1
|
Dong W. Synergistic effects of Fe 3O 4-NPs and Enterobacter cloacae in alleviating mercury stress in wheat (Triticum aestivum L.): Insights into morpho-physio-biochemicals attributes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109881. [PMID: 40188531 DOI: 10.1016/j.plaphy.2025.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
In the current industrial scenario, mercury (Hg) as a metal is of great importance but poses a major threat to the ecosystem because of its toxicity, but fewer studies have been conducted on its effects and alleviation strategies by using nanoparticles (NPs) and plant growth promoting rhizobacteria (PGPR). Taking into consideration the positive effects of iron oxide (Fe3O4)⎯NPs and Enterobacter cloacae rhizobacteria in reducing Hg toxicity in plants, the present study was conducted. A pot experiment was conducted over 60 days using wheat (Triticum aestivum L.) to investigate the effects of varying Hg levels (0, 50 and 100 mg kg⎯1) combined with different concentrations of Fe3O4-NPs (25 and 50 mg L-1) and E. cloacae (10 and 20 ppm) on various morpho-physio-biochemical responses. The research outcomes indicated that elevated levels of Hg stress in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, nutrients uptake and gas exchange attributes. However, Hg stress also induced oxidative stress in the plants by increasing malondialdehyde (MDA) and hydrogen peroxide (H2O2), which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression and sugar content. Furthermore, a significant (P < 0.05) increase in proline metabolism, the ascorbate-glutathione (AsA-GSH) cycle were observed. Although, the application of Fe3O4-NPs and E. cloacae showed a significant (P < 0.05) increase in plant growth and biomass, nutrients uptake, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress. In addition, the application of Fe3O4-NPs and E. cloacae enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in T. aestivum seedlings. Research findings, therefore, suggest that the application of Fe3O4-NPs and E. cloacae can ameliorate Hg toxicity in T. aestivum seedlings, resulting in improved plant growth and composition under metal stress, as depicted by balanced antioxidant defense mechanism.
Collapse
Affiliation(s)
- Wenhan Dong
- Gansu Forestry Voctech University, TianShui, 741020, China.
| |
Collapse
|
2
|
Alhaj Hamoud Y, Shaghaleh H, Saleem MH, Alshaharni MO, Alqurashi M, Alhelaify SS, Alharthy OM, Fayad E, Rastogi A. Eco-friendly role of serratia marcescens and pseudomonas fluorescens in enhancing rice growth and mitigating cadmium toxicity via uptake modulation and antioxidant regulation. BMC PLANT BIOLOGY 2025; 25:718. [PMID: 40437399 PMCID: PMC12117749 DOI: 10.1186/s12870-025-06693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 05/08/2025] [Indexed: 06/01/2025]
Abstract
Plant growth-promoting rhizobacteria (PGPR) offer sustainable means to enhance crop resilience under environmental stress, including heavy metal toxicity. Understanding their role in mitigating such stresses is vital for advancing biotechnological strategies aimed at food security and sustainable agriculture. A pot experiment was conducted to determine the effects of single and/or combined application of different levels [10 and 20 ppm] of Serratia marcescens and Pseudomonas fluorescens on Cd accumulation, morpho-physio-biochemical attributes of rice (Oryza sativa L.) exposed to severe Cd stress [0 (without Cd stress), and 100 µM)]. The research outcomes indicated that elevated levels of Cd stress in the soil significantly (p ≤ 0.05) decreased plant growth and biomass, photosynthetic pigments, and gas exchange attributes. However, Cd stress also induced oxidative stress in the plants by increasing malondialdehyde (MDA) and hydrogen peroxide (H2O2), which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression and sugar content. Furthermore, a significant (p ≤ 0.05) increase in proline metabolism, the ascorbate-glutathione (AsA-GSH) cycle were observed. Although, the application of S. marcescens and P. fluorescens showed a significant (p ≤ 0.05) increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress. In addition, the application of S. marcescens and P. fluorescens enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa plants. Research findings, therefore, suggest that the application of S. marcescens and P. fluorescens can ameliorate Cd toxicity in O. sativa, resulting in improved plant growth and composition under metal stress, as depicted by balanced antioxidant defense mechanism.
Collapse
Affiliation(s)
- Yousef Alhaj Hamoud
- College of Hydrology and Water Recourses, Hohai University, Nanjing, 210098, China
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar.
| | - Mohammed O Alshaharni
- Biology Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammed Alqurashi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Seham Sater Alhelaify
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ohud Muslat Alharthy
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Piatkowska 94, Pozna ́n, 60-649, Poland.
| |
Collapse
|
3
|
Pan H, Zhou L, Li J. Transcriptomic changes in donor soybean, dodder bridge, and the connected recipient soybean induced by cadmium addition. FRONTIERS IN PLANT SCIENCE 2025; 16:1567412. [PMID: 40313728 PMCID: PMC12044426 DOI: 10.3389/fpls.2025.1567412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/26/2025] [Indexed: 05/03/2025]
Abstract
Background Cuscuta spp. (dodders) are parasitic plants that belong to the Convolvulaceae family. In nature, dodder often forms a bridge-like connection between two or more host plants like, which is known as a dodder bridge. Cadmium (Cd2+) is an important heavy metal ion that affects plant growth. However, it remains unclear whether Cd2+ treatment can directly or indirectly induce transcriptomic changes in plants through dodder bridge. Results In this study, a pot experiment was conducted to investigate the effects of Cd2+ treatment on donor plant and neighboring recipient plant connected by dodder bridge. Transcriptome analysis revealed that Cd2+ treatment significantly affected the expression of genes involved in the 'Plant-pathogen interaction', 'phenylpropanoid biosynthesis', and 'isoflavonoid biosynthesis' pathways in both donor and recipient plants at 2, 12, 24, and 48 h. Cd2+ indirectly induced changes in the dodder bridge, which included processes related to oxidation-reduction ('oxidation-reduction process', 'oxidoreductase activity', and 'regulation of transcription') and Ca2+ signaling pathways ('Plant-pathogen interaction', 'MAPK signaling pathway', 'AMPK signaling pathway', 'mTOR signaling pathway'). Additionally, mRNA transfer was observed from soybean to dodder. mRNA, Ca2+ and ROS might play crucial roles in the signal transduction process induced by Cd2+ stress. Conclusion Cd2+ treatment could directly and indirectly induce transcriptomic changes in the donor plant and neighboring recipient plant connected by dodder bridge. These results contribute to a better understanding of how plants connected by dodder bridges respond to environmental stresses.
Collapse
Affiliation(s)
- Hangkai Pan
- Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Li Zhou
- Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
- School of Advanced Science, Taizhou University, Taizhou, China
| | - Junmin Li
- Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
- School of Advanced Science, Taizhou University, Taizhou, China
| |
Collapse
|
4
|
Du G, Zheng K, Sun C, Sun M, Pan J, Meng D, Guan W, Zhao H. The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in Saccharomyces cerevisiae. Front Cell Dev Biol 2025; 13:1522294. [PMID: 40129568 PMCID: PMC11931143 DOI: 10.3389/fcell.2025.1522294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
The mammalian p38 MAPK pathway plays a vital role in transducing extracellular environmental stresses into numerous intracellular biological processes. The p38 MAPK have been linked to a variety of cellular processes including inflammation, cell cycle, apoptosis, development and tumorigenesis in specific cell types. The p38 MAPK pathway has been implicated in the development of many human diseases and become a target for treatment of cancer. Although MAPK p38 pathway has been extensively studied, many questions still await clarification. More comprehensive understanding of the MAPK p38 pathway will provide new possibilities for the treatment of human diseases. Hog1 in S. cerevisiae is the conserved homolog of p38 in mammalian cells and the HOG MAPK signaling pathway in S. cerevisiae has been extensively studied. The deep understanding of HOG MAPK signaling pathway will help provide clues for clarifying the p38 signaling pathway, thereby furthering our understanding of the relationship between p38 and disease. In this review, we elaborate the functions of p38 and the relationship between p38 and human disease. while also analyzing how Hog1 regulates cellular processes in response to environmental stresses. 1, p38 in response to various stresses in mammalian cells.2, The functions of mammalian p38 in human health.3, Hog1 as conserved homolog of p38 in response to environmental stresses in Saccharomyces cerevisiae. 1, p38 in response to various stresses in mammalian cells. 2, The functions of mammalian p38 in human health. 3, Hog1 as conserved homolog of p38 in response to environmental stresses in S. cerevisiae.
Collapse
Affiliation(s)
- Gang Du
- *Correspondence: Gang Du, ; Wenqiang Guan, ; Hui Zhao,
| | | | | | | | | | | | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
5
|
Mumtaz S, Anas M, Javed S, Tahir MF, Saleem MH, Elansary HO, Mahmoud EA, Fahad S, Ali S. Mitigating cadmium stress in rice (Oryza sativa L.) using succinic and oxalic acids with focus on cellular integrity and antioxidant responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109548. [PMID: 39884150 DOI: 10.1016/j.plaphy.2025.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as succinic acid (SA) and oxalic acid (OA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a pot experiment to assess the impact of SA (0.25 and 0.5 mM) and OA (0.25 and 0.5 mM) on enhancing the phytoremediation of Cd under its toxic concentration of 0.1 mM, using rice (Oryza sativa L.) plants. The research outcomes indicated that elevated levels of Cd stress in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, and gas exchange attributes. However, Cd stress also induced oxidative stress in the plants by increasing malondialdehyde (MDA) and hydrogen peroxide (H2O2), which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression and sugar content. Furthermore, a significant (P < 0.05) increase in proline metabolism, the AsA-GSH cycle, and the pigmentation of cellular components was observed. In addition, scanning electron microscopy (SEM) revealed that Cd toxicity significantly affected double membranous organelles. Although, the application of SA and OA showed a significant (P < 0.05) increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress. In addition, the application of SA and OA enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Sahar Mumtaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan.
| | - Muhammad Anas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Faran Tahir
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan.
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hosam O Elansary
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia.
| | - Eman A Mahmoud
- Department of Food Science, College of Agriculture, Damietta University, Damietta, Egypt.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Allama Iqbal Road, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
6
|
Luo Z, Pan X, Xia Y, Duan X, Ma J, Chen F. Nanoscale particles-induced mitigation of tannery wastewater chromium stress in rice: Implications for plant performance and human health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125562. [PMID: 39709056 DOI: 10.1016/j.envpol.2024.125562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Due to the rapid increase in industrial and urban areas, environmental pollution is increasing worldwide, which is causing unwanted changes in air, water, and soil at biological, physical, as well as chemical levels that ultimately causing the negative effects in living things because of toxic level of chromium (Cr). However, nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. For this purpose, a pot experiment was conducted to examine plant growth and exo-physiology in rice (Oryza sativa L.) under the different levels of wastewater 50% and 100% concentrations which were also primed with three nanoparticles (NPs)-copper oxide (nCuO), silicon (nSi), and zinc oxide (nZnO). The research outcomes indicated that elevated levels of wastewater in the soil (100%) notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. However, increasing levels of Cr stress also induced oxidative stress in the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2), which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression and sugar content. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the pigmentation of cellular components was observed. Although, the application of nCuO, nSi, nZnO-NPs showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress. In addition, the application of nCuO, nSi, nZnO-NPs enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Zhanbin Luo
- School of Public Administration, Hohai University, Nanjing, 211000, China.
| | - Xuyue Pan
- School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China.
| | - Yi Xia
- School of Public Administration, Hohai University, Nanjing, 211000, China.
| | - Xueying Duan
- School of Public Administration, Hohai University, Nanjing, 211000, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211000, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China.
| |
Collapse
|
7
|
Wu Y, Zhao H, Xiao M, Liu H, He H, Peng L, Tao Q, Tang X, Zhang Y, Huang R, Li B, Wang C. A plant growth-promoting bacterium supports cadmium detoxification of rice by inducing phenylpropanoid and flavonoid biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136795. [PMID: 39647335 DOI: 10.1016/j.jhazmat.2024.136795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Cadmium (Cd) is easily absorbed by rice and enters the food chain, posing a health risk to humans. Plant growth promoting bacteria (PGPB) can help the plant respond to Cd stress, but the mechanism of PGPB for Cd reduction is unclear. Therefore, this study was conducted and found inoculation with a newly isolated Pseudomonas koreensis promoted the growth of rice and reduced its Cd content. Fluorescent staining using PI and H2O2 probe indicated that PGPB attenuated oxidative damage in rice. Metabolomics revealed that 59 metabolites were upregulated after inoculation, with phenylpropanoids and flavonoids being significantly activated. Spectrophotometry analysis comfirmed the content of flavonoid, lignin, phenol, glutathione, proline and the activities of antioxidant enzymes were higher in the inoculated rice than in the control. Quantitative PCR showed the expression of genes related to phenylpropanoids (OsPAL, OsC4H, Os4CL) and flavonoids (OsCHS, OsCHI) was significantly increased by PGPB, while the genes of heavy metal transporters (OsNRAMP5, OsHMA2, OsIRT1) were significantly decreased. Overall, this study provides an insight into the PGPB-mediated detoxification mechanism in rice under Cd stress and emphasizes the role of phenylpropanoids and flavonoids in the production of low-Cd rice to ensure human health.
Collapse
Affiliation(s)
- Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haiyang Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Meijuan Xiao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huimin Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua He
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Peng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Ma J, Zou M, Peijnenburg W, Chen F. Priming agents combat copper stress in wheat (Triticum aestivum L.) under hydroponic conditions: Insights in impacts on morpho-physio-biochemical traits and health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117899. [PMID: 39961189 DOI: 10.1016/j.ecoenv.2025.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
In recent years, the use of priming agents, such as silicon, melatonin, salicylic acid, glycine betaine, and ascorbic acid has gained significant attention for their role in mitigating abiotic stresses across various plant species. While previous research has been conducted on the individual impact of silicon, melatonin, salicylic acid, glycine betaine, and ascorbic acid in metal stress resistance among various crop species, their combined effects in the context of heavy metal stressed conditions remain underexplored. Wheat (Triticum aestivum L.) seedlings was grown under the toxic concentration of copper (Cu) i.e., 100 µM which were applied with silicon, melatonin, salicylic acid, glycine betaine, and ascorbic acid under hydroponic conditions for 21 days. The research outcomes indicated that the toxic concentration of Cu in the nutrient solution notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. However, Cu stress also induced oxidative stress in the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2) which also induced increased compounds of various enzymatic and non-enzymatic antioxidants, health risk index (HRI) and also the gene expression and sugar content. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the pigmentation of cellular components was observed. Although, the application of different priming agents, such as silicon, melatonin, salicylic acid, glycine betaine, and ascorbic acid showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress and HRI. In addition, the application of different priming agents enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in T. aestivum seedlings. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 211000, China.
| | - Ming Zou
- School of Public Administration, Hohai University, Nanjing 211000, China.
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherland; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherland.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing 210009, China.
| |
Collapse
|
9
|
Sharma P, Bakshi P, Chouhan R, Gandhi SG, Kaur R, Sharma A, Bhardwaj R, Alsahli AA, Ahmad P. Combined application of earthworms and plant growth promoting rhizobacteria improve metal uptake, photosynthetic efficiency and modulate secondary metabolites levels under chromium metal toxicity in Brassica juncea L. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136489. [PMID: 39581024 DOI: 10.1016/j.jhazmat.2024.136489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Chromium (Cr) toxicity impairs essential morphological and metabolic activities in plants. The present investigation was carried out to evaluate the beneficial role of plant growth promoting rhizobacterial strains namely Pseudomonas aeruginosa (M1), Burkholderia gladioli (M2) and earthworms (Eisenia fetida) in alleviating Cr toxicity in 10 days old Brassica juncea L. The findings delineated that addition of earthworms and PGPR restored growth, boosted Cr uptake and showed upregulation of metal transporter genes (SULTR 1-4). Supplementation of rhizospheric amendments reinstated Cr induced impairment in photosynthetic attributes. Gaseous exchange attributes, the efficiency of PS II, the content of total phenols, anthocyanin and flavonoids was enhanced with application of earthworms along with PGPR. Confocal imaging of primary photosynthetic pigment (chlorophyll), accessory photosynthetic pigment (carotenoids) and total phenols showed maximum fluorescence with combined inoculation of earthworms and both microbial strains (M1M2). The gene expression analysis revealed that Phyotene synthase (PSY), Photosystem II core protein psb A, psb B were down regulated in Cr stressed seedlings which upon supplementation with earthworms and PGPR were upregulated. Further, Phenylalanine ammonialyase (PAL), chalcone synthase (CHS) were upregulated with addition of earthworms and PGPR. Increased nitric oxide content, enhanced activity and upregulation of nitrate reductase (NR) gene was observed with addition of PGPR and earthworms.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Microbiology, DAV University, Jalandhar, India; Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India; Department of Biotechnology, DAV College, Amritsar, India
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rekha Chouhan
- Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Rupinder Kaur
- Department of Biotechnology, DAV College, Amritsar, India
| | - Ashutosh Sharma
- Faculty of Agricultural Sciences, DAV University, Jalandhar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301 Jammu and Kashmir, India.
| |
Collapse
|
10
|
Sehrish AK, Ahmad S, Ali S, Tabssam R, Ai F, Du W, Guo H. Alleviation of cadmium toxicity by improving antioxidant defense mechanism and nutrient uptake in wheat (Triticum aestivum L.) through foliar application of 24-epibrassinolide under elevated CO 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136209. [PMID: 39442298 DOI: 10.1016/j.jhazmat.2024.136209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Heavy metals like cadmium (Cd) contamination occur in conjunction with the rising CO2 threatening food security and safety. Foliar application of 24-Epibrassinolide (EBR) was found to ameliorate Cd stress and improve nutrient availability in crops. However, its role under elevated CO2 is currently unknown. Accordingly, a pot experiment was conducted in open-top chambers (CO2 at 400 and 600 μmol mol-1) to determine the protective effect of EBR on wheat plants under different Cd concentrations (0, 2, and 4 mg kg-1) in soil. The foliar application of EBR significantly improved growth, biomass, photosynthesis, proline, total phenol, and total soluble protein in Cd stress treatments under elevated CO2. Simultaneously, it significantly (p ≤ 0.05) increased catalase (42.89 %), superoxide dismutase (26.53 %), peroxidase (28.10 %), and ascorbate peroxidase (61.70 %) while reduced malondialdehyde (35.53 %), hydrogen peroxide (19.94 %), and electrolyte leakage (23.55 %) under elevated CO2 compared to ambient CO2 conditions. Furthermore, EBR and elevated CO2 interactively showed a maximum reduction in Cd concentrations and accumulation in the wheat roots (39.74,41.63 %), shoots (46.83,44.87 %), and grains (27.52,29.06 %) respectively. Elevated CO2 and Cd stress interactively showed a significant reduction in nutrient content. Conversely, the EBR application recovered and significantly increased calcium, magnesium, iron, zinc, and copper content in wheat roots, shoots, and grains. Our findings inferred that EBR foliar application reduced Cd toxicity and improved plant growth and nutritional quality under elevated CO2.
Collapse
Affiliation(s)
- Adiba Khan Sehrish
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Rohina Tabssam
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou, China.
| |
Collapse
|
11
|
Luo Z, Mfarrej MFB, Saleem MH, Ma J, Saleh IA, Abdel-Maksoud MA, Zakri AM, Chen F, Oliván LMG. Individual and combinatorial application of nanosilica and carbon nanoparticles alleviate nickel stress in barley (Hordeum vulgare L.): Impacts on gene expression, AsA - GSH cycle, cellular fractionation, and proline metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176304. [PMID: 39293765 DOI: 10.1016/j.scitotenv.2024.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nanotechnology is grabbing great attention all over the world because of its stimulating use in numerous fields, and the nanosilica (nSi) and carbon nanoparticles (CNPs) application has been examined in various studies. Conversely, the nSi and CNPs combinatorial use is a new method and researched in limited literature. For this purpose, a pot experiment was conducted to examine various growth and biochemical parameters in barley (Hordeum vulgare L.) under the toxic concentration of nickel (Ni) i.e., 200 mg kg-1 which were primed with combined application of two NPs of nSi at 3 mM and CNPs i.e., 200 μM respectively. The results showed that the Ni toxicity in the soil showed a significantly (P < 0.05) declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in H. vulgare. However, Ni toxicity significantly (P < 0.05) increased oxidative stress biomarkers, enzymatic and nonenzymatic antioxidants including their gene expression in H. vulgare. Although, the application of nSi and CNPs showed a significant (P < 0.05) increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, and Ni uptake. In addition, individual or combined application of nSi and CNPs enhanced the cellular fractionation and decreases the proline metabolism and AsA-GSH cycle in H. vulgare. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Zhanbin Luo
- School of Public Administration, Hohai University, Nanjing 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing 210009, China.
| | - Manar Fawzi Bani Mfarrej
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirate
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211000, China.
| | | | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia.
| | - Adel M Zakri
- Plant Production Dept. College of Food and Agricultural Sciences, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing 210009, China.
| | - Leobardo Manuel Gómez Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, MÉXICO.
| |
Collapse
|
12
|
Al-Huqail AA, Alghanem SMS, Alhaithloul HAS, Abbas ZK, Al-Balawi SM, Darwish DBE, Ali B, Malik T, Javed S. Selenium mitigates vanadium toxicity through enhanced nutrition, photosynthesis, and antioxidant defense in rice (Oryza sativa L.) seedlings. BMC PLANT BIOLOGY 2024; 24:1071. [PMID: 39538138 PMCID: PMC11559158 DOI: 10.1186/s12870-024-05790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In the current industrial scenario, vanadium (V) as a metal is of great importance but poses a major threat to the ecosystem. In the present study, the effect of a toxic concentration of V, i.e., 10 µM in the soil on growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, antioxidants machinery (enzymatic and non-enzymatic antioxidants), ions uptake, proline metabolism, and V uptake in different parts of the plant was investigated with and without the exogenous application of selenium (Se) i.e., 5 µM in V-stressed rice (Oryza sativa L.). Our results depicted that V addition to the soil significantly (P < 0.05) decreased plant growth and biomass, gas exchange attributes, and minerals uptake by O. sativa as compared to the plants grown without the addition of V. However, V toxicity boosted the production of reactive oxygen species (ROS) by increasing the contents of malondialdehyde (MDA), which is the indication of oxidative stress in O. sativa and was also manifested by hydrogen peroxide (H2O2) contents to the membrane-bounded organelles. Although activities of various antioxidative enzymes like superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and their gene expression Fe-SOD, POD, CAT, and APX and also non-enzymatic antioxidants like phenolic, flavonoid, and ascorbic acid, anthocyanin contents and also the proline metabolism i.e., proline, pyrroline5-carboxylate, pyrroline-5-carboxylate reductase, and pyrroline-5-carboxylate dehydrogenase were increased due to V stress. Although results also illustrated that the application of Se also decreased V toxicity in O. sativa seedlings by increasing antioxidant capacity and, thus, improved the plant growth and biomass, photosynthetic pigments, gas exchange characteristics, and decreased oxidative stress in the O. sativa seedlings, compared to those plants which were not artificially supplied by Se. Research findings, therefore, suggested that the Se application can ameliorate V toxicity in O. sativa seedlings and result in improved plant growth and composition under metal stress as depicted by balanced exudation of nutrient effluxes. This study provides novel insights into the role of selenium in mitigating vanadium-induced oxidative stress in rice, thereby offering a promising approach to enhancing crop resilience in metal-contaminated soils and advancing sustainable agricultural practices.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Siham M Al-Balawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35511, Egypt
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, India.
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
13
|
Irshad MK, Ansari JR, Noman A, Javed W, Lee JC, Aqeel M, Waseem M, Lee SS. Seed priming with Fe 3O 4-SiO 2 nanocomposites simultaneously mitigate Cd and Cr stress in spinach (Spinacia oleracea L.): A way forward for sustainable environmental management. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117195. [PMID: 39447293 DOI: 10.1016/j.ecoenv.2024.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Seed priming with a composite of iron oxide (Fe3O4) and silicon dioxide (SiO2) nanoparticles (NPs) is an innovative technique to mitigate cadmium (Cd) and chromium (Cr) uptake in plants from rooting media. The current study explored the impact of seed priming with varying levels of Fe3O4 NPs, SiO2 NPs, and Fe3O4-SiO2 nanocomposites on Cd and Cr absorption and phytotoxicity, metal-induced oxidative stress mitigation, growth and biomass yield of spinach (Spinacia oleracea L.). The results showed that seed priming with the optimum level of 100 mg L-1 of Fe3O4-SiO2 nanocomposites significantly (p ≤ 0.05) increased root dry weight (144 %), shoot dry weight (243 %) and leaf area (34.4 %) compared to the control, primarily by safeguarding plant's photosynthetic machinery, oxidative stress and phytotoxicity of metals. Plants treated with this highest level of Fe3O4-SiO2 nanocomposites exhibited a substantial increase in photosynthetic and gas exchange indices of spinach plants and enhanced activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) antioxidant enzymes by 45 %, 48 %, and 60 %, respectively. Correspondingly, the relative gene expression levels of SOD, CAT, and APX also rose by 109 %, 181 %, and 137 %, respectively, compared to non-primed plants. This nanocomposite application also boosted the levels of phenolics (28 %), ascorbic acid (68 %), total sugars (129 %), flavonoids (39 %), and anthocyanin (29 %) in spinach leaves, while significantly reducing Cd (34.7 %, 53.4 %) and Cr (20.2 %, 28.8 %) contents in plant roots and shoots, respectively. These findings suggest that seed priming with Fe3O4-SiO2 nanocomposites effectively mitigated the toxic effects of Cd and Cr, enhancing the growth and biomass yield of spinach in Cd and Cr co-contaminated environments, offering a promising sustainable approach for producing metal-free crops.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Jamilur R Ansari
- Department of Packaging & Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Wasim Javed
- Water Management Research Centre, University of Agriculture Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea.
| |
Collapse
|
14
|
Wang Y, Liu Y, Zhang Y, Sun X, Wang F, Xie Z, Qi K, Sun X, Zhang S. PbrATG6 modulates reactive oxygen species metabolism and interacts with PbrTLP15 synergistic enhancement of pear resistance to Botryosphaeria dothidea. Int J Biol Macromol 2024; 281:136663. [PMID: 39423984 DOI: 10.1016/j.ijbiomac.2024.136663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Autophagy is vital for plant defense against pathogens, with ATG6 being a key gene in this process. At present, little has been reported on the potential function and molecular mechanisms of ATG6 mediated pathogen resistance in pear. This study investigates the function of the pear homolog of ATG6 (PbrATG6) in resistance to Botryosphaeria dothidea. PbrATG6 is expressed differentially in pear tissues and its expression increases upon infection. Overexpression of PbrATG6 enhances resistance in Arabidopsis and pear calli, while silencing it increases susceptibility. PbrTLP15, a pathogenesis-related protein belonging to the PR5 family, was found that interacts with PbrATG6 by a yeast two-hybrid screening. Yeast two-hybrid, luciferase complementation imaging, bimolecular fluorescence complementation assays and pull-down assays showed that PbrATG6 interacts with PbrTLP15. The transient silencing transgenic assays of PbrATG6 and PbrTLP15 revealed that PbrATG6 could cooperate with PbrTLP15 to regulate pear B. dothidea resistance. In addition, transcriptional analyses of autophagy key genes in pTRV-PbrTLP15 and transmission electron microscopy (TEM) assays also implied that PbrTLP15 does affect autophagy. Hence, PbrATG6 and PbrTLP15 may synergistically enhance pear B. dothidea disease resistance. It provides a new strategy for the study of autophagy in pear disease resistance and enriches the research on pear disease resistance mechanism.
Collapse
Affiliation(s)
- Yun Wang
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095.
| | - Yuting Liu
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Yue Zhang
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Xiaolei Sun
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Fei Wang
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Zhihua Xie
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Xun Sun
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095.
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095.
| |
Collapse
|
15
|
Alhaithloul HAS, Alghanem SMS, Alsudays IM, Abbas ZK, Al-Balawi SM, Ali B, Malik T, Javed S, Ali S, Ercisli S, Darwish DBE. Ameliorating arsenic and PVC microplastic stress in barley (Hordeum vulgare L.) using copper oxide nanoparticles: an environmental bioremediation approach. BMC PLANT BIOLOGY 2024; 24:985. [PMID: 39425070 PMCID: PMC11490012 DOI: 10.1186/s12870-024-05661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
The present study investigates the impact of varying concentrations of PVC microplastics (PVC-MPs) - specifically 0 (no PVC-MPs), 2, and 4 mg L- 1 -alongside different arsenic (As) levels of 0 (no As), 150, and 300 mg kg- 1 in the soil, with the concurrent application of copper oxide-nanoparticles (CuO-NPs) at 0 (no CuO -NPs), 25 and 50 µg mL- 1 to barley (Hordeum vulgare L.) plants. This research primarily aims to assess plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, as well as the response of various antioxidants (both enzymatic and non-enzymatic) and their relevant genes expression, proline metabolism, the AsA-GSH cycle, and cellular fractionation within the plants. The findings showed that increased levels of PVC-MPs and As stress in the soil significantly reduced plant growth and biomass, photosynthetic pigments, and gas exchange characteristics. Additionally, PVC-MPs and As stress increased oxidative stress in the roots and shoots, as evidenced by elevated levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL), which in turn stimulated the production of various enzymatic and non-enzymatic antioxidants, gene expression, and sugar content. Furthermore, a notable increase in proline metabolism, the AsA-GSH cycle, and cellular pigmentation was observed. Conversely, the application of CuO-NPs resulted in a substantial improvement in plant growth and biomass, gas exchange characteristics, and the activity of enzymatic and non-enzymatic antioxidants, along with a reduction in oxidative stress. Additionally, CuO-NPs enhanced cellular fractionation while decreasing proline metabolism and the AsA-GSH cycle in H. vulgare plants. These outcomes provide new insights into sustainable agricultural practices and offer significant potential in addressing the critical challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
| | | | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Siham M Al-Balawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Science, Western Sydney University, Penrith, 2751, Australia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Ethiopia.
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, 144411, India.
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan.
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, TR-25240, Türkiye
| | - Doaa Bahaa Eldin Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
16
|
Mahmoud AEM, Battaglia ML, Rady MM, Mohamed IAA, Alharby HF, Belal HEE, Desoky ESM, Galal TM, Ali EF. Alleviation of cadmium toxicity in soybean (Glycine max L.): Up-regulating antioxidant capacity and enzyme gene expressions and down-regulating cadmium uptake by organic or inorganic selenium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109068. [PMID: 39216160 DOI: 10.1016/j.plaphy.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Although much interest has been focused on the role of selenium (Se) in plant nutrition over the last 20 years, the influences of organic selenium (selenomethionine; Se-Met) and inorganic selenium (potassium selenite; Se-K) on the growth and physiological characters of cadmium (Cd)-stressed Glycine max L.) seedlings have not yet been studied. In this study, the impacts of Se-Met or Se-K on the growth, water physiological parameters (gaseous exchange and leaf water content), photosynthetic and antioxidant capacities, and hormonal balance of G. max seedlings grown under 1.0 mM Cd stress were studied. The results showed that 30 μM Se-K up-regulates water physiological parameters, photosynthetic indices, antioxidant systems, enzymatic gene expression, total antioxidant activity (TAA), and hormonal balance. In addition, it down-regulates levels of reactive oxygen species (ROS; superoxide free radicals and hydrogen peroxide), oxidative damage (malondialdehyde content as an indicator of lipid peroxidation and electrolyte leakage), Cd translocation factor, and Cd content of Cd-stressed G. max seedlings. These positive findings were in favor of seedling growth and development under Cd stress. However, 50 μM Se-Met was more efficient than 30 μM Se-K in promoting the above-mentioned parameters of Cd-stressed G. max seedlings. From the current results, we conclude Se-Met could represent a promising strategy to contribute to the development and sustainability of crop production on soils contaminated with Cd at a concentration of up to 1.0 mM. However, further work is warranted to better understand the precise mechanisms of Se-Met action under Cd stress conditions.
Collapse
Affiliation(s)
- Amr E M Mahmoud
- Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Martin L Battaglia
- Center for Sustainability Science, The Nature Conservancy, Arlington, VA, 22203, USA
| | - Mostafa M Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | - Ibrahim A A Mohamed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hussein E E Belal
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tarek M Galal
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
17
|
Liu J, Fan X, Ni J, Cai M, Cai D, Jiang Y, Mo A, Miran W, Peng T, Long X, Yang F. Mitigation of uranium toxicity in rice by Sphingopyxis sp. YF1: Evidence from growth, ultrastructure, subcellular distribution, and physiological characteristics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108958. [PMID: 39053315 DOI: 10.1016/j.plaphy.2024.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Uranium (U) contamination of rice is an urgent ecological and agricultural problem whose effective alleviation is in great demand. Sphingopyxis genus has been shown to remediate heavy metal-contaminated soils. Rare research delves into the mitigation of uranium (U) toxicity to rice by Sphingopyxis genus. In this study, we exposed rice seedlings for 7 days at U concentrations of 0, 10, 20, 40, and 80 mg L-1 with or without the Sphingopyxis sp. YF1 in the rice nutrient solution. Here, we firstly found YF1 colonized on the root of rice seedlings, significantly mitigated the growth inhibition, and counteracted the chlorophyll content reduction in leaves induced by U. When treated with 1.1 × 107 CFU mL-1 YF1 with the amendment of 10 mg L-1 U, the decrease of U accumulation in rice seedling roots and shoots was the largest among all treatments; reduced by 39.3% and 32.1%, respectively. This was associated with the redistribution of the U proportions in different organelle parts, leading to the alleviation of the U damage to the morphology and structure of rice root. Interestingly, we found YF1 significantly weakens the expression of antioxidant enzymes genes (CuZnSOD,CATA,POD), promotes the up-regulation of metal-transporters genes (OsHMA3 and OsHMA2), and reduces the lipid peroxidation damage induced by U in rice seedlings. In summary, YF1 is a plant-probiotic with potential applications for U-contaminated rice, benefiting producers and consumers.
Collapse
Affiliation(s)
- Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Danping Cai
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Jiang
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Waheed Miran
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tangjian Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xizi Long
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fei Yang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
18
|
Okla MK, Mumtaz S, Javed S, Saleh IA, Zomot N, Alwasel YA, Abdel-Maksoud MA, Song B, Adil MF. Elucidating the role of rice straw biochar in modulating Helianthus annuus L. antioxidants, secondary metabolites and soil post-harvest characteristics in different types of microplastics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108865. [PMID: 38936071 DOI: 10.1016/j.plaphy.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The emergence of microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant threats to soil ecosystems. Given the widespread contamination of ecosystems by various types of MPs, including polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), it is crucial to understand their effects on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC, and PE) on various aspects of sunflower (Helianthus annuus L.) growth with the addition of rice straw biochar (RSB). This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants and post-harvest soil properties. The research outcomes indicated that elevated levels of different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. Different types of MPs also induced oxidative stress, which caused an increase in various enzymatic and non-enzymatic antioxidant compounds, gene expression and sugar content; notably, a significant increase in proline metabolism, AsA-GSH cycle, and pigmentation of cellular components was also observed. Favorably, the addition of RSB significantly increased plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and relevant gene expression while decreasing oxidative stress. In addition, RSB amendment decreased proline metabolism and AsA-GSH cycle in H. annuus plants, thereby enhancing cellular fractionation and improving post-harvest soil properties. These results open new avenues for sustainable agriculture practices and show great potential for resolving the urgent issues caused by microplastic contamination in agricultural soils.
Collapse
Affiliation(s)
- Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sahar Mumtaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan.
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa 13110, Jordan
| | - Yasmeen A Alwasel
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Baiquan Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Muhammad Faheem Adil
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Verma KK, Joshi A, Song XP, Liang Q, Xu L, Huang HR, Wu KC, Seth CS, Arora J, Li YR. Regulatory mechanisms of plant rhizobacteria on plants to the adaptation of adverse agroclimatic variables. FRONTIERS IN PLANT SCIENCE 2024; 15:1377793. [PMID: 38855463 PMCID: PMC11157439 DOI: 10.3389/fpls.2024.1377793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
The mutualistic plant rhizobacteria which improve plant development and productivity are known as plant growth-promoting rhizobacteria (PGPR). It is more significant due to their ability to help the plants in different ways. The main physiological responses, such as malondialdehyde, membrane stability index, relative leaf water content, photosynthetic leaf gas exchange, chlorophyll fluorescence efficiency of photosystem-II, and photosynthetic pigments are observed in plants during unfavorable environmental conditions. Plant rhizobacteria are one of the more crucial chemical messengers that mediate plant development in response to stressed conditions. The interaction of plant rhizobacteria with essential plant nutrition can enhance the agricultural sustainability of various plant genotypes or cultivars. Rhizobacterial inoculated plants induce biochemical variations resulting in increased stress resistance efficiency, defined as induced systemic resistance. Omic strategies revealed plant rhizobacteria inoculation caused the upregulation of stress-responsive genes-numerous recent approaches have been developed to protect plants from unfavorable environmental threats. The plant microbes and compounds they secrete constitute valuable biostimulants and play significant roles in regulating plant stress mechanisms. The present review summarized the recent developments in the functional characteristics and action mechanisms of plant rhizobacteria in sustaining the development and production of plants under unfavorable environmental conditions, with special attention on plant rhizobacteria-mediated physiological and molecular responses associated with stress-induced responses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Qiang Liang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Lin Xu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Hai-rong Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Kai-Chao Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | | | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
20
|
Wang J, Liu X, Chen Y, Zhu FL, Sheng J, Diao Y. Physiological and transcriptomic analyses reveal the cadmium tolerance mechanism of Miscanthus lutarioriparia. PLoS One 2024; 19:e0302940. [PMID: 38748679 PMCID: PMC11095687 DOI: 10.1371/journal.pone.0302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.
Collapse
Affiliation(s)
- Jia Wang
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Xinyu Liu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yiran Chen
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Feng lin Zhu
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jiajing Sheng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Ying Diao
- School of life science and technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
21
|
Li Y, Chen X, Dong Y, Wei S, Zeng M, Jiao R. Response strategies of slash pine (Pinus elliottii) to cadmium stress and the gain effects of inoculation with Herbaspirillum sp. YTG72 in alleviating phytotoxicity and enhancing accumulation of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31590-31604. [PMID: 38639905 DOI: 10.1007/s11356-024-33353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Phytoremediation using fast-growing woody plants assisted by plant growth-promoting bacteria (PGPB) on cadmium (Cd)-contaminated sites is considered a promising technique; however, its remediation efficiency is still affected by multiple factors. In this study, the mining areas' soil conditions were simulated with different Cd addition levels (0, 3, 6, 9 mg kg-1) in order to investigate the response strategy to Cd stress of fast-growing economic tree species, slash pine (Pinus elliottii), and the effects of inoculation with the PGPB strain Herbaspirillum sp. YTG72 on the physiological activity and Cd accumulation of plants. The main results showed that there were significant (p < 0.05) increases in contents of chlorophyll and nutrient elements (P, K, Ca, and Mg) at low Cd addition level (3 mg kg-1) compared to non-Cd addition treatment. When the additive amount of Cd increased, the growth of plants was severely inhibited and the content of proline was increased, as well as Cd in plants. Besides, the ratios of K:P, Ca:P, and Mg:P in plants were negatively correlated with the contents of Cd in plants and soils. Inoculation of P. elliottii with the PGPB strain Herbaspirillum sp. YTG72 improved the physiological functions of the plants under Cd stress and activated the antioxidant system, reduced the accumulation of proline, and decreased the ratios of K:P, Ca:P, and Mg:P in plant. More importantly, planting P. elliottii in Cd-contaminated soil could significantly (p < 0.05) reduce the Cd content in the rhizosphere soil, and furthermore, inoculation treatment could promote the reduction of soil Cd content and increased the accumulation of Cd by root. The results of the present study emphasized the Cd response mechanism of P. elliottii based on multifaceted regulation, as well as the feasibility of strain Herbaspirillum sp. YTG72 assisted P. elliottii for the remediation on Cd-contaminated sites.
Collapse
Affiliation(s)
- Yanglong Li
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiangteng Chen
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhong Dong
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shumeng Wei
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mansheng Zeng
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi, 336600, China
| | - Ruzhen Jiao
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
22
|
Binjawhar DN, Alshegaihi RM, Alatawi A, Alenezi MA, Parveen A, Adnan M, Ali B, Khan KA, Fahad S, Fayad E. Exploring Bacillus mycoides PM35 efficacy in enhancing rice (Oryza sativa L.) response to different types of microplastics through gene regulation and cellular fractionation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31395-31413. [PMID: 38632193 DOI: 10.1007/s11356-024-33229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Soil contamination with microplastics (MPs) is a persistent threat to crop production worldwide. With a wide range of MP types, including polystyrene (PS), polyvinyl chloride (PVC) and polyethylene (PE), contaminating our environment, it is important to understand their impact on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC and PE) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and non-enzymatic), gene expression, proline metabolism, the AsA-GSH cycle and cellular fractionation and nutritional status, in different parts of rice (Oryza sativa L.) seedlings, which were also exposed to plant growth promoting rhizobacteria (PGPR), i.e. Bacillus mycoides PM35, i.e. 20 μL. The research outcomes indicated that the different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments and gas exchange attributes. However, MP stress also induced oxidative stress in the roots and shoots of the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL) which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the fractionations of cellular components was observed. Although the application of B. mycoides PM35 showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased oxidative stress. In addition, the application of B. mycoides PM35 enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of MP contamination in agricultural soils.
Collapse
Affiliation(s)
- Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Rana M Alshegaihi
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Aishah Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | | | - Abida Parveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Adnan
- College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 2120 Fyffe Rd, Columbus, OH, 43210, USA
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and Its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| |
Collapse
|
23
|
Yasin MU, Haider Z, Munir R, Zulfiqar U, Rehman M, Javaid MH, Ahmad I, Nana C, Saeed MS, Ali B, Gan Y. The synergistic potential of biochar and nanoparticles in phytoremediation and enhancing cadmium tolerance in plants. CHEMOSPHERE 2024; 354:141672. [PMID: 38479680 DOI: 10.1016/j.chemosphere.2024.141672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.
Collapse
Affiliation(s)
- Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zulqarnain Haider
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rehman
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haseeb Javaid
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Irshan Ahmad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chen Nana
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Sulaman Saeed
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bahar Ali
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Chen F, Jiang F, Okla MK, Abbas ZK, Al-Qahtani SM, Al-Harbi NA, Abdel-Maksoud MA, Gómez-Oliván LM. Nanoparticles synergy: Enhancing wheat (Triticum aestivum L.) cadmium tolerance with iron oxide and selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169869. [PMID: 38218476 DOI: 10.1016/j.scitotenv.2024.169869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields and also individual application of iron oxide nanoparticle (FeO - NPs) and selenium nanoparticles (Se - NPs) have been studied in many literatures. However, the combined application of FeO and Se - NPs is a novel approach and studied in only few studies. For this purpose, a pot experiment was conducted to examine various growth and biochemical parameters in wheat (Triticum aestivum L.) under the toxic concentration of cadmium (Cd) i.e., 50 mg kg-1 which were primed with combined application of two levels of FeO and Se - NPs i.e., 15 and 30 mg L-1 respectively. The results showed that the Cd toxicity in the soil showed a significantly (P < 0.05) declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in T. aestivum. However, Cd toxicity significantly (P < 0.05) increased oxidative stress biomarkers, enzymatic and non-enzymatic antioxidants including their gene expression in T. aestivum. Although, the application of FeO and Se - NPs showed a significant (P < 0.05) increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, and Cd uptake. In addition, individual or combined application of FeO and Se - NPs enhanced the cellular fractionation and decreases the proline metabolism and AsA - GSH cycle in T. aestivum. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zahid Khorshid Abbas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
25
|
Ma J, Hua Z, Zhu Y, Saleem MH, Zulfiqar F, Chen F, Abbas T, El-Sheikh MA, Yong JWH, Adil MF. Interaction of titanium dioxide nanoparticles with PVC-microplastics and chromium counteracts oxidative injuries in Trachyspermum ammi L. by modulating antioxidants and gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116181. [PMID: 38460406 DOI: 10.1016/j.ecoenv.2024.116181] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221000, China
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Touqeer Abbas
- Department of Soil, Water and Climate, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; Department of Agronomy and Horticulture, University of Nebraska, 358 Keim Hall Lincoln, NE 68583-0915, USA
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Chen F, Zhang W, Hua Z, Zhu Y, Jiang F, Ma J, Gómez-Oliván LM. Unlocking the phytoremediation potential of organic acids: A study on alleviating lead toxicity in canola (Brassica napus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169980. [PMID: 38215837 DOI: 10.1016/j.scitotenv.2024.169980] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Soil contamination with toxic heavy metals [such as lead (Pb)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as maleic acid (MA) and tartaric acid (TA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a hydroponic experiment to assess the impact of MA (0.25 mM) and TA (1 mM) on enhancing the phytoremediation of Pb under its toxic concentration of 100 μM, using the oil seed crop canola (Brassica napus L.). Results from the present study showed that the Pb toxicity significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes and nutritional contents from the roots and shoots of the plants. In contrast, toxic concentration of Pb significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, increased enzymatic and non-enzymatic antixoidants and their specific gene expression and also increased organic acid exudation patter in the roots of B. napus. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Pb toxicity significantly affected double membranous organelles while Fourier-transform infrared (FTIR) spectroscopy showed an nveiled distinct peak variations in Pb-treated plants, when compared to control. Additionally, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Pb toxicity significantly affected double-membrane organelles, while Fourier-transform infrared (FTIR) spectroscopy unveiled distinct peak variations in Pb-treated plants compared to the control. The negative impact of Pb toxicity can overcome the application of MA and TA, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in B. napus. With the application of MA and TA, the values of the bioaccumulation factor (BAF) and translocation factor (TF) exceeded 1, indicating that the use of MA and TA enhances the phytoremediation potential of B. napus under Pb stress conditions. This finding could be beneficial for field environment studies, especially when explored through in-depth genetic and molecular analysis.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221000, China.
| | - Wanyue Zhang
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221000, China
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, México.
| |
Collapse
|
27
|
Saleem MH, Mfarrej MFB, Khan KA, Alharthy SA. Emerging trends in wastewater treatment: Addressing microorganic pollutants and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169755. [PMID: 38176566 DOI: 10.1016/j.scitotenv.2023.169755] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
This review focuses on the challenges and advances associated with the treatment and management of microorganic pollutants, encompassing pesticides, industrial chemicals, and persistent organic pollutants (POPs) in the environment. The translocation of these contaminants across multiple media, particularly through atmospheric transport, emphasizes their pervasive nature and the subsequent ecological risks. The urgency to develop cost-effective remediation strategies for emerging organic contaminants is paramount. As such, wastewater-based epidemiology and the increasing concern over estrogenicity are explored. By incorporating conventional and innovative wastewater treatment techniques, this article highlights the integration of environmental management strategies, analytical methodologies, and the importance of renewable energy in waste treatment. The primary objective is to provide a comprehensive perspective on the current scenario, imminent threats, and future directions in mitigating the effects of these pollutants on the environment. Furthermore, the review underscores the need for international collaboration in developing standardized guidelines and policies for monitoring and controlling these microorganic pollutants. It advocates for increased investment in research and development of advanced materials and technologies that can efficiently remove or neutralize these contaminants, thereby safeguarding environmental health and promoting sustainable practice.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates.
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
28
|
Alwutayd KM, Alghanem SMS, Alwutayd R, Alghamdi SA, Alabdallah NM, Al-Qthanin RN, Sarfraz W, Khalid N, Naeem N, Ali B, Saleem MH, Javed S, Gómez-Oliván LM, Abeed AHA. Mitigating chromium toxicity in rice (Oryza sativa L.) via ABA and 6-BAP: Unveiling synergistic benefits on morphophysiological traits and ASA-GSH cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168208. [PMID: 37914115 DOI: 10.1016/j.scitotenv.2023.168208] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
In recent years, the use of plant hormones, such as abscisic acid (ABA) and 6-benzylaminopurine (6-BAP), has gained significant attention for their role in mitigating abiotic stresses across various plant species. These hormones have been shown to play a vital role in enhancing the ascorbate-glutathione cycle and eliciting a wide range of plant growth and biomass, photosynthetic efficiency, oxidative stress and response of antioxidants and other physiological responses. While previous research has been conducted on the individual impact of ABA and 6-BAP in metal stress resistance among various crop species, their combined effects in the context of heavy metal-stressed conditions remain underexplored. The current investigation is to assess the beneficial effects of single and combined ABA (5 and 10 μM L-1) and 6-BAP (5 and 10 μM L-1) applications in rice (Oryza sativa L.) cultivated in chromium (Cr)-contaminated soil (100 μM). Our results showed that the Cr toxicity in the soil showed a significant declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in O. sativa. However, Cr toxicity significantly increased oxidative stress biomarkers, organic acids, enzymatic and non-enzymatic antioxidants including their gene expression in O. sativa seedlings. Although, the application of ABA and 6-BAP showed a significant increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, And Cr uptake. In addition, individual or combined application of ABA and 6-BAP enhanced the cellular fractionation and decreases the proline metabolism and AsA-GSH cycle in rice plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | | | - Rahaf Alwutayd
- Department of Information of Technology, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sameera A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia; Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia; Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia.
| | - Wajiha Sarfraz
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Nayab Naeem
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan.
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, México.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
29
|
Al-Huqail AA, Alghanem SMS, Alhaithloul HAS, Saleem MH, Abeed AHA. Combined exposure of PVC-microplastic and mercury chloride (HgCl 2) in sorghum (Pennisetum glaucum L.) when its seeds are primed titanium dioxide nanoparticles (TiO 2-NPs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7837-7852. [PMID: 38170361 DOI: 10.1007/s11356-023-31733-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The present work studied the impact of different levels of PVC-microplastics (PVC-MPs), namely 0 (no PVC-MPs), 2, and 4 mg L-1, along with mercury (Hg) levels of 0 (no Hg), 10, and 25 mg kg-1 in the soil, while concurrently applying titanium dioxide-nanoparticles (TiO2-NPs) at 0 (no TiO2-NPs), 50, and 100 µg mL-1 to sorghum (Pennisetum glaucum L.) plants. This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, and cellular fractionation in the plants. The research outcomes indicated that elevated levels of PVC-MPs and Hg stress in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. However, PVC-MPs and Hg stress also induced oxidative stress in the roots and shoots of the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression and sugar content. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the pigmentation of cellular components was observed. Although, the application of TiO2-NPs showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress. In addition, the application of TiO2-NPs enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in P. glaucum plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
30
|
Okla MK, Saleem MH, Saleh IA, Zomot N, Perveen S, Parveen A, Abasi F, Ali H, Ali B, Alwasel YA, Abdel-Maksoud MA, Oral MA, Javed S, Ercisli S, Sarfraz MH, Hamed MH. Foliar application of iron-lysine to boost growth attributes, photosynthetic pigments and biochemical defense system in canola (Brassica napus L.) under cadmium stress. BMC PLANT BIOLOGY 2023; 23:648. [PMID: 38102555 PMCID: PMC10724993 DOI: 10.1186/s12870-023-04672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.
Collapse
Affiliation(s)
- Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa, 13110, Jordan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Abida Parveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yasmeen A Alwasel
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Türkiye
| | - Sadia Javed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, TR-25240, Türkiye
| | - Muhammad Hassan Sarfraz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute of Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Mahdy H Hamed
- Department of Soils and Water, Faculty of Agriculture, New Valley University, Kharga, 72511, Egypt
| |
Collapse
|
31
|
Ahmed S, Mudassar S, Sardar R, Yasin NA. 28-Homo-Brassinolide Confers Cadmium Tolerance in Vigna radiate L. Through Modulating Minerals Uptake, Antioxidant System and Gas Exchange Attributes. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:7500-7514. [DOI: 10.1007/s00344-023-11027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/05/2023] [Indexed: 06/16/2023]
|
32
|
Yu H, Ko D, Lee C. Continuous cultivation of mixed-culture microalgae using anaerobic digestion effluent in photobioreactors with different strategies for adjusting nitrogen loading rate. BIORESOURCE TECHNOLOGY 2023; 387:129650. [PMID: 37558101 DOI: 10.1016/j.biortech.2023.129650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
This study examined continuous mixed-culture microalgae cultivation for nutrient removal from anaerobic digestion (AD) effluents in photobioreactors, while altering the NH4+-N loading rate (NLR) by adjusting either the hydraulic retention time (HRT) (reactor set RH) or the influent NH4+-N concentration (reactor set RS). Both RH and RS demonstrated efficient nutrient removal and microalgae cultivation at NLRs of 4-10 mg NH4+-N/L∙d, reaching peak performance at 10 mg NH4+-N/L∙d. Within this range, RH obtained greater biomass yield and productivity, while RS maintained higher microalgal concentrations. The cultivated biomasses obtained from RH and RS had good settleability and suitable fatty acid compositions as a biodiesel feedstock, although their organic composition varied considerably with NLR and HRT. Parachlorella overwhelmingly dominated the reactors' microalgal communities throughout the experiment, co-existing with various microalgae-associated bacteria. Changes in NLR significantly influenced the bacterial community structures, underscoring its critical role in determining reactor performance and microalgal-bacterial community behavior.
Collapse
Affiliation(s)
- Hyeonjung Yu
- Department of Urban & Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Dayoung Ko
- Department of Urban & Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban & Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea.
| |
Collapse
|
33
|
Zhu Y, Wang L, Ma J, Li Y, Chen F, Peijnenburg W. Comparative physiological and metabolomics analyses using Ag⎯NPs and HAS31 (PGPR) to alleviate Cr stress in barley (Hordeum vulgare L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122010. [PMID: 37302784 DOI: 10.1016/j.envpol.2023.122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
In the current industrial scenario, chromium (Cr) as a metal is of great importance but poses a major threat to the ecosystem because of its toxicity, but fewer studies have been conducted on its effects and alleviation strategies by using nanoparticles (NPs) and plant growth promoting rhizobacteria (PGPR). Taking into consideration the positive effects of silver⎯nanoparticles (Ag⎯NPs) and (HAS31) rhizobacteria in reducing Cr toxicity in plants, the present study was conducted. A pot experiment was conducted to determine the effects of single and/or combined application of different levels [0 (no Ag⎯NPS), 15 and 30 mM] of Ag⎯NPs and HAS31 [0 (no HAS31), 50 g and 100 g] on Cr accumulation, morpho-physiological and antioxidative defense attributes of barley (Hordeum vulgare L.) exposed to severe Cr stress [0 (without Cr stress), 50 and 100 μM)]. Results from the present study showed that the increasing levels of Cr in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of Cr in the soil significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of H. vulgare. Although, the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were increased by increasing the Cr concentration in the soil. The negative impacts of Cr injury were reduced by the application of PGPR (HAS31) and Ag⎯NPs, which increased plant growth and biomass, improved photosynthetic apparatus, antioxidant enzymes, and mineral uptake, as well as diminished the exudation of organic acids and oxidative stress indicators in roots of H. vulgare by decreasing Cr toxicity. Research findings, therefore, suggest that the application of PGPR (HAS31) and Ag⎯NPs can ameliorate Cr toxicity in H. vulgare, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou, 221000, China.
| | - Liping Wang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou, 221000, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherlands.
| |
Collapse
|
34
|
Li P, Xiong Z, Tian Y, Zheng Z, Liu Z, Hu R, Wang Q, Ao H, Yi Z, Li J. Community-based mechanisms underlying the root cadmium uptake regulated by Cd-tolerant strains in rice ( Oryza sativa. L). FRONTIERS IN PLANT SCIENCE 2023; 14:1196130. [PMID: 37636120 PMCID: PMC10450764 DOI: 10.3389/fpls.2023.1196130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
In recent years, the problem of Cd pollution in paddy fields has become more and more serious, which seriously threatens the safe production of food crops and human health. Using microorganisms to reduce cadmium pollution in rice fields is a green, safe and efficient method, the complicated interactions between the microbes in rice roots throughout the process of cadmium absorption by rice roots are poorly understood. In this investigation, a hydroponic pot experiment was used to examine the effects of bacteria R3 (Herbaspirillum sp) and T4 (Bacillus cereus) on cadmium uptake and the endophytic bacterial community in rice roots. The results showed that compared with CK (Uninoculated bacterial liquid), the two strains had significant inhibitory or promotive effects on cadmium uptake in rice plant, respectively. Among them, the decrease of cadmium content in rice plants by R3 strain reached 78.57-79.39%, and the increase of cadmium content in rice plants by T4 strain reached 140.49-158.19%. Further investigation showed that the cadmium content and root cadmium enrichment coefficient of rice plants were significantly negatively correlated with the relative abundances of Burkholderia and Acidovorax, and significantly positively correlated with the relative abundances of Achromobacter, Agromyces and Acidocella. Moreover, a more complex network of microbes in rice roots inhibited rice plants from absorbing cadmium. These results suggest that cadmium uptake by rice plants is closely related to the endophytic bacterial community of roots. This study provides a reference scheme for the safe production of crops in cadmium contaminated paddies and lays a solid theoretical foundation for subsequent field applications.
Collapse
Affiliation(s)
- Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Ziqin Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhongyi Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhixuan Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qiming Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
35
|
El-Ballat EM, Elsilk SE, Ali HM, Ali HE, Hano C, El-Esawi MA. Metal-Resistant PGPR Strain Azospirillum brasilense EMCC1454 Enhances Growth and Chromium Stress Tolerance of Chickpea ( Cicer arietinum L.) by Modulating Redox Potential, Osmolytes, Antioxidants, and Stress-Related Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112110. [PMID: 37299089 DOI: 10.3390/plants12112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Heavy metal stress, including from chromium, has detrimental effects on crop growth and yields worldwide. Plant growth-promoting rhizobacteria (PGPR) have demonstrated great efficiency in mitigating these adverse effects. The present study investigated the potential of the PGPR strain Azospirillum brasilense EMCC1454 as a useful bio-inoculant for boosting the growth, performance and chromium stress tolerance of chickpea (Cicer arietinum L.) plants exposed to varying levels of chromium stress (0, 130 and 260 µM K2Cr2O7). The results revealed that A. brasilense EMCC1454 could tolerate chromium stress up to 260 µM and exhibited various plant growth-promoting (PGP) activities, including nitrogen fixation, phosphate solubilization, and generation of siderophore, trehalose, exopolysaccharide, ACC deaminase, indole acetic acid, and hydrolytic enzymes. Chromium stress doses induced the formation of PGP substances and antioxidants in A. brasilense EMCC1454. In addition, plant growth experiments showed that chromium stress significantly inhibited the growth, minerals acquisition, leaf relative water content, biosynthesis of photosynthetic pigments, gas exchange traits, and levels of phenolics and flavonoids of chickpea plants. Contrarily, it increased the concentrations of proline, glycine betaine, soluble sugars, proteins, oxidative stress markers, and enzymatic (CAT, APX, SOD, and POD) and non-enzymatic (ascorbic acid and glutathione) antioxidants in plants. On the other hand, A. brasilense EMCC1454 application alleviated oxidative stress markers and significantly boosted the growth traits, gas exchange characteristics, nutrient acquisition, osmolyte formation, and enzymatic and non-enzymatic antioxidants in chromium-stressed plants. Moreover, this bacterial inoculation upregulated the expression of genes related to stress tolerance (CAT, SOD, APX, CHS, DREB2A, CHI, and PAL). Overall, the current study demonstrated the effectiveness of A. brasilense EMCC1454 in enhancing plant growth and mitigating chromium toxicity impacts on chickpea plants grown under chromium stress circumstances by modulating the antioxidant machinery, photosynthesis, osmolyte production, and stress-related gene expression.
Collapse
Affiliation(s)
- Enas M El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sobhy E Elsilk
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamada E Ali
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 45067 Orleans, France
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
| |
Collapse
|
36
|
Sakouhi L, Kadri O, Werghi S, Massoud MB, Kharbech O, Murata Y, Chaoui A. Seed pretreatment with melatonin confers cadmium tolerance to chickpea seedlings through cellular redox homeostasis and antioxidant gene expression improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27562-5. [PMID: 37191750 DOI: 10.1007/s11356-023-27562-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
Several phytoremediation strategies have been undertaken to alleviate cadmium (Cd)-mediated injury to crop yield resulting from agricultural land pollution. In the present study, the potentially beneficial effect of melatonin (Me) was appraised. Therefore, chickpea (Cicer arietinum L.) seeds were imbibed for 12 H in distilled water or Me (10 µM) solution. Then, the seeds germinated in the presence or the absence of 200 µM CdCl2 for 6 days. Seedlings obtained from Me-pretreated seeds exhibited enhanced growth traits, reflected by fresh biomass and length increase. This beneficial effect was associated with a decreased Cd accumulation in seedling tissues (by 46 and 89% in roots and shoots, respectively). Besides, Me efficiently protected the cell membrane integrity of Cd-subjected seedlings. This protective effect was manifested by the decreased lipoxygenase activity and the subsequently reduced accumulation of 4-hydroxy-2-nonenal. Melatonin counteracted the Cd-mediated stimulation of the pro-oxidant NADPH-oxidase (90 and 45% decrease compared to non-pretreated Cd-stressed roots and shoots, respectively) and NADH-oxidase activities (almost 40% decrease compared to non-pretreated roots and shoots), preventing, thus, hydrogen peroxide overaccumulation (50 and 35% lesser than non-pretreated roots and shoots, respectively). Furthermore, Me enhanced the cellular content of pyridine nicotinamide reduced forms [NAD(P)H] and their redox state. This effect was associated with the Me-mediated stimulation of the glucose-6-phosphate dehydrogenase (G6PDH) and malate dehydrogenase activities, concomitantly with the inhibition of NAD(P)H-consuming activities. These effects were accompanied by the up-regulation of G6PDH gene expression (45% increase in roots) and the down-regulation of the respiratory burst oxidase homolog protein F (RBOHF) gene expression (53% decrease in roots and shoots). Likewise, Me induced an increased activity and gene transcription of the Asada-Halliwell cycle, namely ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, concomitantly with a reduction of the glutathione peroxidase activity. This modulating effect led to the restoration of the redox homeostasis of the ascorbate and the glutathione pools. Overall, current results attest that seed pretreatment with Me is effective in Cd stress relief and can be a beneficial crop-protective approach.
Collapse
Affiliation(s)
- Lamia Sakouhi
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia.
| | - Oumayma Kadri
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Marouane Ben Massoud
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
- School of Biological, Earth & Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23N73K, Ireland
| | - Oussama Kharbech
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Abdelilah Chaoui
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| |
Collapse
|
37
|
Wu J, Lv S, Zhao L, Gao T, Yu C, Hu J, Ma F. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. PLANTA 2023; 257:108. [PMID: 37133783 DOI: 10.1007/s00425-023-04136-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION This review summarizes the anti-stress effects of flavonoids in plants and highlights its role in the regulation of polar auxin transport and free radical scavenging mechanism. As secondary metabolites widely present in plants, flavonoids play a vital function in plant growth, but also in resistance to stresses. This review introduces the classification, structure and synthetic pathways of flavonoids. The effects of flavonoids in plant stress resistance were enumerated, and the mechanism of flavonoids in plant stress resistance was discussed in detail. It is clarified that plants under stress accumulate flavonoids by regulating the expression of flavonoid synthase genes. It was also determined that the synthesized flavonoids are transported in plants through three pathways: membrane transport proteins, vesicles, and bound to glutathione S-transferase (GST). At the same time, the paper explores that flavonoids regulate polar auxin transport (PAT) by acting on the auxin export carrier PIN-FORMED (PIN) in the form of ATP-binding cassette subfamily B/P-glycoprotein (ABCB/PGP) transporter, which can help plants to respond in a more dominant form to stress. We have demonstrated that the number and location of hydroxyl groups in the structure of flavonoids can determine their free radical scavenging ability and also elucidated the mechanism by which flavonoids exert free radical removal in cells. We also identified flavonoids as signaling molecules to promote rhizobial nodulation and colonization of arbuscular mycorrhizal fungi (AMF) to enhance plant-microbial symbiosis in defense to stresses. Given all this knowledge, we can foresee that the in-depth study of flavonoids will be an essential way to reveal plant tolerance and enhance plant stress resistance.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chang Yu
- Kerchin District Branch Office, Tongliao City Ecological Environment Bureau, Tongliao, 028006, China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian, 116032, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
38
|
Ma J, Li Y, Chen F, Sun Y, Zhu Y, Wang L. Bacillus mycoides PM35 in combination with titanium dioxide (TiO 2)⎯nanoparticles enhanced morpho-physio-biochemical attributes in Barley (Hordeum vulgare L.) under cadmium stress. CHEMOSPHERE 2023; 323:138224. [PMID: 36828111 DOI: 10.1016/j.chemosphere.2023.138224] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria and are known to induce plant growth promotion and titanium dioxide (TiO2)⎯nanoparticles (NPs) used in a range of applications that need increased whiteness, improved corrosion resistance and photocatalytic activity. Keeping in view the stress mitigation potential of TiO2⎯NPS and B. mycoides PM35, the existing research work was premeditated to inspect the beneficial role of seed priming with using different levels of TiO2⎯NPs i.e., [(0 no TiO2⎯NPs), 25 and 50 μg/ml] and soil incubation plant growth promoting rhizobacteria (B. mycoides PM35) i.e., [(0 no B. mycoides PM35), 10 and 20 μL] on biochemical, morphological and physiological characteristics of Barley (Hordeum vulgare L.) plants under different levels of Cd in the soil i.e., [(0 Cd), 50 and 100 mg kg-1]. Results from the present study showed that the increasing levels of Cd in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of Cd in the soil significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of H. vulgare. Although, the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were initially increased with the exposure of 50 mg kg-1 Cd, but decreased by the increasing the Cd concentration 100 mg kg-1 in the soil. The negative impact of Cd toxicity can overcome the application of PGPR (B. mycoides PM35) and TiO2⎯NPs, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in H. vulgare by decreasing the Cd contents in the roots and shoots of the plants. Our results also showed that the TiO2⎯NPs were more sever and showed better results when we compared with PGPR (B. mycoides PM35) under the same treatment of Cd in the soil. Research findings, therefore, suggest that the combined application of PGPR (B. mycoides PM35) and TiO2⎯NPs can ameliorate Cd toxicity in H. vulgare, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yan Sun
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yanfeng Zhu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Liping Wang
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
39
|
Gong Z, Duan Y, Liu D, Zong Y, Zhang D, Shi X, Hao X, Li P. Physiological and transcriptome analysis of response of soybean (Glycine max) to cadmium stress under elevated CO 2 concentration. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130950. [PMID: 36860078 DOI: 10.1016/j.jhazmat.2023.130950] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The continuous accumulation of Cd has long-lasting detrimental effects on plant growth and food safety. Although elevated CO2 concentration (EC) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of elevated CO2 concentration and its mechanisms in the possible alleviation of Cd toxicity in soybean are limited. Here, we used physiological and biochemical methods together with transcriptomic comparison to explore the effects of EC on Cd-stressed soybean. Under Cd stress, EC significantly increased the weight of roots and leaves, promoted the accumulations of proline, soluble sugars, and flavonoid. In addition, the enhancement of GSH activity and GST gene expressions promoted Cd detoxification. These defensive mechanisms reduced the contents of Cd2+, MDA, and H2O2 in soybean leaves. The up-regulation of genes encoding phytochelatin synthase, MTPs, NRAMP, and vacuoles protein storage might play vital roles in the transportation and compartmentalization process of Cd. The MAPK and some transcription factors such as bHLH, AP2/ERF, and WRKY showed changed expressions and might be engaged in mediation of stress response. These findings provide a boarder view on the regulatory mechanism of EC on Cd stress and provide numerous potential target genes for future engineering of Cd-tolerant cultivars in soybean breeding programs under climate changes scenarios.
Collapse
Affiliation(s)
- Zehua Gong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yuqian Duan
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Danmei Liu
- School of Life Science, Shanxi University, 030036, Taiyuan, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xinrui Shi
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
40
|
Panahirad S, Dadpour M, Gohari G, Akbari A, Mahdavinia G, Jafari H, Kulak M, Alcázar R, Fotopoulos V. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticle: A promising stress-protecting agent against cadmium stress in grapevine (Vitis vinifera cv. Sultana). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107653. [PMID: 36965321 DOI: 10.1016/j.plaphy.2023.107653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Due to their sessile nature, plant cannot escape from stress factors in their growing environment, in either biotic or abiotic nature. Amid the abiotic stress factors; high levels of soil cadmium (Cd) impose heavy metal stress on plants, resulting in critical injuries and reduced agronomic performance. In order to buffer the adverse effects of Cd stress, novel nanoparticles (NP) have been applied and notable improvements have been reported. According to the literature, the protective roles of polyamines (e.g., Putrescine; Put) and carbon quantum dots (CQD) have been reported with respect to the plant productivity under either stress or non-stress conditions. Those reports led us to hypothesize that the conjugation of Put and CQD (Put-CQD NPs) might lead to further augmented performance of plants under stress and non-stress conditions. In this regard, we successfully synthesized a novel nanomaterial Put-CQD NPs. In this respect, Put (50 mg L-1), CQD (50 mg L-1) and Put-CQD NPs (25 and 50 mg L-1) were sprayed in 'Sultana' grapevines under Cd stress (10 mg kg-1). As expected, upon stress, Cd content in leaf and root tissues increased by 103.40% and 65.15%, respectively (p < 0.05). The high uptake and accumulation of Cd in plant tissues were manifested in significant alterations of physiological and biochemical attributes of the plant. Concerning stress markers, Cd stress caused increases in content of induced MDA, H2O2, and proline as well as electrolyte leakage rate. As expected, Cd stress caused critical reductions in fresh and dry leaf weight by 21.31% and 42.34%, respectively (p < 0.05). On the other hand, both Put-CQD NPs increased fresh and dry leaf weigh up to approximately 30%. The Cd-mediated disturbances in photosynthetic pigments and chlorophyll fluorescence were buffered with Put-CQD NPs. Of the defence system, enzymatic (SOD, APX, GP) as well as anthocyanin and phenolics were induced by both Cd stress and Put-CQD NPs (p < 0.05). On the other hand, Cd stress reduced content of polyamines (putrescine (Put), spermine (Spm) and spermidine (Spd) by 39.28%, 53.36%, and 39.26%, respectively (p < 0.05). However, the reduction levels were buffered by the treatments. Considering the effectiveness of both NP concentrations, the lower dose (25 mg L-1) could be considered as an optimal concentration. To our knowledge, this is the first report of its kind as a potential agent to reduce the adverse effects of Cd stress in grapevines.
Collapse
Affiliation(s)
- Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mohammadreza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamreza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Turkiye
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| |
Collapse
|
41
|
Ou C, Cheng W, Wang Z, Yao X, Yang S. Exogenous melatonin enhances Cd stress tolerance in Platycladus orientalis seedlings by improving mineral nutrient uptake and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114619. [PMID: 36753967 DOI: 10.1016/j.ecoenv.2023.114619] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 05/26/2023]
Abstract
The development of agriculture and industry has led to a gradual increase in the levels of cadmium (Cd) in the soil, which, due to its high mobility in soil, makes Cd deposition in plants a serious threat to the health of animals and humans. The important role of melatonin (MT) in regulating plant growth and adaptation to environmental stress has become a pertinent research topic, but the mechanisms of action of MT in Cd-stressed Platycladus orientalis seedlings are unclear. Here, we investigated the mitigation mechanism of exogenous MT application on P. orientalis seedlings under Cd stress. Cd stress significantly inhibited the growth of P. orientalis seedlings by disrupting photosynthetic pigments, mineral balance, osmotic balance, and oxidative balance. In contrast, the application of exogenous MT significantly increased the growth parameters of P. orientalis seedlings, reduced Cd accumulation and transfer in the seedlings, increased the content of iron, manganese, zinc, copper, chlorophyll, soluble protein, soluble sugar, and proline, reduced the content of glutathione, increased the activities of superoxide dismutase and peroxidase, and significantly enhanced the expression of antioxidant-related genes (POD, GST, and APX). It also effectively reduced the content of hydrogen peroxide and malondialdehyde to inhibit the production of reactive oxygen species, thus alleviating Cd-induced oxidative stress. In addition, MT significantly upregulated the expression of the ethanol dehydrogenase (ADH) gene, which is effective in removing the acetaldehyde produced by anaerobic respiration in seedlings under stress, thereby reducing the toxic effects on P. orientalis. The results showed that exogenous MT enhanced the tolerance of P. orientalis seedlings to Cd stress by regulating photosynthesis, mineral balance, osmotic balance, and the antioxidant system and that the optimal concentration of MT was 200 μmol·L-1.
Collapse
Affiliation(s)
- Chun Ou
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Wenhui Cheng
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Zelu Wang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Xiamei Yao
- School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei, Anhui 230601, China.
| | - Shengmei Yang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| |
Collapse
|
42
|
Khan WU, Yasin NA, Ahmad SR, Nazir A, Naeem K, Nadeem QUA, Nawaz S, Ijaz M, Tahir A. Burkholderia cepacia CS8 improves phytoremediation potential of Calendula officinalis for tannery solid waste polluted soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1656-1668. [PMID: 36855239 DOI: 10.1080/15226514.2023.2183717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbes have shown potential for the bioremediation of tannery waste polluted soil. During our previous study, it was observed that heavy metal resistant Burkholderia cepacia CS8 augmented growth and phytoremediation capability of an ornamental plant. Objective of the present research work was to evaluate the capability of B. cepacia CS8 assisted Calendula officinalis plants for the phytoremediation of tannery solid waste (TSW) polluted soil. The TSW treatment significantly reduced growth attributes and photosynthetic pigments in C. officinalis. However, supplementation of B. cepacia CS8 which exhibited substantial tolerance to the TSW amended soil, augmented growth traits, carotenoid, proline, and antioxidant enzymes level in C. officinalis under toxic and nontoxic regimes. Inoculation of B. cepacia CS8 augmented plant growth (shoot length 13%, root length 11%), physiological attributes (chlorophyll a 14%, chlorophyll b 17%), antioxidant enzyme activities (peroxidase 24%, superoxide dismutase 31% and catalase 19%), improved proline 36%, phenol 32%, flavonoids 14% and declined malondialdehyde (MDA) content 15% and hydrogen peroxide (H2O2) level 12% in C. officinalis at TSW10 stress compared with relevant un-inoculated plants of TSW10 treatment. Moreover, B. cepacia CS8 application enhanced labile metals in soil and subsequent metal uptake, such as Cr 19%, Cd 22%, Ni 35%, Fe 18%, Cu 21%, Pb 34%, and Zn 30%, respectively in C. officinalis plants subjected to TSW10 stress than that of analogous un-inoculated treatment. Higher plant stress tolerance and improved phytoremediation potential through microbial inoculation will assist in the retrieval of agricultural land in addition to the renewal of native vegetation.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Aisha Nazir
- Environmental Biotechnology Laboratory (F4), Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Khadija Naeem
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurat Ul Ain Nadeem
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Shahrukh Nawaz
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Madiha Ijaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Arifa Tahir
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
43
|
Naik B, Kumar V, Rizwanuddin S, Chauhan M, Choudhary M, Gupta AK, Kumar P, Kumar V, Saris PEJ, Rather MA, Bhuyan S, Neog PR, Mishra S, Rustagi S. Genomics, Proteomics, and Metabolomics Approaches to Improve Abiotic Stress Tolerance in Tomato Plant. Int J Mol Sci 2023; 24:3025. [PMID: 36769343 PMCID: PMC9918255 DOI: 10.3390/ijms24033025] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
To explore changes in proteins and metabolites under stress circumstances, genomics, proteomics, and metabolomics methods are used. In-depth research over the previous ten years has gradually revealed the fundamental processes of plants' responses to environmental stress. Abiotic stresses, which include temperature extremes, water scarcity, and metal toxicity brought on by human activity and urbanization, are a major cause for concern, since they can result in unsustainable warming trends and drastically lower crop yields. Furthermore, there is an emerging reliance on agrochemicals. Stress is responsible for physiological transformations such as the formation of reactive oxygen, stomatal opening and closure, cytosolic calcium ion concentrations, metabolite profiles and their dynamic changes, expression of stress-responsive genes, activation of potassium channels, etc. Research regarding abiotic stresses is lacking because defense feedbacks to abiotic factors necessitate regulating the changes that activate multiple genes and pathways that are not properly explored. It is clear from the involvement of these genes that plant stress response and adaptation are complicated processes. Targeting the multigenicity of plant abiotic stress responses caused by genomic sequences, transcripts, protein organization and interactions, stress-specific and cellular transcriptome collections, and mutant screens can be the first step in an integrative approach. Therefore, in this review, we focused on the genomes, proteomics, and metabolomics of tomatoes under abiotic stress.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Mansi Chauhan
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Pankaj Kumar
- Department of Microbiology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun 248007, Uttarakhand, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
44
|
Guo L, Ling L, Wang X, Cheng T, Wang H, Ruan Y. Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism. BMC PLANT BIOLOGY 2023; 23:73. [PMID: 36732696 PMCID: PMC9893619 DOI: 10.1186/s12870-023-04089-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cadmium (Cd) is a highly toxic element for plant growth. In plants, hydrogen sulfide (H2S) and methylglyoxal (MG) have emerged as vital signaling molecules that regulate plant growth processes under Cd stress. However, the effects of sodium hydrosulfide (NaHS, a donor of H2S) and MG on Cd uptake, physiological responses, and gene expression patterns of Salix to Cd toxicity have been poorly understood. Here, Salix matsudana Koidz. seedlings were planted in plastic pot with applications of MG (108 mg kg- 1) and NaHS (50 mg kg- 1) under Cd (150 mg kg- 1) stress. RESULTS Cd treatment significantly increased the reactive oxygen species (ROS) levels and malondialdehyde (MDA) content, but decreased the growth parameters in S. matsudana. However, NaHS and MG supplementation significantly decreased Cd concentration, ROS levels, and MDA content, and finally enhanced the growth parameters. Cd stress accelerated the activities of antioxidative enzymes and the relative expression levels of stress-related genes, which were further improved by NaHS and MG supplementation. However, the activities of monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) were sharply decreased under Cd stress. Conversely, NaHS and MG applications restored the MDHAR and DHAR activities compared with Cd-treated seedlings. Furthermore, Cd stress decreased the ratios of GSH/GSSG and AsA/DHA but considerably increased the H2S and MG levels and glyoxalase I-II system in S. matsudana, while the applications of MG and NaHS restored the redox status of AsA and GSH and further improved glyoxalase II activity. In addition, compared with AsA, GSH showed a more sensitive response to exogenous applications of MG and NaHS and plays more important role in the detoxification of Cd. CONCLUSIONS The present study illustrated the crucial roles of H2S and MG in reducing ROS-mediated oxidative damage to S. matsudana and revealed the vital role of GSH metabolism in regulating Cd-induced stress.
Collapse
Affiliation(s)
- Long Guo
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Long Ling
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Xiaoqian Wang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Ting Cheng
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Hongyan Wang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Yanan Ruan
- School of Life Science, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
45
|
Sun Y, Ma L, Ma J, Li B, Zhu Y, Chen F. Combined application of plant growth-promoting bacteria and iron oxide nanoparticles ameliorates the toxic effects of arsenic in Ajwain ( Trachyspermum ammi L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1098755. [PMID: 36643291 PMCID: PMC9832315 DOI: 10.3389/fpls.2022.1098755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
Soil contamination with toxic heavy metals [such as arsenic (As)] is becoming a serious global problem because of the rapid development of the social economy. Although plant growth-promoting bacteria (PGPB) and nanoparticles (NPs) are the major protectants to alleviate metal toxicity, the study of these chemicals in combination to ameliorate the toxic effects of As is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of Providencia vermicola (5 ppm and 10 ppm) and iron oxide nanoparticles (FeO-NPs) (50 mg/l-1 and 100 mg/l-1) on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and non-enzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern As accumulation from the different parts of the plants, and electron microscopy under the soil, which was spiked with different levels of As [0 μM (i.e., no As), 50 μM, and 100 μM] in Ajwain (Trachyspermum ammi L.) seedlings. Results from the present study showed that the increasing levels of As in the soil significantly (p< 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants, and destroyed the ultra-structure of membrane-bound organelles. In contrast, increasing levels of As in the soil significantly (p< 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of T. ammi seedlings. The negative impact of As toxicity can overcome the application of PGPB (P. vermicola) and FeO-NPs, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in T. ammi seedlings by decreasing the As contents in the roots and shoots of the plants. Our results also showed that the FeO-NPs were more sever and showed better results when we compared with PGPB (P. vermicola) under the same treatment of As in the soil. Research findings, therefore, suggest that the combined application of P. vermicola and FeO-NPs can ameliorate As toxicity in T. ammi seedlings, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Yan Sun
- School of Public Administration, Hohai University, Nanjing, China
| | - Li Ma
- School of Public Administration, Hohai University, Nanjing, China
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, China
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Bingkun Li
- School of Public Administration, Hohai University, Nanjing, China
| | - Yanfeng Zhu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, China
| |
Collapse
|
46
|
Naz F, Hamayun M, Rauf M, Arif M, Afzal Khan S, Ud-Din J, Gul H, Hussain A, Iqbal A, Kim HY, Lee IJ. Molecular mechanism of Cu metal and drought stress resistance triggered by Porostereum spadiceum AGH786 in Solanum lycopersicum L. FRONTIERS IN PLANT SCIENCE 2022; 13:1029836. [PMID: 36438115 PMCID: PMC9685319 DOI: 10.3389/fpls.2022.1029836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization and global warming have threatened the plants with multiple abiotic stresses, such as heavy metals and drought stress. For crop cultivation, the conventional approach of cleaning the soils by excavation is very costly and not feasible for large scale. Establishing toxin-free and drought-resistant crops is a major challenge in the environment under natural and anthropogenic pressure. In the past decades, copper contamination of agricultural land has become an emerging concern. For dry land reclamation, several new strategies, including bioremediation (phytoremediation and microbial remediation), have been used. Owing to the potential of Cu hyperaccumulators, the current project aims to enhance the drought tolerance and the phytoremediation potential of Solanum lycopersicum L. with the inoculation of copper and 12% polyethylene glycol (PEG)-induced drought stress-tolerant endophytic fungus Porostereum spadiceum AGH786 under the combined stress of copper heavy metal and PEG-induced drought stress. When S. lycopersicum L. was watered with individual stress of copper (Cu) concentration (400 ppm) in the form of copper sulfate (CuSO4.5H2O), 12% PEG-induced drought stress and the combined stress of both negatively affected the growth attributes, hormonal, metabolic, and antioxidant potential, compared with control. However, the multistress-resistant AGH786 endophytic fungus ameliorated the multistress tolerance response in S. lycopersicum L. by positively affecting the growth attributes, hormonal, metabolic, and antioxidant potential, and by restricting the root-to-shoot translocation of Cu and inducing its sequestration in the root tissues of affected plants. AGH786-associated plants exhibited a reduction in the severity of copper (Cu) and drought stress, with higher levels of SlCOPT (Cu transporters) and SlMT (metallothionine) gene expressions in root and shoot tissues, indicating that AGH786 contributed to resistance to copper metal toxicity and drought stress in the host S. lycopersicum L.
Collapse
Affiliation(s)
- Falak Naz
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Jalal Ud-Din
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Amjad Iqbal
- Department of Food Technology, Abdul Wali Khan University, Mardan, Pakistan
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
47
|
Molecular Traits Underlying the Growth Promotion and Metabolite Accumulation in Rheum palmatum Inoculated with Endophytic Trichoderma citrinoviride HT-1. Int J Mol Sci 2022; 23:ijms232113132. [DOI: 10.3390/ijms232113132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Trichoderma spp. are an important plant-growth-promoting fungi. Trichoderma citrinoviride HT-1 was isolated from Rheum palmatum root, which has beneficial effects on growth and metabolite accumulation. However, the improvement mechanisms for growth and metabolite accumulation of T. citrinoviride HT-1 are unclear. In this study, RNA sequencing (RNA-seq) and high-performance liquid chromatography (HPLC) were used to measure the effect of different concentrations of conidial suspension of the HT-1 strain on the growth promotion and metabolite accumulation of R. palmatum seedlings. The results showed that the highest biomass and metabolites of R. palmatum seedlings were obtained through treatment with the HT-1 strain at a final spore concentration of 107 spores/mL. RNA sequencing indicated that 1662 genes were upregulated and 2155 genes were downregulated after inoculation with 107 spores/mL of the HT-1 strain. This strain induced significant upregulation of related genes in the phenylpropanoid biosynthesis pathway, plant hormone signal transduction pathway, biosynthesis of secondary metabolites pathway, and plant–pathogen interaction pathway in R. palmatum. The gene expression trends were revealed through quantitative real-time polymerase chain reaction (qRT-PCR) and were consistent with those determined by RNA-seq. Our results will help us to understand the growth-promoting mechanisms of the HT-1 strain on R. palmatum and provide a theoretical basis for the application of T. citrinoviride HT-1 as a biological fertilizer.
Collapse
|
48
|
Tanwir K, Shahid M, Abbas S, Ali Q, Akram MS, Chaudhary HJ, Javed MT. Deciphering distinct root exudation, ionomics, and physio-biochemical attributes of Serratia marcescens CP-13 inoculated differentially Cd tolerant Zea mays cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71632-71649. [PMID: 35599287 DOI: 10.1007/s11356-022-20945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) being a non-essential, mobile, and toxic heavy metal, negatively affects the plant growth and physiology. Current work investigated the impact of Serratia marcescens CP-13 inoculation on root organic acids and nutrient exudates of two maize cultivars varying in Cd tolerance under induced Cd toxicity. Seedlings of Cd-sensitive (Sahiwal-2002) and Cd-tolerant (MMRI-Yellow) cultivars were grown either inoculated or non-inoculated with CP-13 in Petri plates having various Cd stress levels (0, 6, 12, 18, 24, 30 μM). Seedlings were transferred to rhizoboxes for the collection of root exudates and analysis of physio-biochemical traits. Both maize cultivars exuded higher organic acids and nutrient exudates under non-inoculated conditions as compared to inoculated ones. Non-inoculated tolerant cultivar exhibited higher nutrient accumulation, biomass, antioxidants, total chlorophyll, Cd release meanwhile reduced Cd uptake, lipid peroxidation, exudation of organic acids, and nutrients than the sensitive one. However, under CP-13 inoculation, Cd sensitive cultivar exhibited less exudation of organic acids (citric acid, acetic acid, malic acid, glutamic acid, formic acid, succinic acid, and oxalic acid), nutrients mobilization (K, Na, Zn, Ca, and Mg), total chlorophyll, antioxidants (APX, SOD, POD), total soluble sugar, diminished MDA, and Cd uptake. The significant reduction in release of root exudates by both cultivars was likely due to the plant growth promoting traits of CP-13 which confer Cd tolerance. The maximum release of rhizospheric root exudates were documented at 30 μM applied Cd stress. Therefore, the Serratia sp. CP-13 was proposed as a potential inoculant for bioremediation of Cd together with maize cultivars.
Collapse
Affiliation(s)
- Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Qasim Ali
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sohail Akram
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
49
|
Ma J, Saleem MH, Alsafran M, Jabri HA, Rizwan M, Nawaz M, Ali S, Usman K. Response of cauliflower (Brassica oleracea L.) to nitric oxide application under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113969. [PMID: 35969983 DOI: 10.1016/j.ecoenv.2022.113969] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination with cadmium (Cd) is a persistent threat to crop production worldwide. The present study examined the putative roles of nitric oxide (NO) in improving Cd-tolerance in cauliflower (Brassica oleracea L.). The present study was conducted using four different genotypes of B. oleracea named as FD-3, FD-4, FD-2 and Ceilo Blanco which were subjected to the Cd stress at various concentrations i.e., 0, 5, 10 and 20 µM with or without the application of NO i.e., 0.10 mM in the sand containing nutrient Hoagland's solution. Our results illustrated that the increasing levels of Cd in the sand, significantly (P < 0.05) decreased shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, germination percentage, germination index, mean germination time, time to 50% germination, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents in all genotypes of B. oleracea. The concentration of malondialdehyde (MDA) and Cd accumulation (roots and shoots) increased significantly (P < 0.05) under the increasing levels of Cd in all genotypes of B. oleracea while antioxidant (enzymatic or non-enzymatic) capacity and nutritional status of the plants was decreased with varying levels of Cd in the sand. From all studied genotypes of B. oleracea, Ceilo Blanco and FD-4 was found to be most sensitive species to the Cd stress under the same levels of the Cd in the medium while FD-2 and FD-3 showed more tolerance to the Cd stress compared to all other genotypes of B. oleracea. Although, toxic effect of Cd in the sand can overcome by the application of NO which not only increased plant growth and nutrients accumulation but also decreased the oxidative damage to the membranous bounded organelles and also Cd accumulation in various parts of the plants in all genotypes of B. oleracea. Hence, it was concluded that application of NO can overcome Cd toxicity in B. oleracea by maintaining the growth regulation and nutritional status of the plant and overcome oxidative damage induced by Cd toxicity in all genotypes of B. oleracea.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 210098, China.
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713 Doha, Qatar; Central Laboratories Unit (CLU), Office of VP for Research & Graduate Studies, Qatar University, 2713 Doha, Qatar.
| | - Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Muhammad Nawaz
- Department of Botany, Government College University, Faisalabad 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713 Doha, Qatar.
| |
Collapse
|
50
|
Zhu G, Xie L, Tan W, Ma C, Wei Y. Cd2+ Tolerance and Removal Mechanisms of Serratia marcescens KMR-3. J Biotechnol 2022; 359:65-74. [DOI: 10.1016/j.jbiotec.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
|