1
|
Farahani A, Farahani A, Kashfi K, Ghasemi A. Inhibition of hepatic gluconeogenesis in type 2 diabetes by metformin: complementary role of nitric oxide. Med Gas Res 2025; 15:507-519. [PMID: 40300886 DOI: 10.4103/mgr.medgasres-d-24-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/21/2025] [Indexed: 05/01/2025] Open
Abstract
Metformin is the first-line treatment for type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with decreased nitric oxide bioavailability, which has significant metabolic implications, including enhanced insulin secretion and peripheral glucose utilization. Similar to metformin, nitric oxide also inhibits hepatic glucose production, mainly by suppressing gluconeogenesis. This review explores the combined effects of metformin and nitric oxide on hepatic gluconeogenesis and proposes the potential of a hybrid metformin-nitric oxide drug for managing type 2 diabetes mellitus. Both metformin and nitric oxide inhibit gluconeogenesis through overlapping and distinct mechanisms. In hepatic gluconeogenesis, mitochondrial oxaloacetate is exported to the cytoplasm via various pathways, including the malate, direct, aspartate, and fumarate pathways. The effects of nitric oxide and metformin on the exportation of oxaloacetate are complementary; nitric oxide primarily inhibits the malate pathway, while metformin strongly inhibits the fumarate and aspartate pathways. Furthermore, metformin effectively blocks gluconeogenesis from lactate, glycerol, and glutamine, whereas nitric oxide mainly inhibits alanine-induced gluconeogenesis. Additionally, nitric oxide contributes to the adenosine monophosphate-activated protein kinase-dependent inhibition of gluconeogenesis induced by metformin. The combined use of metformin and nitric oxide offers the potential to mitigate common side effects. For example, lactic acidosis, a known side effect of metformin, is linked to nitric oxide deficiency, while the oxidative and nitrosative stress caused by nitric oxide could be counterbalanced by metformin's enhancement of glutathione. Metformin also amplifies nitric oxide -induced activation of adenosine monophosphate-activated protein kinase. In conclusion, a metformin-nitric oxide hybrid drug can benefit patients with type 2 diabetes mellitus by enhancing the inhibition of hepatic gluconeogenesis, decreasing the required dose of metformin for maintaining optimal glycemia, and lowering the incidence of metformin-associated lactic acidosis.
Collapse
Affiliation(s)
- Arman Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang Y, Li P, Yin F, Zheng Y, Liu H, Sun H, Wang M, Liu C, Chen X, Yan G, Yan X, Hu Y, Guan S, Wang X. Urine Metabolomics Reveals the Intervention Effects and Mechanism of Shenhua Tablets in IgA Nephropathy. Biomed Chromatogr 2025; 39:e70078. [PMID: 40195069 DOI: 10.1002/bmc.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Shenhua tablets (SHT), a traditional Chinese medicine (TCM), have shown significant clinical efficacy in treating IgA nephropathy (IgAN), but the underlying mechanisms are not fully understood. This study aims to elucidate the renoprotective effects of SHT on IgAN and explore the potential mechanisms of its action using metabolomics approaches. The renoprotective effects of SHT on IgAN were evaluated in a Thy-1 antibody-induced IgAN rat model. Metabolomics techniques were employed to detect and analyze urine biomarkers of IgAN, and to identify SHT targets and metabolic pathways. SHT significantly reduced the levels of 24-h urine protein (Upro), albumin-to-creatinine ratio (ACR), Interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), alleviated kidney tissue damage, and inhibited mesangial cell proliferation. Seventeen urine metabolites were identified as biomarkers for IgAN, 14 of which were restored by SHT. SHT primarily modulated metabolic pathways, including the tricarboxylic acid (TCA) cycle, glycolysis/gluconeogenesis, pyruvate metabolism, and β-alanine metabolism, upregulating citric acid and succinic acid while downregulating pyruvic acid, L-lactic acid, uracil, and malonic semialdehyde. SHT exerts renoprotective effects in IgAN by modulating key metabolic pathways and normalizing abnormal metabolites levels.
Collapse
Affiliation(s)
- Yuhang Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ping Li
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zheng
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Huiqiang Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chang Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiangmei Chen
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaotong Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Hu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shihan Guan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
3
|
He Z, Zhang J, Xu Y, Fine EJ, Suomivuori CM, Dror RO, Feng L. Structure of mitochondrial pyruvate carrier and its inhibition mechanism. Nature 2025; 641:250-257. [PMID: 40044865 PMCID: PMC12043432 DOI: 10.1038/s41586-025-08667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/17/2025] [Indexed: 04/13/2025]
Abstract
The mitochondrial pyruvate carrier (MPC) governs the entry of pyruvate-a central metabolite that bridges cytosolic glycolysis with mitochondrial oxidative phosphorylation-into the mitochondrial matrix1-5. It thus serves as a pivotal metabolic gatekeeper and has fundamental roles in cellular metabolism. Moreover, MPC is a key target for drugs aimed at managing diabetes, non-alcoholic steatohepatitis and neurodegenerative diseases4-6. However, despite MPC's critical roles in both physiology and medicine, the molecular mechanisms underlying its transport function and how it is inhibited by drugs have remained largely unclear. Here our structural findings on human MPC define the architecture of this vital transporter, delineate its substrate-binding site and translocation pathway, and reveal its major conformational states. Furthermore, we explain the binding and inhibition mechanisms of MPC inhibitors. Our findings provide the molecular basis for understanding MPC's function and pave the way for the development of more-effective therapeutic reagents that target MPC.
Collapse
Affiliation(s)
- Zheng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eve J Fine
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Hou Y, Wang Y, Pan M, An D, Zhong M, Zhang Q. Sperm metabolomic profiles of varicocele-associated asthenozoospermia. J Pharm Biomed Anal 2025; 263:116908. [PMID: 40267573 DOI: 10.1016/j.jpba.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Varicocele is a leading cause of male infertility, with asthenozoospermia being a common phenotype. The metabolic basis of varicocele-induced asthenozoospermia remains poorly understood, necessitating a comprehensive metabolic profiling study. This GC-MS-based metabolomic study investigated sperm metabolic profiles across three cohorts: healthy controls (HC, n = 30), varicocele patients with normal motility (VC, n = 30), and varicocele-associated asthenozoospermia cases (VA, n = 30). Multivariate analyses (Principal Component Analysis, Partial Least Squares Discriminant Analysis, and Orthogonal Partial Least Squares Discriminant Analysis) of 85 identified endogenous metabolites revealed progressive metabolic dysregulation: 25 differential metabolites (including cysteine, leucine, glycine) distinguished VC from HC, while 29 additional perturbations (valine, threonine, alanine) characterized VA cases. These findings systematically delineate varicocele-related metabolic disturbances, providing mechanistic insights into sperm motility impairment and potential therapeutic targets for male infertility management.
Collapse
Affiliation(s)
- Yuyang Hou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yupeng Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengyue Pan
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Di An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengling Zhong
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
5
|
López-Muguruza E, Peiró-Moreno C, Pérez-Cerdá F, Matute C, Ruiz A. Del Río Hortega's insights into oligodendrocytes: recent advances in subtype characterization and functional roles in axonal support and disease. Front Neuroanat 2025; 19:1557214. [PMID: 40145026 PMCID: PMC11936973 DOI: 10.3389/fnana.2025.1557214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Pío Del Río Hortega (1882-1945) was a giant of modern neuroscience and perhaps the most impactful member of Cajal's School. His contributions to clarifying the structure of the nervous system were key to understanding the brain beyond neurons. He uncovered microglia and oligodendrocytes, the latter until then named mesoglia. Most importantly, the characterization of oligodendroglia subtypes he made has stood the omics revolution that added molecular details relevant to comprehend their biological properties. Astounding as it may seem on today's eyes, he postulated a century ago that oligodendrocytes provide trophic support to axons, an idea that is now beyond doubt and under scrutiny as dysfunction at the axon-myelin unit is key to neurodegeneration. Here, we revised recent key advancements in oligodendrocyte biology that shed light on Hortega's ideas a century ago.
Collapse
Affiliation(s)
- Eneritz López-Muguruza
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
| | - Carla Peiró-Moreno
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
| | - Fernando Pérez-Cerdá
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| | - Asier Ruiz
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| |
Collapse
|
6
|
Liu Y, Yu X, Jiang W. The Role of Mitochondrial Pyruvate Carrier in Neurological Disorders. Mol Neurobiol 2025; 62:2846-2856. [PMID: 39177735 DOI: 10.1007/s12035-024-04435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The mitochondrial pyruvate carrier (MPC) is a specific protein complex located in the inner mitochondrial membrane. Comprising a heterodimer of two homodimeric membrane proteins, mitochondrial pyruvate carrier 1 and mitochondrial pyruvate carrier 2, MPC connects cytoplasmic metabolism to mitochondrial metabolism by transferring pyruvate from the cytoplasm to the mitochondria. The nervous system requires substantial energy to maintain its function, and the mitochondrial energy supply is closely linked to neurological function. Mitochondrial dysfunction can induce or exacerbate intracerebral pathologies. MPC influences mitochondrial function due to its specific role as a pyruvate transporter. However, recent studies on MPC and mitochondrial dysfunction in neurological disorders have yielded controversial results, and the underlying mechanisms remain unclear. In this brief review, we provide an overview of the structure and function of MPC. We further discuss the potential mechanisms and feasibility of targeting MPC in treating Parkinson's disease, Alzheimer's disease, and cerebral ischemia/hypoxia injury. This review aims to offer insights into MPC as a target for clinical treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiying Yu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Politte H, Maram L, Elgendy B. Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications. Biomolecules 2025; 15:223. [PMID: 40001526 PMCID: PMC11852594 DOI: 10.3390/biom15020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is a transmembrane protein complex critical for cellular energy metabolism, enabling the transport of pyruvate from the cytosol into the mitochondria, where it fuels the citric acid cycle. By regulating this essential entry point of carbon into mitochondrial metabolism, MPC is pivotal for maintaining cellular energy balance and metabolic flexibility. Dysregulation of MPC activity has been implicated in several metabolic disorders, including type 2 diabetes, obesity, and cancer, underscoring its potential as a therapeutic target. This review provides an overview of the MPC complex, examining its structural components, regulatory mechanisms, and biological functions. We explore the current understanding of transcriptional, translational, and post-translational modifications that modulate MPC function and highlight the clinical relevance of MPC dysfunction in metabolic and neurodegenerative diseases. Progress in the development of MPC-targeting therapeutics is discussed, with a focus on challenges in designing selective and potent inhibitors. Emphasis is placed on modern approaches for identifying novel inhibitors, particularly virtual screening and computational strategies. This review establishes a foundation for further research into the medicinal chemistry of MPC inhibitors, promoting advances in structure-based drug design to develop therapeutics for metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Henry Politte
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Lingaiah Maram
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Bahaa Elgendy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Wang X, Zhou S, Dong J, Wei Z, Liu Y, Huang Y, Sui J, Zhu L. The impact of bisphenol A on gill health: A focus on mitochondrial dysfunction induced disorders of energy metabolism and apoptosis in Meretrix petechialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107259. [PMID: 39874627 DOI: 10.1016/j.aquatox.2025.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Bisphenol A (BPA), a well-known chemical compound used in various daily goods, has been associated with adverse effects on animal metabolic processes. However, the specific impacts of BPA exposure on clam gills remain largely unexplored. To investigate the effects of BPA on energy metabolism and apoptosis in Meretrix petechialis gills, clams were exposed to varying concentrations of BPA (1, 10, and 100 μg/L) for 21 days. Results showed that BPA exposure induced gill histopathological injuries and inhibited filtration rates. Transmission electron microscopy (TEM) analysis revealed mitochondrial injury and dysfunction as potential mechanisms of gill damage. Transcriptome analysis identified differentially expressed genes (DEGs) primarily enriched in energy metabolism and apoptosis pathways. BPA-induced changes in ATP content, ATPase, and lactate dehydrogenase (LDH) activities suggested dysregulation of energy metabolism. TUNEL staining demonstrated enhanced apoptotic signals with increasing BPA concentrations. Activation of the caspase-3/9 pathway indicated a concentration-dependent, mitochondria-dependent apoptotic process. Additionally, the expression of genes associated with mitochondria (NNT, TOMM40, and SLC25A11), energy metabolism (PCK1 and pdhC), inducing mitochondria-dependent apoptosis (NFKB1, RAC1, and TRAF2), and oxidative stress (GSTT1) was affected by BPA exposure. Integrated biomarker response version 2 (IBRv2) values further confirmed a concentration-dependent gill toxicity of BPA via the mitochondrial pathway. These findings provide a deeper understanding of the toxicological mechanisms underlying BPA-induced toxicity in bivalves and contribute to assessing the risks posed by BPA in benthic ecosystems.
Collapse
Affiliation(s)
- Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jianhao Dong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Zhengjia Wei
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai, Shandong 264000, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Junhui Sui
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
10
|
Santos HO, Penha-Silva N. Revisiting the concepts of de novo lipogenesis to understand the conversion of carbohydrates into fats: Stop overvaluing and extrapolating the renowned phrase "fat burns in the flame of carbohydrate". Nutrition 2025; 130:112617. [PMID: 39566326 DOI: 10.1016/j.nut.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Carbohydrates can be converted into fatty acids via de novo lipogenesis (DNL). Although DNL is considered inefficient, these endogenous fatty acids contribute substantially to the esterification pathway in adipose tissue, together with fatty acids of feeding. This article revisited the concepts of DNL and aimed to discuss the clinical magnitude of carbohydrate overfeeding and fat mass accumulation. Although fat storage resulting from fat intake is more favorable for fat mass accrual than carbohydrates due to molecule structure and metabolism (e.g., oxidation and thermic effect), carbohydrates can substantially participate in lipogenesis and esterification under excess carbohydrate intake over time. Regarding only monosaccharide overfeeding, glucose and fructose favor the subcutaneous and visceral adipose tissue, respectively. While fructose and sucrose are considered villains in nonalcoholic fatty liver disease, energy surplus from carbohydrates, regardless of sources, can be considered an underlying cause of obesity. Interestingly, some degree of DNL in adipocytes may be favorable to mitigate a high deposition of fatty acids in the liver, conferring a physiological role. Although "fat burns in the flame of carbohydrate" is a praiseworthy phrase that has helped describe basic concepts in biochemistry for many decades, it appears to be overvalued and extrapolated even nowadays. DNL cannot be neglected. It is time to consider DNL an efficient biochemical process in health and disease.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Uberlândia Federal University, Uberlândia, MG, Brazil.
| | - Nilson Penha-Silva
- Institute of Biotechnology, Uberlândia Federal University, Uberlândia, MG, Brazil
| |
Collapse
|
11
|
Okonkwo E, Saha B, Sahu G, Bera A, Sharma P. Blood-Based Lateral-Flow Immunoassays Dipstick Test for Damaged Mitochondrial Electron Transport Chain in Pyruvate Treated Rats with Combined Blast Exposure and Hemorrhagic Shock. J Clin Med 2025; 14:754. [PMID: 39941423 PMCID: PMC11818850 DOI: 10.3390/jcm14030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Blast trauma presents a unique challenge due to its complex mechanism of injury, which impacts the brain and other vital organs through overpressure waves and internal bleeding. Severe blood loss leads to an inadequate oxygen supply and insufficient fuel delivery to cells, impairing ATP production by mitochondria-essential for cell survival. While clinical symptoms of metabolic disruption are evident soon after injury, the molecular, cellular, and systemic damage persists for days to years post-injury. Current challenges in treating traumatic brain injury (TBI) stem from (1) the lack of early blood-based biomarkers for detecting metabolic failure and mitochondrial damage and (2) the limited success of mitochondrial-targeted therapeutic strategies. Objectives: To identify blood-based mitochondrial biomarkers for evaluating the severity of brain injuries and to investigate therapeutic strategies targeting mitochondria. Methods: A preclinical rat model subjected to blast exposure, with or without hemorrhagic shock (HS), followed by resuscitation was utilized. Blood samples were obtained at baseline (T0), post-injury (T60), and at the conclusion of the experiment (T180), and analyzed using a validated dipstick assay to measure mitochondrial enzyme activity. Results: Blast and HS injuries led to a significant decrease in the activity of mitochondrial enzymes, including complex I, complex IV, and the pyruvate dehydrogenase complex (PDH), compared to baseline (p < 0.05). Concurrently, blood lactate concentrations were significantly elevated (p < 0.001). An inverse correlation was observed between mitochondrial enzyme dysfunction and blood lactate levels (p < 0.05). Treatment with sodium pyruvate post-injury restored complex I, complex IV, and PDH activity to near-baseline levels, corrected hyperlactatemia, and reduced reactive oxygen species (ROS) production by mitochondria. Conclusions: Serial monitoring of blood mitochondrial enzyme activity, such as complex I, complex IV, and PDH, may serve as a valuable tool for prognostication and guiding the use of mitochondrial-targeted therapies. Additionally, mitochondrial enzyme assays in blood samples can provide insights into the global redox status, potentially paving the way for novel therapeutic interventions in TBI.
Collapse
Affiliation(s)
| | | | | | | | - Pushpa Sharma
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
12
|
Fu J, Chen S, Tan Y, Zou K, Yu X, Ji L, Zhang J, Xiao X, Wang W, Zhao K, Zou L. Inoculation of thermophilic bacteria from giant panda feces into cattle manure reduces gas emissions and decreases resistance gene prevalence in short-term composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123601. [PMID: 39642832 DOI: 10.1016/j.jenvman.2024.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Here, thermophilic bacteria (TB) with cellulose degradation functions were screened from composting panda feces and applied to cattle manure composting. TB (Aeribacillus pallidus G5 and Parageobacillus toebii G12) inoculation led to remarkable improvement of the compost temperature, prolonging of the thermophilic stage and shortening of the composting process, resulting in increased manure harmlessness (GI ≥ 70%), compost humification, and greenhouse gas emission reduction (14.19%-22.57%), compared with the control compost, within 15 days of composting. In particular, G5 inoculation reduced NH3 emissions by 41.97% relative to control composts over 15 days. G5 was capable of rapidly colonizing in the composts, and its inoculation immediately enriched the genera of Firmicutes, and simultaneously decreased the genera of Proteobacteria, contributing to the elimination of harmful microorganisms. Notably, this strain lacked antibiotic resistance genes, and the absolute abundances of resistance genes and mobile genetic genes (MGEs) decreased the most (by 80.84%). Metagenomic analysis revealed that enzymes capable of producing CO2, N2O, and NH3 were generally inhibited, while CO2 fixation and N2O and NH3 reduction enzymes were enriched in the G5 compost, since metagenome-assembled genomes of Proteobacteria harbored more key genes and enzymes in complete pathways for producing N2O, NH3, and CO2. Moreover, Proteobacteria, such as Pseudomonas and Halopseudomonas, were the main host of resistance genes and MGEs. Overall, the gas emission could be reduced, and more efficient control of resistance genes could be achieved by inhibited the abundance of Proteobacteria during composting. This study provides a safe and effective microbial agent (A. pallidus) for manure treatment.
Collapse
Affiliation(s)
- Jingxia Fu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yulan Tan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, China
| | - Keyi Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Ji
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianmin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
13
|
Alhasan KA, King MA, Pattar BSB, Lewis IA, Lopaschuk GD, Greenway SC. Anaplerotic filling in heart failure: a review of mechanism and potential therapeutics. Cardiovasc Res 2024; 120:2166-2178. [PMID: 39570879 PMCID: PMC11687400 DOI: 10.1093/cvr/cvae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Heart failure (HF) is a complex syndrome and a leading cause of mortality worldwide. While current medical treatment is based on known pathophysiology and is effective for many patients, the underlying cellular mechanisms are poorly understood. Energy deficiency is a characteristic of HF, marked by complex alterations in metabolism. Within the tricarboxylic acid cycle, anaplerosis emerges as an essential metabolic process responsible for replenishing lost intermediates, thereby playing a crucial role in sustaining energy metabolism and consequently cardiac function. Alterations in cardiac anaplerosis are commonly observed in HF, demonstrating potential for therapeutic intervention. This review discusses recent advances in understanding the anaplerotic adaptations that occur in HF. We also explore therapeutics that can directly modulate anaplerosis or are likely to confer cardioprotective effects through anaplerosis, which could potentially be implemented to rescue the failing heart.
Collapse
Affiliation(s)
- Karm A Alhasan
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Melissa A King
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Badal S B Pattar
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Steven C Greenway
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
14
|
Wen Z, Liu Z, Bu H, Liu Y, Zhu J, Hu F, Li Z, Huang B, Peng F. Metabolome and transcriptome unveil the mechanism of light on regulating beauvericin synthesis in Cordyceps chanhua. Fungal Biol 2024; 128:2102-2112. [PMID: 39384280 DOI: 10.1016/j.funbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 10/11/2024]
Abstract
Cordyceps chanhua, an important cordycipitoid medical mushroom with wide use in Asia, has gained attention for its bioactive component beauvericin (BEA), which is of medicinal value as a drug lead, but also of food safety risk. Recent observations by our group revealed a significant decrease of BEA content in C. chanhua when exposed to light, but the underlying regulatory mechanisms remain elusive. In this study, a comprehensive approach combining metabolomics and transcriptomics was employed to investigate the effects of white light on the secondary metabolism of C. chanhua for elucidation of the influence of light on BEA biosynthesis in this fungus. The result showed that the genes and metabolites involved in the synthesis of D-hydroxyisovaleric acid, a precursor of BEA synthesis, were down-regulated under light exposure, while those associated with the synthesis of phenylalanine, another precursor of BEA synthesis, were up-regulated leading to elevated phenylalanine levels. It suggested that the suppressive effect of light on BEA synthesis in C. chanhua occurred primarily through the inhibition of D-hydroxyisovaleric acid synthesis, while the enhanced phenylalanine biosynthesis likely directed towards other metabolic pathway such as pigment synthesis. These results contributed to a better understanding on how light modulates the secondary metabolism of C. chanhua and provided valuable guidance for optimizing BEA production in cultivation practices.
Collapse
Affiliation(s)
- Zhiyuan Wen
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Zhimin Liu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Haifen Bu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Yanwen Liu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Jiahua Zhu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Fenglin Hu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Zengzhi Li
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Fan Peng
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Hou Y, Wang J, Pan M, Zhou Y, Wang Y, Chen J, Zhong M, Li X, Zhang Q. Metabolomic signature of sperm in men with obesity-associated asthenozoospermia. J Assist Reprod Genet 2024; 41:3161-3171. [PMID: 39432192 PMCID: PMC11621289 DOI: 10.1007/s10815-024-03294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
PURPOSE Obese men have a significantly increased risk of developing asthenozoospermia. Sperm motility is directly related to cellular energy supply and metabolic status. Sperm metabolomics research based on Gas chromatography-mass spectrometry (GC-MS) technology can provide useful information for the pathological mechanism, diagnosis, and treatment of obesity-associated asthenozoospermia. METHODS Sperm samples were obtained from a healthy control group (n = 49) and patients with obesity-associated asthenozoospermia (n = 40). After the analysis of sperm samples using GC-MS, various multivariate statistical methods such as principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) were conducted. RESULTS A total of 56 metabolites were identified in the sperm samples. Among them, 19 differential metabolites were found between the two groups. Metabolites such as glutamic acid, fumaric acid, and cysteine were significantly downregulated in the sperm of patients with obesity-associated asthenozoospermia, while metabolites like palmitic acid, stearic acid, and alanine were significantly upregulated. The differential metabolites were enriched in D-glutamine and D-glutamate metabolism; proline, aspartate, and glutamate metabolism; glutathione metabolism and the other metabolic pathways. CONCLUSION Obesity may influence the composition of metabolic products in sperm, and metabolomic analysis proves beneficial for the future diagnosis and treatment of obesity-associated asthenozoospermia.
Collapse
Affiliation(s)
- Yuyang Hou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Jingjie Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Mengyue Pan
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Yanfen Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Yupeng Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Jiaxi Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Mengling Zhong
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China.
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China.
| |
Collapse
|
16
|
Bannon ST, Decker ST, Erol ME, Fan R, Huang YT, Chung S, Layec G. Mitochondrial free radicals contribute to cigarette smoke condensate-induced impairment of oxidative phosphorylation in the skeletal muscle in situ. Free Radic Biol Med 2024; 224:325-334. [PMID: 39178923 PMCID: PMC11975403 DOI: 10.1016/j.freeradbiomed.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 μM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.
Collapse
Affiliation(s)
- Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Diabetes and Metabolism Research Center, University of Utah, UT, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA
| | - Rong Fan
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Yu-Ting Huang
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA.
| |
Collapse
|
17
|
Shi J, Hu M, Xia Z, Zhang J, Wang Z, Li L, Zhao Y. Influence of perfluoroalkyl substances, with focus on perfluorobutanoic acid on the responding characteristics and molecular mechanisms of Thalassiosira pseudonana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117048. [PMID: 39288731 DOI: 10.1016/j.ecoenv.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Perfluoroalkyl substances (PFAS) are widely dispersed persistent organic pollutants (POPs) throughout marine ecosystems. Due to ban of traditional long-chain PFAS, the emerging short-chain ones showed increased environmental detection as substitutes. As the foundation of aquatic food webs, microalgae play a pivotal role in the stability of marine environments. However, the toxicity of those short-chain PFAS was lack of investigation. Therefore, we chose 4C PFAS perfluorobutanoic acid (PFBA) and the marine model diatom Thalassiosira pseudonana as research targets, comprehensively studied the toxicity of PFBA to T. pseudonana in terms of the population growth, photosynthetic physiology and oxidative stress. Our results characterized the inhibited growth, inhibited photosynthetic parameters, increased reactive oxygen species (ROS) levels and activated antioxidant system under PFBA exposure. Further transcriptome analysis revealed the underlying molecular mechanisms: photosynthetic genes were slightly down-regulated and the expression of oxidative stress-related genes was enhanced; significant up-regulation of genes related to the DNA excision repair and replication-coupled DNA repair pathways; the expression of carbon metabolisms-related genes was increased, including the Calvin cycle, glycolysis, pentose phosphate pathway, tricarboxylic acid (TCA) cycle and fatty acid biosynthesis, that could provide sufficient energy for the recovery processes of microalgal cells. This study elucidated the underlying toxic mechanisms of PFBA on phytoplankton, and provided novel insights for assessing the environmental risks of PFAS.
Collapse
Affiliation(s)
- Jiayi Shi
- Haide College, Major of Biotechnology, Ocean University of China, Qingdao 266100, China.
| | - Mengyang Hu
- Haide College, Major of Biotechnology, Ocean University of China, Qingdao 266100, China
| | - Zhilin Xia
- Haide College, Major of Biotechnology, Ocean University of China, Qingdao 266100, China
| | - Jirong Zhang
- Haide College, Major of Biotechnology, Ocean University of China, Qingdao 266100, China
| | - Ziniu Wang
- Haide College, Major of Biotechnology, Ocean University of China, Qingdao 266100, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China.
| |
Collapse
|
18
|
Yoon KN, Choi YH, Keum GB, Yeom SJ, Kim SS, Kim ES, Park HJ, Kim JE, Park JH, Song BS, Eun JB, Park SH, Lee JH, Lee JH, Kim HB, Kim JK. Lactiplantibacillus argentoratensis AGMB00912 alleviates diarrhea and promotes the growth performance of piglets during the weaning transition. BMC Microbiol 2024; 24:404. [PMID: 39390387 PMCID: PMC11465746 DOI: 10.1186/s12866-024-03536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Preventing post-weaning diarrhea (PWD) in weaned piglets is a crucial challenge in the swine production industry. The stress of weaning, dietary shifts from maternal milk to solid feed, and environmental changes lead to decreased microbial diversity, increased pathogen abundance, and compromised intestinal integrity. We have previously identified Lactiplantibacillus argentoratensis AGMB00912 (LA) in healthy porcine feces, which demonstrated antimicrobial activity against pathogens and enhanced short-chain fatty acid production. This research aimed to evaluate the efficacy of LA strain supplementation as a strategy to inhibit PWD and enhance overall growth performance in weaned piglets. RESULTS LA supplementation in weaned piglets significantly increased body weight gain, average daily gain, and average daily feed intake. It also alleviated diarrhea symptoms (diarrhea score and incidence). Notably, LA was found to enrich beneficial microbial populations (Lactobacillus, Anaerobutyricum, Roseburia, Lachnospiraceae, and Blautia) while reducing the abundance of harmful bacteria (Helicobacter and Campylobacter). This not only reduces the direct impact of pathogens but also improves the overall gut microbiota structure, thus enhancing the resilience of weaned piglets. LA treatment also promotes the growth of the small intestinal epithelial structure, strengthens gut barrier integrity, and increases short-chain fatty acid levels in the gut. CONCLUSIONS The study findings demonstrate the promising potential of LA in preventing PWD. Supplementation with the LA strain offers a promising feed additive for improving intestinal health and growth in piglets during the weaning transition, with the potential to significantly reduce the incidence and severity of PWD.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yo-Han Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seo-Joon Yeom
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Sang-Su Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyun Ju Park
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Jo Eun Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea.
| |
Collapse
|
19
|
Yang X, Yin ML, Zhu YB, Zhao SP, Xi HL. Key genomes, transcriptomes, proteins, and metabolic factors involved in the detoxification/tolerance of TNT and its intermediates by bacteria in anaerobic/aerobic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135489. [PMID: 39137547 DOI: 10.1016/j.jhazmat.2024.135489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Novel microbial strains capable of efficient degradation of TNT and typical intermediates (2-ADNT and 4-ADNT) in aerobic/anaerobic environment were screened and isolated from ammunition-contaminated sites. The key genomes, transcriptomes, proteins, and metabolic factors for microbial detoxification/tolerance to pollutants in anaerobic and aerobic environments were analyzed for the first time. The bacterial genome, which is rich in metabolism and environmental information-processing functional genes, provides transcriptional and translational-related proteins for detoxifying/tolerating pollutants. At the transcriptional level, bacteria significantly expressed genes related to inositol phosphate metabolism for regulating membrane transport, maintaining the cytoskeleton, and signal transduction. At the protein level, genes involved in antioxidation, fat metabolism, sugar synthesis/degradation, and pyruvate metabolism were significantly expressed. At the metabolic level, riboflavin metabolism, which regulates membrane integrity, protects against oxidative stress, and maintains the sugar-protein-fat balance, showed significant responses. Bacteria simultaneously regulate amino acid metabolism, carbohydrate metabolism, and N/P/S cycles to maintain homeostatic cellular energy supplies. The key pathway for pollutant degradation in bacteria is nitrotoluene degradation. The molecular mechanism of bacterial tolerance to pollutants involves the regulation of oxidative phosphorylation and basic cycle pathways to maintain gene transcription, protein translation, and metabolic cycles.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Mao-Ling Yin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yong-Bing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
20
|
Xing Y, Zhang Y, Li J, Tang Y, Zhang J, Yang R, Tang H, Qian H, Huang D, Chen W, Zhong Y. Bioresponsive Nanoparticles Boost Starvation Therapy and Prevent Premetastatic Niche Formation for Pulmonary Metastasis Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51798-51806. [PMID: 39301793 DOI: 10.1021/acsami.4c11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In the process of tumor metastasis, tumor cells can acquire invasion by excessive uptake of nutrients and energy and interact with the host microenvironment to shape a premetastatic niche (PMN) that facilitates their colonization and progression in the distal sites. Pyruvate is an essential nutrient that engages in both energy metabolism and remodeling of the extracellular matrix (ECM) in the lungs for PMN formation, thus providing a target for tumor metastasis treatment. There is a paucity of strategies focusing on PMN prevention, which is key to metastasis inhibition. Here, we design a bioresponsive nanoparticle (HP/GU) based on a disulfide-cross-linked hyperbranched polyethylenimine (D-PEI) core and a hyaluronic acid (HA) shell with a reactive oxygen species (ROS)-sensitive cross-linker between them to encapsulate glucose oxidase (GOX) and a mitochondrial pyruvate carrier (MPC) inhibitor via electrostatic interaction, which reinforces starvation therapy and reduces PMN formation in the lungs via inhibiting pyruvate metabolism. In tumor cells, GOX and MPC inhibitors can be rapidly released and synergistically reduce the energy supply of tumor cells by consuming glucose and inhibiting pyruvate uptake to decrease tumor cell invasion. MPC inhibitors can also reduce ECM remodeling by blocking cellular pyruvate metabolism to prevent PMN formation. Consequently, HP/GU achieves an efficient inhibition of both primary and metastatic tumors and provides an innovative strategy for the treatment of tumor metastases.
Collapse
Affiliation(s)
- Yanran Xing
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jingqian Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yecheng Tang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Tang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Rua AJ, Mitchell W, Claypool SM, Alder NN, Alexandrescu AT. Perturbations in mitochondrial metabolism associated with defective cardiolipin biosynthesis: An in-organello real-time NMR study. J Biol Chem 2024; 300:107746. [PMID: 39236875 PMCID: PMC11470594 DOI: 10.1016/j.jbc.2024.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a WT strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics among the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Wayne Mitchell
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan N Alder
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA.
| | - Andrei T Alexandrescu
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
22
|
Ceyzériat K, Badina AM, Petrelli F, Montessuit S, Nicolaides A, Millet P, Savioz A, Martinou JC, Tournier BB. Inhibition of the mitochondrial pyruvate carrier in astrocytes reduces amyloid and tau accumulation in the 3xTgAD mouse model of Alzheimer's disease. Neurobiol Dis 2024; 200:106623. [PMID: 39103022 DOI: 10.1016/j.nbd.2024.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's Disease (AD) is characterized by an accumulation of pathologic amyloid-beta (Aβ) and Tau proteins, neuroinflammation, metabolic changes and neuronal death. Reactive astrocytes participate in these pathophysiological processes by releasing pro-inflammatory molecules and recruiting the immune system, which further reinforces inflammation and contributes to neuronal death. Besides these neurotoxic effects, astrocytes can protect neurons by providing them with high amounts of lactate as energy fuel. Astrocytes rely on aerobic glycolysis to generate lactate by reducing pyruvate, the end product of glycolysis, through lactate dehydrogenase. Consequently, limited amounts of pyruvate enter astrocytic mitochondria through the Mitochondrial Pyruvate Carrier (MPC) to be oxidized. The MPC is a heterodimer composed of two subunits MPC1 and MPC2, the function of which in astrocytes has been poorly investigated. Here, we analyzed the role of the MPC in the pathogeny of AD, knowing that a reduction in overall glucose metabolism has been associated with a drop in cognitive performances and an accumulation of Aβ and Tau. We generated 3xTgAD mice in which MPC1 was knocked-out in astrocytes specifically and focused our study on the biochemical hallmarks of the disease, mainly Aβ and neurofibrillary tangle production. We show that inhibition of the MPC before the onset of the disease significantly reduces the quantity of Aβ and Tau aggregates in the brain of 3xTgAD mice, suggesting that acting on astrocytic glucose metabolism early on could hinder the progression of the disease.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- CIBM Center for Biomedical Imaging, Geneva, Switzerland; Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
| | - Aurélien M Badina
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Petrelli
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Sylvie Montessuit
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Alekos Nicolaides
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland
| | - Armand Savioz
- Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland
| | - Jean-Claude Martinou
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Benjamin B Tournier
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland.
| |
Collapse
|
23
|
Zhao D, Zhang X, Jin WF, Huang P, Wan H, He Y. Efficacy of Astragalus membranaceus-Carthamus tinctorius in cerebral ischemia/reperfusion injury: Insights from metabolomics and mass spectrometry imaging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155881. [PMID: 39059267 DOI: 10.1016/j.phymed.2024.155881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The combination of Astragalus membranaceus and Carthamus tinctorius (AC) exhibits significant therapeutic effects in cerebral ischemia/reperfusion injury (CIRI). Understanding the metabolic characteristics of brain microregions and disturbances in tissues and systemic circulation is crucial for elucidating the mechanisms of CIRI and the therapeutic benefits of AC. However, in situ metabolic regulation of the complex brain structure has not been adequately studied, and the therapeutic mechanism of AC requires immediate clarification. PURPOSE The present study aimed to unveil the specific metabolic reprogramming of CIRI at systemic and microregional levels, identify key metabolic pathways and metabolites, and elucidate the therapeutic mechanisms of AC. METHODS Air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI), a newly developed technique, was used to investigate metabolites in brain microregions. Hematoxylin-eosin, Nissl, and immunofluorescence staining were performed to visualize the microscopic changes associated with spatial metabolism. A comprehensive metabolomics study was conducted on serum, brain tissue, and microregions, along with neurological assessments, cerebral infarction measurements, and Evans blue experiments, to assess the systemic and local metabolic effects of AC treatment for CIRI. RESULTS AC significantly reduced neurological damage, minimized infarct size, and repaired blood-brain barrier damage in CIRI rats. AFADESI-MSI demonstrated that the metabolic imbalance caused by CIRI primarily occurs in the cerebral cortex, hippocampus, caudate putamen, thalamus, cerebellar cortex, and fiber tract regions. Significant changes in 16 metabolites were observed in these regions, corresponding to neuron damage, glial cell activation, and neural repair. 20 metabolites from serum and 4 from brain tissue varied significantly with the sham group. Comprehensive metabolomics analysis indicated a close relationship among serum, tissue, and microregional metabolism. CIRI-induced systemic and localized metabolic disorders involve 14 metabolic pathways. AC conferred therapeutic benefits in CIRI by reversing various metabolic imbalances. CONCLUSION AFADESI-MSI efficiently visualized brain microregion metabolism. Comprehensive metabolomics analysis revealed detailed insights into the specific metabolic reprogramming in CIRI and the therapeutic impacts of AC. AC demonstrated significant clinical potential as an adjunct therapy to existing CIRI treatments.
Collapse
Affiliation(s)
- Di Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xian Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Feng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
24
|
Toshniwal AG, Lam G, Bott AJ, Cluntun AA, Skabelund R, Nam HJ, Wisidagama DR, Thummel CS, Rutter J. The fate of pyruvate dictates cell growth by modulating cellular redox potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614588. [PMID: 39386652 PMCID: PMC11463453 DOI: 10.1101/2024.09.23.614588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Pyruvate occupies a central node in carbohydrate metabolism such that how it is produced and consumed can optimize a cell for energy production or biosynthetic capacity. This has been primarily studied in proliferating cells, but observations from the post-mitotic Drosophila fat body led us to hypothesize that pyruvate fate might dictate the rapid cell growth observed in this organ during development. Indeed, we demonstrate that augmented mitochondrial pyruvate import prevented cell growth in fat body cells in vivo as well as in cultured mammalian hepatocytes and human hepatocyte-derived cells in vitro. This effect on cell size was caused by an increase in the NADH/NAD+ ratio, which rewired metabolism toward gluconeogenesis and suppressed the biomass-supporting glycolytic pathway. Amino acid synthesis was decreased, and the resulting loss of protein synthesis prevented cell growth. Surprisingly, this all occurred in the face of activated pro-growth signaling pathways, including mTORC1, Myc, and PI3K/Akt. These observations highlight the evolutionarily conserved role of pyruvate metabolism in setting the balance between energy extraction and biomass production in specialized post-mitotic cells.
Collapse
Affiliation(s)
- Ashish G Toshniwal
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Geanette Lam
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Ahmad A Cluntun
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
- Present address: Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Rachel Skabelund
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Dona R Wisidagama
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Lead Contact
| |
Collapse
|
25
|
Zhang Y, Ding N, Cao J, Zhang J, Liu J, Zhang C, Jiang L. Proteomics and Metabolic Characteristics of Boar Seminal Plasma Extracellular Vesicles Reveal Biomarker Candidates Related to Sperm Motility. J Proteome Res 2024; 23:3764-3779. [PMID: 39067049 PMCID: PMC11385425 DOI: 10.1021/acs.jproteome.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although seminal plasma extracellular vesicles (SPEVs) play important roles in sperm function, little is known about their metabolite compositions and roles in sperm motility. Here, we performed metabolomics and proteomics analysis of boar SPEVs with high or low sperm motility to investigate specific biomarkers affecting sperm motility. In total, 140 proteins and 32 metabolites were obtained through differentially expressed analysis and weighted gene coexpression network analysis (WGCNA). Seven differentially expressed proteins (DEPs) (ADIRF, EPS8L1, PRCP, CD81, PTPRD, CSK, LOC100736569) and six differentially expressed metabolites (DEMs) (adenosine, beclomethasone, 1,2-benzenedicarboxylic acid, urea, 1-methyl-l-histidine, and palmitic acid) were also identified in WGCNA significant modules. Joint pathway analysis revealed that three DEPs (GART, ADCY7, and NTPCR) and two DEMs (urea and adenosine) were involved in purine metabolism. Our results suggested that there was significant correlation between proteins and metabolites, such as IL4I1 and urea (r = 0.86). Furthermore, we detected the expression level of GART, ADCY7, and CDC42 in sperm of two groups, which further verified the experimental results. This study revealed that several proteins and metabolites in SPEVs play important roles in sperm motility. Our results offered new insights into the complex mechanism of sperm motility and identified potential biomarkers for male reproductive diseases.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Ning Ding
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jinkang Cao
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jing Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Chun Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
26
|
Laghezza A, Cerchia C, Genovese M, Montanari R, Capelli D, Wackerlig J, Simic S, Falbo E, Pecora L, Leuci R, Brunetti L, Piemontese L, Tortorella P, Biswas A, Singh RP, Tambe S, Sudeep CA, Pattnaik AK, Jayaprakash V, Paoli P, Lavecchia A, Loiodice F. A chemical modification of a peroxisome proliferator-activated receptor pan agonist produced a shift to a new dual alpha/gamma partial agonist endowed with mitochondrial pyruvate carrier inhibition and antidiabetic properties. Eur J Med Chem 2024; 275:116567. [PMID: 38865743 DOI: 10.1016/j.ejmech.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
New analogs of the PPAR pan agonist AL29-26 encompassed ligand (S)-7 showing potent activation of PPARα and -γ subtypes as a partial agonist. In vitro experiments and docking studies in the presence of PPAR antagonists were performed to help interpretation of biological data and investigate the main interactions at the binding sites. Further in vitro experiments showed that (S)-7 induced anti-steatotic effects and enhancement of the glucose uptake. This latter effect could be partially ascribed to a significant inhibition of the mitochondrial pyruvate carrier demonstrating that (S)-7 also acted through insulin-independent mechanisms. In vivo experiments showed that this compound reduced blood glucose and lipid levels in a diabetic mice model displaying no toxicity on bone, kidney, and liver. To our knowledge, this is the first example of dual PPARα/γ partial agonist showing these combined effects representing, therefore, the potential lead of new drugs for treatment of dyslipidemic type 2 diabetes.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Carmen Cerchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| | - Massimo Genovese
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Stefan Simic
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Emanuele Falbo
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| | - Lucia Pecora
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Rosalba Leuci
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Leonardo Brunetti
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Suhas Tambe
- Adgyl Lifescience Private Ltd., Bengaluru, 560058, India
| | - C A Sudeep
- Bioanalytical Section, Eurofins Advinus Biopharma Services India Pvt Ltd., Bengaluru, 560058, India
| | - Ashok Kumar Pattnaik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy.
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
27
|
Rua AJ, Mitchell W, Claypool SM, Alder NN, Alexandrescu AT. Perturbations in mitochondrial metabolism associated with defective cardiolipin biosynthesis: An in-organello real-time NMR study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599628. [PMID: 38948727 PMCID: PMC11212973 DOI: 10.1101/2024.06.18.599628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases including cancer, cardiopathy, neurodegeneration, and heritable pathologies such as Barth syndrome. Cardiolipin, the signature phospholipid of the mitochondrion promotes proper cristae morphology, bioenergetic functions, and directly affects metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in the tafazzin gene are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impact metabolic flux through the tricarboxylic acid cycle and associated pathways in yeast. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through about twelve metabolites. Several of the identified metabolites were specific to yeast pathways, including branched chain amino acids and fusel alcohol synthesis. Most metabolites showed similar kinetics amongst the different strains but mevalonate and α-ketoglutarate, as well as the NAD+/NADH couple measured in separate nuclear magnetic resonance experiments, showed pronounced differences. Taken together, the results show that cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
Collapse
Affiliation(s)
- Antonio J. Rua
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Wayne Mitchell
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven M. Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan N. Alder
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrei T. Alexandrescu
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
28
|
Wang H, Li B, Li A, An C, Liu S, Zhuang Z. Integrative Metabolomics, Enzymatic Activity, and Gene Expression Analysis Provide Insights into the Metabolic Profile Differences between the Slow-Twitch Muscle and Fast-Twitch Muscle of Pseudocaranx dentex. Int J Mol Sci 2024; 25:6131. [PMID: 38892319 PMCID: PMC11172523 DOI: 10.3390/ijms25116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Busu Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Changting An
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhimeng Zhuang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| |
Collapse
|
29
|
Yuan H, Xun H, Wang J, Wang J, Yao X, Tang F. Integrated Metabolomic and Transcriptomic Analysis Reveals the Underlying Antibacterial Mechanisms of the Phytonutrient Quercetin-Induced Fatty Acids Alteration in Staphylococcus aureus ATCC 27217. Molecules 2024; 29:2266. [PMID: 38792126 PMCID: PMC11123838 DOI: 10.3390/molecules29102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The utilization of natural products in food preservation represents a promising strategy for the dual benefits of controlling foodborne pathogens and enhancing the nutritional properties of foods. Among the phytonutrients, flavonoids have been shown to exert antibacterial effects by disrupting bacterial cell membrane functionality; however, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of quercetin on the cell membrane permeability of Staphylococcus aureus ATCC 27217. A combined metabolomic and transcriptomic approach was adopted to examine the regulatory mechanism of quercetin with respect to the fatty acid composition and associated genes. Kinetic analysis and molecular docking simulations were conducted to assess quercetin's inhibition of β-ketoacyl-acyl carrier protein reductase (FabG), a potential target in the bacterial fatty acid biosynthesis pathway. Metabolomic and transcriptomic results showed that quercetin increased the ratio of unsaturated to saturated fatty acids and the levels of membrane phospholipids. The bacteria reacted to quercetin-induced stress by attempting to enhance fatty acid biosynthesis; however, quercetin directly inhibited FabG activity, thereby disrupting bacterial fatty acid biosynthesis. These findings provide new insights into the mechanism of quercetin's effects on bacterial cell membranes and suggest potential applications for quercetin in bacterial inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China; (H.Y.); (H.X.); (J.W.); (J.W.); (X.Y.)
| |
Collapse
|
30
|
Tang L, Zhang J, Han J, Zhang D, Zhang H, Liu J, Li X. Molecular mechanism of circHIPK3 in mitochondrial function in septic acute kidney injury. ENVIRONMENTAL TOXICOLOGY 2024; 39:2596-2609. [PMID: 38205898 DOI: 10.1002/tox.24127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Cell senescence, glycolysis, and mitochondrial deficit jointly regulate the development of septic acute kidney injury (SAKI). This study aimed to explore the role of circular RNA HIPK3 (circHIPK3) in mitochondrial function in SAKI. The SAKI mouse model was established by Candida albicans infection, followed by Western blot assay, measurements of serum lactate, and adenosine triphosphate (ATP), 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1) staining and flow cytometry. Human renal tubular epithelial cells were treated with lipopolysaccharide to establish the SAKI cell model, followed by cell counting kit-8 assay, tests of hexokinase activity, lactate production, oxygen consumption rate, extracellular acidification rate, ATP, and JC-1 staining, and Western blot assay. The roles of mitochondrial pyruvate carrier 1 (MPC1) were validated by kidney function tests, hematoxylin and eosin staining, periodic acid-Schiff staining, and SA-β-gal staining. circHIPK3 downregulation reduced glycolysis and mitochondrial dysfunction both in vivo and in vitro through the microRNA (miR)-148b-3p/DNMT1/3a/Klotho axis. Inhibition of miR-148b-3p or Klotho increased glycolysis and mitochondrial dysfunction. Knockdown of MPC1 increased lactate content and decreased ATP levels and MMP both in vivo and in vitro. Collectively, circHIPK3, in concert with the miR-148b-3p/DNMT1/3a/Klotho axis, increased glycolysis, and inhibited the negative regulation of lactate production by MPC1, and aggravated mitochondrial dysfunction and cell senescence in SAKI.
Collapse
Affiliation(s)
- Lili Tang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jie Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jing Han
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Danhong Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Hongtao Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jun Liu
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Xiaoyue Li
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| |
Collapse
|
31
|
Han G, Su Y, Mao Q, Han Z, Sun J. Identification and functional characterization of annexin A2 in half-smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109492. [PMID: 38467321 DOI: 10.1016/j.fsi.2024.109492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Annexin A2 (AnxA2), belonging to the annexin family, plays a crucial role in immune responses. In this study, the cDNA of the AnxA2 gene was identified in half-smooth tongue sole, Cynoglossus semilaevis. The transcript of AnxA2 gene in C. semilaevis (CsAnxA2) showed broad tissue distribution, with the highest expression level observed in the gut. CsAnxA2 expression was significantly up-regulated in the intestine, spleen, and kidney tissues following exposure to Shewanella algae. Immunohistochemical staining revealed that CsAnxA2 was predominantly expressed in epithelial cells and significantly elevated after S. algae challenge. Subcellular localization showed that CsAnxA2 was primarily localized in the cytoplasmic compartment. Moreover, proinflammatory cytokines (IL-6, IL-8 and IL-1β) exhibited significant upregulation after CsAnxA2 was overexpressed in vivo. One hundred and fifty-eight CsAnxA2-interacting proteins were captured in the intestinal tissue, showing the top two normalized abundance observed for actin beta (ACTB) and protein S100-A10 (p11). Fifty-four high abundance CsAnxA2-interacting proteins (HIPs) were primary enriched in ten pathways, with the top three significantly enriched pathways being Salmonella infection, glycolysis/gluconeogenesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. These results provide valuable information for further investigation into the functional mechanism of AnxA2 in C. semilaevis.
Collapse
Affiliation(s)
- Guowei Han
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Tianjin Agricultural University, Tianjin, 300384, China; Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yufeng Su
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Qing Mao
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Zhuoran Han
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Tianjin Agricultural University, Tianjin, 300384, China; Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Tianjin Agricultural University, Tianjin, 300384, China; Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
32
|
Sun X, Li Z, Wang X, He J, Wu Y. Inorganic Phosphate as "Bioenergetic Messenger" Triggers M2-Type Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306062. [PMID: 38247159 PMCID: PMC10987138 DOI: 10.1002/advs.202306062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The effects of calcium phosphate (CaP) materials on macrophage polarization state vary with their physicochemical properties. The study aims to elucidate the impact of phosphate ion-mediated energy metabolism on M2 macrophage polarization and the corresponding regulatory mechanism. The phosphate ions released from CaP ceramic as bioenergetic factor is identified; its concentration is closely associated with the polarized state. After being taken up by the sodium-dependent phosphate transporter 1, extracellular phosphate ions produce energy via oxidative phosphorylation by facilitating tricarboxylic acid flux, thereby contributing to M2 macrophage polarization. Further mechanistic analysis reveals that the elevation of the bioenergetic basis can drive macrophage M2 polarization via the AMP-activated protein kinase-mammalian target of rapamycin (AMPK-mTOR) axis. Another regulatory effect is that of the adenosine triphosphate (ATP), a signaling molecule. Intracellular ATP is released into the extracellular space and degraded to adenosine, which serves as a signaling molecule through the A2b adenosine receptor to activate the cyclic adenosine monophosphate (cAMP) pathway, thereby promoting M2 macrophage polarization. Overall, these findings may transform the existing knowledge on cell metabolism and energy homeostasis from bystanders to pivotal factors guiding M2 macrophage polarization and have implications for the future design of biomimetic CaP scaffolds.
Collapse
Affiliation(s)
- Xiaoqing Sun
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| | - Zhiyu Li
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| | - Xiang Wang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| | - Jing He
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| | - Yao Wu
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| |
Collapse
|
33
|
Hossain MI, Lee JH, Gagné JP, Khan J, Poirier GG, King PH, Dawson VL, Dawson TM, Andrabi SA. Poly(ADP-ribose) mediates bioenergetic defects and redox imbalance in neurons following oxygen and glucose deprivation. FASEB J 2024; 38:e23556. [PMID: 38498348 DOI: 10.1096/fj.202302559r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
PARP-1 over-activation results in cell death via excessive PAR generation in different cell types, including neurons following brain ischemia. Glycolysis, mitochondrial function, and redox balance are key cellular processes altered in brain ischemia. Studies show that PAR generated after PARP-1 over-activation can bind hexokinase-1 (HK-1) and result in glycolytic defects and subsequent mitochondrial dysfunction. HK-1 is the neuronal hexokinase and catalyzes the first reaction of glycolysis, converting glucose to glucose-6-phosphate (G6P), a common substrate for glycolysis, and the pentose phosphate pathway (PPP). PPP is critical in maintaining NADPH and GSH levels via G6P dehydrogenase activity. Therefore, defects in HK-1 will not only decrease cellular bioenergetics but will also cause redox imbalance due to the depletion of GSH. In brain ischemia, whether PAR-mediated inhibition of HK-1 results in bioenergetics defects and redox imbalance is not known. We used oxygen-glucose deprivation (OGD) in mouse cortical neurons to mimic brain ischemia in neuronal cultures and observed that PARP-1 activation via PAR formation alters glycolysis, mitochondrial function, and redox homeostasis in neurons. We used pharmacological inhibition of PARP-1 and adenoviral-mediated overexpression of wild-type HK-1 (wtHK-1) and PAR-binding mutant HK-1 (pbmHK-1). Our data show that PAR inhibition or overexpression of HK-1 significantly improves glycolysis, mitochondrial function, redox homeostasis, and cell survival in mouse cortical neurons exposed to OGD. These results suggest that PAR binding and inhibition of HK-1 during OGD drive bioenergetic defects in neurons due to inhibition of glycolysis and impairment of mitochondrial function.
Collapse
Affiliation(s)
- M Iqbal Hossain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada
- Oncology Division, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Quebec, Canada
| | - Junaid Khan
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada
- Oncology Division, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Quebec, Canada
| | - Peter H King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
34
|
Liu X, Yan Q, Liu X, Wei W, Zou L, Zhao F, Zeng S, Yi L, Ding H, Zhao M, Chen J, Fan S. PKM2 induces mitophagy through the AMPK-mTOR pathway promoting CSFV proliferation. J Virol 2024; 98:e0175123. [PMID: 38319105 PMCID: PMC10949426 DOI: 10.1128/jvi.01751-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.
Collapse
Affiliation(s)
- Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Wenkang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| |
Collapse
|
35
|
D'Andrea L, Audano M, Pedretti S, Pelucchi S, Stringhi R, Imperato G, De Cesare G, Cambria C, Laporte MH, Zamboni N, Antonucci F, Di Luca M, Mitro N, Marcello E. Glucose-derived glutamate drives neuronal terminal differentiation in vitro. EMBO Rep 2024; 25:991-1021. [PMID: 38243137 PMCID: PMC10933318 DOI: 10.1038/s44319-023-00048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.
Collapse
Affiliation(s)
- Laura D'Andrea
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Ramona Stringhi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Gabriele Imperato
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Giulia De Cesare
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Via F.lli Cervi 93, Segrate, 20054 Milan and via Vanvitelli 32, Milan, Italy
| | - Marine H Laporte
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Via F.lli Cervi 93, Segrate, 20054 Milan and via Vanvitelli 32, Milan, Italy
- Institute of Neuroscience, IN-CNR, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy.
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
36
|
Rezaei M, Ghasemitarei M, Razzokov J, Yusupov M, Ghorbanalilu M, Ejtehadi MR. In silico study of the impact of oxidation on pyruvate transmission across the hVDAC1 protein channel. Arch Biochem Biophys 2024; 751:109835. [PMID: 38000492 DOI: 10.1016/j.abb.2023.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The overexpression of voltage dependent anion channels (VDACs), particularly VDAC1, in cancer cells compared to normal cells, plays a crucial role in cancer cell metabolism, apoptosis regulation, and energy homeostasis. In this study, we used molecular dynamics (MD) simulations to investigate the effect of a low level of VDAC1 oxidation (induced e.g., by cold atmospheric plasma (CAP)) on the pyruvate (Pyr) uptake by VDAC1. Inhibiting Pyr uptake through VDAC1 can suppress cancer cell proliferation. Our primary target was to study the translocation of Pyr across the native and oxidized forms of hVDAC1, the human VDAC1. Specifically, we employed MD simulations to analyze the hVDAC1 structure by modifying certain cysteine residues to cysteic acids and methionine residues to methionine sulfoxides, which allowed us to investigate the effect of oxidation. Our results showed that the free energy barrier for Pyr translocation through the native and oxidized channel was approximately 4.3 ± 0.7 kJ mol-1 and 10.8 ± 1.8 kJ mol-1, respectively. An increase in barrier results in a decrease in rate of Pyr permeation through the oxidized channel. Thus, our results indicate that low levels of CAP oxidation reduce Pyr translocation, resulting in decreased cancer cell proliferation. Therefore, low levels of oxidation are likely sufficient to treat cancer cells given the inhibition of Pyr uptake.
Collapse
Affiliation(s)
- Mahsa Rezaei
- Department of Physics, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, 14588-89694, Tehran, Iran; Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Belgium.
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan; School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan; Laboratory of Experimental Biophysics, Centre for Advanced Technologies, 100174, Tashkent, Uzbekistan; Department of Chemistry, Termez State University, 190111, Termez, Uzbekistan
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, 100000, Tashkent, Uzbekistan; Department of Information Technologies, Tashkent International University of Education, 100207, Tashkent, Uzbekistan; Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, 100125, Tashkent, Uzbekistan; Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, 100000, Tashkent, Uzbekistan
| | | | | |
Collapse
|
37
|
Sajad M, Zahoor I, Rashid F, Cerghet M, Rattan R, Giri S. Pyruvate Dehydrogenase-Dependent Metabolic Programming Affects the Oligodendrocyte Maturation and Remyelination. Mol Neurobiol 2024; 61:397-410. [PMID: 37620688 PMCID: PMC11984507 DOI: 10.1007/s12035-023-03546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
The metabolic needs of the premature/premyelinating oligodendrocytes (pre-OLs) and mature oligodendrocytes (OLs) are distinct. The metabolic control of oligodendrocyte maturation from the pre-OLs to the OLs is not fully understood. Here, we show that the terminal maturation and higher mitochondrial respiration in the OLs is an integrated process controlled through pyruvate dehydrogenase complex (Pdh). Combined bioenergetics and metabolic studies show that OLs show elevated mitochondrial respiration than the pre-OLs. Our signaling studies show that the increased mitochondrial respiration activity in the OLs is mediated by the activation of Pdh due to inhibition of the pyruvate dehydrogenase kinase-1 (Pdhk1) that phosphorylates and inhibits Pdh activity. Accordingly, when Pdhk1 is directly expressed in the pre-OLs, they fail to mature into the OLs. While Pdh converts pyruvate into the acetyl-CoA by its oxidative decarboxylation, our study shows that Pdh-dependent acetyl-CoA generation from pyruvate contributes to the acetylation of the bHLH family transcription factor, oligodendrocyte transcription factor 1 (Olig1) which is known to be involved in the OL maturation. Pdh inhibition via direct expression of Pdhk1 in the pre-OLs blocks the Olig1-acetylation and OL maturation. Using the cuprizone model of demyelination, we show that Pdh is deactivated during the demyelination phase, which is however reversed in the remyelination phase upon cuprizone withdrawal. In addition, Pdh activity status correlates with the Olig1-acetylation status in the cuprizone model. Hence, the Pdh metabolic node activation allows a robust mitochondrial respiration and activation of a molecular program necessary for the terminal maturation of oligodendrocytes. Our findings open a new dialogue in the developmental biology that links cellular development and metabolism. These findings have far-reaching implications in the development of therapies for a variety of demyelinating disorders including multiple sclerosis.
Collapse
Affiliation(s)
- M Sajad
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA.
| | - Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Ramandeep Rattan
- Gynecologic Oncology and Developmental Therapeutics Research Program, Henry Ford Health Hospital, Detroit, MI, 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA.
| |
Collapse
|
38
|
Mangrulkar SV, Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Anwer MK, Dailah HG, Mohan S, Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res 2023; 41:708-729. [PMID: 37162686 DOI: 10.1007/s12640-023-00647-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.
Collapse
Affiliation(s)
| | - Nitu L Wankhede
- Smt. Shantabai Patil College of Diploma in Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
39
|
Shi Y, Bhalla V. Kidney single-cell transcriptomes uncover SGLT2i-induced metabolic reprogramming via restoring glycolysis and fatty acid oxidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564836. [PMID: 37961186 PMCID: PMC10634955 DOI: 10.1101/2023.10.31.564836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Approximately 40% of individuals with chronic kidney disease have type 2 diabetes mellitus, and diabetic kidney disease is the leading cause of end-stage kidney disease worldwide. Inhibitors of sodium-glucose cotransporter 2 (SGLT2) have been demonstrated to be effective in glucose control, improving cardiovascular outcomes and the progression of kidney disease. However, the protective role of SGLT2 inhibition on kidney metabolism is not fully understood. To explore these mechanisms further, we conducted analysis of publicly available single-cell RNA sequencing data of db/db mice treated with an SGLT2 inhibitor(dapagliflozin) and accompanying controls. We found that proximal tubule cells exhibited impaired glycolysis and high fatty acid oxidation in diabetes compared with control mice. SGLT2 inhibition reversed this metabolic dysfunction by reducing glycolysis and its substrate accumulation. SGLT2 inhibition also upregulates high fatty oxidation without increasing the uptake of fatty acids and elongation, along with low lipotoxicity. Surprisingly, both SGLT2(+) and SGLT2(-) cells show gene consistent changes in expression of metabolic genes, consistent with a non-cell autonomous effect of dapagliflozin treatment. This study demonstrates the protective role of SGLT2 inhibition via restoring metabolic dysfunction.
Collapse
|
40
|
Moulistanos A, Nikolaou T, Sismanoglou S, Gkagkavouzis K, Karaiskou N, Antonopoulou E, Triantafyllidis A, Papakostas S. Investigating the role of genetic variation in vgll3 and six6 in the domestication of gilthead seabream ( Sparus aurata Linnaeus) and European seabass ( Dicentrarchus labrax Linnaeus). Ecol Evol 2023; 13:e10727. [PMID: 38020694 PMCID: PMC10654472 DOI: 10.1002/ece3.10727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Gene function conservation is crucial in molecular ecology, especially for key traits like growth and maturation in teleost fish. The vgll3 and six6 genes are known to influence age-at-maturity in Atlantic salmon, but their impact on other fish species is poorly understood. Here, we investigated the association of vgll3 and six6 in the domestication of gilthead seabream and European seabass, both undergoing selective breeding for growth-related traits in the Mediterranean. We analysed two different sets of samples using two different genotyping approaches. The first dataset comprised farmed and wild populations from Greece, genotyped for SNPs within the two genes ('gene-level genotyping'). The second dataset examined 300-600 k SNPs located in the chromosomes of the two genes, derived from a meta-analysis of a Pool-Seq experiment involving farmed and wild populations distributed widely across the Mediterranean ('chromosome-level genotyping'). The gene-level analysis revealed a statistically significant allele frequency differences between farmed and wild populations on both genes in each species. This finding was partially supported by the chromosome-level analysis, identifying highly differentiated regions may be involved in the domestication process at varying distances from the candidate genes. Noteworthy genomic features were found, such as a CpG island in gilthead seabream and novel candidate genes in European seabass, warranting further investigation. These findings support a putative role of vgll3 and six6 in the maturation and growth of gilthead seabream and European seabass, emphasizing the need for further research on their conserved function.
Collapse
Affiliation(s)
- Aristotelis Moulistanos
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres)Center for Interdisciplinary Research and Innovation (CIRI‐AUTH), Balkan CenterThessalonikiGreece
| | - Theopisti Nikolaou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
| | - Smaragda Sismanoglou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
| | - Konstantinos Gkagkavouzis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres)Center for Interdisciplinary Research and Innovation (CIRI‐AUTH), Balkan CenterThessalonikiGreece
| | - Nikoleta Karaiskou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres)Center for Interdisciplinary Research and Innovation (CIRI‐AUTH), Balkan CenterThessalonikiGreece
| | - Efthimia Antonopoulou
- Department of Zoology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Alexandros Triantafyllidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres)Center for Interdisciplinary Research and Innovation (CIRI‐AUTH), Balkan CenterThessalonikiGreece
| | - Spiros Papakostas
- Department of Science and TechnologyInternational Hellenic UniversityThessalonikiGreece
| |
Collapse
|
41
|
Luo M, Guan JT, Yu X, Ding Y, Mei XX, Pan X, Fan YS, Xu ZH. Metabolic profiles in plasma of patients with herpes labialis based on GC-MS. J Cosmet Dermatol 2023; 22:3152-3158. [PMID: 37231973 DOI: 10.1111/jocd.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE This study aims to compare the plasma metabolic profiles of patients with herpes labialis with healthy controls and identify the biomarkers of herpes labialis. SUBJECTS AND METHODS We collected 18 patients with herpes labialis and 20 healthy individuals. Plasma samples from both groups were analyzed using gas chromatography-mass spectrometry (GC-MS). RESULTS According to the principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), we found that metabolic profiles had changed in patients with herpes labialis compared to the controls. By further selecting the different metabolites according to the variable importance in the projection (VIP) and p valve of t-tests, we found that acetic acid, pyroglutamic acid, alanine, ethanedioic acid, cyclohexaneacetic acid, pyruvic acid, d-mannose, phosphoric acid, l-amphetamine, and citric acid were decreased in patients with herpes labialis, while sedoheptulose and ethylamine were increased. Pathway analysis showed that herpes labialis may affect the amino acid and energy metabolism. CONCLUSIONS Our findings may contribute to elucidating the metabolic basis of herpes labialis and provide a new perspective for further research on the "Shang-Huo" state in traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Mengxian Luo
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jin-Tao Guan
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiu Yu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunfei Ding
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xian-Xian Mei
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoping Pan
- Department of Physiology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong-Sheng Fan
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng-Hao Xu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
42
|
Arponen O, Wodtke P, Gallagher FA, Woitek R. Hyperpolarised 13C-MRI using 13C-pyruvate in breast cancer: A review. Eur J Radiol 2023; 167:111058. [PMID: 37666071 DOI: 10.1016/j.ejrad.2023.111058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Tumour metabolism can be imaged with a novel imaging technique termed hyperpolarised carbon-13 (13C)-MRI using probes, i.e., endogenously found molecules that are labeled with 13C. Hyperpolarisation of the 13C label increases the sensitivity to a level that allows dynamic imaging of the distribution and metabolism of the probes. Dynamic imaging of [1-13C]pyruvate metabolism is of particular biological interest in cancer because of the Warburg effect resulting in the intratumoural accumulation of [1-13C]pyruvate and conversion to [1-13C]lactate. Numerous preclinical studies in breast cancer and other tumours have shown that hyperpolarised 13C-pyruvate has potential for metabolic phenotyping and response assessment at earlier timepoints than the current clinical imaging techniques allow. The clinical feasibility of hyperpolarised 13C-MRI after the injection of pyruvate in patients with breast cancer has now been demonstrated, with increased 13C-label exchange between pyruvate and lactate present in higher grade tumours with associated increased expression of the monocarboxylate transporter 1 (MCT1), the transmembrane transporter mediating intracellular pyruvate uptake, and lactate dehydrogenase (LDH) as the enzyme catalysing the conversion of pyruvate to lactate. Furthermore, a study in patients with breast cancer undergoing neoadjuvant chemotherapy suggested that early changes in 13C-label exchange can distinguish between patients who reach pathologic complete response (pCR) and those who do not. This review summarises the current literature on preclinical and clinical research on hyperpolarised 13C-MRI with [1-13C]-pyruvate in breast cancer imaging.
Collapse
Affiliation(s)
- Otso Arponen
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom.
| | - Pascal Wodtke
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Center, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Center, Cambridge, United Kingdom
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Center, Cambridge, United Kingdom; Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Danube Private University, Krems, Austria
| |
Collapse
|
43
|
Hou Y, He Y, Wang J, Zhou Y, Ma B, Li X, Shi L, Zhang Q. Comprehensive metabolomics profiling of seminal plasma in asthenozoospermia caused by different etiologies. Clin Chim Acta 2023; 548:117530. [PMID: 37652159 DOI: 10.1016/j.cca.2023.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Asthenozoospermia (AZS) is a disease characterized by decreased sperm motility induced by multiple etiologies, and the pathological mechanisms of various AZS are unclear. We simultaneously analyzed the metabolic profiling of four representative AZS to provide new insights into the etiologies of AZS. METHOD Seminal plasma samples were collected from healthy control (HC; n = 30) and four AZS induced by varicocele (VA, n = 30), obesity (OA, n = 22), reproductive system infections (RA; n = 17) and idiopathic (IA, n = 30), respectively, and were analyzed using gas chromatography-mass spectrometry. Disturbed metabolites and metabolic pathways were compared between AZS and HC, as well as IA and the other three AZS. RESULTS A total of 40 different metabolites were identified in the seminal plasma of AZS and HC, of which lactic acid, fructose, citric acid, glutamine and pyruvic acid metabolic abnormalities associated with all the AZS groups, while each AZS group had unique metabolic changes. RA was significantly separated from the other three AZS, and metabolites such as cholesterol, octadecanoic acid and serine mainly contributed to the separation. CONCLUSION The comprehensive metabolomic analysis and comparison of four various AZS provided evidence and clues for the mechanism mining, which will benefit future etiology, diagnosis and treatment of AZS.
Collapse
Affiliation(s)
- Yuyang Hou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yuanping He
- School of Economics & Management, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jingjie Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yanfen Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liang Shi
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
44
|
Findlay S, Nair R, Merrill RA, Kaiser Z, Cajelot A, Aryanpour Z, Heath J, St-Louis C, Papadopoli D, Topisirovic I, St-Pierre J, Sebag M, Kesarwala AH, Hulea L, Taylor EB, Shanmugam M, Orthwein A. The mitochondrial pyruvate carrier complex potentiates the efficacy of proteasome inhibitors in multiple myeloma. Blood Adv 2023; 7:3485-3500. [PMID: 36920785 PMCID: PMC10362273 DOI: 10.1182/bloodadvances.2022008345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy that emerges from antibody-producing plasma B cells. Proteasome inhibitors, including the US Food and Drug Administration-approved bortezomib (BTZ) and carfilzomib (CFZ), are frequently used for the treatment of patients with MM. Nevertheless, a significant proportion of patients with MM are refractory or develop resistance to this class of inhibitors, which represents a significant challenge in the clinic. Thus, identifying factors that determine the potency of proteasome inhibitors in MM is of paramount importance to bolster their efficacy in the clinic. Using genome-wide CRISPR-based screening, we identified a subunit of the mitochondrial pyruvate carrier (MPC) complex, MPC1, as a common modulator of BTZ response in 2 distinct human MM cell lines in vitro. We noticed that CRISPR-mediated deletion or pharmacological inhibition of the MPC complex enhanced BTZ/CFZ-induced MM cell death with minimal impact on cell cycle progression. In fact, targeting the MPC complex compromised the bioenergetic capacity of MM cells, which is accompanied by reduced proteasomal activity, thereby exacerbating BTZ-induced cytotoxicity in vitro. Importantly, we observed that the RNA expression levels of several regulators of pyruvate metabolism were altered in advanced stages of MM for which they correlated with poor patient prognosis. Collectively, this study highlights the importance of the MPC complex for the survival of MM cells and their responses to proteasome inhibitors. These findings establish mitochondrial pyruvate metabolism as a potential target for the treatment of MM and an unappreciated strategy to increase the efficacy of proteasome inhibitors in the clinic.
Collapse
Affiliation(s)
- Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Ronald A. Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Zafir Kaiser
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Alexandre Cajelot
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Polytech Nice-Sophia, Université Côte d’Azur, Sophia Antipolis, Nice, France
| | - Zahra Aryanpour
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
| | - John Heath
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Catherine St-Louis
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - David Papadopoli
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Michael Sebag
- The Research Institute of the McGill University Health Center, Montreal, Canada
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
- Département de Biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
- Département de Médecine, Université de Montréal, Montreal, Canada
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
45
|
da Fonseca Junior AM, Ispada J, Dos Santos EC, de Lima CB, da Silva JVA, Paulson E, Goszczynski DE, Goissis MD, Ross PJ, Milazzotto MP. Adaptative response to changes in pyruvate metabolism on the epigenetic landscapes and transcriptomics of bovine embryos. Sci Rep 2023; 13:11504. [PMID: 37460590 PMCID: PMC10352246 DOI: 10.1038/s41598-023-38686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The epigenetic reprogramming that occurs during the earliest stages of embryonic development has been described as crucial for the initial events of cell specification and differentiation. Recently, the metabolic status of the embryo has gained attention as one of the main factors coordinating epigenetic events. In this work, we investigate the link between pyruvate metabolism and epigenetic regulation by culturing bovine embryos from day 5 in the presence of dichloroacetate (DCA), a pyruvate analog that increases the pyruvate to acetyl-CoA conversion, and iodoacetate (IA), which inhibits the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to glycolysis inhibition. After 8 h of incubation, both DCA and IA-derived embryos presented higher mitochondrial membrane potential. Nevertheless, in both cases, lower levels of acetyl-CoA, ATP-citrate lyase and mitochondrial membrane potential were found in blastocysts, suggesting an adaptative metabolic response, especially in the DCA group. The metabolic alteration found in blastocysts led to changes in the global pattern of H3K9 and H3K27 acetylation and H3K27 trimethylation. Transcriptome analysis revealed that such alterations resulted in molecular differences mainly associated to metabolic processes, establishment of epigenetic marks, control of gene expression and cell cycle. The latter was further confirmed by the alteration of total cell number and cell differentiation in both groups when compared to the control. These results corroborate previous evidence of the relationship between the energy metabolism and the epigenetic reprogramming in preimplantation bovine embryos, reinforcing that the culture system is decisive for precise epigenetic reprogramming, with consequences for the molecular control and differentiation of cells.
Collapse
Affiliation(s)
- Aldcejam Martins da Fonseca Junior
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Jessica Ispada
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Cristina Dos Santos
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | | | - João Vitor Alcantara da Silva
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Paulson
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | | | | | - Pablo Juan Ross
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | - Marcella Pecora Milazzotto
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil.
| |
Collapse
|
46
|
Dwivedi SK, Arachchige DL, Olowolagba A, Mahmoud M, Cunnien J, Tucker DR, Fritz D, Werner T, Luck RL, Liu H. Thiophene-based organic dye with large Stokes shift and deep red emission for live cell NAD(P)H detection under varying chemical stimuli. J Mater Chem B 2023; 11:6296-6307. [PMID: 37249441 PMCID: PMC10524713 DOI: 10.1039/d3tb00645j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report a novel method for synthesizing red and deep red cyanine dyes with large Stokes shifts, probes A and B, for live cell NAD(P)H detection. The probes were prepared using thiophene-based organic dyes featuring a π-conjugated bridge of thiophene and 3,4-ethylenedioxythiophene units linking the 1-methylquinolinium acceptor and formyl acceptor, respectively. These probes display weak absorption peaks at 315 nm (A) and 334 nm (B) and negligible fluorescence in the absence of NADH. However, upon the presence of NADH, new absorption and fluorescence peaks appear at 477 nm and 619 nm for probe A and at 486 nm and 576 nm for probe B, respectively. This is due to the NADH-facilitated reduction of the 1-methylquinolinium unit into 1-methyl-1,4-dihydroquinoline, which then acts as the electron donor for the probes, leading to the formation of well-defined electron donor-acceptor dye systems. Probe A has a large Stokes shift of 144 nm, which allows for better separation between the excitation and emission spectra, reducing spectral overlap and improving the accuracy of fluorescence measurements. The probes are highly selective for NAD(P)H, water-soluble, biocompatible, and easily permeable to cells. They are also photostable and were successfully used to monitor changes in NADH concentration in live cells during glycolysis in the presence of glucose, lactate, and pyruvate, treatment of FCCP and cancer drug cisplatin, and under hypoxia triggered by CoCl2. Furthermore, the probes were able to image NAD(P)H in Drosophila melanogaster larvae. Notably, cisplatin treatment increased the NAD(P)H concentration in A459 cells over time. Overall, this work presents a significant advancement in the field of live cell imaging by providing a simple and cost-effective method for detecting changes in NAD(P)H concentration under varying chemical stimuli.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Adenike Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Jenna Cunnien
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Delaney Fritz
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
47
|
Cao G, Yang S, Wang H, Zhang R, Wu Y, Liu J, Qiu K, Dong Y, Yue M. Effects of Bacillus licheniformis on the Growth Performance, Antioxidant Capacity, Ileal Morphology, Intestinal Short Chain Fatty Acids, and Colonic Microflora in Piglets Challenged with Lipopolysaccharide. Animals (Basel) 2023; 13:2172. [PMID: 37443970 DOI: 10.3390/ani13132172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the present study was to investigate the effects of Bacillus licheniformis (BL) on the growth performance, antioxidant capacity, ileal morphology, intestinal fecal short-chain fatty acids, and microflora of weaned piglets challenged with lipopolysaccharide (LPS). Piglets were assigned into three groups: basal diet (Con), a basal diet with added 109 CFU B. licheniformis/kg (BLl), and a basal diet with added 1010 CFU B. licheniformis/kg (BLh). On day 28, BLh piglets were intraperitoneally injected with LPS (CBL) and sterilized saline water (BL), Con piglets were injected with LPS (LPS) and sterilized saline water (Con), with the injections being administered for three consecutive days. The average daily gain significantly increased from day 1 to day 28 and the feed: gain ratio decreased with BL supplementation compared with the Con group. Supplementation with BLl and BLh reduced the diarrhea rate in piglets. Serum catalase activity increased and malondialdehyde concentration decreased in the CBL treatment group compared with the LPS treatment group. Both BL and CBL treatments increased the ileal villus length/crypt depth ratio compared with Con and LPS treatments. BL administration significantly increased colonic propionic and isobutyric acid concentrations compared with Con treatment. Both BL and CBL piglets had significantly increased fecal acetic, propionic, and butyric acid levels compared with LPS piglets. Analysis of the colonic microbial metagenome showed that Prevotella species were the predominant bacteria in piglets treated with BL and CBL. The CBL-treated piglets had higher scores for lysine biosynthesis, arginine biosynthesis, sulfur relay system, and histidine metabolism. BL-treated piglets had higher scores for glycosaminoglycan biosynthesis-keratan sulfate, oxidative phosphorylation, and pyruvate and carbon metabolism.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
- College of Standardisation, China Jiliang Universtiy, Hangzhou 310058, China
| | - Shenglan Yang
- College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Huixian Wang
- College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yanping Wu
- College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou 313307, China
| | - Kaifan Qiu
- College of Standardisation, China Jiliang Universtiy, Hangzhou 310058, China
| | - Yingkun Dong
- College of Standardisation, China Jiliang Universtiy, Hangzhou 310058, China
| | - Min Yue
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Colca JR, Tanis SP, Kletzien RF, Finck BN. Insulin sensitizers in 2023: lessons learned and new avenues for investigation. Expert Opin Investig Drugs 2023; 32:803-811. [PMID: 37755339 DOI: 10.1080/13543784.2023.2263369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION 'Insulin sensitizers' derived discoveries of the Takeda Company in 1970s. Pioglitazone remains the best in class with beneficial pleiotropic pharmacology, although use is limited by tolerability issues. Various attempts to expand out of this class assumed the primary molecular target was the transcription factor, PPARγ. Findings over the last 10 years have identified new targets of thiazolidinediones (TZDs) that should alter the drug discovery paradigm. AREAS COVERED We review structural classes of experimental insulin sensitizer drugs, some of which have attained limited approval in some markets. The TZD pioglitazone, originally approved in 1999 as a secondary treatment for type 2 diabetes, has demonstrated benefit in apparently diverse spectrums of disease from cardiovascular to neurological issues. New TZDs modulate a newly identified mitochondrial target (the mitochondrial pyruvate carrier) to reprogram metabolism and produce insulin sensitizing pharmacology devoid of tolerability issues. EXPERT OPINION Greater understanding of the mechanism of action of insulin sensitizing drugs can expand the rationale for the fields of treatment and potential for treatment combinations. This understanding can facilitate the registration and broader use of agents with that impact the pathophysiology that underlies chronic metabolic diseases as well as host responses to environmental insults including pathogens, insulin sensitizer, MPC, mitochondrial target, metabolic reprogramming, chronic and infectious disease.
Collapse
Affiliation(s)
| | | | | | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St Louis, Euclid Ave, MO, USA
| |
Collapse
|
49
|
Wong KC, Jayapalan JJ, Subramanian P, Ismail MN, Abdul-Rahman PS. Label-free quantitative mass spectrometry analysis of the circadian proteome of Drosophila melanogaster lethal giant larvae mutants reveals potential therapeutic effects of melatonin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22008. [PMID: 36915983 DOI: 10.1002/arch.22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 05/16/2023]
Abstract
Mutation in the Drosophila melanogaster lethal giant larvae (lgl), a tumor suppressor gene with a well-established role in cellular polarity, is known to results in massive cellular proliferation and neoplastic outgrowths. Although the tumorigenic properties of lgl mutant have been previously studied, however, little is known about its consequences on the proteome. In this study, mass spectrometry-based label-free quantitative proteomics was employed to investigate the changes in the head and intestinal tissues proteins of Drosophila melanogaster, due to lgl mutation and following treatment with melatonin. Additionally, to uncover the time-influenced variations in the proteome during tumorigenesis and melatonin treatment, the rhythmic expression of proteins was also investigated at 6-h intervals within 24-h clock. Together, the present study has identified 434 proteins of altered expressions (p < 0.05 and fold change ±1.5) in the tissues of flies in response to lgl mutation as well as posttreatment with melatonin. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed proteins revealed that lgl mutation had significantly affected the biological functions, including metabolism, and protein synthesis and degradation, in flies' tissues. Besides, melatonin had beneficially mitigated the deleterious effects of lgl mutation by reversing the alterations in protein expression closer to baseline levels. Further, changes in protein expression in the tissues due to lgl mutation and melatonin treatment were found rhythmically orchestrated. Together, these findings provide novel insight into the pathways involved in lgl-induced tumorigenesis as well as demonstrated the efficacy of melatonin as a potential anticancer agent. Data are available via ProteomeXchange with identifier PXD033191.
Collapse
Affiliation(s)
- Kar-Cheng Wong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jaime J Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Xia Y, Yang HC, Zhang K, Tian JJ, Li ZF, Yu EM, Li HY, Gong WB, Xie WP, Wang GJ, Xie J. Berberine regulates glucose metabolism in largemouth bass by modulating intestinal microbiota. Front Physiol 2023; 14:1147001. [PMID: 36969581 PMCID: PMC10033662 DOI: 10.3389/fphys.2023.1147001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
This study examined the role of intestinal microbiota in berberine (BBR)-mediated glucose (GLU) metabolism regulation in largemouth bass. Four groups of largemouth bass (133.7 ± 1.43 g) were fed with control diet, BBR (1 g/kg feed) supplemented diet, antibiotic (ATB, 0.9 g/kg feed) supplemented diet and BBR + ATB (1g/kg feed +0.9 g/kg feed) supplemented diet for 50 days. BBR improved growth, decreased the hepatosomatic and visceral weight indices, significantly downregulated the serum total cholesterol and GLU levels, and significantly upregulated the serum total bile acid (TBA) levels. The hepatic hexokinase, pyruvate kinase, GLU-6-phosphatase and glutamic oxalacetic transaminase activities in the largemouth bass were significantly upregulated when compared with those in the control group. The ATB group exhibited significantly decreased final bodyweight, weight gain, specific growth rates and serum TBA levels, and significantly increased hepatosomatic and viscera weight indices, hepatic phosphoenolpyruvate carboxykinase, phosphofructokinase, and pyruvate carboxylase activities, and serum GLU levels. Meanwhile, the BBR + ATB group exhibited significantly decreased final weight, weight gain and specific growth rates, and TBA levels and significantly increased hepatosomatic and viscera weight indices and GLU levels. High-throughput sequencing revealed that compared with those in the control group, the Chao one index and Bacteroidota contents were significantly upregulated and the Firmicutes contents were downregulated in the BBR group. Additionally, the Shannon and Simpson indices and Bacteroidota levels were significantly downregulated, whereas the Firmicutes levels were significantly upregulated in ATB and BBR + ATB groups. The results of in-vitro culture of intestinal microbiota revealed that BBR significantly increased the number of culturable bacteria. The characteristic bacterium in the BBR group was Enterobacter cloacae. Biochemical identification analysis revealed that E. cloacae metabolizes carbohydrates. The size and degree of vacuolation of the hepatocytes in the control, ATB, and ATB + BBR groups were higher than those in the BBR group. Additionally, BBR decreased the number of nuclei at the edges and the distribution of lipids in the liver tissue. Collectively, BBR reduced the blood GLU level and improved GLU metabolism in largemouth bass. Comparative analysis of experiments with ATB and BBR supplementation revealed that BBR regulated GLU metabolism in largemouth bass by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Hui-Ci Yang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Jing-Jing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Zhi-Fei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Er-Meng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Hong-Yan Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Wang-Bao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Wen-Ping Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Guang-Jun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- *Correspondence: Guang-Jun Wang, ; Jun Xie,
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- *Correspondence: Guang-Jun Wang, ; Jun Xie,
| |
Collapse
|