1
|
Durfee C, Bergstrom EN, Díaz-Gay M, Zhou Y, Temiz NA, Ibrahim MA, Nandi SP, Wang Y, Liu X, Steele CD, Proehl J, Vogel RI, Argyris PP, Alexandrov LB, Harris RS. Tobacco smoke carcinogens exacerbate APOBEC mutagenesis and carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633716. [PMID: 39896515 PMCID: PMC11785121 DOI: 10.1101/2025.01.18.633716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mutations in somatic cells are inflicted by both extrinsic and intrinsic sources and contribute over time to cancer. Tobacco smoke contains chemical carcinogens that have been causatively implicated with cancers of the lung and head & neck1,2. APOBEC family DNA cytosine deaminases have emerged as endogenous sources of mutation in cancer, with hallmark mutational signatures (SBS2/SBS13) that often co-occur in tumors of tobacco smokers with an equally diagnostic mutational signature (SBS4)3,4. Here we challenge the dogma that mutational processes are thought to occur independently and with additive impact by showing that 4-nitroquinoline 1-oxide (NQO), a model carcinogen for tobacco exposure, sensitizes cells to APOBEC3B (A3B) mutagenesis and leads to synergistic increases in both SBS2 mutation loads and oral carcinomas in vivo. NQO-exposed/A3B-expressing animals exhibit twice as many head & neck lesions as carcinogen-exposed wildtype animals. This increase in carcinogenesis is accompanied by a synergistic increase in mutations from APOBEC signature SBS2, but not from NQO signature SBS4. Interestingly, a large proportion of A3B-catalyzed SBS2 mutations occurs as strand-coordinated pairs within 32 nucleotides of each other in transcribed regions, suggesting a mechanism in which removal of NQO-DNA adducts by nucleotide excision repair exposes short single-stranded DNA tracts to enzymatic deamination. These highly enriched pairs of APOBEC signature mutations are termed didyma (Greek for twins) and are mechanistically distinct from other types of clustered mutation (omikli and kataegis). Computational analyses of lung and head & neck tumor genomes show that both APOBEC mutagenesis and didyma are elevated in cancers from smokers compared to non-smokers. APOBEC signature mutations and didyma are also elevated in normal lung tissues in smokers prior to cancer initiation. Collectively, these results indicate that DNA adducting mutagens in tobacco smoke can amplify DNA damage and mutagenesis by endogenous APOBEC enzymes and, more broadly, suggest that mutational mechanisms can interact synergistically in both cancer initiation and promotion.
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
- Digital Genomics Group, Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain, 28029
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Shuvro P. Nandi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Yaxi Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Xingyu Liu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Christopher D. Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Rachel I. Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Prokopios P. Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, Ohio, USA, 43210
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| |
Collapse
|
2
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. EMBO J 2025; 44:1-29. [PMID: 39548236 PMCID: PMC11696371 DOI: 10.1038/s44318-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell-cycle stage associated with APOBEC-mediated mutagenesis. In contrast, in squamous cell carcinoma we find that, there is expansion of GRHL3expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings suggest that APOBEC3A may play a functional role during keratinocyte differentiation, and offer a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Cell, Gene and RNA Therapies, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Swanson J, Tonne J, Sangsuwannukul T, Thompson J, Kendall B, Liseth O, Metko M, Vile R. APOBEC3B expression in 293T viral producer cells drives mutations in chimeric antigen receptors and reduces CAR T cell efficacy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200873. [PMID: 39403625 PMCID: PMC11472098 DOI: 10.1016/j.omton.2024.200873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 11/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are a clinically approved therapy for blood cancers. To produce clinical-grade CAR T cells, a retroviral or lentiviral vector is used to deliver the CAR and associated genes to patient T cells. Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) enzymes are known to be upregulated after transfection and retroviral infection and to deaminate cytidine to uracil in nucleic acids, resulting in cytidine-to-thymine mutations in DNA. Here, we hypothesized that APOBEC3 enzymes, induced during the production of CAR T cells, impact the efficacy of the resulting CAR T cells. We demonstrated that APOBEC3 family member APOBEC3B was upregulated at the RNA and protein levels after transfection of HEK293T cells with plasmids to make lentivirus, and that APOBEC3 signature mutations were present in the CAR construct. APOBEC3B overexpression in HEK293T cells led to further mutations in the resulting CAR T cells, and significantly decreased CAR T cell killing. APOBEC3B knockout in HEK293T cells led to reduced mutations in the CAR construct and significantly increased in CAR T cell killing. These results suggest that generation of CAR-expressing viruses from producer cell lines deficient in genome-modifying proteins such as APOBEC3B could enhance the quality of CAR T cell production.
Collapse
Affiliation(s)
- Jack Swanson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Olivia Liseth
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Vile
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, Becker A, Kim K, Durfee C, Temiz NA, Chen XS, Harris RS, Lawrence MS, Buisson R. Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes. Nat Commun 2024; 15:2370. [PMID: 38499542 PMCID: PMC10948877 DOI: 10.1038/s41467-024-45909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024] Open
Abstract
Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.
Collapse
Affiliation(s)
- Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexandrea Becker
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3997426. [PMID: 38496447 PMCID: PMC10942551 DOI: 10.21203/rs.3.rs-3997426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J. Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- School of Biosciences, University of Kent, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, UK
| | | | - John Doorbar
- Department of Pathology, University of Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Gareth J. Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Tim R. Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
6
|
Caswell DR, Gui P, Mayekar MK, Law EK, Pich O, Bailey C, Boumelha J, Kerr DL, Blakely CM, Manabe T, Martinez-Ruiz C, Bakker B, De Dios Palomino Villcas J, I Vokes N, Dietzen M, Angelova M, Gini B, Tamaki W, Allegakoen P, Wu W, Humpton TJ, Hill W, Tomaschko M, Lu WT, Haderk F, Al Bakir M, Nagano A, Gimeno-Valiente F, de Carné Trécesson S, Vendramin R, Barbè V, Mugabo M, Weeden CE, Rowan A, McCoach CE, Almeida B, Green M, Gomez C, Nanjo S, Barbosa D, Moore C, Przewrocka J, Black JRM, Grönroos E, Suarez-Bonnet A, Priestnall SL, Zverev C, Lighterness S, Cormack J, Olivas V, Cech L, Andrews T, Rule B, Jiao Y, Zhang X, Ashford P, Durfee C, Venkatesan S, Temiz NA, Tan L, Larson LK, Argyris PP, Brown WL, Yu EA, Rotow JK, Guha U, Roper N, Yu J, Vogel RI, Thomas NJ, Marra A, Selenica P, Yu H, Bakhoum SF, Chew SK, Reis-Filho JS, Jamal-Hanjani M, Vousden KH, McGranahan N, Van Allen EM, Kanu N, Harris RS, Downward J, Bivona TG, Swanton C. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat Genet 2024; 56:60-73. [PMID: 38049664 PMCID: PMC10786726 DOI: 10.1038/s41588-023-01592-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.
Collapse
Affiliation(s)
- Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| | - Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manasi K Mayekar
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tadashi Manabe
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Martinez-Ruiz
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Natalie I Vokes
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Dietzen
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Beatrice Gini
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Whitney Tamaki
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy J Humpton
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
- CRUK Beatson Institute, Glasgow, UK
- Glasgow Caledonian University, Glasgow, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ai Nagano
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Roberto Vendramin
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Vittorio Barbè
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Miriam Mugabo
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Bruna Almeida
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Carlos Gomez
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shigeki Nanjo
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dora Barbosa
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chris Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Joanna Przewrocka
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - James R M Black
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Simon L Priestnall
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Caroline Zverev
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Scott Lighterness
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - James Cormack
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Cech
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Trisha Andrews
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Paul Ashford
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lisa Tan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lindsay K Larson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- School of Dentistry, University of Minnesota, Minneapolis, MN, USA
- College of Dentistry, Ohio State University, Columbus, OH, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Sutter Health Palo Alto Medical Foundation, Department of Pulmonary and Critical Care, Mountain View, CA, USA
| | - Julia K Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, NCI, NIH, Bethesda, MD, USA
- NextCure Inc., Beltsville, MD, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Johnny Yu
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel I Vogel
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Thomas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Helena Yu
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell College of Medicine, New York City, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Karen H Vousden
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Trever G Bivona
- Departments of Medicine and Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| |
Collapse
|
7
|
Alonso de la Vega A, Temiz NA, Tasakis R, Somogyi K, Salgueiro L, Zimmer E, Ramos M, Diaz-Jimenez A, Chocarro S, Fernández-Vaquero M, Stefanovska B, Reuveni E, Ben-David U, Stenzinger A, Poth T, Heikenwälder M, Papavasiliou N, Harris RS, Sotillo R. Acute expression of human APOBEC3B in mice results in RNA editing and lethality. Genome Biol 2023; 24:267. [PMID: 38001542 PMCID: PMC10668425 DOI: 10.1186/s13059-023-03115-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied. RESULTS Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing. Elevated and sustained levels of APOBEC3B lead to rapid alteration of cellular fitness, major organ dysfunction, and ultimately lethality in mice. Importantly, RNA-sequencing of mouse tissues expressing high levels of APOBEC3B identifies frequent UCC-to-UUC RNA editing events that are not evident in the corresponding genomic DNA. CONCLUSIONS This work identifies, for the first time, a new deaminase-dependent function for APOBEC3B in RNA editing and presents a preclinical tool to help understand the emerging role of APOBEC3B as a driver of carcinogenesis.
Collapse
Affiliation(s)
- Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Nuri Alpay Temiz
- Health Informatics Institute, University of Minnesota, Minneapolis, 55455, USA
| | - Rafail Tasakis
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Lorena Salgueiro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Eleni Zimmer
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Alberto Diaz-Jimenez
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Mirian Fernández-Vaquero
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bojana Stefanovska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Eli Reuveni
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Tanja Poth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
8
|
Carpenter MA, Temiz NA, Ibrahim MA, Jarvis MC, Brown MR, Argyris PP, Brown WL, Starrett GJ, Yee D, Harris RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet 2023; 19:e1011043. [PMID: 38033156 PMCID: PMC10715669 DOI: 10.1371/journal.pgen.1011043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Collapse
Affiliation(s)
- Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Matthew C. Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gabriel J. Starrett
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
9
|
Durfee C, Temiz NA, Levin-Klein R, Argyris PP, Alsøe L, Carracedo S, Alonso de la Vega A, Proehl J, Holzhauer AM, Seeman ZJ, Liu X, Lin YHT, Vogel RI, Sotillo R, Nilsen H, Harris RS. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep Med 2023; 4:101211. [PMID: 37797615 PMCID: PMC10591044 DOI: 10.1016/j.xcrm.2023.101211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many cancers. However, despite years of work, a causal relationship has yet to be established in vivo. Here, we report a murine model that expresses tumor-like levels of human APOBEC3B. Animals expressing full-body APOBEC3B appear to develop normally. However, adult males manifest infertility, and older animals of both sexes show accelerated rates of carcinogenesis, visual and molecular tumor heterogeneity, and metastasis. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Enrichment for APOBEC3B-attributable single base substitution mutations also associates with elevated levels of insertion-deletion mutations and structural variations. APOBEC3B catalytic activity is required for all of these phenotypes. Together, these studies provide a cause-and-effect demonstration that human APOBEC3B is capable of driving both tumor initiation and evolution in vivo.
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Lene Alsøe
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Sergio Carracedo
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Anna M Holzhauer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J Seeman
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xingyu Liu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yu-Hsiu T Lin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Hilde Nilsen
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
10
|
McCann JL, Cristini A, Law EK, Lee SY, Tellier M, Carpenter MA, Beghè C, Kim JJ, Sanchez A, Jarvis MC, Stefanovska B, Temiz NA, Bergstrom EN, Salamango DJ, Brown MR, Murphy S, Alexandrov LB, Miller KM, Gromak N, Harris RS. APOBEC3B regulates R-loops and promotes transcription-associated mutagenesis in cancer. Nat Genet 2023; 55:1721-1734. [PMID: 37735199 PMCID: PMC10562255 DOI: 10.1038/s41588-023-01504-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer.
Collapse
Affiliation(s)
- Jennifer L McCann
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jae Jin Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Anthony Sanchez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Bojana Stefanovska
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Daniel J Salamango
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Margaret R Brown
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA.
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
Fanunza E, Cheng AZ, Auerbach AA, Stefanovska B, Moraes SN, Lokensgard JR, Biolatti M, Dell'Oste V, Bierle CJ, Bresnahan WA, Harris RS. Human cytomegalovirus mediates APOBEC3B relocalization early during infection through a ribonucleotide reductase-independent mechanism. J Virol 2023; 97:e0078123. [PMID: 37565748 PMCID: PMC10506462 DOI: 10.1128/jvi.00781-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagilari, Italy
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashley A. Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Bojana Stefanovska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - James R. Lokensgard
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Craig J. Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wade A. Bresnahan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
12
|
Ikeda T, Shimizu R, Nasser H, Carpenter MA, Cheng AZ, Brown WL, Sauter D, Harris RS. APOBEC3 degradation is the primary function of HIV-1 Vif determining virion infectivity in the myeloid cell line THP-1. mBio 2023; 14:e0078223. [PMID: 37555667 PMCID: PMC10470580 DOI: 10.1128/mbio.00782-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023] Open
Abstract
HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4+ T lymphocytes and macrophages. Previous studies have demonstrated that the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4+ T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4+ T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins during viral replication is currently unknown. Herein, we describe the development and characterization of A3F-, A3F/A3G-, and A3A-to-A3G-null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F-null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G-null cells. Remarkably, disruption of A3A-A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during infectious HIV-1 production from THP-1 cells is the targeting and degradation of A3 enzymes. IMPORTANCE HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wild-type HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for fully infectious HIV-1 production from THP-1 cells.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
13
|
Roelofs PA, Martens JW, Harris RS, Span PN. Clinical Implications of APOBEC3-Mediated Mutagenesis in Breast Cancer. Clin Cancer Res 2023; 29:1658-1669. [PMID: 36478188 PMCID: PMC10159886 DOI: 10.1158/1078-0432.ccr-22-2861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Over recent years, members of the APOBEC3 family of cytosine deaminases have been implicated in increased cancer genome mutagenesis, thereby contributing to intratumor and intertumor genomic heterogeneity and therapy resistance in, among others, breast cancer. Understanding the available methods for clinical detection of these enzymes, the conditions required for their (dysregulated) expression, the clinical impact they have, and the clinical implications they may offer is crucial in understanding the current impact of APOBEC3-mediated mutagenesis in breast cancer. Here, we provide a comprehensive review of recent developments in the detection of APOBEC3-mediated mutagenesis and responsible APOBEC3 enzymes, summarize the pathways that control their expression, and explore the clinical ramifications and opportunities they pose. We propose that APOBEC3-mediated mutagenesis can function as a helpful predictive biomarker in several standard-of-care breast cancer treatment plans and may be a novel target for treatment.
Collapse
Affiliation(s)
- Pieter A. Roelofs
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - John W.M. Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul N. Span
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
14
|
Ikeda T, Shimizu R, Nasser H, Carpenter MA, Cheng AZ, Brown WL, Sauter D, Harris RS. APOBEC3 degradation is the primary function of HIV-1 Vif for virus replication in the myeloid cell line THP-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534666. [PMID: 37034786 PMCID: PMC10081227 DOI: 10.1101/2023.03.28.534666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4 + T lymphocytes and macrophages. Previous studies have demonstrated that the APOBEC3 (A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4 + T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4 + T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins or has additional essential targets during viral replication is currently unknown. Herein, we describe the development and characterization of A3F -, A3F/A3G -, and A3A -to- A3G -null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F -null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G -null cells. Remarkably, disruption of A3Aâ€"A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during HIV-1 replication in THP-1 cells is the targeting and degradation of A3 enzymes. Importance HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wildtype HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for HIV-1 replication in THP-1 cells.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 8600811, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41511, Egypt
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
15
|
Argyris PP, Naumann J, Jarvis MC, Wilkinson PE, Ho DP, Islam MN, Bhattacharyya I, Gopalakrishnan R, Li F, Koutlas IG, Giubellino A, Harris RS. Primary mucosal melanomas of the head and neck are characterised by overexpression of the DNA mutating enzyme APOBEC3B. Histopathology 2023; 82:608-621. [PMID: 36416305 PMCID: PMC10107945 DOI: 10.1111/his.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022]
Abstract
AIMS Primary head/neck mucosal melanomas (MMs) are rare and exhibit aggressive biologic behaviour and elevated mutational loads. The molecular mechanisms responsible for high genomic instability observed in head/neck MMs remain elusive. The DNA cytosine deaminase APOBEC3B (A3B) constitutes a major endogenous source of mutation in human cancer. A3B-related mutations are identified through C-to-T/-G base substitutions in 5'-TCA/T motifs. Herein, we present immunohistochemical and genomic data supportive of a role for A3B in head/neck MMs. METHODS AND RESULTS A3B protein levels were assessed in oral (n = 13) and sinonasal (n = 13) melanomas, and oral melanocytic nevi (n = 13) by immunohistochemistry using a custom rabbit α-A3B mAb (5210-87-13). Heterogeneous, selective-to-diffuse, nuclear only, A3B immunopositivity was observed in 12 of 13 (92.3%) oral melanomas (H-score range = 9-72, median = 40) and 8 of 13 (62%) sinonasal melanomas (H-score range = 1-110, median = 24). Two cases negative for A3B showed prominent cytoplasmic staining consistent with A3G. A3B protein levels were significantly higher in oral and sinonasal MMs than intraoral melanocytic nevi (P < 0.0001 and P = 0.0022, respectively), which were A3B-negative (H-score range = 1-8, median = 4). A3B levels, however, did not differ significantly between oral and sinonasal tumours (P > 0.99). NGS performed in 10 sinonasal MMs revealed missense NRAS mutations in 50% of the studied cases and one each KIT and HRAS mutations. Publicly available whole-genome sequencing (WGS) data disclosed that the number of C-to-T mutations and APOBEC3 enrichment score were markedly elevated in head/neck MMs (n = 2). CONCLUSION The above data strongly indicate a possible role for the mutagenic enzyme A3B in head/neck melanomagenesis, but not benign melanocytic neoplasms.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Jordan Naumann
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Peter E Wilkinson
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Dan P Ho
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Mohammed N Islam
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Indraneel Bhattacharyya
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Rajaram Gopalakrishnan
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Faqian Li
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ioannis G Koutlas
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Alessio Giubellino
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
16
|
Durfee C, Temiz NA, Levin-Klein R, Argyris PP, Alsøe L, Carracedo S, de la Vega AA, Proehl J, Holzhauer AM, Seeman ZJ, Lin YHT, Vogel RI, Sotillo R, Nilsen H, Harris RS. Human APOBEC3B promotes tumor heterogeneity in vivo including signature mutations and metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529970. [PMID: 36865194 PMCID: PMC9980288 DOI: 10.1101/2023.02.24.529970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many different cancers. Despite over 10 years of work, a causal relationship has yet to be established between APOBEC3B and any stage of carcinogenesis. Here we report a murine model that expresses tumor-like levels of human APOBEC3B after Cre-mediated recombination. Animals appear to develop normally with full-body expression of APOBEC3B. However, adult males manifest infertility and older animals of both sexes show accelerated rates of tumorigenesis (mostly lymphomas or hepatocellular carcinomas). Interestingly, primary tumors also show overt heterogeneity, and a subset spreads to secondary sites. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Elevated levels of structural variation and insertion-deletion mutations also accumulate in these tumors. Together, these studies provide the first cause-and-effect demonstration that human APOBEC3B is an oncoprotein capable of causing a wide range of genetic changes and driving tumor formation in vivo .
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, Ohio, USA, 43210
| | - Lene Alsøe
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| | - Sergio Carracedo
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL)
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Anna M Holzhauer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Zachary J Seeman
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Yu-Hsiu T Lin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL)
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| |
Collapse
|
17
|
Fanunza E, Cheng AZ, Auerbach AA, Stefanovska B, Moraes SN, Lokensgard JR, Biolatti M, Dell’Oste V, Bierle CJ, Bresnahan WA, Harris RS. Human cytomegalovirus mediates APOBEC3B relocalization early during infection through a ribonucleotide reductase-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526383. [PMID: 36778493 PMCID: PMC9915650 DOI: 10.1101/2023.01.30.526383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses EBV and KSHV and the alpha-herpesviruses HSV-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting involvement of an immediate early or early (IE-E) viral protein. In support of this mechanism, cycloheximide treatment of HCMV-infected cells prevents the expression of viral proteins and simultaneously blocks APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which is a viral DNA synthesis inhibitor affecting late protein expression, still permits A3B relocalization. These results combine to show that the beta-herpesvirus HCMV uses a fundamentally different, RNR-independent molecular mechanism to antagonize APOBEC3B. Importance Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses in order to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashley A. Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Bojana Stefanovska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - James R. Lokensgard
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, 10126, Italy
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, 10126, Italy
| | - Craig J. Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wade A. Bresnahan
- Department of Microbiology and Immunology, University of Minnesota, MN 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Auerbach AA, Becker JT, Moraes SN, Moghadasi SA, Duda JM, Salamango DJ, Harris RS. Ancestral APOBEC3B Nuclear Localization Is Maintained in Humans and Apes and Altered in Most Other Old World Primate Species. mSphere 2022; 7:e0045122. [PMID: 36374108 PMCID: PMC9769932 DOI: 10.1128/msphere.00451-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
APOBEC3B is an innate immune effector enzyme capable of introducing mutations in viral genomes through DNA cytosine-to-uracil editing. Recent studies have shown that gamma-herpesviruses, such as Epstein-Barr virus (EBV), have evolved a potent APOBEC3B neutralization mechanism to protect lytic viral DNA replication intermediates in the nuclear compartment. APOBEC3B is additionally unique as the only human DNA deaminase family member that is constitutively nuclear. Nuclear localization has therefore been inferred to be essential for innate antiviral function. Here, we combine evolutionary, molecular, and cell biology approaches to address whether nuclear localization is a conserved feature of APOBEC3B in primates. Despite the relatively recent emergence of APOBEC3B approximately 30 to 40 million years ago (MYA) in Old World primates by genetic recombination (after the split from the New World monkey lineage 40 to 50 MYA), we find that the hallmark nuclear localization of APOBEC3B shows variability. For instance, although human and several nonhuman primate APOBEC3B enzymes are predominantly nuclear, rhesus macaque and other Old World primate APOBEC3B proteins are clearly cytoplasmic or cell wide. A series of human/rhesus macaque chimeras and mutants combined to map localization determinants to the N-terminal half of the protein with residues 15, 19, and 24 proving critical. Ancestral APOBEC3B reconstructed from present-day primate species also shows strong nuclear localization. Together, these results indicate that the ancestral nuclear localization of APOBEC3B is maintained in present-day human and ape proteins, but nuclear localization is not conserved in all Old World monkey species despite a need for antiviral functions in the nuclear compartment. IMPORTANCE APOBEC3 enzymes are single-stranded DNA cytosine-to-uracil deaminases with beneficial roles in antiviral immunity and detrimental roles in cancer mutagenesis. Regarding viral infection, all seven human APOBEC3 enzymes have overlapping roles in restricting virus types that require DNA for replication, including EBV, HIV, human papillomavirus (HPV), and human T-cell leukemia virus (HTLV). Regarding cancer, at least two APOBEC3 enzymes, APOBEC3B and APOBEC3A, are prominent sources of mutation capable of influencing clinical outcomes. Here, we combine evolutionary, molecular, and cell biology approaches to characterize primate APOBEC3B enzymes. We show that nuclear localization is an ancestral property of APOBEC3B that is maintained in present-day human and ape enzymes, but not conserved in other nonhuman primates. This partial mechanistic conservation indicates that APOBEC3B is important for limiting the replication of DNA-based viruses in the nuclear compartment. Understanding these pathogen-host interactions may contribute to the development of future antiviral and antitumor therapies.
Collapse
Affiliation(s)
- Ashley A Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Jordan T Becker
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Sofia N Moraes
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Seyed Arad Moghadasi
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Jolene M Duda
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Daniel J Salamango
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
19
|
Boumelha J, de Carné Trécesson S, Law EK, Romero-Clavijo P, Coelho MA, Ng K, Mugarza E, Moore C, Rana S, Caswell DR, Murillo M, Hancock DC, Argyris PP, Brown WL, Durfee C, Larson LK, Vogel RI, Suárez-Bonnet A, Priestnall SL, East P, Ross SJ, Kassiotis G, Molina-Arcas M, Swanton C, Harris R, Downward J. An Immunogenic Model of KRAS-Mutant Lung Cancer Enables Evaluation of Targeted Therapy and Immunotherapy Combinations. Cancer Res 2022; 82:3435-3448. [PMID: 35930804 PMCID: PMC7613674 DOI: 10.1158/0008-5472.can-22-0325] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Mutations in oncogenes such as KRAS and EGFR cause a high proportion of lung cancers. Drugs targeting these proteins cause tumor regression but ultimately fail to elicit cures. As a result, there is an intense interest in how to best combine targeted therapies with other treatments, such as immunotherapies. However, preclinical systems for studying the interaction of lung tumors with the host immune system are inadequate, in part due to the low tumor mutational burden in genetically engineered mouse models. Here we set out to develop mouse models of mutant KRAS-driven lung cancer with an elevated tumor mutational burden by expressing the human DNA cytosine deaminase, APOBEC3B, to mimic the mutational signature seen in human lung cancer. This failed to substantially increase clonal tumor mutational burden and autochthonous tumors remained refractory to immunotherapy. However, establishing clonal cell lines from these tumors enabled the generation of an immunogenic syngeneic transplantation model of KRAS-mutant lung adenocarcinoma that was sensitive to immunotherapy. Unexpectedly, antitumor immune responses were not directed against neoantigens but instead targeted derepressed endogenous retroviral antigens. The ability of KRASG12C inhibitors to cause regression of KRASG12C -expressing tumors was markedly potentiated by the adaptive immune system, highlighting the importance of using immunocompetent models for evaluating targeted therapies. Overall, this model provides a unique opportunity for the study of combinations of targeted and immunotherapies in immune-hot lung cancer. SIGNIFICANCE This study develops a mouse model of immunogenic KRAS-mutant lung cancer to facilitate the investigation of optimal combinations of targeted therapies with immunotherapies.
Collapse
Affiliation(s)
| | | | - Emily K. Law
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Howard Hughes Medical Institute, University of Minnesota,
Minneapolis, MN, USA, 55455
| | | | | | - Kevin Ng
- Retroviral Immunology Laboratory
| | | | | | - Sareena Rana
- Oncogene Biology Laboratory
- Lung Cancer Group, Division of Molecular Pathology, Institute of
Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Miguel Murillo
- Oncogene Biology Laboratory
- Lung Cancer Group, Division of Molecular Pathology, Institute of
Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Division of Oral and Maxillofacial Pathology, School of Dentistry,
University of Minnesota, Minneapolis, MN, USA, 55455
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Institute for Molecular Virology, University of Minnesota,
Minneapolis, MN, USA, 55455
| | - Cameron Durfee
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Institute for Molecular Virology, University of Minnesota,
Minneapolis, MN, USA, 55455
- Department of Biochemistry and Structural Biology, University of
Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Lindsay K. Larson
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Institute for Molecular Virology, University of Minnesota,
Minneapolis, MN, USA, 55455
| | - Rachel I. Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,
USA, 55455
- Department of Obstetrics, Gynecology, and Women’s Health,
University of Minnesota, Minneapolis, MN, USA, 55455
| | - Alejandro Suárez-Bonnet
- Experimental Histopathology, Francis Crick Institute, 1 Midland
Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary
College, Hatfield, AL9 7TA, UK
| | - Simon L. Priestnall
- Experimental Histopathology, Francis Crick Institute, 1 Midland
Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary
College, Hatfield, AL9 7TA, UK
| | | | | | | | | | | | - Reuben Harris
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Howard Hughes Medical Institute, University of Minnesota,
Minneapolis, MN, USA, 55455
- Department of Biochemistry and Structural Biology, University of
Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San
Antonio, San Antonio, TX 78229, USA
| | - Julian Downward
- Oncogene Biology Laboratory
- Lung Cancer Group, Division of Molecular Pathology, Institute of
Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
20
|
Tsukimoto S, Hakata Y, Tsuji-Kawahara S, Enya T, Tsukamoto T, Mizuno S, Takahashi S, Nakao S, Miyazawa M. Distinctive High Expression of Antiretroviral APOBEC3 Protein in Mouse Germinal Center B Cells. Viruses 2022; 14:v14040832. [PMID: 35458563 PMCID: PMC9029289 DOI: 10.3390/v14040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Tissue and subcellular localization and its changes upon cell activation of virus-restricting APOBEC3 at protein levels are important to understanding physiological functions of this cytidine deaminase, but have not been thoroughly analyzed in vivo. To precisely follow the possible activation-induced changes in expression levels of APOBEC3 protein in different mouse tissues and cell populations, genome editing was utilized to establish knock-in mice that express APOBEC3 protein with an in-frame FLAG tag. Flow cytometry and immunohistochemical analyses were performed prior to and after an immunological stimulation. Cultured B cells expressed higher levels of APOBEC3 protein than T cells. All differentiation and activation stages of freshly prepared B cells expressed significant levels of APOBEC3 protein, but germinal center cells possessed the highest levels of APOBEC3 protein localized in their cytoplasm. Upon immunological stimulation with sheep red blood cells in vivo, germinal center cells with high levels of APOBEC3 protein expression increased in their number, but FLAG-specific fluorescence intensity in each cell did not change. T cells, even those in germinal centers, did not express significant levels of APOBEC3 protein. Thus, mouse APOBEC3 protein is expressed at distinctively high levels in germinal center B cells. Antigenic stimulation did not affect expression levels of cellular APOBEC3 protein despite increased numbers of germinal center cells.
Collapse
Affiliation(s)
- Shota Tsukimoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Yoshiyuki Hakata
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Sachiyo Tsuji-Kawahara
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Takuji Enya
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Pediatrics, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan
| | - Tetsuo Tsukamoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Laboratory Animal Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Masaaki Miyazawa
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Anti-Aging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Correspondence:
| |
Collapse
|
21
|
Beghè C, Gromak N. R-Loop Immunoprecipitation: A Method to Detect R-Loop Interacting Factors. Methods Mol Biol 2022; 2528:215-237. [PMID: 35704194 DOI: 10.1007/978-1-0716-2477-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
R-loops are non-B-DNA structures consisting of an RNA/DNA hybrid and a displaced single-stranded DNA. They arise during transcription and play important biological roles. However, perturbation of R-loop levels represents a source of DNA damage and genome instability resulting in human diseases, including cancer and neurodegeneration. In this chapter, we describe a protocol which allows detection of R-loop interactors using affinity purification with S9.6 antibody, specific for RNA/DNA hybrids, followed by Western blotting or mass spectrometry. Multiple specificity controls including addition of synthetic competitors and RNase H treatment are described to verify the specificity of identified R-loop-binding factors. The identification of new R-loop interacting factors and the characterization of their involvement in R-loop biology provides a powerful resource to study the role of these important structures in health and disease.
Collapse
Affiliation(s)
- Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Asaoka M, Patnaik SK, Ishikawa T, Takabe K. Different members of the APOBEC3 family of DNA mutators have opposing associations with the landscape of breast cancer. Am J Cancer Res 2021; 11:5111-5125. [PMID: 34765315 PMCID: PMC8569370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023] Open
Abstract
APOBEC enzymes are strong mutagenic factors. In breast cancer, expression of APOBEC3B is increased and associated with mutation load and poor outcome. Other APOBEC3s can also mutate DNA but their clinical significance in breast cancer and its underpinnings have not been comprehensively studied. In our examination of 1,091 breast carcinoma cases, high expression of APOBEC3A or APOBEC3B genes was associated with greater tumor burden of mutations and other genomic aberrations. Expression of none of the five APOBEC3C-H genes had any correlation with these features, including T[C-T/G]W mutations, but their high expression levels indicated a robust anti-cancer immune response within tumors, with elevated CD8+ T cell abundance, T cell receptor diversity, and immune cytolytic activity. Concordantly, survival analyses of this and two other cohorts with > 3,000 patients each showed favorable prognostic benefit of high APOBEC3C-H expression for both cancer progression and mortality. A detrimental prognostic value was observed for APOBEC3A and APOBEC3B. Single-cell data revealed cancer epithelial and stromal immune cells as major sources of APOBEC3B and APOBEC3C-H expression in tumors, respectively. These observations on opposing associations with breast cancer of different APOBEC3s highlight the contrasting roles of these enzymes, promoting cancer through mutagenesis while antagonizing it through immune response.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Breast Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York, USA
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York, USA
- Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Surgery, Yokohama City UniversityYokohama, Japan
| |
Collapse
|
23
|
Venkatesan S, Angelova M, Puttick C, Zhai H, Caswell DR, Lu WT, Dietzen M, Galanos P, Evangelou K, Bellelli R, Lim EL, Watkins TB, Rowan A, Teixeira VH, Zhao Y, Chen H, Ngo B, Zalmas LP, Bakir MA, Hobor S, Gronroos E, Pennycuick A, Nigro E, Campbell BB, Brown WL, Akarca AU, Marafioti T, Wu MY, Howell M, Boulton SJ, Bertoli C, Fenton TR, de Bruin RA, Maya-Mendoza A, Santoni-Rugiu E, Hynds RE, Gorgoulis VG, Jamal-Hanjani M, McGranahan N, Harris RS, Janes SM, Bartkova J, Bakhoum SF, Bartek J, Kanu N, Swanton C. Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution. Cancer Discov 2021; 11:2456-2473. [PMID: 33947663 PMCID: PMC8487921 DOI: 10.1158/2159-8290.cd-20-0725] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/08/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Haoran Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Deborah R. Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michelle Dietzen
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Panagiotis Galanos
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Emilia L. Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Thomas B.K. Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Vitor H. Teixeira
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Yue Zhao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bryan Ngo
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | | | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sebastijan Hobor
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eva Gronroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Adam Pennycuick
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Ersilia Nigro
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Brittany B. Campbell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - William L. Brown
- Masonic Cancer Center, Minneapolis, USA; Institute for Molecular Virology, Minneapolis, USA; Center for Genome Engineering, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Ayse U. Akarca
- Department of Histopathology, University College London, London, United Kingdom
| | - Teresa Marafioti
- Department of Histopathology, University College London, London, United Kingdom
| | - Mary Y. Wu
- High Throughput Screening Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Simon J. Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Tim R. Fenton
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robertus A.M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Robert E. Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Reuben S. Harris
- Masonic Cancer Center, Minneapolis, USA; Institute for Molecular Virology, Minneapolis, USA; Center for Genome Engineering, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, USA
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Jirina Bartkova
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
24
|
Structural Characterization of a Minimal Antibody against Human APOBEC3B. Viruses 2021; 13:v13040663. [PMID: 33921405 PMCID: PMC8070380 DOI: 10.3390/v13040663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
APOBEC3B (A3B) is one of seven human APOBEC3 DNA cytosine deaminases that restrict viral infections as part of the overall innate immune response, but it also plays a major role in tumor evolution by mutating genomic DNA. Given the importance of A3B as a restriction factor of viral infections and as a driver of multiple human cancers, selective antibodies against A3B are highly desirable for its specific detection in various research and possibly diagnostic applications. Here, we describe a high-affinity minimal antibody, designated 5G7, obtained via a phage display screening against the C-terminal catalytic domain (ctd) of A3B. 5G7 also binds APOBEC3A that is highly homologous to A3Bctd but does not bind the catalytic domain of APOBEC3G, another Z1-type deaminase domain. The crystal structure of 5G7 shows a canonical arrangement of the heavy and light chain variable domains, with their complementarity-determining region (CDR) loops lining an antigen-binding cleft that accommodates a pair of α-helices. To understand the mechanism of A3Bctd recognition by 5G7, we used the crystal structures of A3Bctd and 5G7 as templates and computationally predicted the A3B-5G7 complex structure. Stable binding poses obtained by the simulation were further tested by site-directed mutagenesis and in vitro binding analyses. These studies mapped the epitope for 5G7 to a portion of C-terminal α6 helix of A3Bctd, with Arg374 playing an essential role. The same region of A3Bctd was used previously as a peptide antigen for generating a rabbit monoclonal antibody (mAb 5210-87-13), suggesting that this region is particularly immunogenic and that these antibodies from very different origins may share similar binding modes. Our studies provide a platform for the development of selective antibodies against A3B and other APOBEC3 family enzymes.
Collapse
|
25
|
Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP, Carpenter MA, Starrett GJ, Temiz NA, Larson LK, Durfee C, Burns MB, Vogel RI, Stavrou S, Aguilera AN, Wagner S, Largaespada DA, Starr TK, Ross SR, Harris RS. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med 2021; 217:152061. [PMID: 32870257 PMCID: PMC7953736 DOI: 10.1084/jem.20200261] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.
Collapse
Affiliation(s)
- Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hyoung Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Prokopios P Argyris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Gabriel J Starrett
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN
| | - Lindsay K Larson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Cameron Durfee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael B Burns
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Biology, Loyola University, Chicago, IL
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Spyridon Stavrou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sandra Wagner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
26
|
Cheng AZ, Moraes SN, Shaban NM, Fanunza E, Bierle CJ, Southern PJ, Bresnahan WA, Rice SA, Harris RS. APOBECs and Herpesviruses. Viruses 2021; 13:v13030390. [PMID: 33671095 PMCID: PMC7998176 DOI: 10.3390/v13030390] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
The apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of DNA cytosine deaminases provides a broad and overlapping defense against viral infections. Successful viral pathogens, by definition, have evolved strategies to escape restriction by the APOBEC enzymes of their hosts. HIV-1 and related retroviruses are thought to be the predominant natural substrates of APOBEC enzymes due to obligate single-stranded (ss)DNA replication intermediates, abundant evidence for cDNA strand C-to-U editing (genomic strand G-to-A hypermutation), and a potent APOBEC degradation mechanism. In contrast, much lower mutation rates are observed in double-stranded DNA herpesviruses and the evidence for APOBEC mutation has been less compelling. However, recent work has revealed that Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and herpes simplex virus-1 (HSV-1) are potential substrates for cellular APOBEC enzymes. To prevent APOBEC-mediated restriction these viruses have repurposed their ribonucleotide reductase (RNR) large subunits to directly bind, inhibit, and relocalize at least two distinct APOBEC enzymes—APOBEC3B and APOBEC3A. The importance of this interaction is evidenced by genetic inactivation of the EBV RNR (BORF2), which results in lower viral infectivity and higher levels of C/G-to-T/A hypermutation. This RNR-mediated mechanism therefore likely functions to protect lytic phase viral DNA replication intermediates from APOBEC-catalyzed DNA C-to-U deamination. The RNR-APOBEC interaction defines a new pathogen-host conflict that the virus must win in real-time for transmission and pathogenesis. However, partial losses over evolutionary time may also benefit the virus by providing mutational fuel for adaptation.
Collapse
Affiliation(s)
- Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.Z.C.); (R.S.H.)
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nadine M. Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elisa Fanunza
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Craig J. Bierle
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter J. Southern
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wade A. Bresnahan
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen A. Rice
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.Z.C.); (R.S.H.)
| |
Collapse
|
27
|
Endogenous APOBEC3B overexpression characterizes HPV-positive and HPV-negative oral epithelial dysplasias and head and neck cancers. Mod Pathol 2021; 34:280-290. [PMID: 32632179 PMCID: PMC8261524 DOI: 10.1038/s41379-020-0617-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
The DNA cytosine deaminase APOBEC3B (A3B) is a newly recognized endogenous source of mutations in a range of human tumors, including head/neck cancer. A3B inflicts C-to-T and C-to-G base substitutions in 5'-TCA/T trinucleotide motifs, contributes to accelerated rates of tumor development, and affects clinical outcomes in a variety of cancer types. High-risk human papillomavirus (HPV) infection causes A3B overexpression, and HPV-positive cervical and head/neck cancers are among tumor types with the highest degree of APOBEC signature mutations. A3B overexpression in HPV-positive tumor types is caused by the viral E6/E7 oncoproteins and may be an early off-to-on switch in tumorigenesis. In comparison, less is known about the molecular mechanisms responsible for A3B overexpression in HPV-negative head/neck cancers. Here, we utilize an immunohistochemical approach to determine whether A3B is turned from off-to-on or if it undergoes a more gradual transition to overexpression in HPV-negative head/neck cancers. As positive controls, almost all HPV-positive oral epithelial dysplasias and oropharyngeal cancers showed high levels of nuclear A3B staining regardless of diagnosis. As negative controls, A3B levels were low in phenotypically normal epithelium adjacent to cancer and oral epithelial hyperplasias. Interestingly, HPV-negative and low-grade oral epithelial dysplasias showed intermediate A3B levels, while high-grade oral dysplasias showed high A3B levels similar to oral squamous cell carcinomas. A3B levels were highest in grade 2 and grade 3 oral squamous cell carcinomas. In addition, a strong positive association was found between nuclear A3B and Ki67 scores suggesting a linkage to the cell cycle. Overall, these results support a model in which gradual activation of A3B expression occurs during HPV-negative tumor development and suggest that A3B overexpression may provide a marker for advanced grade oral dysplasia and cancer.
Collapse
|
28
|
Roelofs PA, Goh CY, Chua BH, Jarvis MC, Stewart TA, McCann JL, McDougle RM, Carpenter MA, Martens JW, Span PN, Kappei D, Harris RS. Characterization of the mechanism by which the RB/E2F pathway controls expression of the cancer genomic DNA deaminase APOBEC3B. eLife 2020; 9:61287. [PMID: 32985974 PMCID: PMC7553775 DOI: 10.7554/elife.61287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall mutational landscape in breast cancer. Molecular mechanisms responsible for A3B upregulation in cancer are poorly understood. Here we show that a single E2F cis-element mediates repression in normal cells and that expression is activated by its mutational disruption in a reporter construct or the endogenous A3B gene. The same E2F site is required for A3B induction by polyomavirus T antigen indicating a shared molecular mechanism. Proteomic and biochemical experiments demonstrate the binding of wildtype but not mutant E2F promoters by repressive PRC1.6/E2F6 and DREAM/E2F4 complexes. Knockdown and overexpression studies confirm the involvement of these repressive complexes in regulating A3B expression. Altogether, these studies demonstrate that A3B expression is suppressed in normal cells by repressive E2F complexes and that viral or mutational disruption of this regulatory network triggers overexpression in breast cancer and provides fuel for tumor evolution.
Collapse
Affiliation(s)
- Pieter A Roelofs
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chai Yeen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Haow Chua
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States
| | - Teneale A Stewart
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Mater Research Institute, The University of Queensland, Faculty of Medicine, Brisbane, Australia
| | - Jennifer L McCann
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| | - Rebecca M McDougle
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Hennepin Healthcare, Minneapolis, United States
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| | - John Wm Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| |
Collapse
|
29
|
Kono T, Hoover P, Poropatich K, Paunesku T, Mittal BB, Samant S, Laimins LA. Activation of DNA damage repair factors in HPV positive oropharyngeal cancers. Virology 2020; 547:27-34. [PMID: 32560902 PMCID: PMC7333731 DOI: 10.1016/j.virol.2020.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
The mechanisms regulating viral pathogenesis of human papillomavirus (HPV) associated oropharyngeal squamous cell cancers (OPSCC) are not well understood. In the cervix, activation of DNA damage repair pathways is critical for viral replication but little is known about their role in OPSCC. APOBEC factors have been shown to be increased in OPSCC but the significance of this is unclear. We therefore examined activation of DNA damage and APOBEC factors in HPV-induced OPSCC. Our studies show significantly increased levels of pCHK1, FANCD2, BRCA1, RAD51, pSMC1 and γH2AX foci in HPV-positive samples as compared to HPV-negative while the ATM effector kinase, pCHK2, was not increased. Similar differences were observed when the levels of proteins were examined in OPSCC cell lines. In contrast, the levels of APOBEC3B and 3A were found to be similar in both HPV-positive and -negative OPSCC. Our studies suggest members of ATR pathway and FANCD2 may be important in HPV-induced OPSCC.
Collapse
Affiliation(s)
- Takeyuki Kono
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Paul Hoover
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kate Poropatich
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Bharat B Mittal
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sandeep Samant
- Department of Otolaryngology Head and Neck Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
30
|
Serebrenik AA, Argyris PP, Jarvis MC, Brown WL, Bazzaro M, Vogel RI, Erickson BK, Lee SH, Goergen KM, Maurer MJ, Heinzen EP, Oberg AL, Huang Y, Hou X, Weroha SJ, Kaufmann SH, Harris RS. The DNA Cytosine Deaminase APOBEC3B is a Molecular Determinant of Platinum Responsiveness in Clear Cell Ovarian Cancer. Clin Cancer Res 2020; 26:3397-3407. [PMID: 32060098 PMCID: PMC7334080 DOI: 10.1158/1078-0432.ccr-19-2786] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/04/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Clear cell ovarian carcinoma (CCOC) is an aggressive disease that often demonstrates resistance to standard chemotherapies. Approximately 25% of patients with CCOC show a strong APOBEC mutation signature. Here, we determine which APOBEC3 enzymes are expressed in CCOC, establish clinical correlates, and identify a new biomarker for detection and intervention. EXPERIMENTAL DESIGNS APOBEC3 expression was analyzed by IHC and qRT-PCR in a pilot set of CCOC specimens (n = 9 tumors). The IHC analysis of APOBEC3B was extended to a larger cohort to identify clinical correlates (n = 48). Dose-response experiments with platinum-based drugs in CCOC cell lines and carboplatin treatment of patient-derived xenografts (PDXs) were done to address mechanistic linkages. RESULTS One DNA deaminase, APOBEC3B, is overexpressed in a formidable subset of CCOC tumors and is low or absent in normal ovarian and fallopian tube epithelial tissues. High APOBEC3B expression associates with improved progression-free survival (P = 0.026) and moderately with overall survival (P = 0.057). Cell-based studies link APOBEC3B activity and subsequent uracil processing to sensitivity to cisplatin and carboplatin. PDX studies extend this mechanistic relationship to CCOC tissues. CONCLUSIONS These studies demonstrate that APOBEC3B is overexpressed in a subset of CCOC and, contrary to initial expectations, associated with improved (not worse) clinical outcomes. A likely molecular explanation is that APOBEC3B-induced DNA damage sensitizes cells to additional genotoxic stress by cisplatin. Thus, APOBEC3B is a molecular determinant and a candidate predictive biomarker of the therapeutic response to platinum-based chemotherapy. These findings may have broader translational relevance, as APOBEC3B is overexpressed in many different cancer types.
Collapse
Affiliation(s)
- Artur A Serebrenik
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, Minnesota
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Martina Bazzaro
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Britt K Erickson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Sun-Hee Lee
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Krista M Goergen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Matthew J Maurer
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ethan P Heinzen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Yajue Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|