1
|
Tasdurmazli S, Cinar I, Karamese M, Aksak Karamese S, Cadirci E, Melo LDR, Ozbek T. Exploring in vitro efficacy of rCHAPk with antibiotic combinations, and promising findings of its therapeutic potential for clinical-originated MRSA wound infection. Int J Biol Macromol 2025; 296:139630. [PMID: 39788229 DOI: 10.1016/j.ijbiomac.2025.139630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 10 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics. Application of 10 μg of rCHAPk reduced OD600 by 0.4 within 5 min against a clinical methicillin-resistant S. aureus (MRSA) strain. Combining rCHAPk (1.875 μg/mL) with oxacillin/vancomycin lowered their minimum bactericidal concentrations to 1 μg/mL from initial values over 64 μg/mL and 32 μg/mL, respectively, with a fractional inhibitory concentration index below 0.1. rCHAPk retained efficacy after one year of refrigerated storage. In in vivo experiments, rCHAPk outperformed commercial fucidin therapy in MRSA-induced murine wound models over two weeks, enhancing wound healing by modulating pro-inflammatory cytokine responses and the proliferative phase. This study, for the first time, investigates rCHAPk's in vitro combination with antibiotics and wound healing parameters, highlighting its potential as a potent antibacterial agent synergizing with antibiotics to address antibiotic-resistant bacterial wound infections.
Collapse
Affiliation(s)
- Semra Tasdurmazli
- Yıldız Technical University, Faculty of Science and Arts, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Irfan Cinar
- Kastamonu University, Faculty of Medicine, Kastamonu, Turkey
| | | | | | - Elif Cadirci
- Ataturk University, Faculty of Medicine, Erzurum, Turkey
| | - Luís D R Melo
- Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tulin Ozbek
- Yıldız Technical University, Faculty of Science and Arts, Department of Molecular Biology and Genetics, Istanbul, Turkey.
| |
Collapse
|
2
|
Ghaznavi G, Vosough P, Ghasemian A, Tabar MMM, Tayebi L, Taghizadeh S, Savardashtaki A. Engineering bacteriophages for targeted superbug eradication. Mol Biol Rep 2025; 52:221. [PMID: 39934535 DOI: 10.1007/s11033-025-10332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The rise of antibiotic-resistant bacteria, termed "superbugs," presents a formidable challenge to global health. These pathogens, often responsible for persistent nosocomial infections, threaten the effectiveness of conventional antibiotic therapies. This review delves into the potential of bacteriophages, viruses specifically targeting bacteria, as a powerful tool to combat superbugs. We examined the latest developments in genetic engineering that improve the efficacy of bacteriophages, focusing on modifications in host range, lysis mechanisms, and their ability to overcome bacterial defense systems. This review article highlights the CRISPR-Cas system as a promising method for precisely manipulating phage genomes, enabling the development of novel phage therapies with enhanced efficacy and specificity. Furthermore, we discussed developing novel phage-based strategies, such as phage cocktails and phage-antibiotic combinations. We also analyzed the challenges and ethical considerations associated with phage engineering, emphasizing the need for responsible and rigorous research to ensure this technology's safe and effective deployment to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Ghazal Ghaznavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Kogawa M, Yoda T, Matsuhashi A, Matsushita A, Otsuka Y, Shibagaki S, Hosokawa M, Tsuda S. Development of Chimera AMP-Endolysin with Wider Spectra Against Gram-Negative Bacteria Using High-Throughput Assay. Viruses 2025; 17:200. [PMID: 40006955 PMCID: PMC11860666 DOI: 10.3390/v17020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Bacteriophage-derived endolysins are being developed as an alternative to antimicrobials. The development of endolysins against Gram-negative bacteria requires the discovery of effective endolysins against the target species and the capability to penetrate the outer membrane of bacteria by endolysin. Here, we propose an efficient endolysin development approach that combines a data-driven endolysin search utilizing bacterial genomes with high-throughput laboratory assays. As a proof of concept, we analyzed endolysin genes detected in 273 bacterial genomes of Acinetobacter, Pseudomonas, and Escherichia. Firstly, we conducted assays of 192 recombinants of endolysin genes obtained through in silico search from bacterial genomes and identified natural endolysins degrading peptidoglycan of Acinetobacter baumannii. Then, we performed high-throughput screening against Gram-negative bacteria for hundreds of chimera AMP-endolysins, natural endolysin conjugated with antimicrobial peptide. As a result, we obtained four chimera AMP-endolysins against A. baumannii, which demonstrated the minimum inhibitory concentration ranging from 4 to 8 μg/mL. Moreover, we assessed the antimicrobial spectra of these chimera AMP-endolysins, validating that two endolysins exhibited antimicrobial efficacy against Pseudomonas aeruginosa and Escherichia coli with <32 μg/mL of concentration. This endolysin development approach can be applied to other Gram-negative bacterial targets and is expected to facilitate the acquisition of effective novel endolysins.
Collapse
Affiliation(s)
- Masato Kogawa
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku 162-0041, Tokyo, Japan
| | - Takuya Yoda
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku 162-0041, Tokyo, Japan
| | - Ayumi Matsuhashi
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku 162-0041, Tokyo, Japan
| | - Ai Matsushita
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku 162-0041, Tokyo, Japan
| | - Yoshiki Otsuka
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku 162-0041, Tokyo, Japan
| | - Shohei Shibagaki
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku 162-0041, Tokyo, Japan
| | - Masahito Hosokawa
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku 162-0041, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku 162-8480, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku 169-8555, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-Ku 169-8555, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku 162-0041, Tokyo, Japan
| | - Soichiro Tsuda
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku 162-0041, Tokyo, Japan
| |
Collapse
|
4
|
Golban M, Charostad J, Kazemian H, Heidari H. Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications. Infect Dis Ther 2025; 14:13-57. [PMID: 39549153 PMCID: PMC11782739 DOI: 10.1007/s40121-024-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a significant global public health issue, and the dissemination of antibiotic resistance in Gram-positive bacterial pathogens has significantly increased morbidity, mortality rates, and healthcare costs. Among them, Staphylococcus, especially methicillin-resistant Staphylococcus aureus (MRSA), causes a wide range of diseases due to its diverse pathogenic factors and infection strategies. These bacteria also present significant issues in veterinary medicine and food safety. Effectively managing staphylococci-related problems necessitates a concerted effort to implement preventive measures, rapidly detect the pathogen, and develop new and safe antimicrobial therapies. In recent years, there has been growing interest in using endolysins to combat bacterial infections. These enzymes, which are also referred to as lysins, are a unique class of hydrolytic enzymes synthesized by double-stranded DNA bacteriophages. They possess glycosidase, lytic transglycosylase, amidase, and endopeptidase activities, effectively destroying the peptidoglycan layer and resulting in bacterial lysis. This unique property makes endolysins powerful antimicrobial agents, particularly against Gram-positive organisms with more accessible peptidoglycan layers. Therefore, considering the potential benefits of endolysins compared to conventional antibiotics, we have endeavored to gather and review the characteristics and uses of endolysins derived from staphylococcal bacteriophages, as well as their antibacterial effectiveness against Staphylococcus spp. based on conducted experiments and trials.
Collapse
Affiliation(s)
- Mina Golban
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Arakelian AG, Chuev GN, Mamedov TV. Molecular Docking of Endolysins for Studying Peptidoglycan Binding Mechanism. Molecules 2024; 29:5386. [PMID: 39598776 PMCID: PMC11597070 DOI: 10.3390/molecules29225386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Endolysins of bacteriophages, which degrade the bacterial cell wall peptidoglycan, are applicable in many industries to deal with biofilms and bacterial infections. While multi-domain endolysins have both enzymatically active and cell wall-binding domains, single-domain endolysins consist only of an enzymatically active domain, and their mechanism of peptidoglycan binding remains unexplored, for this is a challenging task experimentally. This research aimed to explore the binding mechanism of endolysins using computational approaches, namely molecular docking and bioinformatical tools, and analyze the performance of these approaches. The docking engine Autodock Vina 1.1.2 and the 3D-RISM module of AmberTools 24 were studied in the current work and used for receptor-ligand affinity and binding energy calculations, respectively. Two possible mechanisms of single-domain endolysin-ligand binding were predicted by Autodock Vina and verified by the 3D-RISM. As a result, the previously obtained experimental results on peptidoglycan binding of the isolated gamma phage endolysin PlyG enzymatically active domain were supported by molecular docking. Both methods predicted that single-domain endolysins are able to bind peptidoglycan, with Autodock Vina being able to give accurate numerical estimates of protein-ligand affinities and 3D-RISM providing comparative values.
Collapse
Affiliation(s)
- Arina G. Arakelian
- Institute of Theoretical and Experimental Biophysics, RAS, Institutskaya ul., 3, 142290 Pushchino, Moscow Oblast, Russia; (G.N.C.)
| | | | | |
Collapse
|
6
|
Guo X, Luo G, Hou F, Zhou C, Liu X, Lei Z, Niu D, Ran T, Tan Z. A review of bacteriophage and their application in domestic animals in a post-antibiotic era. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174931. [PMID: 39043300 DOI: 10.1016/j.scitotenv.2024.174931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Bacteriophages (phages for short) are the most abundant biological entities on Earth and are natural enemies of bacteria. Genomics and molecular biology have identified subtle and complex relationships among phages, bacteria and their animal hosts. This review covers composition, diversity and factors affecting gut phage, their lifecycle in the body, and interactions with bacteria and hosts. In addition, research regarding phage in poultry, aquaculture and livestock are summarized, and application of phages in antibiotic substitution, phage therapy and food safety are reviewed.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guowang Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiu Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Tao Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
7
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
8
|
Eghbalpoor F, Gorji M, Alavigeh MZ, Moghadam MT. Genetically engineered phages and engineered phage-derived enzymes to destroy biofilms of antibiotics resistance bacteria. Heliyon 2024; 10:e35666. [PMID: 39170521 PMCID: PMC11336853 DOI: 10.1016/j.heliyon.2024.e35666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
"An impregnable stronghold where one or more warrior clans can evade enemy attacks" may serve as a description of bacterial biofilm on a smaller level than human conflicts. Consider this hypothetical conflict: who would emerge victorious? The occupants of secure trenches or those carrying out relentless assault? Either faction has the potential for triumph; the defenders will prevail if they can fortify the trench with unwavering resolve, while the assailants will succeed if they can devise innovative means to breach the trench. Hence, bacterial biofilms pose a significant challenge and are formidable adversaries for medical professionals, often leading to the failure of antibiotic treatments in numerous hospital infections. Phage engineering has become the foundation for the targeted enhancement of various phage properties, facilitating the eradication of biofilms. Researchers across the globe have studied the impact of engineered phages and phage-derived enzymes on biofilms formed by difficult-to-treat bacteria. These novel biological agents have shown promising results in addressing biofilm-related challenges. The compilation of research findings highlights the impressive capabilities of engineered phages in combating antibiotic-resistant bacteria, superbugs, and challenging infections. Specifically, these engineered phages exhibit enhanced biofilm destruction, penetration, and prevention capabilities compared to their natural counterparts. Additionally, the engineered enzymes derived from phages demonstrate improved effectiveness in addressing bacterial biofilms. As a result, these novel solutions, which demonstrate high penetration, destruction, and inhibition of biofilms, can be regarded as a viable option for addressing infectious biofilms in the near future.
Collapse
Affiliation(s)
- Fatemeh Eghbalpoor
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdieh Gorji
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Zamani Alavigeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Vasina DV, Antonova NP, Gushchin VA, Aleshkin AV, Fursov MV, Fursova AD, Gancheva PG, Grigoriev IV, Grinkevich P, Kondratev AV, Kostarnoy AV, Lendel AM, Makarov VV, Nikiforova MA, Pochtovyi AA, Prudnikova T, Remizov TA, Shevlyagina NV, Siniavin AE, Smirnova NS, Terechov AA, Tkachuk AP, Usachev EV, Vorobev AM, Yakimakha VS, Yudin SM, Zackharova AA, Zhukhovitsky VG, Logunov DY, Gintsburg AL. Development of novel antimicrobials with engineered endolysin LysECD7-SMAP to combat Gram-negative bacterial infections. J Biomed Sci 2024; 31:75. [PMID: 39044206 PMCID: PMC11267749 DOI: 10.1186/s12929-024-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Among the non-traditional antibacterial agents in development, only a few targets critical Gram-negative bacteria such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii or cephalosporin-resistant Enterobacteriaceae. Endolysins and their genetically modified versions meet the World Health Organization criteria for innovation, have a novel mode of antibacterial action, no known bacterial cross-resistance, and are being intensively studied for application against Gram-negative pathogens. METHODS The study presents a multidisciplinary approach, including genetic engineering of LysECD7-SMAP and production of recombinant endolysin, its analysis by crystal structure solution following molecular dynamics simulations and evaluation of antibacterial properties. Two types of antimicrobial dosage forms were formulated, resulting in lyophilized powder for injection and hydroxyethylcellulose gel for topical administration. Their efficacy was estimated in the treatment of sepsis, and pneumonia models in BALB/c mice, diabetes-associated wound infection in the leptin receptor-deficient db/db mice and infected burn wounds in rats. RESULTS In this work, we investigate the application strategies of the engineered endolysin LysECD7-SMAP and its dosage forms evaluated in preclinical studies. The catalytic domain of the enzyme shares the conserved structure of endopeptidases containing a putative antimicrobial peptide at the C-terminus of polypeptide chain. The activity of endolysins has been demonstrated against a range of pathogens, such as Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Staphylococcus haemolyticus, Achromobacter spp, Burkholderia cepacia complex and Haemophylus influenzae, including those with multidrug resistance. The efficacy of candidate dosage forms has been confirmed in in vivo studies. Some aspects of the interaction of LysECD7-SMAP with cell wall molecular targets are also discussed. CONCLUSIONS Our studies demonstrate the potential of LysECD7-SMAP therapeutics for the systemic or topical treatment of infectious diseases caused by susceptible Gram-negative bacterial species and are critical to proceed LysECD7-SMAP-based antimicrobials trials to advanced stages.
Collapse
Affiliation(s)
- Daria V Vasina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Nataliia P Antonova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey V Aleshkin
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Mikhail V Fursov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Anastasiia D Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Petya G Gancheva
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor V Grigoriev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Pavel Grinkevich
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Alexey V Kondratev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey V Kostarnoy
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiya M Lendel
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Valentine V Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Maria A Nikiforova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei A Pochtovyi
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Timofey A Remizov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia V Shevlyagina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei E Siniavin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nina S Smirnova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander A Terechov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Artem P Tkachuk
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny V Usachev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei M Vorobev
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Victoria S Yakimakha
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Anastasia A Zackharova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir G Zhukhovitsky
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Public Health, Moscow, Russia
| | - Denis Y Logunov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L Gintsburg
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
10
|
Bałdysz S, Nawrot R, Barylski J. "Tear down that wall"-a critical evaluation of bioinformatic resources available for lysin researchers. Appl Environ Microbiol 2024; 90:e0236123. [PMID: 38842338 PMCID: PMC11267937 DOI: 10.1128/aem.02361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Lytic enzymes, or lysins for short, break down peptidoglycan and interrupt the continuity of the cell wall, which, in turn, causes osmotic lysis of the bacterium. Their ability to destroy bacteria from within makes them promising antimicrobial agents that can be used as alternatives or supplements to antibiotics. In this paper, we briefly summarize basic terms and concepts used to describe lysin sequences and delineate major lysin groups. More importantly, we describe the domain repertoire found in lysins and critically review bioinformatic tools or databases which are used in studies of these enzymes (with particular emphasis on the repositories of Hidden Markov models). Finally, we present a novel comprehensive, meticulously curated set of lysin-related family and domain models, sort them into clusters that reflect major families, and demonstrate that the selected models can be used to efficiently search for new lysins.
Collapse
Affiliation(s)
- Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
11
|
Raman SK, Siva Reddy DV, Jain V, Bajpai U, Misra A, Singh AK. Mycobacteriophages: therapeutic approach for mycobacterial infections. Drug Discov Today 2024; 29:104049. [PMID: 38830505 DOI: 10.1016/j.drudis.2024.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Tuberculosis (TB) is a significant global health threat, and cases of infection with non-tuberculous mycobacteria (NTM) causing lung disease (NTM-LD) are rising. Bacteriophages and their gene products have garnered interest as potential therapeutic options for bacterial infections. Here, we have compiled information on bacteriophages and their products that can kill Mycobacterium tuberculosis or NTM. We summarize the mechanisms whereby viable phages can access macrophage-resident bacteria and not elicit immune responses, review methodologies of pharmaceutical product development containing mycobacteriophages and their gene products, mainly lysins, in the context of drug regulatory requirements and we discuss industrially relevant methods for producing pharmaceutical products comprising mycobacteriophages, emphasizing delivery of mycobacteriophages to the lungs. We conclude with an outline of some recent case studies on mycobacteriophage therapy.
Collapse
Affiliation(s)
- Sunil Kumar Raman
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - D V Siva Reddy
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji , New Delhi 110019, India
| | - Amit Misra
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra 282004, Uttar Pradesh, India.
| |
Collapse
|
12
|
Javid M, Shahverdi AR, Ghasemi A, Moosavi-Movahedi AA, Ebrahim-Habibi A, Sepehrizadeh Z. Decoding the Structure-Function Relationship of the Muramidase Domain in E. coli O157.H7 Bacteriophage Endolysin: A Potential Building Block for Chimeric Enzybiotics. Protein J 2024; 43:522-543. [PMID: 38662183 DOI: 10.1007/s10930-024-10195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
Bacteriophage endolysins are potential alternatives to conventional antibiotics for treating multidrug-resistant gram-negative bacterial infections. However, their structure-function relationships are poorly understood, hindering their optimization and application. In this study, we focused on the individual functionality of the C-terminal muramidase domain of Gp127, a modular endolysin from E. coli O157:H7 bacteriophage PhaxI. This domain is responsible for the enzymatic activity, whereas the N-terminal domain binds to the bacterial cell wall. Through protein modeling, docking experiments, and molecular dynamics simulations, we investigated the activity, stability, and interactions of the isolated C-terminal domain with its ligand. We also assessed its expression, solubility, toxicity, and lytic activity using the experimental data. Our results revealed that the C-terminal domain exhibits high activity and toxicity when tested individually, and its expression is regulated in different hosts to prevent self-destruction. Furthermore, we validated the muralytic activity of the purified refolded protein by zymography and standardized assays. These findings challenge the need for the N-terminal binding domain to arrange the active site and adjust the gap between crucial residues for peptidoglycan cleavage. Our study shed light on the three-dimensional structure and functionality of muramidase endolysins, thereby enriching the existing knowledge pool and laying a foundation for accurate in silico modeling and the informed design of next-generation enzybiotic treatments.
Collapse
Affiliation(s)
- Mehri Javid
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Azadeh Ebrahim-Habibi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Carratalá JV, Ferrer‐Miralles N, Garcia‐Fruitós E, Arís A. LysJEP8: A promising novel endolysin for combating multidrug-resistant Gram-negative bacteria. Microb Biotechnol 2024; 17:e14483. [PMID: 38864495 PMCID: PMC11167605 DOI: 10.1111/1751-7915.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is an escalating global health crisis, driven by the overuse and misuse of antibiotics. Multidrug-resistant Gram-negative bacteria, such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, are particularly concerning due to their high morbidity and mortality rates. In this context, endolysins, derived from bacteriophages, offer a promising alternative to traditional antibiotics. This study introduces LysJEP8, a novel endolysin derived from Escherichia phage JEP8, which exhibits remarkable antimicrobial activity against key Gram-negative members of the ESKAPE group. Comparative assessments highlight LysJEP8's superior performance in reducing bacterial survival rates compared to previously described endolysins, with the most significant impact observed against P. aeruginosa, and notable effects on A. baumannii and K. pneumoniae. The study found that LysJEP8, as predicted by in silico analysis, worked best at lower pH values but lost its effectiveness at salt concentrations close to physiological levels. Importantly, LysJEP8 exhibited remarkable efficacy in the disruption of P. aeruginosa biofilms. This research underscores the potential of LysJEP8 as a valuable candidate for the development of innovative antibacterial agents, particularly against Gram-negative pathogens, and highlights opportunities for further engineering and optimization to address AMR effectively.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institute of Biotechnology and BiomedicineAutonomous University of BarcelonaBarcelonaSpain
- Department of Genetics and MicrobiologyAutonomous University of BarcelonaBarcelonaSpain
- Department of Ruminant ProductionInstitute of Agriculture and Agrifood Research and Technology (IRTA)BarcelonaSpain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER‐BBN)MadridSpain
| | - Neus Ferrer‐Miralles
- Institute of Biotechnology and BiomedicineAutonomous University of BarcelonaBarcelonaSpain
- Department of Genetics and MicrobiologyAutonomous University of BarcelonaBarcelonaSpain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER‐BBN)MadridSpain
| | - Elena Garcia‐Fruitós
- Department of Ruminant ProductionInstitute of Agriculture and Agrifood Research and Technology (IRTA)BarcelonaSpain
| | - Anna Arís
- Department of Ruminant ProductionInstitute of Agriculture and Agrifood Research and Technology (IRTA)BarcelonaSpain
| |
Collapse
|
14
|
Zheng T, Zhang C. Engineering strategies and challenges of endolysin as an antibacterial agent against Gram-negative bacteria. Microb Biotechnol 2024; 17:e14465. [PMID: 38593316 PMCID: PMC11003714 DOI: 10.1111/1751-7915.14465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.
Collapse
Affiliation(s)
- Tianyu Zheng
- Bathurst Future Agri‐Tech InstituteQingdao Agricultural UniversityQingdaoChina
| | - Can Zhang
- College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
15
|
Hassannia M, Naderifar M, Salamy S, Akbarizadeh MR, Mohebi S, Moghadam MT. Engineered phage enzymes against drug-resistant pathogens: a review on advances and applications. Bioprocess Biosyst Eng 2024; 47:301-312. [PMID: 37962644 DOI: 10.1007/s00449-023-02938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
In recent decades, the expansion of multi and extensively drug-resistant (MDR and XDR) bacteria has reached an alarming rate, causing serious health concerns. Infections caused by drug-resistant bacteria have been associated with morbidity and mortality, making tackling bacterial resistance an urgent and unmet challenge that needs to be addressed properly. Endolysins are phage-encoded enzymes that can specifically degrade the bacterial cell wall and lead to bacterial death. There is remarkable evidence that corroborates the unique ability of endolysins to rapidly digest the peptidoglycan particular bonds externally without the assistance of phage. Thus, their modulation in therapeutic approaches has opened new options for therapeutic applications in the fight against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology areas. The use of genetically engineered phage enzymes (EPE) promises to generate endolysin variants with unique properties for prophylactic and therapeutic applications. These approaches have gained momentum to accelerate basic as well as translational phage research and the potential development of therapeutics in the near future. This review will focus on the novel knowledge into EPE and demonstrate that EPE has far better performance than natural endolysins and phages in dealing with antibiotic-resistant infections. Therefore, it provides essential information for clinical trials involving EPE.
Collapse
Affiliation(s)
- Mohadeseh Hassannia
- Department of Genetic, Faculty of Science, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Shakiba Salamy
- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | | | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
16
|
Golosova NN, Matveev AL, Tikunova NV, Khlusevich YA, Kozlova YN, Morozova VV, Babkin IV, Ushakova TA, Zhirakovskaya EV, Panina EA, Ryabchikova EI, Tikunov AY. Bacteriophage vB_SepP_134 and Endolysin LysSte_134_1 as Potential Staphylococcus-Biofilm-Removing Biological Agents. Viruses 2024; 16:385. [PMID: 38543751 PMCID: PMC10975630 DOI: 10.3390/v16030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Bacteria of the genus Staphylococcus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to Staphylococcus epidermidis was described. This podophage, with a genome of 18,275 bp, belongs to the Andhravirus genus. St 134 was able to infect various strains of 12 of the 21 tested coagulase-negative Staphylococcus species and one clinical strain from the Staphylococcus aureus complex. The genes encoding endolysin (LysSte134_1) and tail tip lysin (LysSte134_2) were identified in the St 134 genome. Both enzymes were cloned and produced in Escherichia coli cells. The endolysin LysSte134_1 demonstrated catalytic activity against peptidoglycans isolated from S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus warneri. LysSte134_1 was active against S. aureus and S. epidermidis planktonic cells and destroyed the biofilms formed by clinical strains of S. aureus and S. epidermidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Artem Y. Tikunov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (N.N.G.); (N.V.T.); (Y.A.K.); (Y.N.K.); (V.V.M.); (I.V.B.); (T.A.U.); (E.A.P.); (E.I.R.)
| |
Collapse
|
17
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
18
|
Boroujeni MB, Mohebi S, Malekian A, Shahraeini SS, Gharagheizi Z, Shahkolahi S, Sadeghi RV, Naderifar M, Akbarizadeh MR, Soltaninejad S, Moghadam ZT, Moghadam MT, Mirzadeh F. The therapeutic effect of engineered phage, derived protein and enzymes against superbug bacteria. Biotechnol Bioeng 2024; 121:82-99. [PMID: 37881139 DOI: 10.1002/bit.28581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Defending against antibiotic-resistant infections is similar to fighting a war with limited ammunition. As the new century unfolded, antibiotic resistance became a significant concern. In spite of the fact that phage treatment has been used as an effective means of fighting infections for more than a century, researchers have had to overcome many challenges of superbug bacteria by manipulating phages and producing engineered enzymes. New enzymes and phages with enhanced properties have a significant impact on the ability to fight antibiotic-resistant infections, which is considered a window of hope for the future. This review, therefore, illustrates not only the challenges caused by antibiotic resistance and superbug bacteria but also the engineered enzymes and phages that are being developed to solve these issues. Our study found that engineered phages, phage proteins, and enzymes can be effective in treating superbug bacteria and destroying the biofilm caused by them. Combining these engineered compounds with other antimicrobial substances can increase their effectiveness against antibiotic-resistant bacteria. Therefore, engineered phages, proteins, and enzymes can be used as a substitute for antibiotics or in combination with antibiotics to treat patients with superbug infections in the future.
Collapse
Affiliation(s)
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Malekian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Medical Biotechnology, Drug Design and Bioinformatics Unit, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Gharagheizi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Shahkolahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Vahedian Sadeghi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Nursing & Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Zahra Taati Moghadam
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | | | | |
Collapse
|
19
|
Gouveia A, Pinto D, Vítor JMB, São-José C. Cellular and Enzymatic Determinants Impacting the Exolytic Action of an Anti-Staphylococcal Enzybiotic. Int J Mol Sci 2023; 25:523. [PMID: 38203699 PMCID: PMC10778630 DOI: 10.3390/ijms25010523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteriophage endolysins are bacteriolytic enzymes that have been explored as potential weapons to fight antibiotic-resistant bacteria. Despite several studies support the application of endolysins as enzybiotics, detailed knowledge on cellular and enzymatic factors affecting their lytic activity is still missing. The bacterial membrane proton motive force (PMF) and certain cell wall glycopolymers of Gram-positive bacteria have been implicated in some tolerance to endolysins. Here, we studied how the anti-staphylococcal endolysin Lys11, a modular enzyme with two catalytic domains (peptidase and amidase) and a cell binding domain (CBD11), responded to changes in the chemical and/or electric gradients of the PMF (ΔpH and Δψ, respectively). We show that simultaneous dissipation of both gradients enhances endolysin binding to cells and lytic activity. The collapse of ΔpH is preponderant in the stimulation of Lys11 lytic action, while the dissipation of Δψ is mainly associated with higher endolysin binding. Interestingly, this binding depends on the amidase domain. The peptidase domain is responsible for most of the Lys11 bacteriolytic activity. Wall teichoic acids (WTAs) are confirmed as major determinants of endolysin tolerance, in part by severely hindering CBD11 binding activity. In conclusion, the PMF and WTA interfere differently with the endolysin functional domains, affecting both the binding and catalytic efficiencies.
Collapse
Affiliation(s)
- Ana Gouveia
- Phage Biology Research and Infection Control (PhaBRIC), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.G.); (D.P.)
| | - Daniela Pinto
- Phage Biology Research and Infection Control (PhaBRIC), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.G.); (D.P.)
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Carlos São-José
- Phage Biology Research and Infection Control (PhaBRIC), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.G.); (D.P.)
| |
Collapse
|
20
|
Carratalá JV, Arís A, Garcia-Fruitós E, Ferrer-Miralles N. Design strategies for positively charged endolysins: Insights into Artilysin development. Biotechnol Adv 2023; 69:108250. [PMID: 37678419 DOI: 10.1016/j.biotechadv.2023.108250] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Endolysins are bacteriophage-encoded enzymes that can specifically degrade the peptidoglycan layer of bacterial cell wall, making them an attractive tool for the development of novel antibacterial agents. The use of genetic engineering techniques for the production and modification of endolysins offers the opportunity to customize their properties and activity against specific bacterial targets, paving the way for the development of personalized therapies for bacterial infections. Gram-negative bacteria possess an outer membrane that can hinder the action of recombinantly produced endolysins. However, certain endolysins are capable of crossing the outer membrane by virtue of segments that share properties resembling those of cationic peptides. These regions increase the affinity of the endolysin towards the bacterial surface and assist in the permeabilization of the membrane. In order to improve the bactericidal effectiveness of endolysins, approaches have been implemented to increase their net charge, including the development of Artilysins containing positively charged amino acids at one end. At present, there are no specific guidelines outlining the steps for implementing these modifications. There is an ongoing debate surrounding the optimal location of positive charge, the need for a linker region, and the specific amino acid composition of peptides for modifying endolysins. The aim of this study is to provide clarity on these topics by analyzing and comparing the most effective modifications found in previous literature.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
21
|
Keller AP, Huemer M, Chang CC, Mairpady Shambat S, Bjurnemark C, Oberortner N, Santschi MV, Zinsli LV, Röhrig C, Sobieraj AM, Shen Y, Eichenseher F, Zinkernagel AS, Loessner MJ, Schmelcher M. Systemic application of bone-targeting peptidoglycan hydrolases as a novel treatment approach for staphylococcal bone infection. mBio 2023; 14:e0183023. [PMID: 37768041 PMCID: PMC10653945 DOI: 10.1128/mbio.01830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE The rising prevalence of antimicrobial resistance in S. aureus has rendered treatment of staphylococcal infections increasingly difficult, making the discovery of alternative treatment options a high priority. Peptidoglycan hydrolases, a diverse group of bacteriolytic enzymes, show high promise as such alternatives due to their rapid and specific lysis of bacterial cells, independent of antibiotic resistance profiles. However, using these enzymes for the systemic treatment of local infections, such as osteomyelitis foci, needs improvement, as the therapeutic distributes throughout the whole host, resulting in low concentrations at the actual infection site. In addition, the occurrence of intracellularly persisting bacteria can lead to relapsing infections. Here, we describe an approach using tissue-targeting to increase the local concentration of therapeutic enzymes in the infected bone. The enzymes were modified with a short targeting moiety that mediated accumulation of the therapeutic in osteoblasts and additionally enables targeting of intracellularly surviving bacteria.
Collapse
Affiliation(s)
- Anja P. Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Nicole Oberortner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anna M. Sobieraj
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Asadi M, Taheri-Anganeh M, Ranjbar M, Khatami SH, Maleksabet A, Mostafavi-Pour Z, Ghasemi Y, Keshavarzi A, Savardashtaki A. LYZ2-SH3b as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus. BMC Microbiol 2023; 23:257. [PMID: 37704938 PMCID: PMC10500863 DOI: 10.1186/s12866-023-03002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Enzybiotics are promising alternatives to conventional antibiotics for drug-resistant infections. Exolysins, as a class of enzybiotics, show antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). This study evaluated a novel exolysin containing an SH3b domain for its antibacterial activity against MRSA. METHODS This study designed a chimeric exolysin by fusing the Cell-binding domain (SH3b) from Lysostaphin with the lytic domain (LYZ2) from the gp61 enzyme. Subsequently, LYZ2-SH3b was cloned and expressed in Escherichia coli (E. coli). Finally, the antibacterial effects of LYZ2-SH3b compared with LYZ2 and vancomycin against reference and clinical isolates of MRSA were measured using the disc diffusion method, the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC) assays. RESULTS Analysis of bioinformatics showed that LYZ2-SH3b was stable, soluble, and non-allergenic. Protein purification was performed with a 0.8 mg/ml yield for LYZ2-SH3b. The plate lysis assay results indicated that, at the same concentrations, LYZ2-SH3b has a more inhibitory effect than LYZ2. The MICs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239). This suggests a higher efficiency of LYZ2-SH3b compared to LYZ2. Furthermore, the MBCs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239), thus confirming the superior lytic activity of LYZ2-SH3b over LYZ2. CONCLUSIONS The study suggests that phage endolysins, such as LYZ2-SH3b, may represent a promising new approach to treating MRSA infections, particularly in cases where antibiotic resistance is a concern. But further studies are needed.
Collapse
Affiliation(s)
- Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Ranjbar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Alreja AB, Linden SB, Lee HR, Chao KL, Herzberg O, Nelson DC. Understanding the Molecular Basis for Homodimer Formation of the Pneumococcal Endolysin Cpl-1. ACS Infect Dis 2023; 9:1092-1104. [PMID: 37126660 PMCID: PMC10577085 DOI: 10.1021/acsinfecdis.2c00627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The rise of multi-drug-resistant bacteria that cannot be treated with traditional antibiotics has prompted the search for alternatives to combat bacterial infections. Endolysins, which are bacteriophage-derived peptidoglycan hydrolases, are attractive tools in this fight. Several studies have already demonstrated the efficacy of endolysins in targeting bacterial infections. Endolysins encoded by bacteriophages that infect Gram-positive bacteria typically possess an N-terminal catalytic domain and a C-terminal cell-wall binding domain (CWBD). In this study, we have uncovered the molecular mechanisms that underlie formation of a homodimer of Cpl-1, an endolysin that targets Streptococcus pneumoniae. Here, we use site-directed mutagenesis, analytical size exclusion chromatography, and analytical ultracentrifugation to disprove a previous suggestion that three residues at the N-terminus of the CWBD are involved in the formation of a Cpl-1 dimer in the presence of choline in solution. We conclusively show that the C-terminal tail region of Cpl-1 is involved in formation of the dimer. Alanine scanning mutagenesis generated various tail mutant constructs that allowed identification of key residues that mediate Cpl-1 dimer formation. Finally, our results allowed identification of a consensus sequence (FxxEPDGLIT) required for choline-dependent dimer formation─a sequence that occurs frequently in pneumococcal autolysins and endolysins. These findings shed light on the mechanisms of Cpl-1 and related enzymes and can be used to inform future engineering efforts for their therapeutic development against S. pneumoniae.
Collapse
Affiliation(s)
- Adit B Alreja
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Biological Sciences Graduate Program - Molecular and Cellular Biology Concentration, University of Maryland, College Park, Maryland 20742, USA
| | - Sara B Linden
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Harrison R Lee
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Department of Biochemistry and Chemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
24
|
Alrafaie AM, Stafford GP. Enterococcal bacteriophage: A survey of the tail associated lysin landscape. Virus Res 2023; 327:199073. [PMID: 36787848 DOI: 10.1016/j.virusres.2023.199073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Bacteriophages are viruses that exclusively infect bacteria which require local degradation of cell barriers. This degradation is accomplished by various lysins located mainly within the phage tail structure. In this paper we surveyed and analysed the genomes of 506 isolated bacteriophage and prophage infecting or harboured within the genomes of the medically important Enterococcus faecalis and faecium. We highlight and characterise the major features of the genomes of phage in the morphological groups podovirus, siphovirus and myovirus, and explore their categorisation according to the new ICTV classifications, with a focus on putative extracellular lysins chiefly within tail modules. Our analysis reveals a range of potential cell-wall targeting enzyme domains that are part of tail, tape measure or other predicted base structures of these phages or prophages. These largely fall into protein domains targeting pentapeptide or glycosidic linkages within peptidoglycan but also potentially the enterococcal polysaccharide antigen (EPA) and wall teichoic acids of these species (i.e., Pectinesterases and Phosphodiesterases). Notably, there is a great variety of domain architectures that reveal the diversity of evolutionary solutions to attack the Enterococcus cell wall. Despite this variety, most phage and prophage possess a putative endopeptidase (70%), reflecting the ubiquity of this cell surface barrier. We also identified a predicted lytic transglycosylase domain belonging to the glycosyl hydrolase (GH) family 23 and present exclusively within tape measure proteins. Our data also reveal distinct features of the genomes of podo-, sipho- and myo-type viruses that most likely relate to their size and complexity. Overall, we lay a foundation for expression of recombinant TAL proteins and engineering of enterococcal and other phage that will be invaluable for researchers in this field.
Collapse
Affiliation(s)
- Alhassan M Alrafaie
- Integrated BioSciences, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Graham P Stafford
- Integrated BioSciences, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
25
|
Deng H, Li M, Zhang Q, Gao C, Song Z, Chen C, Wang Z, Feng X. The Broad-Spectrum Endolysin LySP2 Improves Chick Survival after Salmonella Pullorum Infection. Viruses 2023; 15:v15040836. [PMID: 37112818 PMCID: PMC10142873 DOI: 10.3390/v15040836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Salmonella pullorum causes typical “Bacillary White Diarrhea” and loss of appetite in chicks, which leads to the death of chicks in severe cases; thus, it is still a critical issue in China. Antibiotics are conventional medicines used for Salmonella infections; however, due to the extensive long-term use and even abuse of antibiotics, drug resistance becomes increasingly severe, making treating pullorum disease more difficult. Most of the endolysins are hydrolytic enzymes produced by bacteriophages to cleave the host’s cell wall during the final stage of the lytic cycle. A virulent bacteriophage, YSP2, of Salmonella was isolated in a previous study. A Pichia pastoris expression strain that can express the Salmonella bacteriophage endolysin was constructed efficiently, and the Gram-negative bacteriophage endolysin, LySP2, was obtained in this study. Compared with the parental phage YSP2, which can only lyse Salmonella, LySP2 can lyse Salmonella and Escherichia. The survival rate of Salmonella-infected chicks treated with LySP2 can reach up to 70% and reduce Salmonella abundance in the liver and intestine. The treatment group showed that LySP2 significantly improved the health of infected chicks and alleviated organ damage caused by Salmonella infection. In this study, the Salmonella bacteriophage endolysin was expressed efficiently by Pichia pastoris, and the endolysin LySP2 showed good potential for the treatment of pullorum disease caused by Salmonella pullorum.
Collapse
Affiliation(s)
- Hewen Deng
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Mengjiao Li
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Qiuyang Zhang
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Chencheng Gao
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Zhanyun Song
- Changchun Customs District, Changchun 130000, China
| | - Chunhua Chen
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Zhuo Wang
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
- Correspondence: ; Tel.: +86-135-0430-0193
| |
Collapse
|
26
|
Jasilionis A, Plotka M, Wang L, Dorawa S, Lange J, Watzlawick H, van den Bergh T, Vroling B, Altenbuchner J, Kaczorowska A, Pohl E, Kaczorowski T, Nordberg Karlsson E, Freitag‐Pohl S. AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase. Protein Sci 2023; 32:e4585. [PMID: 36721347 PMCID: PMC9929850 DOI: 10.1002/pro.4585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/β-fold with multiple secondary structure elements omitted or shortened compared with protein structures of similar proteins. The functional characterization of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity toward thermophilic and mesophilic bacteria strains containing Orn-type or DAP-type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterized with a temperature optimum at 85°C. The extraordinary high melting temperature Tm 102.6°C confirms fold stability up to approximately 100°C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology.
Collapse
Affiliation(s)
- Andrius Jasilionis
- Division of Biotechnology, Department of ChemistryLund UniversityLundSweden
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of BiologyUniversity of GdanskGdanskPoland
| | - Lei Wang
- Institute of Biomedical GeneticsUniversity of StuttgartStuttgartGermany
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of BiologyUniversity of GdanskGdanskPoland
| | | | | | | | | | | | - Anna‐Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of BiologyUniversity of GdanskGdanskPoland
| | - Ehmke Pohl
- Department of BiosciencesDurham UniversityDurhamUK
- Department of ChemistryDurham UniversityDurhamUK
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of BiologyUniversity of GdanskGdanskPoland
| | | | | |
Collapse
|
27
|
Abdelrahman F, Gangakhedkar R, Nair G, El-Didamony G, Askora A, Jain V, El-Shibiny A. Pseudomonas Phage ZCPS1 Endolysin as a Potential Therapeutic Agent. Viruses 2023; 15:520. [PMID: 36851734 PMCID: PMC9961711 DOI: 10.3390/v15020520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
The challenge of antibiotic resistance has gained much attention in recent years due to the rapid emergence of resistant bacteria infecting humans and risking industries. Thus, alternatives to antibiotics are being actively searched for. In this regard, bacteriophages and their enzymes, such as endolysins, are a very attractive alternative. Endolysins are the lytic enzymes, which are produced during the late phase of the lytic bacteriophage replication cycle to target the bacterial cell walls for progeny release. Here, we cloned, expressed, and purified LysZC1 endolysin from Pseudomonas phage ZCPS1. The structural alignment, molecular dynamic simulation, and CD studies suggested LysZC1 to be majorly helical, which is highly similar to various phage-encoded lysozymes with glycoside hydrolase activity. Our endpoint turbidity reduction assay displayed the lytic activity against various Gram-positive and Gram-negative pathogens. Although in synergism with EDTA, LysZC1 demonstrated significant activity against Gram-negative pathogens, it demonstrated the highest activity against Bacillus cereus. Moreover, LysZC1 was able to reduce the numbers of logarithmic-phase B. cereus by more than 2 log10 CFU/mL in 1 h and also acted on the stationary-phase culture. Remarkably, LysZC1 presented exceptional thermal stability, pH tolerance, and storage conditions, as it maintained the antibacterial activity against its host after nearly one year of storage at 4 °C and after being heated at temperatures as high as 100 °C for 10 min. Our data suggest that LysZC1 is a potential candidate as a therapeutic agent against bacterial infection and an antibacterial bio-control tool in food preservation technology.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
| | - Rutuja Gangakhedkar
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gokul Nair
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gamal El-Didamony
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt
| |
Collapse
|
28
|
Interrogation of the contribution of (endo)lysin domains to tune their bacteriolytic efficiency provides a novel clue to design superior antibacterials. Int J Biol Macromol 2022; 223:1042-1053. [PMID: 36370862 DOI: 10.1016/j.ijbiomac.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Bacteriophage-derived endolysins and bacterial autolysins (hereinafter lysins) represent a completely new class of efficient antibacterials. They prevent the development of bacterial resistance and help protect commensal microbiota, producing cell wall lysis. Here we have investigated whether the acquisition of enzymatic active domains (EADs) and cell wall binding domains (CWBDs) of balancing efficiencies could be a way of tuning natural lysin activity. The concept was applied to produce a chimeric lysin of superior antibacterial capacity using the endolysin Skl and the major pneumococcal autolysin LytA. Combination of the Skl EAD and the cell wall choline-binding domain (CBD) of LytA in the chimera QSLA increased the bacterial killing by 2 logs or more compared to parental enzymes at an equal concentration and extended the substrate range to resistant and emergent pneumococci and other pathogens of the mitis group. Contrarily, QLAS, containing LytA EAD and Skl CBD, was inactive against all tested strains, although domain structures were preserved and hydrolysis of purified cell walls maintained in both chimeras. As a whole, our study provides a novel clue to design superior lysins to fight multidrug-resistant pathogens based on domain selection, and a powerful in-vivo active lysin (QSLA) with promising therapeutic perspectives.
Collapse
|
29
|
Raveendran K, Vaiyapuri M, Benala M, Sivam V, Badireddy MR. Diverse infective and lytic machineries identified in genome analysis of tailed coliphages against broad spectrum multidrug-resistant Escherichia coli. Int Microbiol 2022:10.1007/s10123-022-00310-4. [PMID: 36504140 DOI: 10.1007/s10123-022-00310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
The emergence of multidrug-resistant (MDR) E. coli with deleterious consequences to the health of humans and animals has been attributed to the inappropriate use of antibiotics. Without effective antimicrobials, the success of modern medicine in treating infections would be at an increased risk. Bacteriophages could be used as an alternative to antibiotics for controlling the dissemination of MDR bacteria. However, before their use, the bacteriophages have to be assessed for the safety aspect. In this study, three broad host range highly virulent coliphage genomes were sequenced, characterized for infective and lytic potential, and checked for the presence of virulence and resistance genes. The genome sequencing indicated that coliphages ϕEC-S-21 and ϕEC-OE-11 belonged to Myoviridae, whereas coliphage ϕEC-S-24 belonged to the Autographiviridae family derived from the Podoviridae family. The genome size of the three coliphages ranged between 24 and 145 kb, with G + C content ranging between 37 and 51%. Coding sequences (CDS) ranged between 30 and 251 amino acids. The CDS were annotated and the proteins were categorized into different modules, viz., phage structural proteins, proteins associated with DNA replication, DNA modification, bacterial cell lysis, phage packaging, and uncharacterized proteins. The presence of tRNAs was detected only in coliphage ϕEC-OE-11. All three coliphages possessed diverse infective and lytic mechanisms, viz., lytic murein transglycosylase, peptidoglycan transglycosylase, n-acetylmuramoyl-l-alanine amidase, and putative lysozyme. Furthermore, the three coliphage genomes showed neither the presence of antibiotic resistance genes nor virulence genes, which makes them desirable candidates for use in phage therapy-based applications.
Collapse
|
30
|
Influence of NaCl and pH on lysostaphin catalytic activity, cell binding, and bacteriolytic activity. Appl Microbiol Biotechnol 2022; 106:6519-6534. [DOI: 10.1007/s00253-022-12173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
|
31
|
Pinto D, Gonçalo R, Louro M, Silva MS, Hernandez G, Cordeiro TN, Cordeiro C, São-José C. On the Occurrence and Multimerization of Two-Polypeptide Phage Endolysins Encoded in Single Genes. Microbiol Spectr 2022; 10:e0103722. [PMID: 35876588 PMCID: PMC9430671 DOI: 10.1128/spectrum.01037-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages (phages) and other viruses are extremely efficient in packing their genetic information, with several described cases of overlapping genes encoded in different open reading frames (ORFs). While less frequently reported, specific cases exist in which two overlapping ORFs are in frame and share the stop codon. Here, we studied the occurrence of this genetic arrangement in endolysins, the phage enzymes that cut the bacterial cell wall peptidoglycan to release the virion progeny. After screening over 3,000 endolysin sequences of phages infecting Gram-positive bacteria, we found evidence that this coding strategy is frequent in endolysin genes. Our bioinformatics predictions were experimentally validated by demonstrating that two polypeptides are indeed produced from these genes. Additionally, we show that in some cases the two polypeptides need to interact and multimerize to generate the active endolysin. By studying in detail one selected example, we uncovered a heteromeric endolysin with a 1:5 subunit stoichiometry that has never been described before. Hence, we conclude that the occurrence of endolysin genes encoding two polypeptide isoforms by in-frame overlapping ORFs, as well as their organization as enzymatic complexes, appears more common than previously thought, therefore challenging the established view of endolysins being mostly formed by single, monomeric polypeptide chains. IMPORTANCE Bacteriophages use endolysins to cleave the host bacteria cell wall, a crucial event underlying cell lysis for virion progeny release. These bacteriolytic enzymes are generally thought to work as single, monomeric polypeptides, but a few examples have been described in which a single gene produces two endolysin isoforms. These are encoded by two in-frame overlapping ORFs, with a shorter ORF being defined by an internal translation start site. This work shows evidence that this endolysin coding strategy is frequent in phages infecting Gram-positive bacteria, and not just an eccentricity of a few phages. In one example studied in detail, we show that the two isoforms are inactive until they assemble to generate a multimeric active endolysin, with a 1:5 subunit stoichiometry never described before. This study challenges the established view of endolysins, with possible implications in their current exploration and design as alternative antibacterials.
Collapse
Affiliation(s)
- Daniela Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Raquel Gonçalo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Mariana Louro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Marta Sousa Silva
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Carlos São-José
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Isaev A, Andriianov A, Znobishcheva E, Zorin E, Morozova N, Severinov K. Editing of Phage Genomes—Recombineering-assisted SpCas9 Modification of Model Coliphages T7, T5, and T3. Mol Biol 2022. [DOI: 10.1134/s0026893322060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Bacteriophages—viruses that infect bacterial cells—are the most abundant biological entities on Earth. The use of phages in fundamental research and industry requires tools for precise manipulation of their genomes. Yet, compared to bacterial genome engineering, modification of phage genomes is challenging because of the lack of selective markers and thus requires laborious screenings of recombinant/mutated phage variants. The development of the CRISPR-Cas technologies allowed to solve this issue by the implementation of negative selection that eliminates the parental phage genomes. In this manuscript, we summarize current methods of phage genome engineering and their coupling with CRISPR-Cas technologies. We also provide examples of our successful application of these methods for introduction of specific insertions, deletions, and point mutations in the genomes of model Escherichia coli lytic phages T7, T5, and T3.
Collapse
|
33
|
Zhang S, Chang Y, Zhang Q, Yuan Y, Qi Q, Lu X. Characterization of Salmonella endolysin XFII produced by recombinant Escherichia coli and its application combined with chitosan in lysing Gram-negative bacteria. Microb Cell Fact 2022; 21:171. [PMID: 35999567 PMCID: PMC9396760 DOI: 10.1186/s12934-022-01894-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Salmonella is a common foodborne pathogen, which can cause intestinal diseases. In the last decades, the overuse of antibiotics has led to a pandemic of drug-resistant bacterial infections. To tackle the burden of antimicrobial resistant pathogens, it is necessary to develop new antimicrobial drugs with novel modes of action. However, the research and development of antibiotics has encountered bottlenecks, scientific hurdles in the development process, as well as safety and cost challenges. Phages and phage endolysins are promising antibacterial agents that can be used as an alternative to antibiotics. In this context, the expression of endolysin derived from different phages through microbial cells as a chassis seems to be an attractive strategy. RESULTS In this study, a new endolysin from the Salmonella phage XFII-1, named XFII, was screened and obtained. The endolysin yield exceeded 100 mg/mL by heterologous expression from E. coli BL21 and short induction. The endolysin XFII exhibited high bactericidal activity at a concentration of 0.5 μg/mL and reduced the OD600 nm of EDTA-pretreated E. coli JM109 from 0.8 to 0.2 within 5 min. XFII exhibited good thermo-resistance, as it was very stable at different temperatures from 20 to 80℃. Its bactericidal activity could keep constant at 4 °C for 175 days. In addition, the endolysin was able to exert lytic activity in eutrophic conditions, including LB medium and rabbit serum, and the lytic activity was even increased by 13.8% in 10% serum matrices. XFII also showed bactericidal activity against many Gram-negative bacteria, including Salmonella, E. coli, Acinetobacter baumannii, and Klebsiella pneumoniae. Surprisingly, the combination of endolysin XFII and chitosan showed a strong synergy in lysing E. coli and Salmonella without EDTA-pretreatment, and the OD600 nm of E. coli decreased from 0.88 to 0.58 within 10 min. CONCLUSIONS The novel globular endolysin XFII was screened and successfully expressed in E. coli BL21. Endolysin XFII exhibits a broad lysis spectrum, a rapid and strong bactericidal activity, good stability at high temperatures and under eutrophic conditions. Combined with chitosan, XFII could spontaneously lyse Gram-negative bacteria without pretreatment. This work presented the first characterization of combining endolysin and chitosan in spontaneously lysing Gram-negative bacteria in vitro.
Collapse
Affiliation(s)
- Shuhang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan Chang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
34
|
Yuan Y, Li Q, Zhang S, Gu J, Huang G, Qi Q, Lu X. Enhancing thermal stability and lytic activity of phage lysin PlyAB1 from Acinetobacter baumannii. Biotechnol Bioeng 2022; 119:2731-2742. [PMID: 35859248 DOI: 10.1002/bit.28187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/11/2022]
Abstract
With the increasingly serious drug resistance of Acinetobacter baumannii, it is urgent to find new antibacterial drugs. Phage lysin PlyAB1 has a bactericidal effect on drug-resistant Acinetobacter baumannii, which has the potential to replace antibiotics to fight infection caused by Acinetobacter baumannii. However, its application is limited by its thermal stability and lytic activity. To solve these problems, molecular dynamics (MD) simulations combined with Hotspot wizard 3.0 were used to identify key residue sites affecting thermal stability, and evolutionary analysis combined with multiple sequence alignment was used to identify key residue sites affecting lytic activity. Four single-point variants with significantly increased thermal stability and four single-point variants with significantly lytic activity were obtained, respectively. Furthermore, by superimposing mutations, we obtained three double-point variants G100Q/K69R, G100R/K69R, and G100K/K69R with significantly improved thermal stability and improved lytic activity. At 45℃, the lytic activity and half-life of the optimal variant G100Q/K69R were 1.51 folds and 24 folds higher than those of the wild PlyAB1, respectively. These results deepen our understanding of the structure and function of phage lysin and contribute to the application of phage lysin in antibiotic substitution. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shuhang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jinhong Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
35
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
36
|
Venhorst J, van der Vossen JMBM, Agamennone V. Battling Enteropathogenic Clostridia: Phage Therapy for Clostridioides difficile and Clostridium perfringens. Front Microbiol 2022; 13:891790. [PMID: 35770172 PMCID: PMC9234517 DOI: 10.3389/fmicb.2022.891790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
The pathogenic Clostridioides difficile and Clostridium perfringens are responsible for many health care-associated infections as well as systemic and enteric diseases. Therefore, they represent a major health threat to both humans and animals. Concerns regarding increasing antibiotic resistance (related to C. difficile and C. perfringens) have caused a surge in the pursual of novel strategies that effectively combat pathogenic infections, including those caused by both pathogenic species. The ban on antibiotic growth promoters in the poultry industry has added to the urgency of finding novel antimicrobial therapeutics for C. perfringens. These efforts have resulted in various therapeutics, of which bacteriophages (in short, phages) show much promise, as evidenced by the Eliava Phage Therapy Center in Tbilisi, Georgia (https://eptc.ge/). Bacteriophages are a type of virus that infect bacteria. In this review, the (clinical) impact of clostridium infections in intestinal diseases is recapitulated, followed by an analysis of the current knowledge and applicability of bacteriophages and phage-derived endolysins in this disease indication. Limitations of phage and phage endolysin therapy were identified and require considerations. These include phage stability in the gastrointestinal tract, influence on gut microbiota structure/function, phage resistance development, limited host range for specific pathogenic strains, phage involvement in horizontal gene transfer, and-for phage endolysins-endolysin resistance, -safety, and -immunogenicity. Methods to optimize features of these therapeutic modalities, such as mutagenesis and fusion proteins, are also addressed. The future success of phage and endolysin therapies require reliable clinical trial data for phage(-derived) products. Meanwhile, additional research efforts are essential to expand the potential of exploiting phages and their endolysins for mitigating the severe diseases caused by C. difficile and C. perfringens.
Collapse
Affiliation(s)
- Jennifer Venhorst
- Biomedical Health, Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Jos M. B. M. van der Vossen
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Valeria Agamennone
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
37
|
Opperman CJ, Wojno JM, Brink AJ. Treating bacterial infections with bacteriophages in the 21st century. S Afr J Infect Dis 2022; 37:346. [PMID: 35399556 PMCID: PMC8991297 DOI: 10.4102/sajid.v37i1.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/24/2022] [Indexed: 11/01/2022] Open
Abstract
Bacteriophages (phages) were discovered in the early part of the 20th century, and their ability to eliminate bacterial infections as bacterial viruses gathered interest almost immediately. Bacteriophage therapy was halted in the Western world due to inconclusive results in early experiments and the concurrent discovery of antibiotics. The spread of antibiotic-resistant bacteria has elicited renewed interest in bacteriophages as a natural alternative to conventional antibiotic therapy. Interest in the application of bacteriophages has also expanded to include the environment, such as wastewater treatment, agriculture and aquaculture. Although the complete phage is important in bacteriophage therapy, the focus is shifting to purified phage enzymes. These enzymes are an attractive option for pharmaceutical companies with their patent potential. They can be bio-engineered for enhanced adjuvant properties, such as a broadened spectrum of activity or binding capability. Enzymes also eliminate the concern that the prophage might integrate resistance genes into the bacterial genome. From a clinical perspective, the first randomised clinical controlled phage therapy trial was conducted with more pioneering phase I/II clinical studies on the horizon. In this opinion paper, the authors outline bacteriophages as naturally occurring bactericidal entities, their therapeutic potential against antibiotic-resistant bacteria and compare them to antibiotics. Their potential multipurpose application in the medical field is also addressed, including the use of bacteriophages for vaccination, and utilisation of the antimicrobial enzymes that they produce.
Collapse
Affiliation(s)
- Christoffel J Opperman
- National Health Laboratory Service, Green Point Laboratory, Cape Town, South Africa
- Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | | | - Adrian J Brink
- Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Microbiology Laboratory, National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
38
|
Balaban CL, Suárez CA, Boncompain CA, Peressutti-Bacci N, Ceccarelli EA, Morbidoni HR. Evaluation of factors influencing expression and extraction of recombinant bacteriophage endolysins in Escherichia coli. Microb Cell Fact 2022; 21:40. [PMID: 35292023 PMCID: PMC8922839 DOI: 10.1186/s12934-022-01766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endolysins are peptidoglycan hydrolases with promising use as environment-friendly antibacterials mainly when used topically. However, in general, endolysin expression is hampered by its low solubility. Thus, a critical point in endolysin industrial production is optimizing their expression, including improvement of solubility and recovery from cell extracts. RESULTS We report the expression of two endolysins encoded in the genome of phages infecting Staphylococcus aureus. Expression was optimized through changes in the concentration of the inducer and growth temperature during the expression. Usually, only 30-40% of the total endolysin was recovered in the soluble fraction. Co-expression of molecular chaperones (DnaK, GroEL) or N-term fusion tags endowed with increased solubility (DsbC, Trx, Sumo) failed to improve that yield substantially. Inclusion of osmolytes (NaCl, CaCl2, mannitol, glycine betaine, glycerol and trehalose) or tensioactives (Triton X-100, Tween 20, Nonidet P-40, CHAPS, N-lauroylsarcosine) in the cell disruption system (in the absence of any molecular chaperone) gave meager improvements excepted by N-lauroylsarcosine which increased recovery to 54% of the total endolysin content. CONCLUSION This is the first attempt to systematically analyze methods for increasing yields of recombinant endolysins. We herein show that neither solubility tags nor molecular chaperones co-expression are effective to that end, while induction temperature, (His)6-tag location and lysis buffer additives (e.g. N-lauroylsarcosine), are sensible strategies to obtain higher levels of soluble S. aureus endolysins.
Collapse
Affiliation(s)
- Cecilia Lucía Balaban
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cristian Alejandro Suárez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina Andrea Boncompain
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Peressutti-Bacci
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo Augusto Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
39
|
Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AAL. Lactococcus lactis secreting phage lysins as a potential antimicrobial against multi-drug resistant Staphylococcus aureus. PeerJ 2022; 10:e12648. [PMID: 35251775 PMCID: PMC8896023 DOI: 10.7717/peerj.12648] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA. METHOD Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88. RESULTS Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88. CONCLUSION Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.
Collapse
Affiliation(s)
- Carumathy Chandran
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hong Yun Tham
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Hua Erin Lim
- Health Science Division, Abu Dhabi Women’s College, Abu Dhabi, United Arab Emirates
| | - Khatijah Yusoff
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
40
|
Ye J, Guo J, Li T, Tian J, Yu M, Wang X, Majeed U, Song W, Xiao J, Luo Y, Yue T. Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: A review. Compr Rev Food Sci Food Saf 2022; 21:1843-1867. [PMID: 35142431 DOI: 10.1111/1541-4337.12908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023]
Abstract
Foodborne pathogens and microbial toxins are the main causes of foodborne illness. However, trace pathogens and toxins in foods are difficult to detect. Thus, techniques for their rapid and sensitive identification and quantification are urgently needed. Phages can specifically recognize and adhere to certain species of microbes or toxins due to molecular complementation between capsid proteins of phages and receptors on the host cell wall or toxins, and thus they have been successfully developed into a detection platform for pathogens and toxins. This review presents an update on phage-based luminescent detection technologies as well as their working principles and characteristics. Based on phage display techniques of temperate phages, reporter gene detection assays have been designed to sensitively detect trace pathogens by luminous intensity. By the host-specific lytic effects of virulent phages, enzyme-catalyzed chemiluminescent detection technologies for pathogens have been exploited. Notably, these phage-based luminescent detection technologies can discriminate viable versus dead microbes. Further, highly selective and sensitive immune-based assays have been developed to detect trace toxins qualitatively and quantitatively via antibody analogs displayed by phages, such as phage-ELISA (enzyme-linked immunosorbent assay) and phage-IPCR (immuno-polymerase chain reaction). This literature research may lead to novel and innocuous phage-based rapid detection technologies to ensure food safety.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaqing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Tairan Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaxin Tian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China.,Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China.,Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Todosiichuk TS. BIOTECHNOLOGICAL ASPECTS OF THE DEVELOPMENT OF A LIQUID FORMULATION OF MULTIFUNCTIONAL ENZYBIOTIC ANTISEPTIC. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim. Evaluation of biotechnological aspects of the production of a liquid formulation of the multifunctional antiseptic preparation of microbial origin, which can be typified as an enzybiotic; characterization of the enzyme specificity of the studied formulation, stabilization methods, its ability to affect microbial biofilms. Methods. Gel-filtration and electrophoresis were used to study the component composition and the specificity of the enzyme complex of the Streptomyces albus UN 44 producer strain. Proteolytic and staphylolytic activities of individual fractions were determined. The Pseudomonas aeruginosa biofilm and its formation under the effect of various drug formulations were quantitatively evaluated by spectrophotometry. Results. The stability of the liquid formulation of the enzybiotic biosynthesized by S. albus UN 44 was demonstrated. Activity of the formulation could be prolonged and additionally stabilized by adding of 0.5% polyvinyl alcohol. Fractionation of the formulation enzyme complex using gel-filtration revealed the presence of at least three proteinases of different molecular weights (80-100, 24-35 and 20 kDa) and lysoenzymes (18-22 kDa). The effectiveness of the developed liquid antibiotic formulation for the destruction and inhibition (8-10 folds) of the biofilm formation by clinical strains of P. aeruginosa was shown. Conclusions. The broad spectrum, multidirectional mechanisms of antimicrobial and regenerative action of enzybiotic drug, and the possibility of its production directly from the biotechnological process determine the prospects of its manufacturing and use as a multifunctional surface antiseptic.
Collapse
|
42
|
Nakonieczna A, Rutyna P, Fedorowicz M, Kwiatek M, Mizak L, Łobocka M. Three Novel Bacteriophages, J5a, F16Ba, and z1a, Specific for Bacillus anthracis, Define a New Clade of Historical Wbeta Phage Relatives. Viruses 2022; 14:213. [PMID: 35215807 PMCID: PMC8878798 DOI: 10.3390/v14020213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus anthracis is a potent biowarfare agent, able to be highly lethal. The bacteria dwell in the soil of certain regions, as natural flora. Bacteriophages or their lytic enzymes, endolysins, may be an alternative for antibiotics and other antibacterials to fight this pathogen in infections and to minimize environmental contamination with anthrax endospores. Upon screening environmental samples from various regions in Poland, we isolated three new siphophages, J5a, F16Ba, and z1a, specific for B. anthracis. They represent new species related to historical anthrax phages Gamma, Cherry, and Fah, and to phage Wbeta of Wbetavirus genus. We show that the new phages and their closest relatives, phages Tavor_SA, Negev_SA, and Carmel_SA, form a separate clade of the Wbetavirus genus, designated as J5a clade. The most distinctive feature of J5a clade phages is their cell lysis module. While in the historical phages it encodes a canonical endolysin and a class III holin, in J5a clade phages it encodes an endolysin with a signal peptide and two putative holins. We present the basic characteristic of the isolated phages. Their comparative genomic analysis indicates that they encode two receptor-binding proteins, of which one may bind a sugar moiety of B. anthracis cell surface.
Collapse
Affiliation(s)
- Aleksandra Nakonieczna
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Paweł Rutyna
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Magdalena Fedorowicz
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Magdalena Kwiatek
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Lidia Mizak
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
43
|
Wang T, Zheng Y, Dai J, Zhou J, Yu R, Zhang C. Design SMAP29-LysPA26 as a Highly Efficient Artilysin against Pseudomonas aeruginosa with Bactericidal and Antibiofilm Activity. Microbiol Spectr 2021; 9:e0054621. [PMID: 34878337 PMCID: PMC8653812 DOI: 10.1128/spectrum.00546-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major issue to global health. The multidrug-resistant (MDR) Gram-negative infections, particularly infected by carbapenem-resistant pathogens, urgently need efficient antibiotics and novel therapy. However, the scientific challenges of aiming for innovative approaches against Gram-negative bacteria have hindered the research and development of antibiotic drugs. Phage-derived endolysins are bacteriolytic and specific for a bacterial species or genus, providing a promising antibiotic strategy. However, the outer membrane of Gram-negative bacteria could prevent the peptidoglycan layer from the hydrolysis of endolysins. Antimicrobial peptides usually destabilize the outer membrane and could enhance the antibiotic activity of endolysins. In this study, we designed new artilysins with antimicrobial-peptide SMAP29 fusion at the N-terminal of LysPA26 (named as AL-3AA, AL-9AA, and AL-15AA), and evaluated them. The results showed artilysin AL-3AA to be highly bactericidal; even 0.05 mg/mL AL-3AA could reduce 5.81 log units P. aeruginosa without EDTA in 60 min. It killed P. aeruginosa rapidly and dose-dependently through cell lysis. AL-3AA inhibited P. aeruginosa PAO1 biofilm formation and significantly decreased mature P. aeruginosa biofilms. It also had potential broad-spectrum activity against susceptible Gram-negative bacteria in the hospital, including K. pneumoniae and E. coli. The antibacterial mechanism investigation has provided valuable information about the antibacterial action of AL-3AA, which can lyse and disintegrate the bacterial quickly. These results suggested AL-3AA could be a new and promising antimicrobial agent for the combat of P. aeruginosa. IMPORTANCE Antimicrobial resistance (AMR) is a major issue to global health, particularly the multidrug-resistant (MDR) Gram-negative infections, which pose great challenges. Even new antibiotics research is ongoing, antibiotics used to treat Gram-negative bacteria in the clinical are limited in a small set of molecular scaffolds, and biomolecular categories of antibiotics are urgently needed. In this study, we designed new proteins by combining antimicrobial peptides and endolysins for synergistic bactericidal effects. One of designed proteins, named AL-3AA, showed highly bactericidal, and killed P. aeruginosa rapidly and dose-dependently through cell lysis. It also killed Klebsiella pneumoniae and Escherichia coli, showing potential broad-spectrum activity against susceptible Gram-negative bacteria in the hospital. All results suggest AL-3AA could be a new and promising antimicrobial agent for the combat of P. aeruginosa.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Yongxiang Zheng
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Jiami Dai
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Rong Yu
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Chun Zhang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Manoharadas S, Altaf M, Alrefaei AF, Ahmad N, Althaf Hussain S, Al-Rayes BF. An Engineered Multimodular Enzybiotic against Methicillin-Resistant Staphylococcus aureus. Life (Basel) 2021; 11:1384. [PMID: 34947915 PMCID: PMC8705753 DOI: 10.3390/life11121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Development of multidrug antibiotic resistance in bacteria is a predicament encountered worldwide. Researchers are in a constant hunt to develop effective antimicrobial agents to counter these dreadful pathogenic bacteria. Here we describe a chimerically engineered multimodular enzybiotic to treat a clinical isolate of methicillin-resistant Staphylococcus aureus (S. aureus). The cell wall binding domain of phage ϕ11 endolysin was replaced with a truncated and more potent cell wall binding domain from a completely unrelated protein from a different phage. The engineered enzybiotic showed strong activity against clinically relevant methicillin-resistant Staphylococcus aureus. In spite of a multimodular peptidoglycan cleaving catalytic domain, the engineered enzybiotic could not exhibit its activity against a veterinary isolate of S. aureus. Our studies point out that novel antimicrobial proteins can be genetically engineered. Moreover, the cell wall binding domain of the engineered protein is indispensable for a strong binding and stability of the proteins.
Collapse
Affiliation(s)
- Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
| | - Mohammad Altaf
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia;
| | - Naushad Ahmad
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia;
| | - Basel F. Al-Rayes
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
| |
Collapse
|
45
|
Optimized Silica-Binding Peptide-Mediated Delivery of Bactericidal Lysin Efficiently Prevents Staphylococcus aureus from Adhering to Device Surfaces. Int J Mol Sci 2021; 22:ijms222212544. [PMID: 34830425 PMCID: PMC8619460 DOI: 10.3390/ijms222212544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Staphylococcal-associated device-related infections (DRIs) represent a significant clinical challenge causing major medical and economic sequelae. Bacterial colonization, proliferation, and biofilm formation after adherence to surfaces of the indwelling device are probably the primary cause of DRIs. To address this issue, we incorporated constructs of silica-binding peptide (SiBP) with ClyF, an anti-staphylococcal lysin, into functionalized coatings to impart bactericidal activity against planktonic and sessile Staphylococcus aureus. An optimized construct, SiBP1-ClyF, exhibited improved thermostability and staphylolytic activity compared to its parental lysin ClyF. SiBP1-ClyF-functionalized coatings were efficient in killing MRSA strain N315 (>99.999% within 1 h) and preventing the growth of static and dynamic S. aureus biofilms on various surfaces, including siliconized glass, silicone-coated latex catheter, and silicone catheter. Additionally, SiBP1-ClyF-immobilized surfaces supported normal attachment and growth of mammalian cells. Although the recycling potential and long-term stability of lysin-immobilized surfaces are still affected by the fragility of biological protein molecules, the present study provides a generic strategy for efficient delivery of bactericidal lysin to solid surfaces, which serves as a new approach to prevent the growth of antibiotic-resistant microorganisms on surfaces in hospital settings and could be adapted for other target pathogens as well.
Collapse
|
46
|
Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S. Endolysin, a Promising Solution against Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:1277. [PMID: 34827215 PMCID: PMC8614784 DOI: 10.3390/antibiotics10111277] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global crisis for human public health which threatens the effective prevention and control of ever-increasing infectious diseases. The advent of pandrug-resistant bacteria makes most, if not all, available antibiotics invalid. Meanwhile, the pipeline of novel antibiotics development stagnates, which prompts scientists and pharmacists to develop unconventional antimicrobials. Bacteriophage-derived endolysins are cell wall hydrolases which could hydrolyze the peptidoglycan layer from within and outside of bacterial pathogens. With high specificity, rapid action, high efficiency, and low risk of resistance development, endolysins are believed to be among the best alternative therapeutic agents to treat multidrug resistant (MDR) bacteria. As of now, endolysins have been applied to diverse aspects. In this review, we comprehensively introduce the structures and activities of endolysins and summarize the latest application progress of recombinant endolysins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yuanrui Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| |
Collapse
|
47
|
Potential for Phages in the Treatment of Bacterial Sexually Transmitted Infections. Antibiotics (Basel) 2021; 10:antibiotics10091030. [PMID: 34572612 PMCID: PMC8466579 DOI: 10.3390/antibiotics10091030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial sexually transmitted infections (BSTIs) are becoming increasingly significant with the approach of a post-antibiotic era. While treatment options dwindle, the transmission of many notable BSTIs, including Neisseria gonorrhoeae, Chlamydia trachomatis, and Treponema pallidum, continues to increase. Bacteriophage therapy has been utilized in Poland, Russia and Georgia in the treatment of bacterial illnesses, but not in the treatment of bacterial sexually transmitted infections. With the ever-increasing likelihood of antibiotic resistance prevailing and the continuous transmission of BSTIs, alternative treatments must be explored. This paper discusses the potentiality and practicality of phage therapy to treat BSTIs, including Neisseria gonorrhoeae, Chlamydia trachomatis, Treponema pallidum, Streptococcus agalactiae, Haemophilus ducreyi, Calymmatobacterium granulomatis, Mycoplasma genitalium, Ureaplasma parvum, Ureaplasma urealyticum, Shigella flexneri and Shigella sonnei. The challenges associated with the potential for phage in treatments vary for each bacterial sexually transmitted infection. Phage availability, bacterial structure and bacterial growth may impact the potential success of future phage treatments. Additional research is needed before BSTIs can be successfully clinically treated with phage therapy or phage-derived enzymes.
Collapse
|
48
|
PhaLP: A Database for the Study of Phage Lytic Proteins and Their Evolution. Viruses 2021; 13:v13071240. [PMID: 34206969 PMCID: PMC8310338 DOI: 10.3390/v13071240] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Phage lytic proteins are a clinically advanced class of novel enzyme-based antibiotics, so-called enzybiotics. A growing community of researchers develops phage lytic proteins with the perspective of their use as enzybiotics. A successful translation of enzybiotics to the market requires well-considered selections of phage lytic proteins in early research stages. Here, we introduce PhaLP, a database of phage lytic proteins, which serves as an open portal to facilitate the development of phage lytic proteins. PhaLP is a comprehensive, easily accessible and automatically updated database (currently 16,095 entries). Capitalizing on the rich content of PhaLP, we have mapped the high diversity of natural phage lytic proteins and conducted analyses at three levels to gain insight in their host-specific evolution. First, we provide an overview of the modular diversity. Secondly, datamining and interpretable machine learning approaches were adopted to reveal host-specific design rules for domain architectures in endolysins. Lastly, the evolution of phage lytic proteins on the protein sequence level was explored, revealing host-specific clusters. In sum, PhaLP can act as a starting point for the broad community of enzybiotic researchers, while the steadily improving evolutionary insights will serve as a natural inspiration for protein engineers.
Collapse
|
49
|
The Molecular Basis for Escherichia coli O157:H7 Phage FAHEc1 Endolysin Function and Protein Engineering to Increase Thermal Stability. Viruses 2021; 13:v13061101. [PMID: 34207694 PMCID: PMC8228626 DOI: 10.3390/v13061101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023] Open
Abstract
Bacteriophage-encoded endolysins have been identified as antibacterial candidates. However, the development of endolysins as mainstream antibacterial agents first requires a comprehensive biochemical understanding. This study defines the atomic structure and enzymatic function of Escherichia coli O157:H7 phage FAHEc1 endolysin, LysF1. Bioinformatic analysis suggests this endolysin belongs to the T4 Lysozyme (T4L)-like family of proteins and contains a highly conserved catalytic triad. We then solved the structure of LysF1 with x-ray crystallography to 1.71 Å. LysF1 was confirmed to exist as a monomer in solution by sedimentation velocity experiments. The protein architecture of LysF1 is conserved between T4L and related endolysins. Comparative analysis with related endolysins shows that the spatial orientation of the catalytic triad is conserved, suggesting the catalytic mechanism of peptidoglycan degradation is the same as that of T4L. Differences in the sequence illustrate the role coevolution may have in the evolution of this fold. We also demonstrate that by mutating a single residue within the hydrophobic core, the thermal stability of LysF1 can be increased by 9.4 °C without compromising enzymatic activity. Overall, the characterization of LysF1 provides further insight into the T4L-like class of endolysins. Our study will help advance the development of related endolysins as antibacterial agents, as rational engineering will rely on understanding mutable positions within this protein fold.
Collapse
|
50
|
Ferriol-González C, Domingo-Calap P. Phage Therapy in Livestock and Companion Animals. Antibiotics (Basel) 2021; 10:559. [PMID: 34064754 PMCID: PMC8150778 DOI: 10.3390/antibiotics10050559] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
The irrational use of antibiotics has led to a high emergence of multi-drug resistant (MDR) bacteria. The traditional overuse of antibiotics in the animal feed industry plays a crucial role in the emergence of these pathogens that pose both economic and health problems. In addition, antibiotics have also recently experienced an increase to treat companion animal infections, promoting the emergence of MDR bacteria in pets, which can reach humans. Phages have been proposed as an alternative for antibiotics for the treatment of livestock and companion animal infections due to their multiple advantages as adaptative drugs, such as their ability to evolve, to multiply at the site of infections, and their high specificity. Moreover, phage-derived enzymes may also be an interesting approach. However, the lack of regulation for this type of pharmaceutical hinders its potential commercialization. In this review, we summarize the main recent studies on phage therapy in livestock and companion animals, providing an insight into current advances in this area and the future of treatments for bacterial infections.
Collapse
Affiliation(s)
| | - Pilar Domingo-Calap
- Department of Genetics, Universitat de València, 46100 Valencia, Spain;
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Valencia, Spain
| |
Collapse
|