1
|
Duong KE, Lu JY, Wang S, Duong TQ. Incidence and risk factors of new clinical disorders in patients with COVID-19 hyperinflammatory syndrome. Sci Rep 2025; 15:19892. [PMID: 40481056 PMCID: PMC12144132 DOI: 10.1038/s41598-025-04070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 05/24/2025] [Indexed: 06/11/2025] Open
Abstract
This study investigated new incident clinical disorders in patients with COVID-19-related hyperinflammatory syndrome (cHIS) 3.5 years post infection. We analyzed 14,335 patients hospitalized with COVID-19 from March-2020 to July-2023. cHIS was defined based on a point system that included elevated body temperature, macrophage activation, hematological dysfunction, coagulopathy, and hepatic enzyme. Outcomes were newly diagnosed disorders of hypertension, diabetes, cardiovascular diseases, chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), and asthma post COVID-19. Cumulative incidences and hazard ratios were computed. Compared to non-cHIS patients, cHIS patients were older, fewer female, more Blacks, higher prevalence of pre-existing comorbidities. Patients with cHIS had higher risk of developing cardiovascular disease (HR = 1.24 [1.04,1.47] p < 0.05), CKD (1.24 [1.01, 1.53] p < 0.05), and obesity (1.61 [1.31,1.98], p < 0.001) but not hypertension, diabetes, COPD, and asthma. Cumulative incidence analysis showed that patients ≥ 50 years old showed markedly higher new incidences of individual new disorders compared to patients < 50 years old. COVID-19 related hyperinflammatory syndrome confers a significantly higher risk for developing new common clinical disorders. Identifying risks for developing new clinical disorders in patients with COVID-19 related hyperinflammatory syndrome may encourage diligent follow-up of high-risk individuals.
Collapse
Affiliation(s)
- Kevin E Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Justin Y Lu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Stephen Wang
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
- Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
2
|
Bastin A, Netticadan T, Abbasi F, Rahimi N, Mahmoodi M, Alizadeh M, Movahed A, Momeni-Moghaddam MA. Effects of resveratrol on inflammatory cytokines in COVID-19 patients: a randomized, double-blinded, placebo-controlled clinical trial. Mol Cell Biochem 2025:10.1007/s11010-025-05290-3. [PMID: 40301181 DOI: 10.1007/s11010-025-05290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/08/2025] [Indexed: 05/01/2025]
Abstract
Studies show that the clinical symptoms of Coronavirus disease 2019 (COVID-19) are significantly reduced by treatment with medicinal plants, including plants with strong anti-inflammatory and antioxidant properties. The use of herbal medicines and supplements is considered to be suitable due to relatively mild side effects. Resveratrol is one of the most potent plant compounds found in both medicinal and non-medicinal plants, and it has strong anti-inflammatory and antioxidant properties. Therefore, the aim of the double-blind clinical study was to investigate the effects of resveratrol consumption on biochemical markers, hematological parameters, and some inflammatory cytokines in patients with COVID-19. METHODS A total of 44 patients with COVID-19 were randomly assigned to receive 750 mg/day of resveratrol (n = 24) orally or placebo (n = 20) for 10 days. A permuted block randomized design (block size two) was used for randomization. The biochemical markers, hematological parameters, and plasma levels of Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Interleukin-10 (IL-10), and Tumor necrosis factor-alpha (TNF-α) cytokines were measured at baseline and after 10 days. RESULTS We observed a statistically significant reduction in the C-reactive protein (CRP) (P = 0.041), Fasting blood sugar (FBS) (P = 0.002), Alkaline phosphatase (ALP) (P = 0.034), IL-1β (P = 0.011), TNF-α (P = 0.001), and White blood cell (WBC) (P = 0.043), Platelet count (PLT) (P = 0.042), Neutrophils (NUT) (P = 0.015) and an increase in Lymphocyte (LYM) (P = 0.010) in the resveratrol treated group when compared with the placebo group. CONCLUSION The present study demonstrated that resveratrol as an herbal supplement may be useful in reducing markers of inflammation, neutrophils, and low platelet count, as well as lowering blood glucose levels in patients with COVID-19. The trial was prospectively registered at IRCT.ir as IRCT20111119008129N13. Registration date: 2022-10-11.
Collapse
Affiliation(s)
- Alireza Bastin
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Thomas Netticadan
- Canadian Centre for Agri-Food Research in Health and Medicine, Agriculture and Agri-Food Canada, Winnipeg, MB R2H 2A6, Canada
| | - Fatemeh Abbasi
- Department of Infectious Disease, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Naseeb Rahimi
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Marzieh Mahmoodi
- Department of Biostatistics and Epidemiology, Addiction and Lifestyle Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Movahed
- Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mohammad Amin Momeni-Moghaddam
- Department of Nutrition and Biochemistry, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| |
Collapse
|
3
|
Wang M, Ma X, He J, Sun J, Cai F, Liu C, Duan J. Characterizing the impact of podophyllotoxin on pulmonary toxicity and gut-lung microbiota interactions in SD rats based on TEC concept. Microbiol Spectr 2025:e0165324. [PMID: 40277406 DOI: 10.1128/spectrum.01653-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/19/2025] [Indexed: 04/26/2025] Open
Abstract
Podophyllotoxin (PPT), an extract from the traditional medicinal plant Dysosma, offers anti-viral and anti-cancer benefits, though its use is limited by toxicity. The mechanisms of PPT's inherent pulmonary toxicity remain elusive. This study leverages the novel "Toxicological Evidence Chain" theory to explore the potential involvement of the "gut-lung axis" in PPT-induced pulmonary toxicity. In this study, we examined injury phenotypes in rats, evaluated pulmonary pathological changes, measured pro-inflammatory factors, and conducted comprehensive analyses of both pulmonary and gut microbiomes and metabolomics. Our findings indicate that exposure to PPT leads to significant pulmonary damage in these animals. The PPT group exhibited significantly elevated levels of total protein, albumin, alkaline phosphatase, and lactate dehydrogenase in bronchoalveolar lavage fluid, accompanied by marked upregulation of interleukin (IL)-18, tumor necrosis factor-alpha, IL-6, and IL-1β expression in lung tissue. Furthermore, 16S rRNA gene sequencing analysis revealed significant increases of Akkermansia, Escherichia-Shigella, and Bacteroides in both intestinal contents and lung tissue of PPT-treated animals, concomitant with notable elevations in short-chain fatty acids (SCFAs) such as isobutyric acid and isovaleric acid, and reductions in acetic acid, propionic acid, and butyric acid. The increased abundance of Akkermansia and Escherichia-Shigella may enhance pulmonary inflammatory factors through effects on intestinal barrier integrity and direct immune stimulation, while elevated Bacteroides may alter SCFA production, exacerbating pulmonary inflammation under PPT treatment, suggesting a potential role in the manifestation of PPT-induced pulmonary toxicity. This study offers new insights into the mechanisms of PPT-induced pulmonary toxicity, highlights the role of the gut-lung axis, and provides avenues for therapeutic intervention. IMPORTANCE PPT, derived from the medicinal plant Dysosma, is known for its anti-cancer and anti-viral properties but limited by severe pulmonary toxicity. This study illuminates the gut-lung microbiota axis's role in mediating this toxicity, revealing how specific microbial and metabolic alterations contribute to lung damage. By uncovering these mechanisms, our research opens avenues for interventions that could mitigate PPT's side effects, potentially enhancing its safety and widening its therapeutic use.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, , Luoyang, China
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, , Luoyang, China
| | - Junjie He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaxing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, , Luoyang, China
| | - Feng Cai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Chuanxin Liu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, , Luoyang, China
| | - Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, , Luoyang, China
| |
Collapse
|
4
|
Ahmadi Badi S, Kariman A, Bereimipour A, Shojaie S, Aghsadeghi M, Khatami S, Masotti A. Association Between Altered Microbiota Composition and Immune System-Related Genes in COVID-19 Infection. Mol Biotechnol 2025; 67:957-973. [PMID: 38456962 DOI: 10.1007/s12033-024-01096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024]
Abstract
Microbiota and immunity affect the host's susceptibility to SARS-CoV-2 infection and the severity of COVID-19. This study aimed to identify significant alterations in the microbiota composition, immune signaling pathways, their potential association, and candidate microRNA in COVID-19 patients using an in silico study model. Enrichment online databases and Python programming were utilized to analyze GSE164805, GSE180594, and GSE182279, as well as NGS data of microbiota composition (PRJNA650244 and PRJNA660302) associated with COVID-19, employing amplicon-based/marker gene sequencing methods. C1, TNF, C2, IL1, and CFH genes were found to have a significant impact on immune signaling pathways. Additionally, we observed a notable decrease in Bacteroides spp. and Faecalibacterium sp., while Escherichia coli, Streptococcus spp., and Akkermansia muciniphila showed increased abundance in COVID-19. Notably, A. muciniphila demonstrated an association with immunity through C1 and TNF, while Faecalibacterium sp. was linked to C2 and IL1. The correlation between E. coli and CFH, as well as IL1 and Streptococcus spp. with C2, was identified. hsa-let-7b-5p was identified as a potential candidate that may be involved in the interaction between the microbiota composition, immune response, and COVID-19. In conclusion, integrative in silico analysis shows that these microbiota members are potentially crucial in the immune responses against COVID-19.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran.
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Arian Kariman
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Bereimipour
- Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | | | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
5
|
Vlădulescu-Trandafir AI, Bojincă VC, Popescu C, Munteanu C, Bălănescu AR, Anghelescu A, Aurelian J, Bistriceanu R, Giuvara S, Grădinaru E, Mihai EE, Nițu D, Vintilă MR, Onose G. Predictive Factors for COVID-19 Severity in Patients with Axial Spondyloarthritis: Real-World Data from the Romanian Registry of Rheumatic Diseases. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:411. [PMID: 40142222 PMCID: PMC11943843 DOI: 10.3390/medicina61030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Coronavirus disease-2019 (COVID-19) posed unique challenges worldwide, underscoring important gaps in healthcare preparedness for patients receiving immunosuppressive therapies, such as the individuals with axial spondyloarthritis (axSpA), a subgroup of spondyloarthritis (SpA) characterized by chronic inflammation and immune dysregulation. While global registry data exist for SpA, specific data on axSpA alone remain scarce, especially in Central and Eastern European populations. This study aims to identify predictive factors for severe COVID-19 outcomes and provide a descriptive analysis of axSpA patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using real-world data from the Romanian Registry of Rheumatic Diseases (RRBR). Materials and Methods: This is a three-year retrospective observational cohort study that included 5.786 axSpA patients from the RRBR, of whom 183 (3.16%) were diagnosed with SARS-CoV-2 infection. Data were analyzed using R V4.4.1 and performing univariate and multivariate binary logistic regression to estimate associations using odds ratios (ORs), 95% confidence intervals (CIs), and p-values. A backward selection algorithm was applied to create the final predictive model, accounting for multicollinearity through variance inflation factors (VIFs). Results: The mean age of patients was 48.19 ± 12.26 years, with male predominance (64.5%). Serious COVID-19 (encompassing moderate to critical cases) occurred in 46 cases, with age ≥ 52.5 years (OR 2.64, 95% CI: 1.28-5.48, p = 0.009) and arterial hypertension (OR 2.57, 95% CI: 1.29-5.16, p = 0.007) identified as significant predictors. Individuals with advanced education levels had nearly three times lower odds of experiencing serious COVID-19 (OR 0.38, 95% CI: 0.18-0.76, p = 0.008). Furthermore, our findings confirm the lack of association between HLA-B27 and COVID-19 severity (p = 0.194), contributing to the ongoing discussion regarding its potential immunological role. Moreover, irrespective of the biological therapy administered, the likelihood of experiencing serious SARS-CoV-2 outcomes was not statistically significant (p = 0.882). In the final predictive model, only older age and higher education were deemed as predictive factors. Conclusions: This study highlights key predictors of COVID-19 severity in axSpA patients and emphasizes the protective role of higher education, an underexplored determinant of health outcomes in inflammatory diseases. The lessons learned during these last years can shape a more informed and compassionate healthcare system.
Collapse
Affiliation(s)
- Andreea-Iulia Vlădulescu-Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.-I.V.-T.); (V.-C.B.); (A.-R.B.); (R.B.); (E.-E.M.); (M.-R.V.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (S.G.)
| | - Violeta-Claudia Bojincă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.-I.V.-T.); (V.-C.B.); (A.-R.B.); (R.B.); (E.-E.M.); (M.-R.V.); (G.O.)
- Internal Medicine and Rheumatology Departments, “Sfânta Maria” Hospital, 011172 Bucharest, Romania; (E.G.); (D.N.)
| | - Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.-I.V.-T.); (V.-C.B.); (A.-R.B.); (R.B.); (E.-E.M.); (M.-R.V.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (S.G.)
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (S.G.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700454 Iasi, Romania
| | - Andra-Rodica Bălănescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.-I.V.-T.); (V.-C.B.); (A.-R.B.); (R.B.); (E.-E.M.); (M.-R.V.); (G.O.)
- Internal Medicine and Rheumatology Departments, “Sfânta Maria” Hospital, 011172 Bucharest, Romania; (E.G.); (D.N.)
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (S.G.)
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
| | - Justin Aurelian
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050653 Bucharest, Romania
| | - Roxana Bistriceanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.-I.V.-T.); (V.-C.B.); (A.-R.B.); (R.B.); (E.-E.M.); (M.-R.V.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (S.G.)
| | - Sebastian Giuvara
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (S.G.)
| | - Elena Grădinaru
- Internal Medicine and Rheumatology Departments, “Sfânta Maria” Hospital, 011172 Bucharest, Romania; (E.G.); (D.N.)
| | - Emanuela-Elena Mihai
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.-I.V.-T.); (V.-C.B.); (A.-R.B.); (R.B.); (E.-E.M.); (M.-R.V.); (G.O.)
| | - Daniel Nițu
- Internal Medicine and Rheumatology Departments, “Sfânta Maria” Hospital, 011172 Bucharest, Romania; (E.G.); (D.N.)
| | - Mihaela-Ruxandra Vintilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.-I.V.-T.); (V.-C.B.); (A.-R.B.); (R.B.); (E.-E.M.); (M.-R.V.); (G.O.)
- Department of Allergology and Clinical Immunology, “Carol Davila” Nephrology Clinical Hospital, 010731 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.-I.V.-T.); (V.-C.B.); (A.-R.B.); (R.B.); (E.-E.M.); (M.-R.V.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (S.G.)
| |
Collapse
|
6
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
7
|
Yukishima T, Ohmura SI, Yonezawa H, Ueyama A, Sato S, Katayama M, Ohkuma S, Otsuki Y, Ogawa N. Possible Case of Elderly-onset Intestinal Behçet's Disease with Trisomy 8 Following COVID-19 Vaccination Exacerbated by COVID-19 Infection. Intern Med 2025; 64:81-87. [PMID: 39428534 PMCID: PMC11781933 DOI: 10.2169/internalmedicine.4197-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines are effective in reducing the prevalence of this disease. However, some patients develop autoimmune diseases after vaccination. We herein report a case of elderly onset intestinal Behçet's disease (BD) with trisomy 8 following COVID-19 vaccination in which the disease was exacerbated by COVID-19 infection. The patient developed refractory stomatitis and genital ulcers two weeks after receiving the second vaccination and presented with bloody stool two years later. Intestinal BD with trisomy 8, exacerbated by COVID-19, was treated with high-dose glucocorticoids and infliximab; however, surgical intervention was required. The findings of this case suggest that the COVID-19 vaccination may induce BD.
Collapse
Affiliation(s)
| | | | - Haruka Yonezawa
- Department of Rheumatology, Seirei Hamamatsu General Hospital, Japan
| | - Akito Ueyama
- Department of Surgery, Seirei Hamamatsu General Hospital, Japan
| | - Sumito Sato
- Department of Surgery, Seirei Hamamatsu General Hospital, Japan
| | | | - Seigo Ohkuma
- Department of Radiology, Seirei Hamamatsu General Hospital, Japan
- Department of Emergency and Critical Care Medicine, Seirei Hamamatsu General Hospital, Japan
| | - Yoshiro Otsuki
- Department of Pathology, Seirei Hamamatsu General Hospital, Japan
| | - Noriyoshi Ogawa
- Division of Immunology and Rheumatology, Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
8
|
Marcelino BDR, Vieira MCDS, Silva MJA, da Silva LCSS, Gurrão EPDC, Dos Santos EC, Cabral JG, Souza AB, Sardinha DM, Marinho RL, Bispo SKDS, Lima KVB, Lima LNGC. Study of TNF-α, IFN-γ, IL-10, TGF-β and IL-6 Gene Polymorphisms in a Cohort of Professionals Who Worked in the First Pandemic Wave in the Brazilian Amazon. Crit Rev Immunol 2025; 45:39-61. [PMID: 39976517 DOI: 10.1615/critrevimmunol.2024055001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Genetic polymorphisms in genes that enable the production of an effective host immune response, such as single nucleotide polymorphisms (SNPS) in the IL-6, INF-alpha, IFN-gamma, IL-10, TGF-beta genes can cause unfavorable clinical conditions or susceptibility to pathologies. The objective of this work is to evaluate the epidemiological and genetic profile of professionals from health institutions during the first pandemic wave. A case-control study was performed with convenience sampling from health institutions (HI) workers from Belém-PA, Northern Brazil (N = 213), divided into symptomatology groups (Asymptomatic-AS, n = 91; and Symptomatic-SI, n = 122); and severity groups classified by chest computerized tomography-CCT data (symptomatic with pulmonary involvement-SCP, n = 37; symptomatic without pulmonary involvement-SSP, n = 8). Genotyping was performed by sanger sequencing for SNP TNF-α -308 G/A (rs1800629), IFN-γ +874 T/A (rs2430561), TGF-β codon 10 (rs1982073), codon 25 (rs1800471), IL-6 - 174 G/C (rs180079), IL-10 - 1082 A/T (rs1800896), -819 C/T (rs1800871), and -592 A/C (rs1800872), and statistical analysis through the Epilfo program. Significant association was observed between the presence of comorbidities and poor prognosis of COVID-19 (especially between COVID-19 and overweight and obesity). Only the TNF-α 308 G/A snp was significantly associated with the symptoms and severity of COVID-19. These findings about this TNF-α SNP passed in the multiple testing correction at a false discovery rate (FDR)< 0.05. These data can help medicine and the scientific community understand the influence of genetics and epidemiological parameters in combating COVID-19.
Collapse
Affiliation(s)
- Beatriz Dos Reis Marcelino
- Master and PhD Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil
| | - Marcelo Cleyton da Silva Vieira
- Master and PhD Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil
| | | | | | | | | | - Jeanne Gonçalves Cabral
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | - Alex Brito Souza
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | - Daniele Melo Sardinha
- Master and PhD Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil
| | - Rebecca Lobato Marinho
- Master and PhD Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil
| | | | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | | |
Collapse
|
9
|
Álvarez-López AI, Cruz-Chamorro I, Lardone PJ, Bejarano I, Aspiazu-Hinostroza K, Ponce-España E, Santos-Sánchez G, Álvarez-Sánchez N, Carrillo-Vico A. Melatonin, an Antitumor Necrosis Factor Therapy. J Pineal Res 2025; 77:e70025. [PMID: 39740227 DOI: 10.1111/jpi.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Tumor necrosis factor (TNF) is a biomarker of inflammation whose levels are elevated in patients with several diseases associated with dysregulation of the immune response. The main limitations of currently used anti-TNF therapies are the induction of immunodepression, which in many cases leads to serious adverse effects such as infection and cancer, and the inability to cross the blood-brain barrier in neuroinflammatory conditions. Melatonin, in addition to being a chronobiotic compound, is widely known for its antioxidant and immunomodulatory capacity to control inflammatory processes in different pathological contexts. The aim of the present review is to address human-based studies that describe the effect of melatonin on TNF production. The review includes all the articles published in PubMed databases until April 15, 2024. After depuration, 45 studies were finally included in the review, 23 related to the in vitro action of melatonin in human cells and 22 in vivo studies in humans. Most of the data reviewed support the idea that melatonin has an immunosuppressive effect on TNF levels, which, together with its low toxicity profile, low cost, and ability to cross the blood-brain barrier, points to melatonin as a potential anti-TNF therapy. Therefore, improving our knowledge of the action of melatonin in regulating TNF through appropriate clinical trials would reveal the true potential of this molecule as a possible anti-TNF therapy.
Collapse
Grants
- This work was supported by the Andalusian Government Ministry of Health PC-0019-2017, PI-0015-2018 and PEMP-0085-2020 (co-financed with FEDER funds, call Resolution of 7 July 2021 of the General Secretary for Research, Development and Innovation in Health, which calls for grants to finance research, development and innovation in biomedicine and health sciences in Andalusia by 2021), the PAIDI Program from the Andalusian Government (CTS160) and Regional Ministry of Economy and Knowledge of Andalusia (US-1263804) into the European Regional Development Fund Operational Programme 2014 to 2020. A.I.A.L. was supported by grants US-1263804 and PEMP-0085-2020. I.C.C. was supported by a postdoctoral fellowship from the Andalusian Government Ministry of Economy, Knowledge, Business, and University (DOC_00587/2020). I.B. and E.P.E were supported by the VI Program of Inner Initiative for Research and Transfer of the University of Seville [VI PPIT-US]. G.S.S. was supported by a FPU grant from the Spanish Ministerio de Educación, Cultura y Deporte (FPU16/02339). N.A.-S. was supported by a fellowship from the Andalusian Regional Ministry of Health (PC-0111-2016-0111).
Collapse
Affiliation(s)
- Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Karla Aspiazu-Hinostroza
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Universidad Católica de Cuenca, Research Department, Cuenca-Azuay, Ecuador
| | - Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
10
|
Olivares-Caro L, Nova-Baza D, Sanhueza F, Contreras H, Alarcón B, Alarcon-Zapata P, Mennickent D, Duran D, Bustamante L, Perez AJ, Enos D, Vergara C, Mardones C. Targeted and untargeted cross-sectional study for sex-specific identification of plasma biomarkers of COVID-19 severity. Anal Bioanal Chem 2024:10.1007/s00216-024-05706-x. [PMID: 39714519 DOI: 10.1007/s00216-024-05706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
Coronavirus disease 2019 is a highly contagious respiratory illness caused by the coronavirus SARS-CoV-2. Symptoms can range from mild to severe and typically appear 2-14 days after virus exposure. While vaccination has significantly reduced the incidence of severe complications, strategies for the identification of new biomarkers to assess disease severity remains a critical area of research. Severity biomarkers are essential for personalizing treatment strategies and improving patient outcomes. This study aimed to identify sex-specific biomarkers for COVID-19 severity in a Chilean population (n = 123 female, n = 115 male), categorized as control, mild, moderate, or severe. Data were collected using clinical biochemistry parameters and mass spectrometry-based metabolomics and lipidomics to detect alterations in plasma cytokines, metabolites, and lipid profiles related to disease severity. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed to select significant characteristic features for each group. The results revealed distinct biomarkers for males and females. In males, COVID-19 severity of was associated with inflammation parameters, triglycerides content, and phospholipids profiles. For females, liver damage parameters, triglycerides content, cholesterol derivatives, and phosphatidylcholine were identified as severity biomarkers. For both sexes, most of the biomarker combinations evaluated got areas under the ROC curve greater than 0.8 and low prediction errors. These findings suggest that sex-specific biomarkers can help differentiate the levels of COVID-19 severity, potentially aiding in the development of tailored treatment approaches.
Collapse
Affiliation(s)
- Lia Olivares-Caro
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniela Nova-Baza
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Felipe Sanhueza
- Complejo Asistencial Víctor Ríos Ruiz, Los Ángeles, Bío-Bío, Chile
| | - Hector Contreras
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Barbara Alarcón
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Pedro Alarcon-Zapata
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniela Mennickent
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniel Duran
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Andy J Perez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniel Enos
- Complejo Asistencial Víctor Ríos Ruiz, Los Ángeles, Bío-Bío, Chile
- Departamento Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Carola Vergara
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
11
|
Wilar G, Suhandi C, Fukunaga K, Kawahata I. Efficacy and safety of tofacitinib on COVID-19 patients: A systematic review and meta-analysis. Heliyon 2024; 10:e38229. [PMID: 39381111 PMCID: PMC11456853 DOI: 10.1016/j.heliyon.2024.e38229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The use of drugs off-label for managing COVID-19 offers a potential approach. Among these potential drugs, tofacitinib, a JAK inhibitor, is strongly implicated in its ability to mitigate mortality by attenuating the cytokine storm syndrome. This study systematically reviewed and quantitatively assessed the effectiveness and safety profile of tofacitinib use through meta-analysis. Through searches of the PubMed, Scopus, and the Cochrane Library databases up to May 31, 2024, six articles meeting inclusion criteria were identified, encompassing 669 patients diagnosed with COVID-19. The review findings indicate that tofacitinib use demonstrates significant clinical efficacy, as evidenced by a reduced risk of mortality (P = 0.003), and a decreased need for invasive mechanical ventilation (P = 0.0002). Furthermore, tofacitinib use is not correlated with an increased risk of adverse drug reactions (P = 0.98), indicating a favorable safety profile. In conclusion, the evidence supports the clinical efficacy of tofacitinib for COVID-19 patients without concomitant risks of adverse effects. Further clinical studies, especially larger-scale randomized controlled trials, are necessary to validate the findings of this study.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
12
|
Saied YM, Abou Warda AE, Allam RM, Syed W, Basil A. Al-Rawi M, Iqbal A, Elgendy MO, M. El-Sabaa R, Hassan A. The Impact of Infliximab on Hyperinflammation State in Hospitalized COVID-19 Patients: A Retrospective Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1670. [PMID: 39459457 PMCID: PMC11509666 DOI: 10.3390/medicina60101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Elevated levels of pro-inflammatory cytokines have been linked to increased mortality in COVID-19 patients. Infliximab, a tumor necrosis factor inhibitor, has been reported to improve outcomes in COVID-19 patients by targeting the hyperinflammatory response. Our objective was to evaluate the effectiveness of incorporating Infliximab into standard care guidelines for the management of COVID-19. Materials and Methods: A retrospective analysis was conducted on 111 participants who were moderate to severe COVID-19 patients admitted to the hospital. Among them, 74 individuals received solely standard treatment, while 37 received standard therapy plus Infliximab. The primary outcomes of the study centered around the changes in laboratory test parameters. The secondary clinical findings included clinical recovery defined as improvement in patient oxygenation, time till recovery, and assessing necessity for ICU admission, and mortality rates. Results: There was no statistical difference observed in the inflammatory markers including, LDH, Ferritin, CRP, neutrophil to lymphocyte ratio (NLR), and P/F ratio between both groups and in the clinical outcomes including clinical recovery (p = 1.0), time to improvement (p = 0.436), and mortality rate (p = 0.601). However, there was a significant increase in secondary infection (45.9%, 20.3%; p = 0.005), and in liver enzymes, ALT (79.5, 50.0 IU/L; p = 0.02) and AST (57.5, 38.0 IU/L; p = 0.019) in the Infliximab group and the standard care group, respectively. Conclusions: Infliximab therapy did not demonstrate significant benefits compared to standard of care in moderate to severe hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Yasmine M. Saied
- Microbiology and Immunology Postgraduate Program, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed Essam Abou Warda
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Rasha Mahmoud Allam
- Cancer Epidemiology and Biostatistics, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Wajid Syed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mahmood Basil A. Al-Rawi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ayesha Iqbal
- Department of Pharmacy Practice and Policy, University Park Campus, University of Nottingham, Nottingham NG7 2QL, UK;
- Office of Lifelong Learning and the Physician Learning Program, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G1C9, Canada
| | - Marwa O. Elgendy
- Department of Clinical Pharmacy, Beni-Suef University Hospitals, Beni-Suef University, Beni-Suef 62521, Egypt;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62764, Egypt
| | - Ramy M. El-Sabaa
- Clinical Pharmacy Department, Faculty of Pharmacy, Menoufia University, Menoufia 32511, Egypt;
| | - Ahmed Hassan
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt;
| |
Collapse
|
13
|
Kühn D, Heinen N, Sutter K, Herrmann ST, Nocke MK, Todt D, Burbelo PD, Steinmann E, Ziehe D, Koos B, Adamzik M, Putensen C, Zarbock A, Gravemann U, Jork C, Pfaender S, SepsisDataNet.NRW and CovidDataNet.NRW research group. Divergent autoantibody and cytokine levels in COVID-19 sepsis patients influence survival. J Med Virol 2024; 96:e29935. [PMID: 39323094 PMCID: PMC11535095 DOI: 10.1002/jmv.29935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Studies have pointed to a decisive role of autoantibodies in the context of sepsis and severe Coronavirus disease 2019 (COVID-19), which itself often fulfills the criteria for sepsis, including dysregulated immune responses and organ dysfunction. To directly compare and further analyze the autoantibody profiles of sepsis patients with and without COVID-19, the luciferase immunoprecipitation systems (LIPS) assay was used to measure the levels of autoantibodies against a variety of clinically relevant cytokines, lung-associated proteins, other autoantigens, and antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, cytokine titers were measured with the LEGENDplex™ Human Antivirus Response Panel. We observed significantly increased levels of autoantibodies in 59% of the COVID-19-Sepsis group compared to 48% of the Sepsis group. Significant differences were identified between the groups for the levels of autoantibodies against gATPase. The cytokine levels of interferon (IFN)-λ1 and IP-10 were higher in the COVID-19-Sepsis group compared to the Sepsis group. Additional correlations between autoantibodies, cytokines and 30-day survival could be demonstrated, suggesting varied underlying pathological mechanisms. Elevated levels of cytokines and autoantibodies may serve as prognostic indicators for the survival probability of sepsis patients, highlighting the intricate relationship between immune responses and patient outcomes in the context of both sepsis and COVID-19.
Collapse
Affiliation(s)
- Daniel Kühn
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Natalie Heinen
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated diseases. University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simon T Herrmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Leibniz Institute of Virology (LIV), Research Unit Emerging Viruses, Hamburg, Germany
| | - Maximilian K Nocke
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Dominik Ziehe
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum (KKB), Ruhr University Bochum, Bochum, Germany
| | - Björn Koos
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum (KKB), Ruhr University Bochum, Bochum, Germany
| | - Michael Adamzik
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum (KKB), Ruhr University Bochum, Bochum, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn (UKB), Bonn, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster (UKM), Münster, Germany
| | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | | | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Leibniz Institute of Virology (LIV), Research Unit Emerging Viruses, Hamburg, Germany
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
14
|
De Luca M, Musio B, Balestra F, Arrè V, Negro R, Depalo N, Rizzi F, Mastrogiacomo R, Panzetta G, Donghia R, Pesole PL, Coletta S, Piccinno E, Scalavino V, Serino G, Maqoud F, Russo F, Orlando A, Todisco S, Mastrorilli P, Curri ML, Gallo V, Giannelli G, Scavo MP. Role of Extracellular Vesicles in Crohn's Patients on Adalimumab Who Received COVID-19 Vaccination. Int J Mol Sci 2024; 25:8853. [PMID: 39201543 PMCID: PMC11355036 DOI: 10.3390/ijms25168853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) affecting the gastrointestinal tract that can also cause extra-intestinal complications. Following exposure to the mRNA vaccine BNT162b2 (Pfizer-BioNTech) encoding the SARS-CoV-2 Spike (S) protein, some patients experienced a lack of response to the biological drug Adalimumab and a recrudescence of the disease. In CD patients in progression, resistant to considered biological therapy, an abnormal increase in intestinal permeability was observed, more often with a modulated expression of different proteins such as Aquaporin 8 (AQP8) and in tight junctions (e.g., ZO-1, Claudin1, Claudin2, Occludin), especially during disease flares. The aim of this study is to investigate how the SARS-CoV-2 vaccine could interfere with IBD therapy and contribute to disease exacerbation. We investigated the role of the SARS-CoV-2 Spike protein, transported by extracellular vesicles (EVs), and the impact of various EVs components, namely, exosomes (EXOs) and microvesicles (MVs), in modulating the expression of molecules involved in the exacerbation of CD, which remains unknown.
Collapse
Affiliation(s)
- Maria De Luca
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Biagia Musio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Francesco Balestra
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Valentina Arrè
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Roberto Negro
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Rita Mastrogiacomo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Giorgia Panzetta
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Rossella Donghia
- National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Pasqua Letizia Pesole
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Sergio Coletta
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Emanuele Piccinno
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Viviana Scalavino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Grazia Serino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Stefano Todisco
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Pietro Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Maria Lucia Curri
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Maria Principia Scavo
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| |
Collapse
|
15
|
Simonetti A, Restaino A, Calderoni C, De Chiara E, D’Onofrio AM, Lioniello S, Camardese G, Janiri D, Tosato M, Landi F, Sani G. The Interplay between Gender and Duration of Hospitalization Modulates Psychiatric Symptom Severity in Subjects with Long COVID-19. Brain Sci 2024; 14:744. [PMID: 39199439 PMCID: PMC11352493 DOI: 10.3390/brainsci14080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Long COVID-19 is characterized by ongoing symptoms or prolonged or long-term complications of SARS-CoV-2 contraction which persist beyond 4 weeks from the initial onset of symptoms. Gender and duration of hospitalization (DH) are key risk factors for developing long COVID-19 syndrome, but their impact and interplay need further study. This research involved 996 long COVID-19 patients, and we compared the levels of general psychopathology, depression, agitated depression, anxiety, and medication use between hospitalized and non-hospitalized males and females. In the hospitalized patients, multivariate regressions assessed the impact of gender, DH, and the interaction of these variables. The females had higher levels of long COVID-19 symptoms, psychotropic drug use, depression, anxiety, and general psychopathology than the males. The non-hospitalized females exhibited more severe agitated depression than the non-hospitalized males. In females, DH was more strongly correlated with the number of psychotropic medications used during long COVID-19. A negative correlation was found between DH and severity of agitated depression in the female patients only. These results highlight that the gender-specific relationship between DH and agitated depression severity should be explored further.
Collapse
Affiliation(s)
- Alessio Simonetti
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.D.C.)
| | - Antonio Restaino
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.D.C.)
| | - Claudia Calderoni
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.D.C.)
| | - Emanuela De Chiara
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.D.C.)
| | - Antonio Maria D’Onofrio
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.D.C.)
| | - Salvatore Lioniello
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.D.C.)
| | - Giovanni Camardese
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.D.C.)
| | - Delfina Janiri
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.D.C.)
| | - Matteo Tosato
- Department of Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (F.L.)
- Department of Geriatrics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (F.L.)
- Department of Geriatrics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Neuroscience, Head-Neck and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.D.C.)
| |
Collapse
|
16
|
Shohan M, Mahmoudian-Sani MR, Saeedi-Boroujeni A, Iranparast S, Nashibi R, Abolnezhadian F, Yousefi F, Alavi SM, Cheraghian B, Khodadadi A. The Effects of Convalescent Plasma Transfusion on Serum Levels of Macrophage-Associated Inflammatory Biomarkers in Patients with Severe COVID-19. J Interferon Cytokine Res 2024; 44:316-324. [PMID: 38738802 DOI: 10.1089/jir.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
As an antibody-based therapy, plasma therapy has been used as an emergency therapeutic strategy against severe acute respiratory syndrome coronavirus type 2 infection. Due to the critical role of macrophages in coronavirus disease-19 (COVID-19)-associated hyperinflammation, the main objective of this study was to assess the effect of plasma transfusion on the expression levels of the inflammatory biomarkers involved in activation and pulmonary infiltration of macrophages. The target population included 50 severe hospitalized COVID-19 patients who were randomly assigned into 2 groups, including intervention and control. Serum levels of chemokine (C-C motif) ligand (CCL)-2, CCL-3, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were measured by enzyme-linked immunosorbent assay. Moreover, quantitative real-time polymerase chain reaction (PCR) was carried out to assess the relative expression of nuclear factor (NF)-κB1, NF-κB2, nuclear factor erythroid 2 p45-related factor 2 (NRF-2), and thioredoxin-interacting protein genes. Sampling was done at baseline and 72 h after receiving plasma. The intervention group demonstrated significantly lower serum levels of IL-6, TNF-α, and CCL-3. In addition, real-time PCR data analyses showed that the relative expression of NF-κB2 was significantly declined in the patients who received plasma. The use of convalescent plasma probably has a significant inhibitory effect on the cytokines, chemokines, and inflammatory genes related to macrophage activation, which are closely associated with the worsening of clinical outcomes in severe COVID-19.
Collapse
Affiliation(s)
- Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Sara Iranparast
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhad Abolnezhadian
- Department of Pediatrics, Abuzar children's hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farid Yousefi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Alavi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum, and Environmental pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Huang C, Hu X, Wang D, Gong R, Wang Q, Ren F, Wu Y, Chen J, Xiong X, Li H, Wang Q, Long G, Zhang D, Han Y. Multi-cohort study on cytokine and chemokine profiles in the progression of COVID-19. Sci Rep 2024; 14:10324. [PMID: 38710800 DOI: 10.1038/s41598-024-61133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Various substances in the blood plasma serve as prognostic indicators of the progression of COVID-19. Consequently, multi-omics studies, such as proteomic and metabolomics, are ongoing to identify accurate biomarkers. Cytokines and chemokines, which are crucial components of immune and inflammatory responses, play pivotal roles in the transition from mild to severe illness. To determine the relationship between plasma cytokines and the progression of COVID-19, we used four study cohorts to perform a systematic study of cytokine levels in patients with different disease stages. We observed differential cytokine expression between patients with persistent-mild disease and patients with mild-to-severe transformation. For instance, IL-4 and IL-17 levels significantly increased in patients with mild-to-severe transformation, indicating differences within the mild disease group. Subsequently, we analysed the changes in cytokine and chemokine expression in the plasma of patients undergoing two opposing processes: the transition from mild to severe illness and the transition from severe to mild illness. We identified several factors, such as reduced expression of IL-16 and IL-18 during the severe phase of the disease and up-regulated expression of IL-10, IP-10, and SCGF-β during the same period, indicative of the deterioration or improvement of patients' conditions. These factors obtained from fine-tuned research cohorts could provide auxiliary indications for changes in the condition of COVID-19 patients.
Collapse
Affiliation(s)
- Chaolin Huang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, 430023, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Delong Wang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, USTC, Hefei, 230001, Anhui, China
| | - Rui Gong
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, USTC, Hefei, 230001, Anhui, China
| | - Qiongya Wang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Fuli Ren
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, 430023, Hubei, China
| | - Yuanjun Wu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Juan Chen
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Xianglian Xiong
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Huadong Li
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Qian Wang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Gangyu Long
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Dingyu Zhang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, USTC, Hefei, 230001, Anhui, China.
| | - Yang Han
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, 430023, Hubei, China.
| |
Collapse
|
18
|
Singh R, Singh V, Ahmad MA, Pasricha C, Kumari P, Singh TG, Kaur R, Mujwar S, Wani TA, Zargar S. Unveiling the Role of PAR 1: A Crucial Link with Inflammation in Diabetic Subjects with COVID-19. Pharmaceuticals (Basel) 2024; 17:454. [PMID: 38675414 PMCID: PMC11055094 DOI: 10.3390/ph17040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation is a distinguished clinical manifestation of COVID-19 and type 2 diabetes mellitus (T2DM), often associated with inflammatory dysfunctions, insulin resistance, metabolic dysregulation, and other complications. The present study aims to test the hypothesis that serum concentrations of PAR-1 levels differ between COVID-19 diabetic patients (T2DM) and non-diabetic COVID-19 patients and determine their association with different biochemical parameters and inflammatory biomarkers. T2DM patients with COVID-19 (n = 50) with glycated hemoglobin (HbA1c) levels of (9.23 ± 1.66) and non-diabetic COVID-19 patients (n = 50) with HbA1c levels (4.39 ± 0.57) were recruited in this study. The serum PAR-1 levels (ELISA method) were determined in both groups and correlated with parameters such as age, BMI, inflammatory markers including CRP, interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), D-dimer, homocysteine, and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Demographic variables such as BMI (29.21 ± 3.52 vs. controls 21.30 ± 2.11) and HbA1c (9.23 ± 1.66 vs. controls 4.39 ± 0.57) were found to be statistically elevated in COVID-19 T2DM patients compared to non-diabetic COVID-19 patients. The concentrations of several inflammatory biomarkers and PAR-1 were remarkably increased in the COVID-19 T2DM group when compared with the non-diabetic COVID-19 group. The univariate analysis revealed that increased serum PAR-1 estimations were positively correlated with enhanced HbA1c, BMI, inflammatory cytokines, D-dimer, homocysteine, and NT-proBNP. The findings in the current study suggest that increased levels of serum PAR-1 in the bloodstream could potentially serve as an independent biomarker of inflammation in COVID-19 patients with T2DM.
Collapse
Affiliation(s)
- Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (V.S.); (M.A.A.); (C.P.); (P.K.); (T.G.S.); (R.K.); (S.M.)
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (V.S.); (M.A.A.); (C.P.); (P.K.); (T.G.S.); (R.K.); (S.M.)
| | - Md. Altamash Ahmad
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (V.S.); (M.A.A.); (C.P.); (P.K.); (T.G.S.); (R.K.); (S.M.)
| | - Chirag Pasricha
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (V.S.); (M.A.A.); (C.P.); (P.K.); (T.G.S.); (R.K.); (S.M.)
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (V.S.); (M.A.A.); (C.P.); (P.K.); (T.G.S.); (R.K.); (S.M.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (V.S.); (M.A.A.); (C.P.); (P.K.); (T.G.S.); (R.K.); (S.M.)
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (V.S.); (M.A.A.); (C.P.); (P.K.); (T.G.S.); (R.K.); (S.M.)
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (V.S.); (M.A.A.); (C.P.); (P.K.); (T.G.S.); (R.K.); (S.M.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| |
Collapse
|
19
|
Fagbohun OF, Thilakarathna WPDW, Zhou J, Lehmann C, Jiao G, Rupasinghe HPV. Sea Cucumber and Blueberry Extracts Suppress Inflammation and Reduce Acute Lung Injury through the Regulation of NF-κB/MAPK/JNK Signaling Pathway in Lipopolysaccharide-Treated C57BL/6 Mice. Molecules 2024; 29:1511. [PMID: 38611791 PMCID: PMC11013731 DOI: 10.3390/molecules29071511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Acute lung injury (ALI) represents a life-threatening condition with high morbidity and mortality despite modern mechanical ventilators and multiple pharmacological strategies. Therefore, there is a need to develop efficacious interventions with minimal side effects. The anti-inflammatory activities of sea cucumber (Cucumaria frondosa) and wild blueberry (Vaccinium angustifolium) extracts have been reported recently. However, their anti-inflammatory activities and the mechanism of action against ALI are not fully elucidated. Thus, the present study aims to understand the mechanism of the anti-inflammatory activity of sea cucumber and wild blueberry extracts in the context of ALI. Experimental ALI was induced via intranasal lipopolysaccharide (LPS) instillation in C57BL/6 mice and the anti-inflammatory properties were determined by cytokine analysis, histological examination, western blot, and qRT-PCR. The results showed that oral supplementation of sea cucumber extracts repressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby downregulating the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) in the lung tissue and in the plasma. Wild blueberry extracts also suppressed the expression of IL-4. Furthermore, the combination of sea cucumber and wild blueberry extracts restrained MAPK signaling pathways by prominent attenuation of phosphorylation of NF-κB, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) while the levels of pro-inflammatory cytokines were significantly suppressed. Moreover, there was a significant and synergistic reduction in varying degrees of ALI lesions such as distorted parenchyma, increased alveoli thickness, lymphocyte and neutrophil infiltrations, fibrin deposition, pulmonary emphysema, pneumonia, intra-alveolar hemorrhage, and edema. The anti-inflammatory effect of the combination of sea cucumber and wild blueberry extracts is associated with suppressing MAPK and NF-κB signaling pathways, thereby significantly reducing cytokine storm in LPS-induced experimental ALI.
Collapse
Affiliation(s)
- Oladapo F. Fagbohun
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (O.F.F.); (W.P.D.W.T.)
- Department of Biology, Center for Agriculture and Sciences, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, USA
| | - Wasitha P. D. W. Thilakarathna
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (O.F.F.); (W.P.D.W.T.)
| | - Juan Zhou
- Departments of Anaesthesia, Pain Management and Perioperative Medicine, Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.Z.); (C.L.)
| | - Christian Lehmann
- Departments of Anaesthesia, Pain Management and Perioperative Medicine, Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.Z.); (C.L.)
| | - Guangling Jiao
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - H. P. Vasantha Rupasinghe
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (O.F.F.); (W.P.D.W.T.)
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
20
|
杨 杨, 刘 刚, 欧 毅, 鹿 文. [Lung-protective effect of esketamine combined with distal limb ischemic preconditioning in elderly patients undergoing thoracoscopic radical surgery for lung cancer: a randomized controlled trial in 160 cases]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:484-490. [PMID: 38597439 PMCID: PMC11006705 DOI: 10.12122/j.issn.1673-4254.2024.03.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To evaluate the effect of esketamine combined with distal limb ischemic preconditioning (LIP) for lung protection in elderly patients undergoing thoracoscopic radical surgery for lung cancer. METHODS This randomized trial was conducted in 160 patients undergoing elective thoracoscopic surgery for lung cancer, who were randomized into control group (with saline injection and sham LIP), esketamine group, LIP group, and esketamine + LIP group (n=40). Before anesthesia induction, according to the grouping, the patients received an intravenous injection with 0.5 mg/kg esketamine or 10 ml saline (in control group). LIP was induced by applying a tourniquet 1-2 cm above the popliteal fossa in the left lower limb to block the blood flow for 5 min for 3 times at the interval of 5 min, and sham LIP was performed by applying the tourniquet without pressurization for 30 min. Oxygenation index (OI) and alveolar-arterial PO2 difference (A-aDO2) were calculated before induction (T0), at 30 min (T0.5) and 1 h (T1) of one-lung ventilation (OLV), and at 1 h after two-lung ventilation (T3). Serum levels of SP-D, CC-16 and TNF-α were measured by ELISA at T0, T1, T2 (2 h of OLV), T3, and 24 h after the operation (T4). The length of hospital stay and postoperative pulmonary complications of the patients were recorded. RESULTS Compared with those in the control group, the patients in the other 3 groups had significantly lower CC-16, SP-D and TNF-α levels, shorter hospital stay, and lower incidences of lung infection and lung atelectasis (all P < 0.05). Serum CC-16, SP-D and TNF-α levels, hospital stay, incidences of complications were significantly lower or shorter in the combined treatment group than in esketamine group and LIP group (all P < 0.05). CONCLUSION In elderly patients undergoing thoracoscopic radical surgery for lung cancer, treatment with esketamine combined with LIP can alleviate acute lung injury by enhancing anti-inflammatory response to shorten postoperative hospital stay, reduce lung complications and promote the patients' recovery.
Collapse
Affiliation(s)
- 杨 杨
- />蚌埠医科大学第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 刚 刘
- />蚌埠医科大学第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 毅 欧
- />蚌埠医科大学第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 文琪 鹿
- />蚌埠医科大学第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
21
|
Alsayed AR, Ahmed SI, AL Shweiki AO, Al-Shajlawi M, Hakooz N. The laboratory parameters in predicting the severity and death of COVID-19 patients: Future pandemic readiness strategies. BIOMOLECULES & BIOMEDICINE 2024; 24:238-255. [PMID: 37712883 PMCID: PMC10950347 DOI: 10.17305/bb.2023.9540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The range of clinical manifestations associated with the infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encompasses a broad spectrum, ranging from flu-like symptoms to the occurrence of multiple organ failure and death. The severity of the coronavirus disease 2019 (COVID-19) is categorized based on clinical presentation and is divided into three distinct levels of severity identified as non-severe, severe, and critical. Although individuals of all age groups are susceptible to SARS-CoV-2 infection, middle-aged and older adults are more frequently impacted, with the latter being more likely to develop severe illness. Various laboratory characteristics observed in hospitalized COVID-19 patients have been correlated with adverse outcomes. These include elevated levels of D-dimer, liver enzymes, lactate dehydrogenase, C-reactive protein, ferritin, prothrombin time, and troponin, as well as decreased lymphocyte and platelets counts. This review investigated the relationship between baseline clinical characteristics, initial laboratory parameters upon hospital admission, and the severity of illness and mortality rates among COVID-19 patients. Although the COVID-19 pandemic has concluded, understanding the laboratory predictors of virus severity and mortality remains crucial, and examining these predictors can have long-term effects. Such insights can help healthcare systems manage resources more effectively and deliver timely and appropriate care by identifying and targeting high-risk individuals. This knowledge can also help us better prepare for future pandemics. By examining these predictors, we can take steps to protect public health and mitigate the impact of future pandemics.
Collapse
Affiliation(s)
- Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Syed Imran Ahmed
- College of Health and Science, School of Pharmacy, University of Lincoln, Lincoln, United Kingdom
| | - Anas Osama AL Shweiki
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mustafa Al-Shajlawi
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Nancy Hakooz
- School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
22
|
Muscedere J, Maslove DM, Barden CJ, Weaver DF, Boyd JG, Sibley S, Boyd T, Rewa O, Albert M, Roussos M, Norman PA, Day AG. Nebulized Furosemide for Pulmonary Inflammation in Intubated Patients With COVID-19: A Phase 2 Randomized Controlled Double-Blind Study. Crit Care Explor 2024; 6:e1045. [PMID: 38511126 PMCID: PMC10954058 DOI: 10.1097/cce.0000000000001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVES Respiratory failure secondary to COVID-19 is associated with morbidity and mortality. Current anti-inflammatory therapies are effective but are given systemically and have significant side effects. Furosemide has anti-inflammatory properties, can be administered by inhalation, and is inexpensive. We investigated the efficacy of nebulized furosemide as an adjunctive therapy for COVID-19 respiratory failure. DESIGN A double-blind, randomized, placebo-controlled trial. SETTING Multicenter ICU study. PATIENTS Adults requiring invasive mechanical ventilation secondary to COVID-19. INTERVENTION Patients were randomized within 48 hours of intubation to receive inhaled furosemide or placebo until day 28, death, or liberation from mechanical ventilation. MEASUREMENTS AND MAIN RESULTS The study was stopped early due to waning incidence of COVID-19; 39 patients were available for analysis with mean ± sd age of 70.5 (10.8) years, Acute Physiology and Chronic Health Evaluation II 26.1 (7.8) and Fio2 60.0% (21.9). Baseline characteristics were similar between the groups. For the primary outcome of change in Pao2/Fio2 ratio between day 1 and day 6, it was +31.4 (83.5) in the furosemide arm versus +20.1 (92.8) in the control (p = 0.58). For secondary outcomes, furosemide versus control: 60-day mortality was 48% versus 71% (p = 0.20), hospital stay was 25.6 (21.9) versus 27.4 (25.0) days, p = 0.94 and VFD was 6.0 (9.1) versus 3.1 (7.1), p value of equals to 0.28. A post hoc analysis of the hierarchical composite outcome, alive and ventilator-free favored furosemide. There were no adverse events. CONCLUSIONS In this trial of inhaled furosemide for COVID-19 respiratory failure, differences in Pao2/Fio2 ratio to day 6 and other clinical outcomes were not significantly different, although the trial was underpowered due to early termination. Given the favorable profile of inhaled furosemide, further study is warranted in disease states where acute pulmonary inflammation contributes to the underlying pathophysiology.
Collapse
Affiliation(s)
- John Muscedere
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
| | - David M Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medicine, Chemistry, and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - J Gordon Boyd
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Departments of Medicine, Chemistry, and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Stephanie Sibley
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Tracy Boyd
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - Oleksa Rewa
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
| | - Martin Albert
- Division of Critical Care, Department of Medicine, Hôpital du Sacré-Coeur Research Center, Université de Montréal, Montreal, QC, Canada
| | - Marios Roussos
- Department of Medicine, Division of Critical Care, Hôpital Cité-de-la-Santé, Laval, QC, Canada
| | - Patrick A Norman
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Kingston General Health Research Institute, Kingston, ON, Canada
| | - Andrew G Day
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Kingston General Health Research Institute, Kingston, ON, Canada
| |
Collapse
|
23
|
Gupta S, Mohindra R, Ramola M, Kanta P, Singla M, Malhotra M, Mehta N, Goyal A, Singh MP. Convergence of inflammatory response: Salivary cytokine dynamics in coronavirus disease 2019 and periodontal disease. J Indian Soc Periodontol 2024; 28:113-121. [PMID: 38988958 PMCID: PMC11232810 DOI: 10.4103/jisp.jisp_508_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Background Periodontal disease is associated with immune dysregulation, and cytokines released can add on to the coronavirus disease 2019 (COVID-19)-associated cytokine storm, further worsening the related adverse outcomes. Specific studies investigating cytokine levels in COVID-19 patients with periodontal disease are lacking. Examining the correlation between these conditions could aid in categorizing risk categories, determining referrals, and strengthening oral hygiene protocols. The current study sought to evaluate cytokine levels in the saliva of COVID-19-positive patients with and without periodontal disease. Materials and Methods Twenty-six COVID-19-positive patients were subjected to periodontal examination, saliva collection, and assessment of cytokine levels through cytokine bead-based multiplex assay, using fluorescence-encoded beads with flow cytometry (BD FACS LSRFortessa). Eleven cytokines were assessed (interleukin [IL] 2, 4, 6, 10, 17A, and interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-α), chemokine ligand 2 (CCL2/monocyte chemoattractant protein-1), C-X-C motif chemokine ligand (CXCL) 8/IL 8, CXCL 9/monokine-induced gamma interferon [MIG]), and CXCL 10 (chemokine IFN-gamma inducible protein 10 kDa). The cytokine levels of the recruited subjects were also compared graphically with the salivary cytokine levels reported in the literature for health, COVID-19, and periodontal disease alone. Results Out of 26 COVID-19-positive patients, 17 had periodontal disease. Levels of all cytokines were raised in patients with both diseases when compared to values reported in literature for health, periodontal disease alone, or COVID-19 alone. However, there was no statistical difference among the recruited subjects for IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-gamma, TNF-α, CCL2, CXCL 8, and CXCL 10. MIG levels were found to be higher in periodontally healthy, COVID-19-positive subjects (P = 0.01). Conclusions Periodontal disease might contribute to the COVID-19-induced cytokine storm, potentially amplifying its impact.
Collapse
Affiliation(s)
- Shipra Gupta
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritin Mohindra
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Ramola
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Poonam Kanta
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mohita Singla
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenakshi Malhotra
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Mehta
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashima Goyal
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mini P Singh
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
24
|
Cianciosi D, Diaz YA, Gaddi AV, Capello F, Savo MT, Palí Casanova RDJ, Martínez Espinosa JC, Pascual Barrera AE, Navarro‐Hortal M, Tian L, Bai W, Giampieri F, Battino M. Can alpha‐linolenic acid be a modulator of “cytokine storm,” oxidative stress and immune response in SARS‐CoV‐2 infection? FOOD FRONTIERS 2024; 5:73-93. [DOI: 10.1002/fft2.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractAlpha‐linolenic acid (ALA) is a long‐chain polyunsaturated essential fatty acid of the Ω3 series found mainly in vegetables, especially in the fatty part of oilseeds, dried fruit, berries, and legumes. It is very popular for its preventive use in several diseases: It seems to reduce the risk of the onset or decrease some phenomena related to inflammation, oxidative stress, and conditions of dysregulation of the immune response. Recent studies have confirmed these unhealthy situations also in patients with severe coronavirus disease 2019 (COVID‐19). Different findings (in vitro, in vivo, and clinical ones), summarized and analyzed in this review, have showed an important role of ALA in other various non‐COVID physiological and pathological situations against “cytokines storm,” chemokines secretion, oxidative stress, and dysregulation of immune cells that are also involved in the infection of the 2019 novel coronavirus. According to the effects of ALA against all the aforementioned situations (also present in patients with a severe clinical picture of severe acute respiratory syndrome‐(CoV‐2) infection), there may be the biologic plausibility of a prophylactic effect of this compound against COVID‐19 symptoms and fatality.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | - Yasmany Armas Diaz
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | | | - Fabio Capello
- International Study Center of Society of Telemedicine and Digital Health Bologna Italy
| | | | - Ramón del Jesús Palí Casanova
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Universidad Internacional Iberoamericana Arecibo Puerto Rico USA
| | - Julio César Martínez Espinosa
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Alina Eugenia Pascual Barrera
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Maria‐Dolores Navarro‐Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre University of Granada Armilla Spain
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang China
| |
Collapse
|
25
|
Haystead T, Lee E, Cho K, Gullickson G, Hughes P, Krafsur G, Freeze R, Scarneo S. Investigation of SARS-CoV-2 individual proteins reveals the in vitro and in vivo immunogenicity of membrane protein. Sci Rep 2023; 13:22873. [PMID: 38129491 PMCID: PMC10739983 DOI: 10.1038/s41598-023-49077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Evidence in SARS-CoV-2 patients have identified that viral infection is accompanied by the expression of inflammatory mediators by both immune and stromal cells within the pulmonary system. However, the immunogenicity of individual SARS-CoV-2 proteins has yet to be evaluated. The SARS-CoV-2 virus consists of 29 proteins, categorized either as nonstructural proteins (NSP's), structural proteins (SP's) or accessory proteins. Here we sought to evaluate the immunogenicity of NSP 1, 7, 8, 9, 10, 12, 14, 16 and the SP's spike protein (full length, S1, S2 and receptor binding domain subunits), nucleocapsid and membrane SARS-CoV-2 proteins against THP-1 and human peripheral blood mononuclear cells (PBMCs). Our results indicate that various SARS-CoV-2 proteins elicit a proinflammatory immune response indicated by increases in cytokines TNF, IL-6 and IL-1β. Our results support that SARS-CoV-2 membrane protein induced a robust increase of TNF, IL-6, IL-1β and IL-10 expression in both THP-1 and human PBMC's. Further evaluation of intranasal membrane protein challenge in male and female BALB/c mice show increases in BALF (bronchalveolar lavage fluid) proinflammatory cytokine expression, elevated cellularity, predominantly neutrophilic, and concomitant peribronchiolar and perivascular lymphomononuclear and neutrophilic inflammation. Our results suggest that individual membrane associated SARS-CoV-2 proteins induce a robust immune response that may contribute to viral induced cytokine release syndrome (CRS) in the lungs of moderate to severe COVID-19 patients. We posit that SARS-CoV-2 membrane challenges in immune-competent mice can serve as an adequate surrogate for the development of novel treatments for SARS-CoV-2 induced pulmonary inflammation, thereby avoiding expensive live virus studies under BSL-3 conditions.
Collapse
Affiliation(s)
- Timothy Haystead
- EydisBio Inc, Durham, NC, 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27701, USA
| | | | | | | | - Philip Hughes
- EydisBio Inc, Durham, NC, 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27701, USA
| | | | | | | |
Collapse
|
26
|
Ekowati J, Tejo BA, Maulana S, Kusuma WA, Fatriani R, Ramadhanti NS, Norhayati N, Nofianti KA, Sulistyowaty MI, Zubair MS, Yamauchi T, Hamid IS. Potential Utilization of Phenolic Acid Compounds as Anti-Inflammatory Agents through TNF-α Convertase Inhibition Mechanisms: A Network Pharmacology, Docking, and Molecular Dynamics Approach. ACS OMEGA 2023; 8:46851-46868. [PMID: 38107968 PMCID: PMC10720000 DOI: 10.1021/acsomega.3c06450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a dysregulated immune response characterized by an excessive release of proinflammatory mediators, such as cytokines and prostanoids, leading to tissue damage and various pathological conditions. Natural compounds, notably phenolic acid phytocompounds from plants, have recently garnered substantial interest as potential therapeutic agents to bolster well-being and combat inflammation recently. Based on previous research, the precise molecular mechanism underlying the anti-inflammatory activity of phenolic acids remains elusive. Therefore, this study aimed to predict the molecular mechanisms underpinning the anti-inflammatory properties of selected phenolic acid phytocompounds through comprehensive network pharmacology, molecular docking, and dynamic simulations. Network pharmacology analysis successfully identified TNF-α convertase as a potential target for anti-inflammatory purposes. Among tested compounds, chlorogenic acid (-6.90 kcal/mol), rosmarinic acid (-6.82 kcal/mol), and ellagic acid (-5.46 kcal/mol) exhibited the strongest binding affinity toward TNF-α convertase. Furthermore, phenolic acid compounds demonstrated molecular binding poses similar to those of the native ligand, indicating their potential as inhibitors of TNF-α convertase. This study provides valuable insights into the molecular mechanisms that drive the anti-inflammatory effects of phenolic compounds, particularly through the suppression of TNF-α production via TNF-α convertase inhibition, thus reinforcing their anti-inflammatory attributes.
Collapse
Affiliation(s)
- Juni Ekowati
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bimo Ario Tejo
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department
of Chemistry, Faculty of Science,, Universiti
Putra Malaysia, Serdang 43400, Malaysia
| | - Saipul Maulana
- Magister
Programe Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94148, Indonesia
| | - Wisnu Ananta Kusuma
- Department
of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
- Tropical
Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | - Rizka Fatriani
- Tropical
Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | | | - Norhayati Norhayati
- Magister
Programe Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kholis Amalia Nofianti
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Melanny Ika Sulistyowaty
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhammad Sulaiman Zubair
- Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94148, Indonesia
| | - Takayasu Yamauchi
- Faculty
of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan
| | - Iwan Sahrial Hamid
- Faculty
of Veterinary Medicine,Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
27
|
Wolszczak-Biedrzycka B, Dorf J, Wojewódzka-Żelezniakowicz M, Żendzian-Piotrowska M, Dymicka-Piekarska VJ, Matowicka-Karna J, Maciejczyk M. Unveiling COVID-19 Secrets: Harnessing Cytokines as Powerful Biomarkers for Diagnosis and Predicting Severity. J Inflamm Res 2023; 16:6055-6070. [PMID: 38107380 PMCID: PMC10723593 DOI: 10.2147/jir.s439217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction In coronavirus disease (COVID-19), inflammation takes center stage, with a cascade of cytokines released, contributing to both inflammation and lung damage. The objective of this study is to identify biomarkers for diagnosing and predicting the severity of COVID-19. Materials and Methods Cytokine levels were determined in the serum from venous blood samples collected from 100 patients with COVID-19 and 50 healthy controls. COVID-19 patients classified based on the Modified Early Warning (MEWS) score. Cytokine concentrations were determined with a multiplex ELISA kit (Bio-Plex Pro™ Human Cytokine Screening Panel). Results The concentrations of all analyzed cytokines were elevated in the serum of COVID-19 patients relative to the control group, but no significant differences were observed in interleukin-9 (IL-9) and IL-12 p70 levels. In addition, the concentrations of IL-1α, IL-1β, IL-1ra, IL-2Rα, IL-6, IL-12 p40, IL-18, and tumor necrosis factor alpha (TNFα) were significantly higher in symptomatic patients with accompanying pneumonia without respiratory failure (stage 2) than in asymptomatic/mildly symptomatic patients (stage 1). Conclusion The study revealed that IL-1ra, IL-2Rα, IL-6, IL-8, IL-12 p40, IL-16, and IL-18 levels serve as potential diagnostic biomarkers in COVID-19 patients. Furthermore, elevated IL-1α levels proved to be valuable in assessing the severity of COVID-19.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-900, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, 15-089, Poland
| | | | | | | | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, 15-089, Poland
| |
Collapse
|
28
|
Kim SE, Park SH, Park WJ, Kim G, Kim SY, Won H, Hwang YH, Lim H, Kim HG, Kim YJ, Kim D, Lee JA. Evaluation of immunogenicity-induced DNA vaccines against different SARS-CoV-2 variants. PLoS One 2023; 18:e0295594. [PMID: 38060612 PMCID: PMC10703263 DOI: 10.1371/journal.pone.0295594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic worldwide. As of September 2023, the number of confirmed coronavirus cases has reached over 770 million and caused nearly 7 million deaths. The World Health Organization assigned and informed the characterization of variants of concern (VOCs) to help control the COVID-19 pandemic through global monitoring of circulating viruses. Although many vaccines have been proposed, developing an effective vaccine against variants is still essential to reach the endemic stage of COVID-19. We designed five DNA vaccine candidates composed of the first isolated genotype and major SARS-CoV-2 strains from isolated Korean patients classified as VOCs, such as Alpha, Beta, Gamma, and Delta. To evaluate the immunogenicity of each genotype via homologous and heterologous vaccination, mice were immunized twice within a 3-week interval, and the blood and spleen were collected 1 week after the final vaccination to analyze the immune responses. The group vaccinated with DNA vaccine candidates based on the S genotype and the Alpha and Beta variants elicited both humoral and cellular immune responses, with higher total IgG levels and neutralizing antibody responses than the other groups. In particular, the vaccine candidate based on the Alpha variant induced a highly diverse cytokine response. Additionally, we found that the group subjected to homologous vaccination with the S genotype and heterologous vaccination with S/Alpha induced high total IgG levels and a neutralization antibody response. Homologous vaccination with the S genotype and heterologous vaccination with S/Alpha and S/Beta significantly induced IFN-γ immune responses. The immunogenicity after homologous vaccination with S and Alpha and heterologous vaccination with the S/Alpha candidate was better than that of the other groups, indicating the potential for developing novel DNA vaccines against different SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Se Eun Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - So Hee Park
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Woo-Jung Park
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Gayeong Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Seo Yeon Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Hyeran Won
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Yun-Ho Hwang
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Heeji Lim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Hyeon Guk Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - You-Jin Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Dokeun Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Jung-Ah Lee
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
29
|
Pencheva M, Bozhkova M, Kalchev Y, Petrov S, Baldzhieva A, Kalfova T, Dichev V, Keskinova D, Genova S, Atanasova M, Murdzheva M. The Serum ACE2, CTSL, AngII, and TNFα Levels after COVID-19 and mRNA Vaccines: The Molecular Basis. Biomedicines 2023; 11:3160. [PMID: 38137381 PMCID: PMC10741205 DOI: 10.3390/biomedicines11123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 virus as well as the COVID-19 mRNA vaccines cause an increased production of proinflammatory cytokines. AIM We investigated the relationship between ACE2, CTSL, AngII, TNFα and the serum levels of IL-6, IL-10, IL-33, IL-28A, CD40L, total IgM, IgG, IgA and absolute count of T- and B-lymphocytes in COVID-19 patients, vaccinees and healthy individuals. METHODS We measured the serum levels ACE2, AngII, CTSL, TNFα and humoral biomarkers (CD40L, IL-28A, IL-10, IL-33) by the ELISA method. Immunophenotyping of lymphocyte subpopulations was performed by flow cytometry. Total serum immunoglobulins were analyzed by the turbidimetry method. RESULTS The results established an increase in the total serum levels for ACE2, CTSL, AngII and TNFα by severely ill patients and vaccinated persons. The correlation analysis described a positive relationship between ACE2 and proinflammatory cytokines IL-33 (r = 0.539) and CD40L (r = 0.520), a positive relationship between AngII and CD40L (r = 0.504), as well as between AngII and IL-33 (r = 0.416), and a positive relationship between CTSL, total IgA (r = 0.437) and IL-28A (r = 0.592). Correlation analysis confirmed only two of the positive relationships between TNFα and IL-28A (r = 0.491) and CD40L (r = 0.458). CONCLUSIONS In summary, the findings presented in this study unveil a complex web of interactions within the immune system in response to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Martina Bozhkova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Yordan Kalchev
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Steliyan Petrov
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Teodora Kalfova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Valentin Dichev
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Donka Keskinova
- Department of Applied and Institutional Sociology, Faculty of Philosophy and History, University of Plovdiv “Paisii Hilendarski”, 4000 Plovdiv, Bulgaria;
| | - Silvia Genova
- Department of General and Clinical Pathology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mariya Atanasova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Laboratory of Virology, UMBAL “St. George” EAD, 4002 Plovdiv, Bulgaria
| | - Mariana Murdzheva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
30
|
Li Y, Hu Z, Guo Y, Zhao Z, Li K, Wang X, Zhang J, Liang D, Zhang J, Hu X, Zhu J, Huang F. Do disease-modifying antirheumatic drugs and non-steroidal anti-inflammatory drugs increase the burden on ankylosing spondylitis patients with mild-moderate COVID-19? evidence from a retrospective cohort study. Front Pharmacol 2023; 14:1266915. [PMID: 37964869 PMCID: PMC10642246 DOI: 10.3389/fphar.2023.1266915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Objectives: The impact of non-steroidal anti-inflammatory drugs (NSAIDs), conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and tumor necrosis factor inhibitors (TNFi) on the outcomes of mild-moderate COVID-19 in patients with ankylosing spondylitis (AS) remains unclear. This study aimed to evaluate the effects of NSAIDs, csDMARDs, and TNFi on AS patients with mild-moderate COVID-19. Methods: This cohort study utilized patient-reported PCR/antigen tests to determine the occurrence of COVID-19 and assessed clinical manifestations to determine its severity. The study focused on two primary outcomes: an increased number of COVID-19 symptoms and a prolonged disease course (longer than 10 or 28 days). Modified Poisson regression was performed to analyze the association between exposures and outcomes. Results: A total of 521 patients were included in the analysis. The median age was 34.8 (inter-quartile range: 27.2-46.7), with 420 (80.6%) being men. Among the patients, 52 (10.0%) had comorbidities and 443 (85%) had been vaccinated. After adjusting for confounding factors, there was no significant association between csDMARDs or TNFi and the presence of more than 5 symptoms in mild-moderate COVID-19 (adjusted relative risk (RRa) 1.08, 95% CI: 0.84-1.40 or 1.09, 0.92-1.29 for csDMARDs or TNFi, respectively), whereas the prevalence of experiencing more than 5 symptoms increased in patients with NSAID monotherapy (RRa 1.22, 95% CI: 1.01-1.46). Similarly, there was no significant association with having more than 10 symptoms (RRa 0.65, 95% CI: 0.26-1.64; 0.95, 0.36-2.54; and 1.01, 0.53-1.91 for NSAIDs, csDMARDs, and TNFi, respectively). Patients who had pre-existing use of NSAIDs, csDMARDs and TNFi had similar odds of experiencing a disease course longer than 10 days (RRa 1.17, 95% CI: 0.82-1.66; 1.18, 0.78-1.77; and 1.22, 0.92-1.63 for NSAIDs, csDMARDs, and TNFi, respectively) and longer than 28 days (RRa 0.94, 95% CI: 0.31-2.81; 0.97, 0.25-3.74 and 1.05, 0.44-2.49, respectively) compared to those not using medication. Conclusion: AS patients treated with csDMARDs or TNFi did not show inferior outcomes in terms of symptom burden or recovery compared to those not using medication in mild-moderate COVID-19. The observed inverse association between pre-existing NSAIDs use and COVID-19 symptom burden in AS deserves further investigation.
Collapse
Affiliation(s)
- Yan Li
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhengyuan Hu
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yufei Guo
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zheng Zhao
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kunpeng Li
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiuru Wang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Zhang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongfeng Liang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianglin Zhang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyue Hu
- School of Social Development and Public Policy, Fudan University, Shanghai, China
| | - Jian Zhu
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Huang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Chujan S, Nakareangrit W, Suriyo T, Satayavivad J. Integrated Transcriptomics and Network Analysis of Potential Mechanisms and Health Effects of Convalescent COVID-19 Patients. Bioinform Biol Insights 2023; 17:11779322231206684. [PMID: 37881207 PMCID: PMC10594973 DOI: 10.1177/11779322231206684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
Coronaviral disease 2019 (COVID-19) is a recent pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are still cases of COVID-19 around the world that can develop into persistent symptoms after discharge. The constellation of symptoms, termed long COVID, persists for months and can lead to various diseases such as lung inflammation and cardiovascular disease, which may lead to considerable financial burden and possible risk to human health. Moreover, the molecular mechanisms underlying the post-pandemic syndrome of COVID-19 remain unclear. In this study, we aimed to explore the molecular mechanism, disease association, and possible health risks in convalescent COVID-19 patients. Gene expression data from a human convalescent COVID-19 data set was compared with a data set from healthy normal individuals in order to identify differentially expressed genes (DEGs). To determine biological function and potential pathway alterations, the GO and KEGG databases were used to analyze the DEGs. Disease association, tissue, and organ-specific analyses were used to identify possible health effects. A total of 250 DEGs were identified between healthy and convalescent COVID-19 subjects. The biological function alterations identified revealed cytokine interactions and increased inflammation through NF-κB1, RELA, JUN, STAT3, and SP1. Interestingly, the most significant pathways were cytokine-cytokine receptor interaction, altered lipid metabolism, and atherosclerosis that play a crucial role in convalescent COVID-19. In addition, we also found pneumonitis, dermatitis, and autoimmune diseases. Based on our study, convalescent COVID-19 is associated with inflammation in a variety of organs that could lead to autoimmune and inflammatory diseases, as well as atherosclerosis. These findings are a first step toward fully exploring the disease mechanisms in depth to understand the relationship between post-COVID-19 infection and potential health risks. This is necessary for the development of appropriate strategies for the prevention and treatment of long COVID.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | | | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
32
|
Brandenburg K, Ferrer-Espada R, Martinez-de-Tejada G, Nehls C, Fukuoka S, Mauss K, Weindl G, Garidel P. A Comparison between SARS-CoV-2 and Gram-Negative Bacteria-Induced Hyperinflammation and Sepsis. Int J Mol Sci 2023; 24:15169. [PMID: 37894850 PMCID: PMC10607443 DOI: 10.3390/ijms242015169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Sepsis is a life-threatening condition caused by the body's overwhelming response to an infection, such as pneumonia or urinary tract infection. It occurs when the immune system releases cytokines into the bloodstream, triggering widespread inflammation. If not treated, it can lead to organ failure and death. Unfortunately, sepsis has a high mortality rate, with studies reporting rates ranging from 20% to over 50%, depending on the severity and promptness of treatment. According to the World Health Organization (WHO), the annual death toll in the world is about 11 million. One of the main toxins responsible for inflammation induction are lipopolysaccharides (LPS, endotoxin) from Gram-negative bacteria, which rank among the most potent immunostimulants found in nature. Antibiotics are consistently prescribed as a part of anti-sepsis-therapy. However, antibiotic therapy (i) is increasingly ineffective due to resistance development and (ii) most antibiotics are unable to bind and neutralize LPS, a prerequisite to inhibit the interaction of endotoxin with its cellular receptor complex, namely Toll-like receptor 4 (TLR4)/MD-2, responsible for the intracellular cascade leading to pro-inflammatory cytokine secretion. The pandemic virus SARS-CoV-2 has infected hundreds of millions of humans worldwide since its emergence in 2019. The COVID-19 (Coronavirus disease-19) caused by this virus is associated with high lethality, particularly for elderly and immunocompromised people. As of August 2023, nearly 7 million deaths were reported worldwide due to this disease. According to some reported studies, upregulation of TLR4 and the subsequent inflammatory signaling detected in COVID-19 patients "mimics bacterial sepsis". Furthermore, the immune response to SARS-CoV-2 was described by others as "mirror image of sepsis". Similarly, the cytokine profile in sera from severe COVID-19 patients was very similar to those suffering from the acute respiratory distress syndrome (ARDS) and sepsis. Finally, the severe COVID-19 infection is frequently accompanied by bacterial co-infections, as well as by the presence of significant LPS concentrations. In the present review, we will analyze similarities and differences between COVID-19 and sepsis at the pathophysiological, epidemiological, and molecular levels.
Collapse
Affiliation(s)
- Klaus Brandenburg
- Brandenburg Antiinfektiva, c/o Forschungszentrum Borstel, Leibniz-Lungenzentrum, Parkallee 10, 23845 Borstel, Germany; (K.B.); (K.M.)
| | - Raquel Ferrer-Espada
- Department of Microbiology, University of Navarra, IdiSNA (Navarra Institute for Health Research), Irunlarrea 1, E-31008 Pamplona, Spain;
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Guillermo Martinez-de-Tejada
- Department of Microbiology, University of Navarra, IdiSNA (Navarra Institute for Health Research), Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Christian Nehls
- Forschungszentrum Borstel, FG Biophysik, Parkallee 10, 23845 Borstel, Germany;
| | - Satoshi Fukuoka
- National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu 761-0395, Japan;
| | - Karl Mauss
- Brandenburg Antiinfektiva, c/o Forschungszentrum Borstel, Leibniz-Lungenzentrum, Parkallee 10, 23845 Borstel, Germany; (K.B.); (K.M.)
- Sylter Klinik Karl Mauss, Dr.-Nicolas-Strasse 3, 25980 Westerland (Sylt), Germany
| | - Günther Weindl
- Pharmazeutisches Institut, Abteilung Pharmakologie und Toxikologie, Universität Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany;
| | - Patrick Garidel
- Physikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle (Saale), Germany
| |
Collapse
|
33
|
Pereira RDD, Rabelo RAN, Oliveira NFDM, Porto SLT, Andrade ACDSP, Queiroz-Junior CM, Barbosa CLN, de Souza-Costa LP, Santos FRDS, Oliveira FBR, da Silva BLV, Umezu HL, Ferreira R, da Silva GSF, Cruz JS, Teixeira MM, Costa VV, Machado FS. A 5-Lipoxygenase Inhibitor, Zileuton, Modulates Host Immune Responses and Improves Lung Function in a Model of Severe Acute Respiratory Syndrome (SARS) Induced by Betacoronavirus. Viruses 2023; 15:2049. [PMID: 37896826 PMCID: PMC10611395 DOI: 10.3390/v15102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Exacerbated inflammatory responses are a hallmark of severe coronavirus disease 2019 (COVID-19). Zileuton (Zi) is a selective inhibitor of 5-lipoxygenase, an enzyme involved in the production of several inflammatory/pro-resolving lipid mediators. Herein, we investigated the effect of Zi treatment in a severe acute respiratory syndrome (SARS) model. Mouse hepatitis virus (MHV)3-infected mice treated with Zi significantly improved the clinical score, weight loss, cardiopulmonary function, and survival rates compared with infected untreated animals. The protection observed in Zi-treated mice was associated with a lower inflammatory score, reduced dendritic cell-producing tumor necrosis factor (TNF), and increased neutrophil-producing interleukin (IL)-10 in the lungs three days after infection (dpi). At 5 dpi, the lungs of treated mice showed an increase in Th2-, Treg CD4+-, and Treg CD8+-producing IL-10 and reduced Th1 infiltrating cells. Furthermore, similar results were found upon Zi treatment after SARS-CoV-2 infection in transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2), significantly improving the clinical score, weight loss, and lung inflammatory score compared with untreated animals. Our data suggest that Zi protects against developing severe lung disease during SARS induced by betacoronavirus without affecting the host's capacity to deal with infection.
Collapse
Affiliation(s)
- Rafaela das Dores Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Rayane Aparecida Nonato Rabelo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Natália Fernanda de Melo Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Samuel Luiz Teixeira Porto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Ana Claudia dos Santos Pereira Andrade
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - César Luís Nascimento Barbosa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Luiz Pedro de Souza-Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Felipe Rocha da Silva Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Fernando Bento Rodrigues Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Bárbara Luísa Vieira da Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - Hanna L. Umezu
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (H.L.U.); (G.S.F.d.S.)
| | - Raquel Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Glauber S. F. da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (H.L.U.); (G.S.F.d.S.)
| | - Jader Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
34
|
Kolloli A, Ramasamy S, Kumar R, Nisa A, Kaplan G, Subbian S. A phosphodiesterase-4 inhibitor reduces lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Front Immunol 2023; 14:1270414. [PMID: 37854602 PMCID: PMC10580809 DOI: 10.3389/fimmu.2023.1270414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection involves pulmonary inflammation that can progress to acute respiratory distress syndrome, a primary cause of lung damage/fibrosis in patients with Coronavirus Disease-2019 (COVID-19). Currently, there is no efficacious therapy available to alleviate lung fibrosis in COVID-19 cases. In this proof-of-concept study, we evaluated the effect of CC-11050, a small molecule phosphodiesterase-4 inhibitor, in dampening lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Methods Following intranasal inoculation with SARS-CoV-2/WA- 1/2000 strain, hamsters were treated with CC-11050 or placebo by gavage from day-1 until day-16 post-infection (dpi). Animals were monitored for body weight changes, virus titers, histopathology, fibrotic remodeling, cellular composition in the lungs between 2 and 16 dpi. Results We observed significant reduction in lung viral titer with concomitant reduction in inflammation and fibrotic remodeling in CC-11050 treated hamsters compared to untreated animals. The reductions in immunopathologic manifestations were associated with significant downregulation of inflammatory and fibrotic remodeling gene expression, reduced infiltration of activated monocytes, granulocytes, and reticular fibroblasts in CC-11050 treated animals. Cellular studies indicate a link between TNF-α and fibrotic remodeling during CC-11050 therapy. Discussion These findings suggest that CC-11050 may be a potential host-directed therapy to dampen inflammation and fibrosis in COVID-19 cases.
Collapse
Affiliation(s)
- Afsal Kolloli
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Annuurun Nisa
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Gilla Kaplan
- University of Cape Town, Cape Town, South Africa
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
35
|
Kim Y, Park IH, Shin J, Choi J, Jeon C, Jeon S, Shin JS, Jung H. Sublingual Dissolving Microneedle (SLDMN)-Based Vaccine for Inducing Mucosal Immunity against SARS-CoV-2. Adv Healthc Mater 2023; 12:e2300889. [PMID: 37337388 DOI: 10.1002/adhm.202300889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Indexed: 06/21/2023]
Abstract
The coronavirus pandemic has accelerated the development of next-generation vaccination technology to combat future pandemic outbreaks. Mucosal vaccination effectively protects the mucosal surfaces, the primary sites of viral entry, by inducing the secretion of immunoglobulin A (IgA) and humoral IgG. Here, a dissolving microneedle (DMN) is adopted as a mucosal vaccine delivery platform to directly penetrate the sublingual site, which is rich in antigen-presenting cells (APCs) and lymphoid tissues. The sublingual dissolving microneedle (SLDMN) vaccination platform comprised a micropillar-based compartment and a 3D-printed SLDMN applicator as a substitute for the DMN patch. The penetration efficacy of SLDMNs is assessed using in vitro optical coherence tomography (OCT) and in vivo histological analysis. The efficacy of SLDMN is also evaluated in a vaccine form using the recombinant spike (S1) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, SLDMN is used to challenge transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) receptors. Its effects are evaluated on antibody production, survival rate, and inflammation attenuation after infection compared to the intramuscular (IM) injections. Overall, SLDMN effectively induced mucosal immunity via IgA secretion, attenuated lung inflammation, and lowered the levels of cytokines and chemokines, which may prevent the "cytokine storm" after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Youseong Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - In Ho Park
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaibyung Choi
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chansol Jeon
- JUVIC, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Seonghun Jeon
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- JUVIC, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| |
Collapse
|
36
|
Wang Y, Wang Z, Liu Y, Yu Q, Liu Y, Luo C, Wang S, Liu H, Liu M, Zhang G, Fan Y, Li K, Huang L, Duan M, Zhou F. Reconstructing the cytokine view for the multi-view prediction of COVID-19 mortality. BMC Infect Dis 2023; 23:622. [PMID: 37735372 PMCID: PMC10514938 DOI: 10.1186/s12879-023-08291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/28/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a rapidly developing and sometimes lethal pulmonary disease. Accurately predicting COVID-19 mortality will facilitate optimal patient treatment and medical resource deployment, but the clinical practice still needs to address it. Both complete blood counts and cytokine levels were observed to be modified by COVID-19 infection. This study aimed to use inexpensive and easily accessible complete blood counts to build an accurate COVID-19 mortality prediction model. The cytokine fluctuations reflect the inflammatory storm induced by COVID-19, but their levels are not as commonly accessible as complete blood counts. Therefore, this study explored the possibility of predicting cytokine levels based on complete blood counts. METHODS We used complete blood counts to predict cytokine levels. The predictive model includes an autoencoder, principal component analysis, and linear regression models. We used classifiers such as support vector machine and feature selection models such as adaptive boost to predict the mortality of COVID-19 patients. RESULTS Complete blood counts and original cytokine levels reached the COVID-19 mortality classification area under the curve (AUC) values of 0.9678 and 0.9111, respectively, and the cytokine levels predicted by the feature set alone reached the classification AUC value of 0.9844. The predicted cytokine levels were more significantly associated with COVID-19 mortality than the original values. CONCLUSIONS Integrating the predicted cytokine levels and complete blood counts improved a COVID-19 mortality prediction model using complete blood counts only. Both the cytokine level prediction models and the COVID-19 mortality prediction models are publicly available at http://www.healthinformaticslab.org/supp/resources.php .
Collapse
Affiliation(s)
- Yueying Wang
- College of Computer Science and Technology, Jilin University, 130012, Changchun, China
- School of Biology and Engineering, Guizhou Medical University, 550025, Guiyang, Guizhou, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 130012, Changchun, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 130021, Changchun, Jilin Province, China
| | - Zhao Wang
- College of Software, Jilin University, 130012, Changchun, China
| | - Yaqing Liu
- College of Computer Science and Technology, Jilin University, 130012, Changchun, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 130021, Changchun, Jilin Province, China
| | - Yujia Liu
- College of Software, Jilin University, 130012, Changchun, China
| | - Changfan Luo
- College of Software, Jilin University, 130012, Changchun, China
| | - Siyang Wang
- College of Software, Jilin University, 130012, Changchun, China
| | - Hongmei Liu
- School of Biology and Engineering, Guizhou Medical University, 550025, Guiyang, Guizhou, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 130012, Changchun, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Mingyou Liu
- School of Biology and Engineering, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Gongyou Zhang
- School of Biology and Engineering, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Yusi Fan
- College of Software, Jilin University, 130012, Changchun, China
| | - Kewei Li
- College of Computer Science and Technology, Jilin University, 130012, Changchun, China
- School of Biology and Engineering, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Lan Huang
- College of Computer Science and Technology, Jilin University, 130012, Changchun, China
- School of Biology and Engineering, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Meiyu Duan
- College of Computer Science and Technology, Jilin University, 130012, Changchun, China.
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 130012, Changchun, China.
| | - Fengfeng Zhou
- College of Computer Science and Technology, Jilin University, 130012, Changchun, China.
- School of Biology and Engineering, Guizhou Medical University, 550025, Guiyang, Guizhou, China.
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 130012, Changchun, China.
| |
Collapse
|
37
|
Taheri G, Habibi M. Identification of essential genes associated with SARS-CoV-2 infection as potential drug target candidates with machine learning algorithms. Sci Rep 2023; 13:15141. [PMID: 37704748 PMCID: PMC10499814 DOI: 10.1038/s41598-023-42127-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the fast discovery of effective treatments to fight this worldwide concern. Several genes associated with the SARS-CoV-2, which are essential for its functionality, pathogenesis, and survival, have been identified. These genes, which play crucial roles in SARS-CoV-2 infection, are considered potential therapeutic targets. Developing drugs against these essential genes to inhibit their regular functions could be a good approach for COVID-19 treatment. Artificial intelligence and machine learning methods provide powerful infrastructures for interpreting and understanding the available data and can assist in finding fast explanations and cures. We propose a method to highlight the essential genes that play crucial roles in SARS-CoV-2 pathogenesis. For this purpose, we define eleven informative topological and biological features for the biological and PPI networks constructed on gene sets that correspond to COVID-19. Then, we use three different unsupervised learning algorithms with different approaches to rank the important genes with respect to our defined informative features. Finally, we present a set of 18 important genes related to COVID-19. Materials and implementations are available at: https://github.com/MahnazHabibi/Gene_analysis .
Collapse
Affiliation(s)
- Golnaz Taheri
- Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
| | - Mahnaz Habibi
- Department of Mathematics, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| |
Collapse
|
38
|
Rolland-Debord C, Piéroni L, Bejar F, Milon A, Choinier P, Blin E, Bravais J, Halitim P, Letellier A, Camuset J, Parrot A, Fajac A, Cadranel J. Cell and cytokine analyses from bronchoalveolar lavage in non-critical COVID-19 pneumonia. Intern Emerg Med 2023; 18:1723-1732. [PMID: 37353659 DOI: 10.1007/s11739-023-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Cell and cytokine analyses from bronchoalveolar lavage (BAL) in non-critically ill patients with COVID-19 pneumonia are poorly described. This study focused on patients hospitalized in the non-intensive care unit for either suspected COVID-19 pneumonia or persistent respiratory symptoms following proven COVID-19 pneumonia. Overall, 54 patients who underwent BAL between April 2020 and February 2021 for suspected or follow-up of proven COVID-19 pneumonia were included. Based on SARS-CoV-2 polymerase chain reaction test results and clinical follow-up, three pulmonary disease groups were defined: non-COVID-19 (n = 20), acute COVID-19 (n = 13), and post-COVID-19 (n = 24) pneumonia patients. Cytological and cytokine analyses were performed on BAL fluid (IL-1β, IL-6, IL-8, IL-10, TNF-α, IFN-γ, HGF, and TGF-β), with investigators blinded to the patient groups. Lymphocytic alveolitis with plasmocytes was observed in acute COVID-19 pneumonia, returning to normal post-COVID-19. The highest cytokine levels were observed in COVID-19 patients, with significantly increased IFN-γ, IL-10, and HGF levels compared to non-COVID-19 patients, while significantly decreased IL-6, IL-8, IL-10, IFN-γ, TNF-α, and HGF levels were noted in post-COVID-19 patients. In COVID-19 patients, correlations between IL-10, TNF-α and IFN-γ concentrations were found. Lymphocytic alveolitis with plasmacytosis was found in non-critical COVID-19 pneumonia This alveolitis is associated with the presence of IL-6, IL-8, IL-10, TNF-α, IFN-γ and HGF. Alveolitis and cytokines levels decreased in post-COVID-19 pneumonia.
Collapse
Affiliation(s)
- Camille Rolland-Debord
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France.
- Department of Pneumology, Service de Pneumologie, CHU Gabriel Montpied, Université Clermont Auvergne, 53 rue Montalembert, 63000, Clermont-Ferrand, France.
| | - Laurence Piéroni
- Department of Biochemistry, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Farah Bejar
- Department of Biochemistry, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Audrey Milon
- Department of Radiology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Pascaline Choinier
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Emmanuelle Blin
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Juliette Bravais
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Pierre Halitim
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Alice Letellier
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Juliette Camuset
- Department of Thoracic and Vascular Surgery, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Antoine Parrot
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Anne Fajac
- Department of Pathology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Jacques Cadranel
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| |
Collapse
|
39
|
Udomkarnjananun S, Gatechompol S, Leelahavanichkul A, Kerr SJ. Cellular immune response of SARS-CoV-2 vaccination in kidney transplant recipients: a systematic review and meta-analysis. Front Immunol 2023; 14:1220148. [PMID: 37575225 PMCID: PMC10415203 DOI: 10.3389/fimmu.2023.1220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Background Evidence has demonstrated inferior humoral immune responses after SARS-CoV-2 vaccination in kidney transplant recipients compared to the general population. However, data on cellular immune responses in this population have not been established. Methods We searched the MEDLINE, Scopus, and Cochrane databases and included studies reporting cellular immune response rates in kidney transplant recipients after receiving SARS-CoV-2 vaccines. Studies that reported factors associated with cellular immune responders or non-responders were also included (PROSPERO: CRD42022375544). Results From a total of 1,494 articles searched, 53 articles were included in the meta-analysis. In all, 21 studies assessed cellular immune response by interferon-γ enzyme-linked immunosorbent spot (IFN-γ ELISPOT), 22 studies used interferon-γ release assay (IGRA), and 10 studies used flow cytometric analysis. The pooled response rate after two doses (standard regimen) and three doses of vaccination was 47.5% (95%CI 38.4-56.7%) and 69.1% (95%CI 56.3-80.6%) from IFN-γ ELISPOT, 25.8% (95%CI 19.7-32.4%) and 14.7% (95%CI 8.5-22.2%) from IGRA, and 73.7% (95%CI 55.2-88.8%) and 86.5% (95%CI 75.3-94.9%) from flow cytometry, respectively. Recipients with seroconversion were associated with a higher chance of having cellular immune response (OR 2.58; 95%CI 1.89-3.54). Cellular immune response in kidney transplant recipients was lower than in dialysis patients (OR 0.24; 95%CI 0.16-0.34) and the general population (OR 0.10; 95%CI 0.07-0.14). Age and immunosuppressants containing tacrolimus or corticosteroid were associated with inferior cellular immune response. Conclusion Cellular immune response after SARS-CoV-2 vaccination in kidney transplant recipients was lower than in dialysis patients and the general population. Age, tacrolimus, and corticosteroid were associated with poor response. Cellular immune response should also be prioritized in vaccination studies. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022375544.
Collapse
Affiliation(s)
- Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Organ Transplantation (ECOT), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Renal Immunology and Transplantation Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Immunology Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Stephen J. Kerr
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- Biostatistics Excellence Centre, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
40
|
Csobonyeiova M, Smolinska V, Harsanyi S, Ivantysyn M, Klein M. The Immunomodulatory Role of Cell-Free Approaches in SARS-CoV-2-Induced Cytokine Storm-A Powerful Therapeutic Tool for COVID-19 Patients. Biomedicines 2023; 11:1736. [PMID: 37371831 DOI: 10.3390/biomedicines11061736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, there is still no effective and definitive cure for the coronavirus disease 2019 (COVID-19) caused by the infection of the novel highly contagious severe acute respiratory syndrome virus (SARS-CoV-2), whose sudden outbreak was recorded for the first time in China in late December 2019. Soon after, COVID-19 affected not only the vast majority of China's population but the whole world and caused a global health public crisis as a new pandemic. It is well known that viral infection can cause acute respiratory distress syndrome (ARDS) and, in severe cases, can even be lethal. Behind the inflammatory process lies the so-called cytokine storm (CS), which activates various inflammatory cytokines that damage numerous organ tissues. Since the first outbreak of SARS-CoV-2, various research groups have been intensively trying to investigate the best treatment options; however, only limited outcomes have been achieved. One of the most promising strategies represents using either stem cells, such as mesenchymal stem cells (MSCs)/induced pluripotent stem cells (iPSCs), or, more recently, using cell-free approaches involving conditioned media (CMs) and their content, such as extracellular vesicles (EVs) (e.g., exosomes or miRNAs) derived from stem cells. As key mediators of intracellular communication, exosomes carry a cocktail of different molecules with anti-inflammatory effects and immunomodulatory capacity. Our comprehensive review outlines the complex inflammatory process responsible for the CS, summarizes the present results of cell-free-based pre-clinical and clinical studies for COVID-19 treatment, and discusses their future perspectives for therapeutic applications.
Collapse
Affiliation(s)
- Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Apel, Dunajská 52, 811 08 Bratislava, Slovakia
- Regenmed Ltd., Medená 29, 811 08 Bratislava, Slovakia
| | - Veronika Smolinska
- Regenmed Ltd., Medená 29, 811 08 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | | | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
41
|
Tarantino N, Litvinova E, Samri A, Soulié C, Morin V, Rousseau A, Dorgham K, Parizot C, Bonduelle O, Beurton A, Miyara M, Ghillani P, Mayaux J, Lhote R, Lacorte JM, Marcelin AG, Amoura Z, Luyt CE, Gorochov G, Guihot A, Vieillard V. Identification of natural killer markers associated with fatal outcome in COVID-19 patients. Front Cell Infect Microbiol 2023; 13:1165756. [PMID: 37342247 PMCID: PMC10277643 DOI: 10.3389/fcimb.2023.1165756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction Increasing evidence has shown that coronavirus disease 19 (COVID-19) severity is driven by a dysregulated immunological response. Previous studies have demonstrated that natural killer (NK) cell dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of NK cell markers as a driver of death in the most critically ill patients. Methods We enrolled 50 non-vaccinated hospitalized patients infected with the initial virus or the alpha variant of SARS-CoV-2 with moderate or severe illness, to evaluate phenotypic and functional features of NK cells. Results Here, we show that, consistent with previous studies, evolution NK cells from COVID-19 patients are more activated, with the decreased activation of natural cytotoxicity receptors and impaired cytotoxicity and IFN-γ production, in association with disease regardless of the SARS-CoV-2 strain. Fatality was observed in 6 of 17 patients with severe disease; NK cells from all of these patients displayed a peculiar phenotype of an activated memory-like phenotype associated with massive TNF-α production. Discussion These data suggest that fatal COVID-19 infection is driven by an uncoordinated inflammatory response in part mediated by a specific subset of activated NK cells.
Collapse
Affiliation(s)
- Nadine Tarantino
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Elena Litvinova
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d’Immunologie, Paris, France
| | - Assia Samri
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Cathia Soulié
- Sorbonne Université, Inserm, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Véronique Morin
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Alice Rousseau
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Karim Dorgham
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Christophe Parizot
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d’Immunologie, Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Beurton
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Médecine Intensive-Réanimation et Pneumologie, Paris, France
- Sorbonne Université, Inserm UMRS Neurophysiologie Respiratoire Expérimentale et Clinique, Assistance Publique – Hôpitaux de Paris (AP-HP), Paris, France
| | - Makoto Miyara
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d’Immunologie, Paris, France
| | - Pascale Ghillani
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d’Immunologie, Paris, France
| | - Julien Mayaux
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Médecine Intensive-Réanimation et Pneumologie, Paris, France
| | - Raphael Lhote
- Service de Médecine Interne 2, Institut E3M, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Marc Lacorte
- Sorbonne Université, Inserm, UMRS1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
- Service de Biochimie Endocrinienne et Oncologique, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, Inserm, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Zahir Amoura
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- Service de Médecine Interne 2, Institut E3M, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Charles-Edouard Luyt
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Médecine Intensive-Réanimation et Pneumologie, Paris, France
- Service de Médecine Interne 2, Institut E3M, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d’Immunologie, Paris, France
| | - Amélie Guihot
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d’Immunologie, Paris, France
| | - Vincent Vieillard
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
42
|
Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. MedComm (Beijing) 2023; 4:e254. [PMID: 37193304 PMCID: PMC10183156 DOI: 10.1002/mco2.254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 05/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected a large portion of the global population, both physically and mentally. Current evidence suggests that the rapidly evolving coronavirus subvariants risk rendering vaccines and antibodies ineffective due to their potential to evade existing immunity, with enhanced transmission activity and higher reinfection rates that could lead to new outbreaks across the globe. The goal of viral management is to disrupt the viral life cycle as well as to relieve severe symptoms such as lung damage, cytokine storm, and organ failure. In the fight against viruses, the combination of viral genome sequencing, elucidation of the structure of viral proteins, and identifying proteins that are highly conserved across multiple coronaviruses has revealed many potential molecular targets. In addition, the time- and cost-effective repurposing of preexisting antiviral drugs or approved/clinical drugs for these targets offers considerable clinical advantages for COVID-19 patients. This review provides a comprehensive overview of various identified pathogenic targets and pathways as well as corresponding repurposed approved/clinical drugs and their potential against COVID-19. These findings provide new insight into the discovery of novel therapeutic strategies that could be applied to the control of disease symptoms emanating from evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yiying Xue
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yisa Chen
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - James D. Griffin
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
- Hefei Cancer HospitalChinese Academy of SciencesHefeiChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jing Yang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| |
Collapse
|
43
|
Abou Hassan FF, Bou Hamdan M, Melhem NM. Clinical Characteristics and Serum Cytokines Profiling in Hospitalized COVID-19 Patients in Lebanon. J Immunol Res 2023; 2023:7258585. [PMID: 37228441 PMCID: PMC10205405 DOI: 10.1155/2023/7258585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Since its emergence, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a public health threat worldwide. While the majority of patients recover in 3-4 weeks, complications in severely ill patients, including acute respiratory distress syndrome, cardiac injury, thrombosis, and sepsis, can lead to death. Several biomarkers, in addition to cytokine release syndrome (CRS), have been associated with severe and fatal outcomes in coronavirus disease 2019 (COVID-19) patients. The aim of this study is to assess clinical characteristics and cytokines profiles in hospitalized COVID-19 patients in Lebanon. A total of 51 hospitalized COVID-19 patients were recruited between February 2021 and May 2022. Clinical data and sera were collected at two time points: at hospital presentation (T0) and last collected results during hospitalization (T1). Our results showed that 49% of participants were >60 years with males accounting for the majority (72.5%). Hypertension, followed by diabetes and dyslipidemia, were the most frequent comorbid conditions among study participants accounting for 56.9% and 31.4%, respectively. Chronic obstructive pulmonary disease (COPD) was the only significantly different comorbid condition between intensive care unit (ICU) and non-ICU patients. Our results also showed that the median level of D-dimer was significantly elevated among patients in ICU and those who died compared to non-ICU patients and those who survived. Moreover, C-reactive protein (CRP) levels were significantly higher at T0 compared to T1 in ICU and non-ICU patients. The median level of IL-12p70 was significantly higher in patients >60 years compared to those ≤60 years (p = 0.0209). Our data are in agreement with previous reports suggesting the importance of IL-6, CRP, and IL-12p70 in the assessment of risk of severe disease and mortality.
Collapse
Affiliation(s)
- Farouk F. Abou Hassan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mirna Bou Hamdan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nada M. Melhem
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
44
|
Thirupathi A, Yong W, Oflaz O, Agascioglu E, Gu Y. Exercise and COVID-19: exercise intensity reassures immunological benefits of post-COVID-19 condition. Front Physiol 2023; 14:1036925. [PMID: 37275224 PMCID: PMC10233405 DOI: 10.3389/fphys.2023.1036925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Any form of physical activity, including exercise, has various benefits at the physiological (improving cardiac and respiratory functions, increasing skeletal muscle mass, and maintaining homeostasis) and psychological levels (improving cognitive function, reducing anxiety and depression) which help to combat any type of infection. In contrast, the infectivity ratio could reduce the physical activity of an individual, such as performing a habitual exercise. Adaptation to different exercise strategies including intensity and duration may better increase physical performance and improve the symptoms. For example, low to moderate intensity perhaps fails to induce this adaptive process, while high-intensity of exercise compromises immune health. This can aggravate the infection rate (Open window theory). However, high intensity with a shorter time produces various morphological alterations in the primary organs including the lungs and heart, which facilitate life support in COVID-19 patients. However, less information about exercise protocols failed to assure the benefits of exercise to COVID-19 patients, particularly post-COVID-19 conditions. Therefore, this review will answer how exercise intensity is crucial to reassure the exercise benefits for promoting safe participation before infection and post-COVID-19 conditions.
Collapse
Affiliation(s)
- Anand Thirupathi
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Wang Yong
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ofcan Oflaz
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Eda Agascioglu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Türkiye
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
45
|
Kang JH, Jang M, Seo SJ, Choi A, Shin D, Seo S, Lee SH, Kim HN. Mechanobiological Adaptation to Hyperosmolarity Enhances Barrier Function in Human Vascular Microphysiological System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206384. [PMID: 36808839 PMCID: PMC10161024 DOI: 10.1002/advs.202206384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Indexed: 05/06/2023]
Abstract
In infectious disease such as sepsis and COVID-19, blood vessel leakage treatment is critical to prevent fatal progression into multi-organ failure and ultimately death, but the existing effective therapeutic modalities that improve vascular barrier function are limited. Here, this study reports that osmolarity modulation can significantly improve vascular barrier function, even in an inflammatory condition. 3D human vascular microphysiological systems and automated permeability quantification processes for high-throughput analysis of vascular barrier function are utilized. Vascular barrier function is enhanced by >7-folds with 24-48 h hyperosmotic exposure (time window of emergency care; >500 mOsm L-1 ) but is disrupted after hypo-osmotic exposure (<200 mOsm L-1 ). By integrating genetic and protein level analysis, it is shown that hyperosmolarity upregulates vascular endothelial-cadherin, cortical F-actin, and cell-cell junction tension, indicating that hyperosmotic adaptation mechanically stabilizes the vascular barrier. Importantly, improved vascular barrier function following hyperosmotic exposure is maintained even after chronic exposure to proinflammatory cytokines and iso-osmotic recovery via Yes-associated protein signaling pathways. This study suggests that osmolarity modulation may be a unique therapeutic strategy to proactively prevent infectious disease progression into severe stages via vascular barrier function protection.
Collapse
Affiliation(s)
- Joon Ho Kang
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Minjeong Jang
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Su Jin Seo
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Chemical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Andrew Choi
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Daeeun Shin
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Suyoung Seo
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Soo Hyun Lee
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
46
|
Effects of Tocilizumab on Inflammation and Iron Metabolism in Critically Ill Patients with COVID-19. Pharmaceutics 2023; 15:pharmaceutics15020646. [PMID: 36839968 PMCID: PMC9960594 DOI: 10.3390/pharmaceutics15020646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
COVID-19 produces cytokine-mediated persistent inflammation and is associated with elevated iron stores and low circulating iron. It is believed that central to the pathophysiological mechanism is interleukin 6 and hepcidin. A state of iron overload, termed hyperferritinemia, and inflammatory anemia take place. Both conditions are linked to a worse result in critically ill patients. Blocking the interleukin 6-hepcidin pathway with Tocilizumab could present favorable outcomes. The aim of this study was to evaluate if Tocilizumab influences survival, the occurrence of sepsis, anemia and transfusions in critically ill patients suffering from COVID-19. This prospective observational study focused on levels of interleukin 6, hepcidin and blood iron parameters in patients treated with Tocilizumab. Data were compared before and after therapy as well as between treated and control groups. Results indicate that there is no difference in terms of survival nor in the rate of anemia or sepsis occurrence. Hepcidin was elevated and anemia ensued after treatment, which could indicate alternative pathways. In conclusion, when the classic interleukin 6-hepcidin pathway is blocked, inflammation seems to use alternative routes. Further understanding of these pathways is required and new pharmacological therapies need to be developed to treat persistent inflammation.
Collapse
|
47
|
Zafarani A, Razizadeh MH, Pashangzadeh S, Amirzargar MR, Taghavi-Farahabadi M, Mahmoudi M. Natural killer cells in COVID-19: from infection, to vaccination and therapy. Future Virol 2023:10.2217/fvl-2022-0040. [PMID: 36936055 PMCID: PMC10013930 DOI: 10.2217/fvl-2022-0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/31/2023] [Indexed: 03/15/2023]
Abstract
Natural killer (NK) cells are among the most important innate immunity members, which are the first cells that fight against infected cells. The function of these cells is impaired in patients with COVID-19 and they are not able to prevent the spread of the disease or destroy the infected cells. Few studies have evaluated the effects of COVID-19 vaccines on NK cells, though it has been demonstrated that DNA vaccines and BNT162b2 can affect NK cell response. In the present paper, the effects of SARS-CoV-2 on the NK cells during infection, the effect of vaccination on NK cells, and the NK cell-based therapies were reviewed.
Collapse
Affiliation(s)
- Alireza Zafarani
- 1Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Salar Pashangzadeh
- 3Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
- 4Immunology Today, Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Amirzargar
- 1Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- 5Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- 6Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Author for correspondence: Tel.: +98 936 002 0731;
| |
Collapse
|
48
|
Jankauskas SS, Kansakar U, Sardu C, Varzideh F, Avvisato R, Wang X, Matarese A, Marfella R, Ziosi M, Gambardella J, Santulli G. COVID-19 Causes Ferroptosis and Oxidative Stress in Human Endothelial Cells. Antioxidants (Basel) 2023; 12:326. [PMID: 36829885 PMCID: PMC9952002 DOI: 10.3390/antiox12020326] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Oxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome. Thus, we collected serum from COVID-19 patients on hospital admission, and we incubated these sera with human endothelial cells, comparing the effects on the generation of reactive oxygen species (ROS) and lipid peroxidation between patients who survived and patients who did not survive. We found that the serum from non-survivors significantly increased lipid peroxidation. Moreover, serum from non-survivors markedly regulated the expression levels of the main markers of ferroptosis, including GPX4, SLC7A11, FTH1, and SAT1, a response that was rescued by silencing TNFR1 on endothelial cells. Taken together, our data indicate that serum from patients who did not survive COVID-19 triggers lipid peroxidation in human endothelial cells.
Collapse
Affiliation(s)
- Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Celestino Sardu
- University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | - Jessica Gambardella
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
- Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation (INI), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
49
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
50
|
Dipasquale V, Deganello Saccomani M, Di Giorgio A, Oliva S, Salvatore S, Strisciuglio C, Tambucci R, Lionetti P, Romano C. Pediatric Gastroenterology and Hepatology in Italy before and after the COVID-19: Lessons learned and management changes by SIGENP. Ital J Pediatr 2023; 49:15. [PMID: 36698148 PMCID: PMC9877500 DOI: 10.1186/s13052-023-01418-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Around the world, the 2019 Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised serious public health problems and major medical challenges. The Italian Society of Pediatric Gastroenterology, Hepatology and Nutrition (SIGENP) published several papers on the impact of COVID-19 on the current management, diagnosis, and treatment of acute and chronic gastrointestinal, hepatic, immune-mediated, and functional disorders. The present article summarizes the most relevant SIGENP reports and consensus during and after the peak of the COVID-19 outbreak, including the diagnosis and treatment of inflammatory bowel disease (IBD), indications and timing of digestive endoscopy, and insights into the novel hepatitis.
Collapse
Affiliation(s)
- Valeria Dipasquale
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | | | - Angelo Di Giorgio
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Salvatore Oliva
- Pediatric Gastroenterology and Liver Unit, Maternal and Child Health Department, Sapienza University of Rome, Rome, Italy
| | - Silvia Salvatore
- Department of Pediatrics, "F. Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania "Vanvitelli", Naples, Italy
| | - Renato Tambucci
- Digestive Endoscopy Unit, Department of Gastroenterology, Hepatology and Nutrition, Bambino Gesù Children's Hospital, Rome, Italy
| | - Paolo Lionetti
- Department NEUROFARBA, University of Florence, Gastroenterology and Nutrition Unit, Meyer Children's Hospital, Florence, Italy
| | - Claudio Romano
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|