1
|
Ge S, Wang C, You X, He H, Zhang B, Jia T, Cai X, Sang S, Xu T, Deng S. Imaging and Monitoring HER2 Expression in Tumors during HER2 Antibody-Drug Conjugate Therapy Utilizing a Radiolabeled Site-Specific Single-Domain Antibody Probe: 68Ga-NODAGA-SNA004-GSC. J Med Chem 2024. [PMID: 39077778 DOI: 10.1021/acs.jmedchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The overexpression of HER2 is pivotal in the initiation and progression of breast cancer. Developing HER2-targeted radiotracers is crucial for noninvasive assessment of HER2 expression, patient selection for HER2-targeted therapy, monitoring treatment response, and identifying resistance. Here, we reported a nonsite-specific coupled radiotracer, 68Ga-NOTA-SNA004-His6, and a site-specific coupled radiotracer, 68Ga-NODAGA-SNA004-GSC, based on a novel HER2 nanobody, SNA004. Both radiotracers exhibited high affinity, specific targeting, and rapid clearance in vitro and in vivo. Additionally, these tracers and trastuzumab showed noncompetitive binding to HER2. Compared to 68Ga-NOTA-SNA004-His6, 68Ga-NODAGA-SNA004-GSC demonstrated significantly reduced renal and liver uptake. PET/CT imaging with 68Ga-NODAGA-SNA004-GSC sensitively detected the responsiveness of various tumor models to trastuzumab and its antibody-drug conjugates (ADCs). Overall, the site-specific coupled radiotracer 68Ga-NODAGA-SNA004-GSC offered significant advantages in biodistribution and signal-to-noise ratio, making it a valuable tool for monitoring HER2 expression levels before, during, and after trastuzumab and ADC treatment.
Collapse
Affiliation(s)
- Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215006, China
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang 621099, China
| | - Chao Wang
- Smart-Nuclide Biotech, No. 218 Xing-Hu Road, Suzhou, 215125, China
| | - Xuyang You
- Department of Nuclear Medicine, Suzhou Ninth People's Hospital, Suzhou 215006, China
| | - Huihui He
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaowei Cai
- Department of Nuclear Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223812, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tao Xu
- Smart-Nuclide Biotech, No. 218 Xing-Hu Road, Suzhou, 215125, China
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang 621099, China
| |
Collapse
|
2
|
Zhang Q, Zhang N, Xiao H, Wang C, He L. Small Antibodies with Big Applications: Nanobody-Based Cancer Diagnostics and Therapeutics. Cancers (Basel) 2023; 15:5639. [PMID: 38067344 PMCID: PMC10705070 DOI: 10.3390/cancers15235639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/13/2025] Open
Abstract
Monoclonal antibodies (mAbs) have exhibited substantial potential as targeted therapeutics in cancer treatment due to their precise antigen-binding specificity. Despite their success in tumor-targeted therapies, their effectiveness is hindered by their large size and limited tissue permeability. Camelid-derived single-domain antibodies, also known as nanobodies, represent the smallest naturally occurring antibody fragments. Nanobodies offer distinct advantages over traditional mAbs, including their smaller size, high stability, lower manufacturing costs, and deeper tissue penetration capabilities. They have demonstrated significant roles as both diagnostic and therapeutic tools in cancer research and are also considered as the next generation of antibody drugs. In this review, our objective is to provide readers with insights into the development and various applications of nanobodies in the field of cancer treatment, along with an exploration of the challenges and strategies for their prospective clinical trials.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Nan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China;
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Chen Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
3
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
4
|
Karaman E, Eyüpoğlu AE, Mahmoudi Azar L, Uysal S. Large-Scale Production of Anti-RNase A VHH Expressed in pyrG Auxotrophic Aspergillus oryzae. Curr Issues Mol Biol 2023; 45:4778-4795. [PMID: 37367053 DOI: 10.3390/cimb45060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Nanobodies, also referred to as VHH antibodies, are the smallest fragments of naturally produced camelid antibodies and are ideal affinity reagents due to their remarkable properties. They are considered an alternative to monoclonal antibodies (mAbs) with potential utility in imaging, diagnostic, and other biotechnological applications given the difficulties associated with mAb expression. Aspergillus oryzae (A. oryzae) is a potential system for the large-scale expression and production of functional VHH antibodies that can be used to meet the demand for affinity reagents. In this study, anti-RNase A VHH was expressed under the control of the glucoamylase promoter in pyrG auxotrophic A. oryzae grown in a fermenter. The feature of pyrG auxotrophy, selected for the construction of a stable and efficient platform, was established using homologous recombination. Pull-down assay, size exclusion chromatography, and surface plasmon resonance were used to confirm the binding specificity of anti-RNase A VHH to RNase A. The affinity of anti-RNase A VHH was nearly 18.3-fold higher (1.9 nM) when expressed in pyrG auxotrophic A. oryzae rather than in Escherichia coli. This demonstrates that pyrG auxotrophic A. oryzae is a practical, industrially scalable, and promising biotechnological platform for the large-scale production of functional VHH antibodies with high binding activity.
Collapse
Affiliation(s)
- Elif Karaman
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820 Istanbul, Turkey
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Alp Ertunga Eyüpoğlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34450 Istanbul, Turkey
| | - Lena Mahmoudi Azar
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820 Istanbul, Turkey
| | - Serdar Uysal
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820 Istanbul, Turkey
| |
Collapse
|
5
|
Ramirez DM, Whitesell JD, Bhagwat N, Thomas TL, Ajay AD, Nawaby A, Delatour B, Bay S, LaFaye P, Knox JE, Harris JA, Meeks JP, Diamond MI. Endogenous pathology in tauopathy mice progresses via brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541792. [PMID: 37293074 PMCID: PMC10245958 DOI: 10.1101/2023.05.23.541792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neurodegenerative tauopathies are hypothesized to propagate via brain networks. This is uncertain because we have lacked precise network resolution of pathology. We therefore developed whole-brain staining methods with anti-p-tau nanobodies and imaged in 3D PS19 tauopathy mice, which have pan-neuronal expression of full-length human tau containing the P301S mutation. We analyzed patterns of p-tau deposition across established brain networks at multiple ages, testing the relationship between structural connectivity and patterns of progressive pathology. We identified core regions with early tau deposition, and used network propagation modeling to determine the link between tau pathology and connectivity strength. We discovered a bias towards retrograde network-based propagation of tau. This novel approach establishes a fundamental role for brain networks in tau propagation, with implications for human disease.
Collapse
Affiliation(s)
- Denise M.O. Ramirez
- Department of Neurology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Jennifer D. Whitesell
- Allen Institute for Brain Science; Seattle, WA, USA
- Cajal Neuroscience; Seattle, WA, USA
| | - Nikhil Bhagwat
- Allen Institute for Brain Science; Seattle, WA, USA
- McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute-Hospital), McGill University; Montreal, Quebec, Canada
| | - Talitha L. Thomas
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Apoorva D. Ajay
- Department of Neurology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Ariana Nawaby
- Department of Neurology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Benoît Delatour
- Paris Brain Institute (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière; Paris, France
| | - Sylvie Bay
- Unité de Chimie des Biomolécules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523; Paris, France
| | - Pierre LaFaye
- Antibody Engineering Platform, Institut Pasteur, Université Paris Cité, CNRS UMR 3528; Paris, France
| | | | | | - Julian P. Meeks
- Department of Neuroscience, University of Rochester Medical School; Rochester, NY, USA
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| |
Collapse
|
6
|
Arnould B, Quillin AL, Heemstra JM. Tracking the Message: Applying Single Molecule Localization Microscopy to Cellular RNA Imaging. Chembiochem 2023; 24:e202300049. [PMID: 36857087 PMCID: PMC10192057 DOI: 10.1002/cbic.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
RNA function is increasingly appreciated to be more complex than merely communicating between DNA sequence and protein structure. RNA localization has emerged as a key contributor to the intricate roles RNA plays in the cell, and the link between dysregulated spatiotemporal localization and disease warrants an exploration beyond sequence and structure. However, the tools needed to visualize RNA with precise resolution are lacking in comparison to methods available for studying proteins. In the past decade, many techniques have been developed for imaging RNA, and in parallel super resolution and single-molecule techniques have enabled imaging of single molecules in cells. Of these methods, single molecule localization microscopy (SMLM) has shown significant promise for probing RNA localization. In this review, we highlight current approaches that allow super resolution imaging of specific RNA transcripts and summarize challenges and future opportunities for developing innovative RNA labeling methods that leverage the power of SMLM.
Collapse
Affiliation(s)
- Benoît Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexandria L Quillin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
7
|
Guo X, Li C, Jia X, Qu Y, Li M, Cao C, Zhang Z, Qu Q, Luo S, Tang J, Liu H, Hu Z, Tian J. NIR-II fluorescence imaging-guided colorectal cancer surgery targeting CEACAM5 by a nanobody. EBioMedicine 2023; 89:104476. [PMID: 36801616 PMCID: PMC9972495 DOI: 10.1016/j.ebiom.2023.104476] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Surgery is the cornerstone of colorectal cancer (CRC) treatment, yet complete removal of the tumour remains a challenge. The second near-infrared window (NIR-II, 1000-1700 nm) fluorescent molecular imaging is a novel technique, which has broad application prospects in tumour surgical navigation. We aimed to evaluate the ability of CEACAM5-targeted probe for CRC recognition and the value of NIR-II imaging-guided CRC resection. METHODS We constructed the probe 2D5-IRDye800CW by conjugated anti-CEACAM5 nanobody (2D5) with near-infrared fluorescent dye IRDye800CW. The performance and benefits of 2D5-IRDye800CW at NIR-II were confirmed by imaging experiments in mouse vascular and capillary phantom. Then mouse colorectal cancer subcutaneous tumour model (n = 15), orthotopic model (n = 15), and peritoneal metastasis model (n = 10) were constructed to investigate biodistribution of probe and imaging differences between NIR-I and NIR-II in vivo, and then tumour resection was guided by NIR-II fluorescence. Fresh human colorectal cancer specimens were incubated with 2D5-IRDye800CW to verify its specific targeting ability. FINDINGS 2D5-IRDye800CW had an NIR-II fluorescence signal extending to 1600 nm and bound specifically to CEACAM5 with an affinity of 2.29 nM. In vivo imaging, 2D5-IRDye800CW accumulated rapidly in tumour (15 min) and could specifically identify orthotopic colorectal cancer and peritoneal metastases. All tumours were resected under NIR-II fluorescence guidance, even smaller than 2 mm tumours were detected, and NIR-II had a higher tumour-to-background ratio than NIR-I (2.55 ± 0.38, 1.94 ± 0.20, respectively). 2D5-IRDye800CW could precisely identify CEACAM5-positive human colorectal cancer tissue. INTERPRETATION 2D5-IRDye800CW combined with NIR-II fluorescence has translational potential as an aid to improve R0 surgery of colorectal cancer. FUNDINGS This study was supported by Beijing Natural Science Foundation (JQ19027), the National Key Research and Development Program of China (2017YFA0205200), National Natural Science Foundation of China (NSFC) (61971442, 62027901, 81930053, 92059207, 81227901, 82102236), Beijing Natural Science Foundation (L222054), CAS Youth Interdisciplinary Team (JCTD-2021-08), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16021200), the Zhuhai High-level Health Personnel Team Project (Zhuhai HLHPTP201703), the Fundamental Research Funds for the Central Universities (JKF-YG-22-B005) and Capital Clinical Characteristic Application Research (Z181100001718178). The authors would like to acknowledge the instrumental and technical support of the multi-modal biomedical imaging experimental platform, Institute of Automation, Chinese Academy of Sciences.
Collapse
Affiliation(s)
- Xiaoyong Guo
- Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changjian Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yawei Qu
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China; Beijing Mentougou District Hospital, Beijing, 102300, China
| | - Miaomiao Li
- Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Caiguang Cao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zeyu Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Qiaojun Qu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuangling Luo
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Haifeng Liu
- Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; Beijing Mentougou District Hospital, Beijing, 102300, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Erreni M, D'Autilia F, Avigni R, Bolli E, Arnouk SM, Movahedi K, Debie P, Anselmo A, Parente R, Vincke C, van Leeuwen FW, Allavena P, Garlanda C, Mantovani A, Doni A, Hernot S, Van Ginderachter JA. Size-advantage of monovalent nanobodies against the macrophage mannose receptor for deep tumor penetration and tumor-associated macrophage targeting. Theranostics 2023; 13:355-373. [PMID: 36593955 PMCID: PMC9800720 DOI: 10.7150/thno.77560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Nanobodies (Nbs) have emerged as an elegant alternative to the use of conventional monoclonal antibodies in cancer therapy, but a detailed microscopic insight into the in vivo pharmacokinetics of different Nb formats in tumor-bearers is lacking. This is especially relevant for the recognition and targeting of pro-tumoral tumor-associated macrophages (TAMs), which may be located in less penetrable tumor regions. Methods: We employed anti-Macrophage Mannose Receptor (MMR) Nbs, in a monovalent (m) or bivalent (biv) format, to assess in vivo TAM targeting. Intravital and confocal microscopy were used to analyse the blood clearance rate and targeting kinetics of anti-MMR Nbs in tumor tissue, healthy muscle tissue and liver. Fluorescence Molecular Tomography was applied to confirm anti-MMR Nb accumulation in the primary tumor and in metastatic lesions. Results: Intravital microscopy demonstrated significant differences in the blood clearance rate and macrophage targeting kinetics of (m) and (biv)anti-MMR Nbs, both in tumoral and extra-tumoral tissue. Importantly, (m)anti-MMR Nbs are superior in reaching tissue macrophages, an advantage that is especially prominent in tumor tissue. The administration of a molar excess of unlabelled (biv)anti-MMR Nbs increased the (m)anti-MMR Nb bioavailability and impacted on its macrophage targeting kinetics, preventing their accumulation in extra-tumoral tissue (especially in the liver) but only partially influencing their interaction with TAMs. Finally, anti-MMR Nb administration not only allowed the visualization of TAMs in primary tumors, but also at a distant metastatic site. Conclusions: These data describe, for the first time, a microscopic analysis of (m) and (biv)anti-MMR Nb pharmacokinetics in tumor and healthy tissues. The concepts proposed in this study provide important knowledge for the future use of Nbs as diagnostic and therapeutic agents, especially for the targeting of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.,✉ Corresponding authors: Marco Erreni, ; Jo A. Van Ginderachter,
| | - Francesca D'Autilia
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Roberta Avigni
- IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Evangelia Bolli
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium (Pleinlaan 2, 1050 Brussels).,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sana M. Arnouk
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium (Pleinlaan 2, 1050 Brussels).,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Kiavash Movahedi
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium (Pleinlaan 2, 1050 Brussels).,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Pieterjan Debie
- Laboratory for In vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium (Laarbeeklaan 103, 1090 Brussels)
| | - Achille Anselmo
- IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Raffaella Parente
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cécile Vincke
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium (Pleinlaan 2, 1050 Brussels).,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Fijs W.B. van Leeuwen
- Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Albinusdreef 2 2333 ZA Leiden
| | - Paola Allavena
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London EC1M6BQ, UK
| | - Andrea Doni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Sophie Hernot
- Laboratory for In vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium (Laarbeeklaan 103, 1090 Brussels)
| | - Jo A. Van Ginderachter
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium (Pleinlaan 2, 1050 Brussels).,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,✉ Corresponding authors: Marco Erreni, ; Jo A. Van Ginderachter,
| |
Collapse
|
9
|
Jooss NJ, Smith CW, Slater A, Montague SJ, Di Y, O'Shea C, Thomas MR, Henskens YMC, Heemskerk JWM, Watson SP, Poulter NS. Anti-GPVI nanobody blocks collagen- and atherosclerotic plaque-induced GPVI clustering, signaling, and thrombus formation. J Thromb Haemost 2022; 20:2617-2631. [PMID: 35894121 PMCID: PMC9804350 DOI: 10.1111/jth.15836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND The collagen receptor glycoprotein VI (GPVI) is an attractive antiplatelet target due to its critical role in thrombosis but minor involvement in hemostasis. OBJECTIVE To investigate GPVI receptor involvement in platelet activation by collagen-I and atherosclerotic plaque using novel blocking and non-blocking anti-GPVI nanobodies (Nbs). METHODS Nb effects on GPVI-mediated signaling and function were assessed by western blot and whole blood thrombus formation under flow. GPVI clustering was visualized in thrombi using fluorescently labeled Nb28. RESULTS Under arterial shear, inhibitory Nb2 blocks thrombus formation and platelet activation on collagen and plaque, but only reduces adhesion on plaque. In contrast, adhesion on collagen, but not plaque, is decreased by blocking integrin α2β1. Adhesion on plaque is maintained despite inhibition of integrins αvβ3, α5β1, α6β1, and αIIbβ3. Only combined αIIbβ3 and α2β1 blockade inhibits adhesion and thrombus formation to the same extent as Nb2 alone. Nb2 prevents GPVI signaling, with loss of Syk, Lat, and PLCɣ2 phosphorylation, especially to plaque stimulation. Non-blocking fluorescently labeled Nb28 reveals distinct GPVI distribution patterns on collagen and plaque, with GPVI clustering clearly apparent on collagen fibers and less frequent on plaque. Clustering on collagen fibers is lost in the presence of Nb2. CONCLUSIONS This work emphasizes the critical difference in GPVI-mediated platelet activation by plaque and collagen; it highlights the importance of GPVI clustering for downstream signaling and thrombus formation. Labeled Nb28 is a novel tool for providing mechanistic insight into this process and the data suggest Nb2 warrants further investigation as a potential anti-thrombotic agent.
Collapse
Affiliation(s)
- Natalie J. Jooss
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUniversity Hospitals BirminghamBirminghamUK
| | - Yvonne M. C. Henskens
- Central Diagnostic LaboratoryMaastricht University Medical CentreMaastrichtthe Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
- Synapse Research Institute MaastrichtMaastrichtthe Netherlands
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsUK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsUK
| |
Collapse
|
10
|
Wang Y, Wang C, Huang M, Qin S, Zhao J, Sang S, Zheng M, Bian Y, Huang C, Zhang H, Guo L, Jiang J, Xu C, Dai N, Zheng Y, Han J, Yang M, Xu T, Miao L. Pilot study of a novel nanobody 68 Ga-NODAGA-SNA006 for instant PET imaging of CD8 + T cells. Eur J Nucl Med Mol Imaging 2022; 49:4394-4405. [PMID: 35829748 DOI: 10.1007/s00259-022-05903-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Positron emission tomography (PET) with specific diagnostic probes for quantifying CD8+ T cells has emerged as a powerful technique for monitoring the immune response. However, most CD8+ T cell radiotracers are based on antibodies or antibody fragments, which are slowly cleared from circulation. Herein, we aimed to develop and assess 68 Ga-NODAGA-SNA006 for instant PET (iPET) imaging of CD8+ T cells. METHODS A novel nanobody without a hexahistidine (His6) tag, SNA006-GSC, was designed, site-specifically conjugated with NODAGA-maleimide and radiolabelled with 68 Ga. The PET imaging profiles of 68 Ga-NODAGA-SNA006 were evaluated in BALB/c MC38-CD8+/CD8- tumour models and cynomolgus monkeys. Three volunteers with lung cancer underwent whole-body PET/CT imaging after 68 Ga-NODAGA-SNA006 administration. The biodistribution, pharmacokinetics and dosimetry of patients were also investigated. In addition, combined with immunohistochemistry (IHC), the quantitative performance of the tracer for monitoring CD8 expression was evaluated in BALB/c MC38-CD8+/CD8- and human subjects. RESULTS 68 Ga-NODAGA-SNA006 was prepared with RCP > 98% and SA > 100 GBq/μmol. 68 Ga-NODAGA-SNA006 exhibited specific uptake in MC38-CD8+ xenografts tumours, CD8-rich tissues (such as the spleen) in monkeys and CD8+ tumour lesions in patients within 1 h. Fast washout from circulation was observed in three volunteers (t1/2 < 20 min). A preliminary quantitative linear relationship (R2 = 0.9668, p < 0.0001 for xenografts and R2 = 0.7924, p = 0.0013 for lung patients) appeared between 68 Ga-NODAGA-SNA006 uptake and CD8 expression. 68 Ga-NODAGA-SNA006 was well tolerated by all patients. CONCLUSION 68 Ga-NODAGA-SNA006 PET imaging can instantly quantify CD8 expression with an ideal safety profile and is expected to be important for dynamically tracking CD8+ T cells and monitoring immune responses for individualised cancer immunotherapy. TRIAL REGISTRATION NCT05126927 (19 November 2021, retrospectively registered).
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chao Wang
- Smart-Nuclide Biotech, No. 218 Xing-Hu Rd., Suzhou, 215125, Jiangsu, China
| | - Minzhou Huang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Songbing Qin
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shibiao Sang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Meng Zheng
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yicong Bian
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chenrong Huang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiwei Jiang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chun Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Dai
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yushuang Zheng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiajun Han
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qian-Rong Rd., Wuxi, 214063, Jiangsu, China.
| | - Tao Xu
- Smart-Nuclide Biotech, No. 218 Xing-Hu Rd., Suzhou, 215125, Jiangsu, China.
| | - Liyan Miao
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China. .,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Li B, Qin X, Mi LZ. Nanobodies: from structure to applications in non-injectable and bispecific biotherapeutic development. NANOSCALE 2022; 14:7110-7122. [PMID: 35535618 DOI: 10.1039/d2nr00306f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing demand for convenient, miniaturized and multifunctional antibodies necessitates the development of novel antigen-recognition molecules for biological and medical studies. Nanobodies, the functional variable regions of camelid heavy-chain-only antibodies, as a new tool, complement the conventional antibodies and are in the stage of rapid development. The outstanding advantages of nanobodies include a stable structure, easy production, excellent water solubility, high affinity toward antigens and low immunogenicity. With promising application potential, nanobodies are now increasingly applied to various studies, including protein structure analysis, microscopic imaging, medical diagnosis, and drug development. The approval of the first nanobody drug Caplacizumab by the FDA disclosed the therapeutic potential of nanobodies. The outbreak of COVID-19 accelerated the development of nanobody drugs in non-injectable and bispecific biotherapeutic applications. Herein, we reviewed recent studies on the nanobody structure, screening and their applications in protein structure analysis and nanobody drugs, especially on non-injectable nanobody and bispecific nanobody development.
Collapse
Affiliation(s)
- Bingxuan Li
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xiaohong Qin
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Li-Zhi Mi
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
12
|
Valdés-Tresanco MS, Molina-Zapata A, Pose AG, Moreno E. Structural Insights into the Design of Synthetic Nanobody Libraries. Molecules 2022; 27:molecules27072198. [PMID: 35408597 PMCID: PMC9000494 DOI: 10.3390/molecules27072198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Single domain antibodies from camelids, or nanobodies, are a unique class of antibody fragments with several advantageous characteristics: small monomeric size, high stability and solubility and easy tailoring for multiple applications. Nanobodies are gaining increasing acceptance as diagnostic tools and promising therapeutic agents in cancer and other diseases. While most nanobodies are obtained from immunized animals of the camelid family, a few synthetic nanobody libraries constructed in recent years have shown the capability of generating high quality nanobodies in terms of affinity and stability. Since this synthetic approach has important advantages over the use of animals, the recent advances are indeed encouraging. Here we review over a dozen synthetic nanobody libraries reported so far and discuss the different approaches followed in their construction and validation, with an emphasis on framework and hypervariable loop design as critical issues defining their potential as high-class nanobody sources.
Collapse
Affiliation(s)
- Mario S. Valdés-Tresanco
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| | - Andrea Molina-Zapata
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas (CIB), Medellin 050034, Colombia
| | - Alaín González Pose
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
| | - Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| |
Collapse
|
13
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
14
|
Gettemans J. Site-Specific Fluorescent Labeling, Single-Step Immunocytochemistry, and Delivery of Nanobodies into Living Cells. Methods Mol Biol 2022; 2446:373-393. [PMID: 35157284 DOI: 10.1007/978-1-0716-2075-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The smallest natural antibody fragments currently available are single-domain antibodies obtained from camelid species and sharks (variable new antigen receptors). These molecules consist of a single amino acid chain of ~120 amino acids that adopts a typical immunoglobulin fold. Single-domain antibodies (nanobodies) are monovalent and can be isolated from immunized animals, from naïve libraries, or from synthetic libraries. Importantly, their complete DNA sequences are readily obtained by default, which greatly facilitates their rapid manipulation for various applications. Here, a PCR-based protocol for inserting a sortase A recognition sequence at the carboxy-terminus of a nanobody is described. Subsequently, a sortase A-catalyzed biochemical reaction results in tagging of the nanobody with a short carboxy-terminal amino acid sequence that carries a non-canonical residue (propargyl glycine). This allows click chemistry to be performed with an azido-derivatized fluorophore, with the ensuing fluorescent nanobody being covalently and site-specifically labeled. The labeled nanobody can be used directly for immunocytochemistry, omitting the classical secondary antibody step. Also described are methods for delivery of fluorescent nanobodies into the cytoplasm of mammalian cells by photoporation, a very low-toxicity approach involving laser light and graphene quantum dots. The combined protocol embodies a novel route for studying protein function in living cells at high resolution.
Collapse
Affiliation(s)
- Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Herlands L, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. eLife 2021; 10:e73027. [PMID: 34874007 PMCID: PMC8651292 DOI: 10.7554/elife.73027] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
- Department of Chemistry, St. John’s UniversityQueensUnited States
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Magdalena Rutkowska
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Elizabeth R Vanderwall
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Jacob B Jiler
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | | | | | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Division of Pulmonary and Sleep Medicine, Seattle Children’s HospitalSeattleUnited States
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
16
|
Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Nanobody Repertoires for Exposing Vulnerabilities of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.08.438911. [PMID: 33851164 PMCID: PMC8043454 DOI: 10.1101/2021.04.08.438911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Magda Rutkowska
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Elizabeth R Vanderwall
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nicolas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Sarah Keegan
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Jacob B Jiler
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
17
|
Discovery and Characterization of an ALFA-Tag-Specific Affinity Resin Optimized for Protein Purification at Low Temperatures in Physiological Buffer. Biomolecules 2021; 11:biom11020269. [PMID: 33673130 PMCID: PMC7918568 DOI: 10.3390/biom11020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Epitope tags are widely employed as tools to detect, purify and manipulate proteins in various experimental systems. We recently introduced the ALFA-tag together with two ALFA-specific single-domain antibodies (sdAbs), NbALFA and NbALFAPE, featuring high or intermediate affinity, respectively. Together, the ALFA system can be employed for a broad range of applications in microscopy, cell biology and biochemistry requiring either extraordinarily stable binding or mild competitive elution at room temperature. In order to further enhance the versatility of the ALFA system, we, here, aimed at developing an sdAb optimized for efficient elution at low temperatures. To achieve this, we followed a stringent selection scheme tailored to the specific application. We found candidates combining a fast capture of ALFA-tagged proteins with an efficient competitive elution at 4 °C in physiological buffer. Importantly, by employing a structure-guided semisynthetic library based on well-characterized NbALFA variants, the high specificity and consistent binding of proteins harboring ALFA-tags at either terminus could be maintained. ALFA SelectorCE, a resin presenting the cold-elutable NbALFACE, is an ideal tool for the one-step purification of sensitive protein complexes or temperature-labile enzymes. We believe that the general approach followed during the selection and screening can be transferred to other challenging sdAb discovery projects.
Collapse
|