1
|
Zeng L, Zhang F. A positive association between high dietary medium-chain fatty acids intake and depression: Mediation of inflammation. J Affect Disord 2025; 380:767-776. [PMID: 40180053 DOI: 10.1016/j.jad.2025.03.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
AIMS Our aims were to investigate the association between dietary MCFAs and depression, with a focus on potential mediating factors. METHODS A total of 11,085 participants from NHANES were included in this study. The total intake of MCFAs, including octanoic acid (C8:0), decanoic acid (C10:0), and lauric acid (C12:0), was derived, and their respective ratios to total fatty acids were calculated as exposure. Depression was defined as a score of ≥10 on the Patient Health Questionnaire-9 (PHQ-9). Weighted logistic regression was used to analyze the relationship between MCFAs and depression. The contribution of MCFAs was assessed using weighted quartile sum (WQS). C-reactive protein (CRP) was included as a potential mediator in the analysis of underlying mechanisms. RESULTS The highest quartile (Q4) of dietary MCFAs was associated with a significantly greater likelihood of depression compared to the lowest quartile (Q1) (ORtotal MCFAs: 1.36, 95 % CI: 1.07-1.65; ORC8:0: 1.46, 95 % CI: 1.15-1.77; ORC10:0: 1.38, 95 % CI: 1.06-1.60; and ORC12:0: 1.31, 95 % CI: 1.03-1.68), but no significant associations were observed for Q2 and Q3. The WQS results indicated that C12:0 contributed the most to the association between total MCFAs and depression (weight percentage: 49.1 %). CRP partially mediated the association between the Q4 of MCFAs and depression, with a mediation proportion of 7.6 % to 9.1 %. CONCLUSIONS Excessive intake of MCFAs is associated with a higher risk of depression, particularly for C12:0, with CRP partially mediating this association.
Collapse
Affiliation(s)
- Lisha Zeng
- Department of Neurology, Pingxiang People's Hospital, Pingxiang, China
| | - Fengping Zhang
- Department of Nephrology, Jiujiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China.
| |
Collapse
|
2
|
Monaco M, Torazza C, Fedele E, Grilli M. The Impact of the Exposome on Alzheimer's Disease: The Influence of Nutrition. Int J Mol Sci 2025; 26:3015. [PMID: 40243652 PMCID: PMC11988514 DOI: 10.3390/ijms26073015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, memory loss, and behavioural changes. While genetic predispositions and pathological processes have been the traditional focus, this review highlights the fundamental role of environmental factors, particularly nutrition, within the exposome framework in modulating the risk and progression of AD. The exposome, which includes the totality of environmental exposures in an individual's lifetime, provides a comprehensive approach to understanding the complex aetiology of AD. In this review, we explore the impact of dietary factors and cyclic nucleotide pathways (cAMP/cGMP) on AD, emphasizing the potential of dietary interventions as therapeutic strategies. We investigate key aspects of how nutrition affects the accumulation of β-amyloid, the aggregation of tau proteins, and neuroinflammation. We also examine the impact of specific nutrients on cognitive performance and the risk of AD. Additionally, we discuss the potential of nutraceuticals with anti-phosphodiesterase activity and the role of various animal models of AD (such as 5xFAD, 3xTg-AD, Tg2576, and APP/PS1 mice) in demonstrating the effects of dietary interventions on disease onset and progression.
Collapse
Affiliation(s)
- Martina Monaco
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Massimo Grilli
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
3
|
Pesini A, Barriocanal-Casado E, Compagnoni GM, Hidalgo-Gutierrez A, Yanez G, Bakkali M, Chhonker YS, Kleiner G, Larrea D, Tadesse S, Lopez LC, Murry DJ, Di Fonzo A, Area-Gomez E, Quinzii CM. Coenzyme Q 10 deficiency disrupts lipid metabolism by altering cholesterol homeostasis in neurons. Free Radic Biol Med 2025; 229:441-457. [PMID: 39788391 DOI: 10.1016/j.freeradbiomed.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Coenzyme Q10 (CoQ10) is a critical component of the mitochondrial respiratory chain. CoQ10 deficiencies cause a variety of clinical syndromes, often involving encephalopathies. The heterogeneity of clinical manifestations implies different pathomechanisms, reflecting CoQ10 involvement in several biological processes. One such process is cholesterol homeostasis, since CoQ10 is synthesized through the mevalonate pathway, which also produces cholesterol. To elucidate the role of lipid dysfunction in the pathogenesis of CoQ10 deficiency, we investigated lipid metabolism in human CoQ10 deficient iPSCs-derived neurons, and in SH-SY5Y neurons after pharmacological manipulation of the mevalonate pathway. We show that CoQ10 deficiency causes alterations in cholesterol homeostasis, fatty acids oxidation, phospholipids and sphingolipids synthesis in neurons. These alterations depend on the molecular defect, and on the residual CoQ10 levels. Our results imply that CoQ10 deficiencies can induce pathology by altering lipid homeostasis and the composition of cellular membranes. These findings provide further understanding of the mechanisms underlying CoQ10 deficiency and point to potential novel therapeutic targets.
Collapse
Affiliation(s)
- Alba Pesini
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | | | | | - Giussepe Yanez
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Fuentenueva S/N, 18002, Granada, Spain
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Saba Tadesse
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Luis Carlos Lopez
- Institute of Biotechnology, Biomedical Research Center (CIBM), Health Science Technological Park (PTS), University of Granada, Armilla, Granada, 18100, Spain
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Estela Area-Gomez
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Ameen AO, Nielsen SW, Kjær MW, Andersen JV, Westi EW, Freude KK, Aldana BI. Metabolic preferences of astrocytes: Functional metabolic mapping reveals butyrate outcompetes acetate. J Cereb Blood Flow Metab 2025; 45:528-541. [PMID: 39340267 PMCID: PMC11563520 DOI: 10.1177/0271678x241270457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 09/30/2024]
Abstract
Disruptions to the gut-brain-axis have been linked to neurodegenerative disorders. Of these disruptions, reductions in the levels of short-chain fatty acids (SCFAs), like butyrate, have been observed in mouse models of Alzheimer's disease (AD). Butyrate supplementation in mice has shown promise in reducing neuroinflammation, amyloid-β accumulation, and enhancing memory. However, the underlying mechanisms remain unclear. To address this, we investigated the impact of butyrate on energy metabolism in mouse brain slices, primary cultures of astrocytes and neurons and in-vivo by dynamic isotope labelling with [U-13C]butyrate and [1,2-13C]acetate to map metabolism via mass spectrometry. Metabolic competition assays in cerebral cortical slices revealed no competition between butyrate and the ketone body, β-hydroxybutyrate, but competition with acetate. Astrocytes favoured butyrate metabolism compared to neurons, suggesting that the astrocytic compartment is the primary site of butyrate metabolism. In-vivo metabolism investigated in the 5xFAD mouse, an AD pathology model, showed no difference in 13C-labelling of TCA cycle metabolites between wild-type and 5xFAD brains, but butyrate metabolism remained elevated compared to acetate in both groups, indicating sustained uptake and metabolism in 5xFAD mice. Overall, these findings highlight the role of astrocytes in butyrate metabolism and the potential use of butyrate as an alternative brain fuel source.
Collapse
Affiliation(s)
- Aishat O Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian W Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin W Kjær
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Gutierrez-Tordera L, Panisello L, García-Gonzalez P, Ruiz A, Cantero JL, Rojas-Criollo M, Mursil M, Atienza M, Novau-Ferré N, Mateu-Fabregat J, Mostafa H, Puig D, Folch J, Rashwan H, Marquié M, Boada M, Papandreou C, Bulló M. Metabolic Signature of Insulin Resistance and Risk of Alzheimer's Disease. J Gerontol A Biol Sci Med Sci 2025; 80:glae283. [PMID: 39569614 DOI: 10.1093/gerona/glae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Substantial evidence supports the relationship between peripheral insulin resistance (IR) and the development of Alzheimer's disease (AD)-dementia. However, the mechanisms explaining these associations are only partly understood. We aimed to identify a metabolic signature of IR associated with the progression from mild cognitive impairment (MCI) to AD-dementia. METHODS This is a case-control study on 400 MCI subjects, free of type 2 diabetes, within the ACE cohort, including individuals ATN + and ATN-. After a median of 2.1 years of follow-up, 142 subjects converted to AD-dementia. IR was assessed using the homeostasis model assessment for insulin resistance (HOMA-IR). A targeted multiplatform approach profiled over 600 plasma metabolites. Elastic net penalized linear regression with 10-fold cross-validation was employed to select those metabolites associated with HOMA-IR. The prediction ability of the signature was assessed using support vector machine and performance metrics. The metabolic signature was associated with AD-dementia risk using a multivariable Cox regression model. Using counterfactual-based mediation analysis, we investigated the mediation role of the metabolic signature between HOMA-IR and AD-dementia. The metabolic pathways in which the metabolites were involved were identified using MetaboAnalyst. RESULTS The metabolic signature comprised 18 metabolites correlated with HOMA-IR. After adjustments by confounders, the signature was associated with increased AD-dementia risk (HR = 1.234; 95% CI = 1.019-1.494; p < .05). The metabolic signature mediated 35% of the total effect of HOMA-IR on AD-dementia risk. Significant metabolic pathways were related to glycerophospholipid and tyrosine metabolism. CONCLUSIONS We have identified a blood-based metabolic signature that reflects IR and may enhance our understanding of the biological mechanisms through which IR affects AD-dementia.
Collapse
Affiliation(s)
- Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Laura Panisello
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Pablo García-Gonzalez
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Agustín Ruiz
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - José Luis Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University (UPO), 41013 Seville, Spain
| | - Melina Rojas-Criollo
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Muhammad Mursil
- Department of Computer Engineering and Mathematics, Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University (UPO), 41013 Seville, Spain
| | - Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Javier Mateu-Fabregat
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Hamza Mostafa
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Domènec Puig
- Department of Computer Engineering and Mathematics, Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Hatem Rashwan
- Department of Computer Engineering and Mathematics, Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Marta Marquié
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Mercè Boada
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| |
Collapse
|
6
|
Harijan AK, Kalaiarasan R, Ghosh AK, Jain RP, Bera AK. The neuroprotective effect of short-chain fatty acids against hypoxia-reperfusion injury. Mol Cell Neurosci 2024; 131:103972. [PMID: 39349151 DOI: 10.1016/j.mcn.2024.103972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/31/2024] [Accepted: 09/21/2024] [Indexed: 10/02/2024] Open
Abstract
Gut microbe-derived short-chain fatty acids (SCFAs) are known to have a profound impact on various brain functions, including cognition, mood, and overall neurological health. However, their role, if any, in protecting against hypoxic injury and ischemic stroke has not been extensively studied. In this study, we investigated the effects of two major SCFAs abundant in the gut, propionate (P) and butyrate (B), on hypoxia-reperfusion injury using a neuronal cell line and a zebrafish model. Neuro 2a (N2a) cells treated with P and B exhibited reduced levels of mitochondrial and cytosolic reactive oxygen species (ROS), diminished loss of mitochondrial membrane potential, suppressed caspase activation, and lower rates of cell death when exposed to CoCl2, a chemical commonly used to simulate hypoxia. Furthermore, adult zebrafish fed SCFA-supplemented feeds showed less susceptibility to hypoxic conditions compared to the control group, as indicated by multiple behavioral measures. Histological analysis of 2,3,5-Triphenyltetrazolium chloride (TTC) stained brain sections revealed less damage in the SCFA-fed group. We also found that Fatty Acid Binding Protein 7 (FABP7), also known as Brain Lipid Binding Protein (BLBP), a neuroprotective fatty acid binding protein, was upregulated in the brains of the SCFA-fed group. Additionally, when FABP7 was overexpressed in N2a cells, it protected the cells from injury caused by CoCl2 treatment. Overall, our data provide evidence for a neuroprotective role of P and B against hypoxic brain injury and suggest the potential of dietary supplementation with SCFAs to mitigate stroke-induced brain damage.
Collapse
Affiliation(s)
- Anjit K Harijan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Retnamony Kalaiarasan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Amit Kumar Ghosh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ruchi P Jain
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
7
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Yang T, Duan H, Li Y, Xu N, Wang Z, Li Z, Chen Y, Du Y, Zhang M, Yan J, Sun C, Wang G, Li W, Li X, Ma F, Huang G. β-hydroxybutyrate and mitochondria mediate the association between medium-chain fatty acids, DHA and mild cognitive impairment: a nested case-control study. Nutr Neurosci 2024:1-10. [PMID: 39225171 DOI: 10.1080/1028415x.2024.2398364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Medium-chain fatty acids (MCFAs) and docosahexaenoic acid (DHA) could affect the occurrence of mild cognitive impairment (MCI). β-hydroxybutyrate (BHB), mitochondrial DNA copy number (mtDNAcn) and mitochondrial DNA (mtDNA) deletions might be their potential mechanisms. This study aimed to explore the relationship between MCFAs, DHA and MCI, and potential mechanisms. METHODS This study used data from Tianjin Elderly Nutrition and Cognition (TENC) cohort study, 120 individuals were identified with new onset MCI during follow-up, 120 individuals without MCI were selected by 1:1 matching sex, age, and education levels as the control group from TENC. Conditional logistic regression analysis and mediation effect analysis were used to explore their relationship. RESULTS Higher serum octanoic acid levels (OR: 0.633, 95% CI: 0.520, 0.769), higher serum DHA levels (OR: 0.962, 95% CI: 0.942, 0.981), and more mtDNAcn (OR: 0.436, 95% CI: 0.240, 0.794) were associated with lower MCI risk, while more mtDNA deletions was associated with higher MCI risk (OR: 8.833, 95% CI: 3.909, 19.960). Mediation analysis suggested that BHB and mtDNAcn, in series, have mediation roles in the association between octanoic acid and MCI risk, and mtDNA deletions have mediation roles in the association between DHA and MCI risk. CONCLUSION Higher serum octanoic acid and DHA levels were associated with lower MCI risk. Octanoic acid could affect the incidence of MCI through BHB, then mitochondria function, or through mitochondria function, or directly. Serum DHA level could affect the incidence of MCI through mitochondria function, or directly.
Collapse
Affiliation(s)
- Tong Yang
- Department of Epidemiology & Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
| | - Huilian Duan
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuan Li
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ning Xu
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zehao Wang
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhenshu Li
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yongjie Chen
- Department of Epidemiology & Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
| | - Yue Du
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Social Medicine and Health Management, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Meilin Zhang
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Yan
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Social Medicine and Health Management, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Changqing Sun
- Neurosurgical Department of Baodi Clinical College of Tianjin Medical University, Tianjin, People's Republic of China
| | - Guangshun Wang
- Department of Tumor, Baodi Clinical College of Tianjin Medical University, Tianjin, People's Republic of China
| | - Wen Li
- Department of Epidemiology & Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Fei Ma
- Department of Epidemiology & Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
| | - Guowei Huang
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Bolesławska I, Górna I, Sobota M, Bolesławska-Król N, Przysławski J, Szymański M. Wild Mushrooms as a Source of Bioactive Compounds and Their Antioxidant Properties-Preliminary Studies. Foods 2024; 13:2612. [PMID: 39200539 PMCID: PMC11353347 DOI: 10.3390/foods13162612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
The aim of this study was to preliminarily determine the content of bioactive components in the fruiting bodies of four previously unstudied mushroom species: Aleuria aurantia, Phallus hadriani, Phanus conchatus, Geastrum pectinatum, their antioxidant activity and the content of polyphenols, minerals and heavy metals. METHODS Determination of active compounds by gas chromatography-mass spectrometry was carried out in addition to thermogravimetric determinations, quantitative determination of total polyphenols by spectrophotometry using Folin-Ciocalteu reagent, determination of antioxidant activity using 2,2-diphenyl-1-picryl hydrazyl radical (DPPH) and 2,2'-azino-di-[3-ethylbentiazoline sulphonated] (ATBS). In addition, spectrometric analysis of selected minerals and heavy metals was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES). RESULTS The mushrooms analysed varied in terms of their bioactive constituents. They contained components with varying effects on human health, including fatty acids, oleamide, 1,2-dipalmitoylglycerol, (2-phenyl-1,3-dioxolan-4-yl)-methyl ester of oleic acid, deoxyspergualin, 2-methylenocholestan-3-ol, hexadecanoamide, isoallochan, 2,6-diaminopurine, and adenine. All contained polyphenols and varying amounts of minerals (calcium, magnesium, iron, zinc, potassium, phosphorus, sodium, copper, silicon and manganese) and exhibited antioxidant properties of varying potency. No exceedances of the permissible concentration of lead and cadmium were observed in any of them. CONCLUSIONS All of the mushrooms studied can provide material for the extraction of various bioactive compounds with physiological effects. In addition, the presence of polyphenols and minerals, as well as antioxidant properties and the absence of exceeding the permissible concentration of heavy metals, indicate that these species could be interesting material in the design of foods with health-promoting properties, nutraceuticals or dietary supplements. However, the use of the fruiting bodies of these mushrooms requires mandatory toxicological and clinical studies.
Collapse
Affiliation(s)
- Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (I.B.); (M.S.); (J.P.)
| | - Ilona Górna
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (I.B.); (M.S.); (J.P.)
| | - Marta Sobota
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (I.B.); (M.S.); (J.P.)
| | - Natasza Bolesławska-Król
- Student Society of Radiotherapy, Collegium Medicum, University of Zielona Gora, 28 Zyty Street, 65-046 Zielona Góra, Poland;
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (I.B.); (M.S.); (J.P.)
| | - Marcin Szymański
- Centre for Advanced Technologies, Adam Mickiewicz University of Poznan, 10 University of Poznan Street, 61-614 Poznan, Poland;
| |
Collapse
|
10
|
Monaco M, Trebesova H, Grilli M. Muscarinic Receptors and Alzheimer's Disease: New Perspectives and Mechanisms. Curr Issues Mol Biol 2024; 46:6820-6835. [PMID: 39057049 PMCID: PMC11276210 DOI: 10.3390/cimb46070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases on a global scale. Historically, this pathology has been linked to cholinergic transmission, and despite the scarcity of effective therapies, numerous alternative processes and targets have been proposed as potential avenues for comprehending this complex illness. Nevertheless, the fundamental pathophysiological mechanisms underpinning AD remain largely enigmatic, with a growing body of evidence advocating for the significance of muscarinic receptors in modulating the brain's capacity to adapt and generate new memories. This review summarizes the current state of the art in the field of muscarinic receptors' involvement in AD. A specific key factor was the relationship between comorbidity and the emergence of new mechanisms.
Collapse
Affiliation(s)
- Martina Monaco
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (H.T.)
| | - Hanna Trebesova
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (H.T.)
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (H.T.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| |
Collapse
|
11
|
Baglietto-Vargas D, Freude KK, Garcia-Leon JA. Animal and Cellular Models of Alzheimer's Disease. Biomedicines 2024; 12:1308. [PMID: 38927515 PMCID: PMC11201219 DOI: 10.3390/biomedicines12061308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Animal and cellular models have been essential tools over the years to understand many pathogenic mechanisms underlying different neurodegenerative disorders (NDDs), including Alzheimer's disease (AD) [...].
Collapse
Affiliation(s)
- David Baglietto-Vargas
- Departament Biologia Celular, Genetica y Fisiologia, Instituto de Investigaciones Biomedicas de Malaga-Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain;
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Kristine K. Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870C Frederiksberg, Denmark;
| | - Juan Antonio Garcia-Leon
- Departament Biologia Celular, Genetica y Fisiologia, Instituto de Investigaciones Biomedicas de Malaga-Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain;
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| |
Collapse
|
12
|
Lorenzini L, Zanella L, Sannia M, Baldassarro VA, Moretti M, Cescatti M, Quadalti C, Baldi S, Bartolucci G, Di Gloria L, Ramazzotti M, Clavenzani P, Costanzini A, De Giorgio R, Amedei A, Calzà L, Giardino L. Experimental colitis in young Tg2576 mice accelerates the onset of an Alzheimer's-like clinical phenotype. Alzheimers Res Ther 2024; 16:116. [PMID: 38773640 PMCID: PMC11110243 DOI: 10.1186/s13195-024-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Systemic inflammation and neuroinflammation affect the natural course of the sporadic form of Alzheimer's disease (AD), as supported by epidemiological and preclinical data, and several epidemiological studies indicate a higher prevalence of AD in patients with inflammatory bowel disease. In this study, we explored whether colitis induced by dextran sulfate sodium (DSS) in young, presymptomatic/preplaque mice worsens and/or anticipates age-dependent cognitive impairment in Tg2576, a widely used mouse model of AD. We demonstrated that DSS colitis induced in young Tg2576 mice anticipates the onset age of learning and memory deficit in the Morris water maze test. To explore potential mechanisms behind the acceleration of cognitive decline in Tg2576 mice by DSS colitis, we focused on gut microbiota, systemic inflammation and neuroinflammation markers. We observed a Firmicutes/Bacteroidetes ratio change in Tg2576 DSS animals comparable to that of elderly Tg2576 mice, suggesting accelerated microbiota aging in Tg2576 DSS mice, a change not observed in C57BL6 DSS mice. We also observed substantial differences between Tg2576 and WT mice in several inflammation and neuroinflammation-related parameters as early as 3 months of age, well before plaque deposition, a picture which evolved rapidly (between 3 and 5.5 months of age) in contrast to Tg2576 and WT littermates not treated with DSS. In detail, following induction of DSS colitis, WT and Tg2576 mice exhibited contrasting features in the expression level of inflammation-evoked astrocyte-associated genes in the hippocampus. No changes in microglial features occurred in the hippocampus between the experimental groups, whereas a reduced glial fibrillary acidic protein immunoreactivity was observed in Tg2576 vs. WT mice. This finding may reflect an atrophic, "loss-of-function" profile, further exacerbated by DSS where a decreased of GFAP mRNA expression level was detected. In conclusion, we suggest that as-yet unidentified peripheral mediators evoked by DSS colitis and involving the gut-brain axis emphasize an astrocyte "loss-of-function" profile present in young Tg2576 mice, leading to impaired synaptic morphological and functional integrity as a very early sign of AD.
Collapse
Affiliation(s)
- Luca Lorenzini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Lorenzo Zanella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | | | - Marzia Moretti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | - Corinne Quadalti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Tolara di Sopra 41/E, Bologna, 40064, Ozzano Emilia, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Calzà
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Tolara di Sopra 41/E, Bologna, 40064, Ozzano Emilia, Italy.
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Meer N, Fischer T. Medium-Chain Triglycerides (MCTs) for the Symptomatic Treatment of Dementia-Related Diseases: A Systematic Review. J Nutr Metab 2024; 2024:9672969. [PMID: 38715705 PMCID: PMC11074881 DOI: 10.1155/2024/9672969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Pathomechanisms of dementias involve increasing damage to neuronal energy metabolism, resulting in degeneration-related insulin resistance and glucose hypometabolism. In this case, ketone bodies can provide an alternative energy source. Supplementation with medium-chain triglycerides (MCTs), which can induce ketogenesis, may alleviate brain energy deficits and improve neuronal function. This review aims to determine the effectiveness of MCT as a symptomatic treatment approach. The systematic literature search was conducted in April 2023 following the Cochrane Handbook and PRISMA guidelines. A total of 21 studies were included, comprising eight uncontrolled trials and 13 RCTs investigating the effects of MCT on Alzheimer's disease (AD) and mild cognitive impairment (MCI). A substantial increase in plasma ketone levels and brain metabolic rates was observed. Cognitive assessments showed only occasional or domain-specific performance improvements. The effects on functional abilities or psychological outcomes have been inadequately studied. Besides gastrointestinal side effects, no harmful effects were observed. However, the evidence was severely weakened by heterogeneous and poorly designed study protocols, bias, and conflicts of interest. In conclusion, the ketogenic properties of MCTs may have beneficial effects on brain metabolism in AD and MCI but do not always result in measurable clinical improvement. Current evidence is insufficient to recommend MCT as a comparable symptomatic treatment option.
Collapse
Affiliation(s)
- Nike Meer
- FH Muenster-University of Applied Sciences, Department of Food, Nutrition, and Facilities, Corrensstraße 25, Muenster 48149, Germany
| | - Tobias Fischer
- FH Muenster-University of Applied Sciences, Department of Food, Nutrition, and Facilities, Corrensstraße 25, Muenster 48149, Germany
| |
Collapse
|
14
|
Ramezani M, Fernando M, Eslick S, Asih PR, Shadfar S, Bandara EMS, Hillebrandt H, Meghwar S, Shahriari M, Chatterjee P, Thota R, Dias CB, Garg ML, Martins RN. Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer's disease. Front Neurosci 2023; 17:1297984. [PMID: 38033541 PMCID: PMC10687427 DOI: 10.3389/fnins.2023.1297984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD is a progressive neurodegenerative disorder characterized by cognitive dysfunction, including learning and memory deficits, and behavioral changes. Neuropathology hallmarks of AD such as amyloid beta (Aβ) plaques and neurofibrillary tangles containing the neuron-specific protein tau is associated with changes in fluid biomarkers including Aβ, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary acidic protein (GFAP), and neurofilament light (NFL). Another pathological feature of AD is neural damage and hyperactivation of astrocytes, that can cause increased pro-inflammatory mediators and oxidative stress. In addition, reduced brain glucose metabolism and mitochondrial dysfunction appears up to 15 years before the onset of clinical AD symptoms. As glucose utilization is compromised in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative source of energy. KBs are generated from the β-oxidation of fatty acids, which are enhanced following consumption of ketogenic diets with high fat, moderate protein, and low carbohydrate. KBs have been shown to cross the blood brain barrier to improve brain energy metabolism. This review comprehensively summarizes the current literature on how increasing KBs support brain energy metabolism. In addition, for the first time, this review discusses the effects of ketogenic diet on the putative AD biomarkers such as Aβ, tau (mainly p-tau 181), GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative stress, and mitochondrial metabolism.
Collapse
Affiliation(s)
- Matin Ramezani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Malika Fernando
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Shaun Eslick
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Prita R. Asih
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Heidi Hillebrandt
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Silochna Meghwar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Maryam Shahriari
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Rohith Thota
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Cintia B. Dias
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Manohar L. Garg
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Ralph N. Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
15
|
Sheng C, Du W, Liang Y, Xu P, Ding Q, Chen X, Jia S, Wang X. An integrated neuroimaging-omics approach for the gut-brain communication pathways in Alzheimer's disease. Front Aging Neurosci 2023; 15:1211979. [PMID: 37869373 PMCID: PMC10587434 DOI: 10.3389/fnagi.2023.1211979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
A key role of the gut microbiota in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), has been identified over the past decades. Increasing clinical and preclinical evidence implicates that there is bidirectional communication between the gut microbiota and the central nervous system (CNS), which is also known as the microbiota-gut-brain axis. Nevertheless, current knowledge on the interplay between gut microbiota and the brain remains largely unclear. One of the primary mediating factors by which the gut microbiota interacts with the host is peripheral metabolites, including blood or gut-derived metabolites. However, mechanistic knowledge about the effect of the microbiome and metabolome signaling on the brain is limited. Neuroimaging techniques, such as multi-modal magnetic resonance imaging (MRI), and fluorodeoxyglucose-positron emission tomography (FDG-PET), have the potential to directly elucidate brain structural and functional changes corresponding with alterations of the gut microbiota and peripheral metabolites in vivo. Employing a combination of gut microbiota, metabolome, and advanced neuroimaging techniques provides a future perspective in illustrating the microbiota-gut-brain pathway and further unveiling potential therapeutic targets for AD treatments.
Collapse
Affiliation(s)
- Can Sheng
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Wenying Du
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Liang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Peng Xu
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Qingqing Ding
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Xue Chen
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Shulei Jia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoni Wang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Wang A, Fan Y, Fu J, Song F, Liu Z, Liu S. Isoniazid derivatization strategy of carboxyl-containing metabolites for LC-MS/MS-based targeted metabolomics. Anal Bioanal Chem 2023; 415:6345-6353. [PMID: 37620605 DOI: 10.1007/s00216-023-04910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Metabolomics is a biochemical analysis tool for identifying metabolic phenotypes and used to reveal the pathogenic mechanisms of disease and to inform drug-targeted therapies. Carboxyl-containing metabolites (CCMs) account for an important proportion of the metabolome, but because of the diversity of physical and chemical properties of CCMs in biological samples, traditional liquid chromatography-mass spectrometry (LC-MS) targeted metabolome analysis methods cannot achieve simultaneous quantification of multiple types of CCMs. Therefore, we proposed for the first time a targeted metabolomics strategy using isoniazid derivatization combined with LC-MS/MS to simultaneously quantify 39 CCMs of 5 different types (short-chain fatty acids, amino acids, bile acids, phenylalanine and tryptophan metabolic pathway acids) with large polarity differences associated with Alzheimer's disease (AD) and significantly improve the detection coverage and sensitivity. The yields of isoniazid derivative CCMs were high and could guarantee the accuracy of CCM quantification. The LODs of CCMs increased significantly (1.25-2000-fold) after derivatization. The method showed good selectivity, intra-day and inter-day accuracies and precisions, and repeatability. There was no significant effect on the determination of CCMs in terms of matrix effect and recovery. CCMs showed good stability. And CCMs showed good stability under short-term storage and freeze-thaw cycles. At the same time, the regulatory effects of Schisandrae chinensis Fructus and Ginseng Radix et Rhizoma (SG) herb pair on CCM metabolic disorders in feces, urine, serum, and the brain of AD rats were elucidated from the perspective of targeted metabolomics. In combination with pharmacodynamic evaluation and gut microbiota analysis, the mechanism of SG herb pair on AD rats was comprehensively understood. In summary, this innovative isoniazid derivatization combined with a targeted metabolomics method has great potential for trace biological lineage analysis.
Collapse
Affiliation(s)
- Aimin Wang
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China
| | - Yuting Fan
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China
| | - Jun Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China.
| |
Collapse
|