKK1. Further analysis indicated that the activation of both MKK1 and MPK1 depends on MAPKKK28 in ABA signalling. Genetic analysis revealed that MAPKKK28 functions upstream of the MKK1-MPK1 cascade to positively regulate ABA responses and enhance tolerance to oxidative and osmotic stress. These results not only reveal a new complete MAPK cascade in plants but also uncover its importance in ABA signalling.
Collapse
Affiliation(s)
- Ning Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaokun Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lan Ni
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Wang J, Nguyen NK, Liu D, Jwa NS. Mitogen-Activated Protein Kinase Kinase OsMEK2 Positively Regulates Ca 2+ Influx and Ferroptotic Cell Death during Rice Immune Responses. Antioxidants (Basel) 2024; 13:1013. [PMID: 39199257 PMCID: PMC11351908 DOI: 10.3390/antiox13081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Mitogen-activated protein (MAP) kinase (MAPK) signaling pathway is important in plant immune responses, involved in iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death mediated by Ca2+. High Ca2+ influx triggered iron-dependent ROS accumulation, lipid peroxidation, and subsequent hypersensitive response (HR) cell death in rice (Oryza sativa). Apoplastic Ca2+ chelation by EGTA during avirulent Magnaporthe oryzae infection altered Ca2+, ROS, and Fe2+ accumulation, increasing rice susceptibility to infection. By contrast, acibenzolar-S-methyl (ASM), a plant defense activator, significantly enhanced Ca2+ influx, and H2O2 accumulation, triggering rice ferroptotic cell death during virulent Magnaporthe oryzae infection. Here, we report a novel role of the MAPK signaling pathway in regulating cytoplasmic Ca2+ increase during ferroptotic cell death in rice immunity, using the ΔOsmek2 knockout mutant rice. The knockout of rice OsMEK2 impaired the ROS accumulation, lipid peroxidation, and iron accumulation during avirulent M. oryzae infection. This study has shown that OsMEK2 could positively regulate iron- and ROS-dependent ferroptotic cell death in rice by modulating the expression of OsNADP-ME, OsRBOHB, OsPLC, and OsCNGC. This modulation indicates a possible mechanism for how OsMEK2 participates in Ca2+ regulation in rice ferroptotic cell death, suggesting its broader role in plant immune responses in response to M. oryzae infection.
Collapse
Affiliation(s)
| | | | | | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea; (J.W.); (N.K.N.); (D.L.)
| |
Collapse
|
5
|
Wang J, Choi WG, Nguyen NK, Liu D, Kim SH, Lim D, Hwang BK, Jwa NS. Cytoplasmic Ca 2+ influx mediates iron- and reactive oxygen species-dependent ferroptotic cell death in rice immunity. FRONTIERS IN PLANT SCIENCE 2024; 15:1339559. [PMID: 38756966 PMCID: PMC11096502 DOI: 10.3389/fpls.2024.1339559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Iron- and reactive oxygen species (ROS)-dependent ferroptosis occurs in plant cells. Ca2+ acts as a conserved key mediator to control plant immune responses. Here, we report a novel role of cytoplasmic Ca2+ influx regulating ferroptotic cell death in rice immunity using pharmacological approaches. High Ca2+ influx triggered iron-dependent ROS accumulation, lipid peroxidation, and subsequent hypersensitive response (HR) cell death in rice (Oryza sativa). During Magnaporthe oryzae infection, 14 different Ca2+ influx regulators altered Ca2+, ROS and Fe2+ accumulation, glutathione reductase (GR) expression, glutathione (GSH) depletion and lipid peroxidation, leading to ferroptotic cell death in rice. High Ca2+ levels inhibited the reduction of glutathione isulphide (GSSG) to GSH in vitro. Ca2+ chelation by ethylene glycol-bis (2-aminoethylether)-N, N, N', N'-tetra-acetic acid (EGTA) suppressed apoplastic Ca2+ influx in rice leaf sheaths during infection. Blocking apoplastic Ca2+ influx into the cytoplasm by Ca2+ chelation effectively suppressed Ca2+-mediated iron-dependent ROS accumulation and ferroptotic cell death. By contrast, acibenzolar-S-methyl (ASM), a plant defense activator, significantly enhanced Ca2+ influx, as well as ROS and iron accumulation to trigger ferroptotic cell death in rice. The cytoplasmic Ca2+ influx through calcium-permeable cation channels, including the putative resistosomes, could mediate iron- and ROS-dependent ferroptotic cell death under reduced GR expression levels in rice immune responses.
Collapse
Affiliation(s)
- Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Dongping Liu
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Dongyeol Lim
- Department of Chemistry, College of Natural Sciences, Sejong University, Seoul, Republic of Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Ma D, Xu J, Wu M, Zhang R, Hu Z, Ji CA, Wang Y, Zhang Z, Yu R, Liu X, Yang L, Li G, Shen D, Liu M, Yang Z, Zhang H, Wang P, Zhang Z. Phenazine biosynthesis protein MoPhzF regulates appressorium formation and host infection through canonical metabolic and noncanonical signaling function in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2024; 242:211-230. [PMID: 38326975 PMCID: PMC10940222 DOI: 10.1111/nph.19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M. oryzae produces PCA or it has any other functions remains unknown. Here, we found that the MoPHZF gene encodes the phenazine biosynthesis protein MoPhzF, synthesizes PCA in M. oryzae, and regulates appressorium formation and host virulence. MoPhzF is likely acquired through an ancient horizontal gene transfer event and has a canonical function in PCA synthesis. In addition, we found that PCA has a role in suppressing the accumulation of host-derived reactive oxygen species (ROS) during infection. Further examination indicated that MoPhzF recruits both the endoplasmic reticulum membrane protein MoEmc2 and the regulator of G-protein signaling MoRgs1 to the plasma membrane (PM) for MoRgs1 phosphorylation, which is a critical regulatory mechanism in appressorium formation and pathogenicity. Collectively, our studies unveiled a canonical function of MoPhzF in PCA synthesis and a noncanonical signaling function in promoting appressorium formation and host infection.
Collapse
Affiliation(s)
- Danying Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiming Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang-an Ji
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Wu PC, Choo YL, Wei SY, Yago JI, Chung KR. Contribution of Autophagy to Cellular Iron Homeostasis and Stress Adaptation in Alternaria alternata. Int J Mol Sci 2024; 25:1123. [PMID: 38256200 PMCID: PMC10816921 DOI: 10.3390/ijms25021123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The tangerine pathotype of Alternaria alternata produces the Alternaria citri toxin (ACT), which elicits a host immune response characterized by the increase in harmful reactive oxygen species (ROS) production. ROS detoxification in A. alternata relies on the degradation of peroxisomes through autophagy and iron acquisition using siderophores. In this study, we investigated the role of autophagy in regulating siderophore and iron homeostasis in A. alternata. Our results showed that autophagy positively influences siderophore production and iron uptake. The A. alternata strains deficient in autophagy-related genes 1 and 8 (ΔAaatg1 and ΔAaatg8) could not thrive without iron, and their adaptability to high-iron environments was also reduced. Furthermore, the ability of autophagy-deficient strains to withstand ROS was compromised. Notably, autophagy deficiency significantly reduced the production of dimerumic acid (DMA), a siderophore in A. alternata, which may contribute to ROS detoxification. Compared to the wild-type strain, ΔAaatg8 was defective in cellular iron balances. We also observed iron-induced autophagy and lipid peroxidation in A. alternata. To summarize, our study indicates that autophagy and maintaining iron homeostasis are interconnected and contribute to the stress resistance and the virulence of A. alternata. These results provide new insights into the complex interplay connecting autophagy, iron metabolism, and fungal pathogenesis in A. alternata.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| | - Yen-Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| | - Sian-Yong Wei
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| | - Jonar I. Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong 3700, Philippines;
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| |
Collapse
|
8
|
Manna M, Rengasamy B, Sinha AK. Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37157977 DOI: 10.1111/pce.14606] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important signalling event associated with every aspect of plant growth, development, yield, abiotic and biotic stress adaptation. Being a central metabolic pathway, it is a vital target for manipulation for crop improvement. In this review, we have summarised recent advancements in understanding involvement of MAPK signalling in modulating abiotic and biotic stress tolerance, architecture and yield of plants. MAPK signalling cross talks with reactive oxygen species (ROS) and abscisic acid (ABA) signalling events in bringing about abiotic stress adaptation in plants. The intricate involvement of MAPK pathway with plant's pathogen defence ability has also been identified. Further, recent research findings point towards participation of MAPK signalling in shaping plant architecture and yield. These make MAPK pathway an important target for crop improvement and we discuss here various strategies to tweak MAPK signalling components for designing future crops with improved physiology and phenotypes.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
9
|
ROS-dependent cell death of Heterosigma akashiwo induced by algicidal bacterium Hahella sp. KA22. Mar Genomics 2023; 69:101027. [PMID: 36921441 DOI: 10.1016/j.margen.2023.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Marine algicidal bacteria and their metabolites are considered to be one of the most effective strategies to mitigate the harmful algal blooms (HABs). The bacterium Hahella sp. KA22 has previously been confirmed to have strong algicidal activity against the HABs causing microalgae, Heterosigma akashiwo. In this study, the molecular mechanism of microalgae cell death was detected. The results showed that the cell growth rate and photosynthetic efficiency were inhibited with addition of algicidal strain KA22, while the accumulation of reactive oxygen species (ROS) and oxidative damage in H. akashiwo cells increased. A total of 2056 unigenes were recognized to be differentially expressed in transcriptome sequences. In particular, the transcriptional levels of light-harvesting pigments and structural proteins in the oxygen-evolving-complex were continuously down-regulated, corresponding to the significant reduction of photosynthetic efficiency and the accumulation of ROS. Furthermore, glutamate dehydrogenase was significantly up-regulated in abundance. Meanwhile, calcium-dependent protein kinases were also detected with significant changes. Collectively, algicidal stress caused the suppressed electron transfer in chloroplast and impaired detoxification of intracellular oxidants by glutathione, which may subsequently result in multiple cell regulation and metabolic responses and ultimately lead to the ROS-dependent cell death of H. akashiwo.
Collapse
|
10
|
Gao J, Wang Q, Tang YD, Zhai J, Hu W, Zheng C. When ferroptosis meets pathogenic infections. Trends Microbiol 2022; 31:468-479. [PMID: 36496309 DOI: 10.1016/j.tim.2022.11.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Apoptosis, necrosis, or autophagy are diverse types of regulated cell death (RCD), recognized as the strategies that host cells use to defend against pathogens such as viruses, bacteria, or fungi. Pathogens can induce or block different types of host cell RCD, promoting propagation or evading host immune surveillance. Ferroptosis is a newly identified RCD. Evidence has demonstrated how pathogens regulate ferroptosis to promote their replication, dissemination, and pathogenesis. However, the interaction between ferroptosis and pathogenic infections still needs to be completely elucidated. This review summarizes the advances in the interaction between pathogenic infections and host ferroptotic processes, focusing on the underlying mechanisms of how pathogens exploit ferroptosis, and discussing possible therapeutic measures against pathogen-associated diseases in a ferroptosis-dependent manner.
Collapse
|
11
|
Nguyen NK, Wang J, Liu D, Hwang BK, Jwa NS. Rice iron storage protein ferritin 2 (OsFER2) positively regulates ferroptotic cell death and defense responses against Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1019669. [PMID: 36352872 PMCID: PMC9639352 DOI: 10.3389/fpls.2022.1019669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ferritin is a ubiquitous iron storage protein that regulates iron homeostasis and oxidative stress in plants. Iron plays an important role in ferroptotic cell death response of rice (Oryza sativa) to Magnaporthe oryzae infection. Here, we report that rice ferritin 2, OsFER2, is required for iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death and defense response against the avirulent M. oryzae INA168. The full-length ferritin OsFER2 and its transit peptide were localized to the chloroplast, the most Fe-rich organelle for photosynthesis. This suggests that the transit peptide acts as a signal peptide for the rice ferritin OsFER2 to move into chloroplasts. OsFER2 expression is involved in rice resistance to M. oryzae infection. OsFER2 knock-out in wild-type rice HY did not induce ROS and ferric ion (Fe3+) accumulation, lipid peroxidation and hypersensitive response (HR) cell death, and also downregulated the defense-related genes OsPAL1, OsPR1-b, OsRbohB, OsNADP-ME2-3, OsMEK2 and OsMPK1, and vacuolar membrane transporter OsVIT2 expression. OsFER2 complementation in ΔOsfer2 knock-out mutants restored ROS and iron accumulation and HR cell death phenotypes during infection. The iron chelator deferoxamine, the lipid-ROS scavenger ferrostatin-1, the actin microfilament polymerization inhibitor cytochalasin E and the redox inhibitor diphenyleneiodonium suppressed ROS and iron accumulation and HR cell death in rice leaf sheaths. However, the small-molecule inducer erastin did not trigger iron-dependent ROS accumulation and HR cell death induction in ΔOsfer2 mutants. These combined results suggest that OsFER2 expression positively regulates iron- and ROS-dependent ferroptotic cell death and defense response in rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Dongping Liu
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| |
Collapse
|
12
|
Liang M, Dong L, Deng YZ. Circadian Redox Rhythm in Plant-Fungal Pathogen Interactions. Antioxid Redox Signal 2022; 37:726-738. [PMID: 35044223 DOI: 10.1089/ars.2021.0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: Circadian-controlled cellular growth, differentiation, and metabolism are mainly achieved by a classical transcriptional-translational feedback loop (TTFL), as revealed by investigations in animals, plants, and fungi. Recent Advances: Recently, reactive oxygen species (ROS) have been reported as part of a cellular network synchronizing nontranscriptional oscillators with established TTFL components, adding complexity to regulatory mechanisms of circadian rhythm. Both circadian rhythm and ROS homeostasis have a great impact on plant immunity as well as fungal pathogenicity, therefore interconnections of these two factors are implicit in plant-fungus interactions. Critical Issues: In this review, we aim to summarize the recent advances in circadian-controlled ROS homeostasis, or ROS-modulated circadian clock, in plant-fungus pathosystems, particularly using the rice (Oryza sativa) blast fungus (Magnaporthe oryzae) pathosystem as an example. Understanding of such bidirectional interaction between the circadian timekeeping machinery and ROS homeostasis/signaling would provide a theoretical basis for developing disease control strategies for important plants/crops. Future Directions: Questions remain unanswered about the detailed mechanisms underlying circadian regulation of redox homeostasis in M. oryzae, and the consequent fungal differentiation and death in a time-of-day manner. We believe that the rice-M. oryzae pathobiosystem would provide an excellent platform for investigating such issues in circadian-ROS interconnections in a plant-fungus interaction context. Antioxid. Redox Signal. 37, 726-738.
Collapse
Affiliation(s)
- Meiling Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lihong Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Thakur M, Chandel A, Guleria S, Verma V, Kumar R, Singh G, Rakwal A, Sharma D, Bhargava B. Synergistic effect of graphene oxide and silver nanoparticles as biostimulant improves the postharvest life of cut flower bird of paradise (Strelitzia reginae L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1006168. [PMID: 36247595 PMCID: PMC9560765 DOI: 10.3389/fpls.2022.1006168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The bird of paradise (Strelitzia reginae L.) is one of the important tropical cut flowers. Generally, flowers like bird of paradise (BOP) grown for the commercial ornamental market must be of high pre and postharvest quality. Thus, to improve the postharvest longevity and increase marketability, the relative efficacy of two different biologically synthesized nanoparticles (NPs) was evaluated. The novel proprietary stimulants were graphene oxide (GO) and silver nanoparticles (SNPs). The NP treatments were applied as a vase (lower concentrations) solutions. Among all the applied treatments, the synergistic effect of GO + SNPs at 1 µL L-1 vase solution significantly (p =0.05) prolongs the post-harvest life of cut flowers of BOP. Increased vase life over the deionized water (DI) control was associated with better maintenance of relative water uptake, relative fresh weight, suppressed microbial density at stem-end and delay of stem blockage, reduced electrolyte leakage, malondialdehyde (MDA), SOD, and POD activity. In contrast to control, administration of NPs gave better results for all analyzed parameters. Application of biologically synthesized NPs in combination (GO + SNPs at 1 µL L-1) extended the vase life of cut flowers by 6 days compared with control flowers, and overall, showed better results than the control. The findings of the studies revealed that the standardized NPs could have more potential in prolonging the postharvest life of cut flowers in BOP. Thus, this technique can be used as a novel postharvest technology for commercial application in cut flowers.
Collapse
Affiliation(s)
- Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Institute of Himalayan Bioresource Technology-Council of Scientific and Industrial Research, Palampur (HP), India
| | - Anjali Chandel
- Floriculture Laboratory, Agrotechnology Division, Institute of Himalayan Bioresource Technology-Council of Scientific and Industrial Research, Palampur (HP), India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Shweta Guleria
- Biotechnology Division, Institute of Himalayan Bioresource Technology-Council of Scientific and Industrial Research, Palampur (HP), India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Institute of Himalayan Bioresource Technology-Council of Scientific and Industrial Research, Palampur (HP), India
| | - Raghawendra Kumar
- Floriculture Laboratory, Agrotechnology Division, Institute of Himalayan Bioresource Technology-Council of Scientific and Industrial Research, Palampur (HP), India
| | - Gurpreet Singh
- Floriculture Laboratory, Agrotechnology Division, Institute of Himalayan Bioresource Technology-Council of Scientific and Industrial Research, Palampur (HP), India
| | - Anjali Rakwal
- Floriculture Laboratory, Agrotechnology Division, Institute of Himalayan Bioresource Technology-Council of Scientific and Industrial Research, Palampur (HP), India
| | - Diksha Sharma
- Floriculture Laboratory, Agrotechnology Division, Institute of Himalayan Bioresource Technology-Council of Scientific and Industrial Research, Palampur (HP), India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Institute of Himalayan Bioresource Technology-Council of Scientific and Industrial Research, Palampur (HP), India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Chen Y, Wang J, Nguyen NK, Hwang BK, Jwa NS. The NIN-Like Protein OsNLP2 Negatively Regulates Ferroptotic Cell Death and Immune Responses to Magnaporthe oryzae in Rice. Antioxidants (Basel) 2022; 11:antiox11091795. [PMID: 36139868 PMCID: PMC9495739 DOI: 10.3390/antiox11091795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Nodule inception (NIN)-like proteins (NLPs) have a central role in nitrate signaling to mediate plant growth and development. Here, we report that OsNLP2 negatively regulates ferroptotic cell death and immune responses in rice during Magnaporthe oryzae infection. OsNLP2 was localized to the plant cell nucleus, suggesting that it acts as a transcription factor. OsNLP2 expression was involved in susceptible disease development. ΔOsnlp2 knockout mutants exhibited reactive oxygen species (ROS) and iron-dependent ferroptotic hypersensitive response (HR) cell death in response to M. oryzae. Treatments with the iron chelator deferoxamine, lipid-ROS scavenger ferrostatin-1, actin polymerization inhibitor cytochalasin A, and NADPH oxidase inhibitor diphenyleneiodonium suppressed the accumulation of ROS and ferric ions, lipid peroxidation, and HR cell death, which ultimately led to successful M. oryzae colonization in ΔOsnlp2 mutants. The loss-of-function of OsNLP2 triggered the expression of defense-related genes including OsPBZ1, OsPIP-3A, OsWRKY104, and OsRbohB in ΔOsnlp2 mutants. ΔOsnlp2 mutants exhibited broad-spectrum, nonspecific resistance to diverse M. oryzae strains. These combined results suggest that OsNLP2 acts as a negative regulator of ferroptotic HR cell death and defense responses in rice, and may be a valuable gene source for molecular breeding of rice with broad-spectrum resistance to blast disease.
Collapse
Affiliation(s)
- Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 06213, Korea
| | - Nam Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- Correspondence:
| |
Collapse
|
15
|
Ferroptosis in plants: regulation of lipid peroxidation and redox status. Biochem J 2022; 479:857-866. [PMID: 35438135 DOI: 10.1042/bcj20210682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Regulated cell death (RCD) is an essential process that plays key roles along the plant life cycle. Unlike accidental cell death, which is an uncontrolled biological process, RCD involves integrated signaling cascades and precise molecular-mediated mechanisms that are triggered in response to specific exogenous or endogenous stimuli. Ferroptosis is a cell death pathway characterized by the iron-dependent accumulation of lipid reactive oxygen species. Although first described in animals, ferroptosis in plants shares all the main core mechanisms observed for ferroptosis in other systems. In plants as in animals, oxidant and antioxidant systems outline the process of lipid peroxidation during ferroptosis. In plants, cellular compartments such as mitochondria, chloroplasts and cytosol act cooperatively and coordinately to respond to changing redox environments. This particular context makes plants a unique model to study redox status regulation and cell death. In this review, we focus on our most recent understanding of the regulation of redox state and lipid peroxidation in plants and their role during ferroptosis.
Collapse
|
16
|
Mitogen-Activated Protein Kinase and Substrate Identification in Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23052744. [PMID: 35269886 PMCID: PMC8911294 DOI: 10.3390/ijms23052744] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense response. However, the molecular mechanisms underlying MAPK cascades are still very elusive, largely because of our poor understanding of how they relay the signals. The MAPK cascade is composed of MAPK, MAPKK, and MAPKKK. They transfer signals through the phosphorylation of MAPKKK, MAPKK, and MAPK in turn. MAPKs are organized into a complex network for efficient transmission of specific stimuli. This review summarizes the research progress in recent years on the classification and functions of MAPK cascades under various conditions in plants, especially the research status and general methods available for identifying MAPK substrates, and provides suggestions for future research directions.
Collapse
|
17
|
Ni L, Yuan C, Wu X. Targeting ferroptosis in acute kidney injury. Cell Death Dis 2022; 13:182. [PMID: 35210424 PMCID: PMC8873203 DOI: 10.1038/s41419-022-04628-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022]
Abstract
AbstractAcute kidney injury (AKI) is a major public health problem with high incidence and mortality. As a form of programmed cell death (PCD), ferroptosis could be considered as a process of iron accumulation and enhanced lipid peroxidation. Recently, the fundamental roles of ferroptosis in AKI have attracted much attention. The network mechanism of ferroptosis in AKI and its roles in the AKI to chronic kidney disease (CKD) transition is complicated and multifactorial. Strategies targeting ferroptosis show great potential. Here, we review the research progress on ferroptosis and its participation in AKI. We hope that this work will provide clues for further studies of ferroptosis in AKI.
Collapse
|