1
|
Hong WC, Kim M, Kim JH, Kang HW, Fang S, Jung HS, Kwon W, Jang JY, Kim HJ, Park JS. The FOXP1-ABCG2 axis promotes the proliferation of cancer stem cells and induces chemoresistance in pancreatic cancer. Cancer Gene Ther 2025:10.1038/s41417-025-00896-7. [PMID: 40169859 DOI: 10.1038/s41417-025-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025]
Abstract
Pancreatic cancer is an aggressive disease with low survival and high recurrence rates. A major obstacle in treating pancreatic cancer is the frequent development of chemoresistance to the standard therapeutic drug, gemcitabine. One mechanism by which pancreatic cancer develops chemoresistance is through the proliferation of cancer stem cells (CSC). However, the mechanisms regulating stemness in chemoresistant tumors remain unclear. Here, we found that the expression of the transcription factor Forkhead Box P1 (FOXP1) was elevated in chemoresistant pancreatic cancer and crucial for establishing CSC characteristics. Silencing FOXP1 reduced the expressions of stemness-associated genes and diminished the formation of both spheroids and colonies, highlighting the crucial role of FOXP1 in regulating stemness in chemoresistant tumor cells. Mechanistically, we discovered that FOXP1 regulates the expression of ATP-binding cassette superfamily G member 2 (ABCG2), which induces the efflux of gemcitabine. Knockdown of FOXP1 reduced the expression of ABCG2, resulting in decreased proliferation and increased sensitivity to gemcitabine. Moreover, the inhibition of FOXP1 in orthotopic mouse models reduced tumor growth and proliferation, and enhanced sensitivity to gemcitabine. Together, our data reveal FOXP1 as a potent oncogene that promotes CSC growth in chemoresistant pancreatic cancer.
Collapse
Affiliation(s)
- Woosol Chris Hong
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minsoo Kim
- Korea Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ju Hyun Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Woong Kang
- Korea Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Sol Jung
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jung Kim
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Joon Seong Park
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Hill JLE, Leonard E, Parslow D, Hill DJ. Gene Dysregulation and Islet Changes in PDAC-Associated Type 3c Diabetes. Int J Mol Sci 2025; 26:3191. [PMID: 40244011 PMCID: PMC11988973 DOI: 10.3390/ijms26073191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy, often associated with new-onset diabetes. The relationship between PDAC and diabetes, particularly type 3c diabetes, remains poorly understood. This study investigates whether PDAC-associated diabetes represents a distinct subtype by integrating transcriptomic and histological analyses. Whole-tumour RNA sequencing data from The Cancer Genome Atlas (TCGA) were analysed to compare gene expression profiles between PDAC patients with and without diabetes. Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) deconvolution was employed to assess immune cell populations. Histopathological evaluations of pancreatic tissues were conducted to assess fibrosis and islet morphology. Histological analysis revealed perivascular fibrosis and islet basement membrane thickening in both PDAC cohorts. Transcriptomic data indicated significant downregulation of islet hormone genes insulin (INS) and glucagon (GCG) but not somatostatin (SST) in PDAC-associated diabetes, consistent with a type 3c diabetes phenotype. Contrary to previous reports, no distinct immunogenic signature was identified in PDAC with diabetes, as key immune checkpoint genes (Programmed Cell Death Protein 1 (PDCD1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), Programmed Death-Ligand 1(PD-L1)) were not differentially expressed. The findings suggest that PDAC-associated diabetes arises through neoplastic alterations in islet physiology rather than immune-mediated mechanisms. The observed reductions in endocrine markers reinforce the concept of PDAC-driven β-cell dysfunction as a potential early indicator of malignancy. Given the poor response of PDAC to PD-L1 checkpoint inhibitors, further research is needed to elucidate alternative therapeutic strategies targeting tumour-islet interactions.
Collapse
Affiliation(s)
| | - Eliot Leonard
- Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK;
| | | | - David J. Hill
- Lawson Research Institute, St. Joseph Health Care, London, ON N6A 4V2, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
3
|
Wu H, Shang J, Bao Y, Liu H, Zhang H, Xiao Y, Li Y, Huang Z, Cheng X, Ma Z, Zhang W, Mo P, Wang D, Zhang M, Zhan Y. Identification of a novel prognostic marker ADGRG6 in pancreatic adenocarcinoma: multi-omics analysis and experimental validation. Front Immunol 2025; 16:1530789. [PMID: 40226617 PMCID: PMC11986822 DOI: 10.3389/fimmu.2025.1530789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) ranks among the most lethal malignancies worldwide. Current treatment options have limited efficacy, underscoring the need for new therapeutic targets. Methods This study employed a multi-omics analytical framework to delve into the expression profiles and prognostic implications of ADGRG6 within the pan-cancer dataset of The Cancer Genome Atlas (TCGA) database, highlighting the prognostic value and potential carcinogenic role of ADGRG6 in PAAD, which was further validated using data from multiple PAAD cohorts in the Gene Expression Omnibus (GEO) database. To assess the role of ADGRG6 in the tumor microenvironment of PAAD, we evaluated immune infiltration using CIBERSORT, ssGSEA, xCell and Tracking Tumor Immunophenotype (TIP), and utilized single-cell sequencing data to explore cell-cell interactions. Further cellular and animal experiments, such as colony formation assay, transwell assay, western blot, real-time PCR, and tumor xenograft experiments, were used to investigate the effect of ADGRG6 on the proliferation, metastatic potential and immune marker expression of PAAD and the underlying mechanisms. Results ADGRG6 emerged as a potential prognostic biomarker and a therapeutic target for PAAD, which was further corroborated by data extracted from multiple PAAD cohorts archived in the GEO database. Single-cell sequencing and immune infiltration analyses predicted the positive correlation of ADGRG6 with the infiltration of immune cells and with the interaction between malignant cells and fibroblasts/macrophages within the PAAD microenvironment. In vitro cell assays demonstrated that ADGRG6 promoted the proliferation, metastatic potential and immune marker expression of PAAD cells by increasing protein level of mutated p53 (mutp53), which activated a spectrum of gain-of-functions to promote cancer progression via the EGFR, AMPK and NF-κB signaling cascades. Furthermore, subcutaneous xenograft experiments in mice demonstrated that ADGRG6 knockdown substantially suppressed the growth of engrafted PAAD tumors. Conclusions ADGRG6 may serve as a novel prognostic marker and a therapeutic targets for PAAD, playing a crucial role in the proliferation, metastasis, and immune marker regulation of PAAD through elevating protein level of mutated p53.
Collapse
Affiliation(s)
- Han Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Jin Shang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuanyan Bao
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Huajie Liu
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Haoran Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yaosheng Xiao
- Department of Infectious Disease, Xiang’an Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yangtaobo Li
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Zhaozhang Huang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaolei Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zixuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Daxuan Wang
- Provincial College of Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Mingqing Zhang
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Yanyan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Salas-Escabillas DJ, Hoffman MT, Brender SM, Moore JS, Wen HJ, Benitz S, Davis ET, Long D, Wombwell AM, Chianis ERD, Allen-Petersen BL, Steele NG, Sears RC, Matsumoto I, DelGiorno KE, Crawford HC. Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer. Dev Cell 2025; 60:837-852.e3. [PMID: 39721583 DOI: 10.1016/j.devcel.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplasia, which progresses to neoplasia and cancer. Tuft cells (TCs) are chemosensory cells not found in the normal pancreas but arise in cancer precursor lesions and diminish during progression to carcinoma. These metaplastic TCs (mTCs) suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown. To determine the fate of mTCs during PDA progression, we created a dual recombinase lineage trace model, wherein a pancreas-specific FlpO was used to induce tumorigenesis, while a tuft-cell specific Pou2f3CreERT/+ driver was used to induce expression of a tdTomato reporter. We found that mTCs in carcinoma transdifferentiate into neural-like progenitor cells (NRPs), a cell type associated with poor survival in patients. Using conditional knockout and overexpression systems, we found that Myc activity in mTCs is necessary and sufficient to induce this tuft-to-neuroendocrine transition (TNT).
Collapse
Affiliation(s)
- Daniel J Salas-Escabillas
- Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney M Brender
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Jacee S Moore
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Simone Benitz
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Erick T Davis
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Daniel Long
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Allison M Wombwell
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Ella Rose D Chianis
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Nina G Steele
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | | | - Kathleen E DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Howard C Crawford
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA.
| |
Collapse
|
5
|
Reese KL, Pantel K, Smit DJ. Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review. J Exp Clin Cancer Res 2024; 43:250. [PMID: 39218911 PMCID: PMC11367781 DOI: 10.1186/s13046-024-03166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently detected in late stages, which leads to limited therapeutic options and a dismal overall survival rate. To date, no robust method for the detection of early-stage PDAC that can be used for targeted screening approaches is available. Liquid biopsy allows the minimally invasive collection of body fluids (typically peripheral blood) and the subsequent analysis of circulating tumor cells or tumor-associated molecules such as nucleic acids, proteins, or metabolites that may be useful for the early diagnosis of PDAC. Single biomarkers may lack sensitivity and/or specificity to reliably detect PDAC, while combinations of these circulating biomarkers in multimarker panels may improve the sensitivity and specificity of blood test-based diagnosis. In this narrative review, we present an overview of different liquid biopsy biomarkers for the early diagnosis of PDAC and discuss the validity of multimarker panels.
Collapse
Affiliation(s)
- Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
6
|
Salas-Escabillas DJ, Hoffman MT, Moore JS, Brender SM, Wen HJ, Benitz S, Davis ET, Long D, Wombwell AM, Steele NG, Sears RC, Matsumoto I, DelGiorno KE, Crawford HC. Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579982. [PMID: 38405804 PMCID: PMC10888969 DOI: 10.1101/2024.02.12.579982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplastic ducts that act as precursors of neoplasia and cancer. Tuft cells are solitary chemosensory cells not found in the normal pancreas but arise in metaplasia and neoplasia, diminishing as neoplastic lesions progress to carcinoma. Metaplastic tuft cells (mTCs) function to suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown. To determine the fate of mTCs during PDA progression, we have created a lineage tracing model that uses a tamoxifen-inducible tuft-cell specific Pou2f3CreERT/+ driver to induce transgene expression, including the lineage tracer tdTomato or the oncogene Myc. mTC lineage trace models of pancreatic neoplasia and carcinoma were used to follow mTC fate. We found that mTCs, in the carcinoma model, transdifferentiate into neural-like progenitor cells (NRPs), a cell type associated with poor survival in PDA patients. Using conditional knock-out and overexpression systems, we found that Myc activity in mTCs is necessary and sufficient to induce this Tuft-to-Neuroendocrine-Transition (TNT).
Collapse
Affiliation(s)
- Daniel J. Salas-Escabillas
- Cancer Biology, University of Michigan, Ann Arbor, MI
- Department of Surgery, Henry Ford Health, Detroit, MI
| | - Megan T. Hoffman
- Department of Immunology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health, Detroit, MI
| | - Simone Benitz
- Department of Surgery, Henry Ford Health, Detroit, MI
| | | | - Dan Long
- Department of Surgery, Henry Ford Health, Detroit, MI
| | | | | | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
| | | | - Kathleen E. DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health, Detroit, MI
- Cancer Biology Program, Wayne State University, Detroit, MI
| |
Collapse
|
7
|
Salu P, Reindl KM. Advancements in Preclinical Models of Pancreatic Cancer. Pancreas 2024; 53:e205-e220. [PMID: 38206758 PMCID: PMC10842038 DOI: 10.1097/mpa.0000000000002277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
ABSTRACT Pancreatic cancer remains one of the deadliest of all cancer types with a 5-year overall survival rate of just 12%. Preclinical models available for understanding the disease pathophysiology have evolved significantly in recent years. Traditionally, commercially available 2-dimensional cell lines were developed to investigate mechanisms underlying tumorigenesis, metastasis, and drug resistance. However, these cells grow as monolayer cultures that lack heterogeneity and do not effectively represent tumor biology. Developing patient-derived xenografts and genetically engineered mouse models led to increased cellular heterogeneity, molecular diversity, and tissues that histologically represent the original patient tumors. However, these models are relatively expensive and very timing consuming. More recently, the advancement of fast and inexpensive in vitro models that better mimic disease conditions in vivo are on the rise. Three-dimensional cultures like organoids and spheroids have gained popularity and are considered to recapitulate complex disease characteristics. In addition, computational genomics, transcriptomics, and metabolomic models are being developed to simulate pancreatic cancer progression and predict better treatment strategies. Herein, we review the challenges associated with pancreatic cancer research and available analytical models. We suggest that an integrated approach toward using these models may allow for developing new strategies for pancreatic cancer precision medicine.
Collapse
Affiliation(s)
- Philip Salu
- From the Department of Biological Sciences, North Dakota State University, Fargo, ND
| | | |
Collapse
|
8
|
Huang Y, Wu Z, Lan W, Zhong C. Predicting Disease-Associated N7-Methylguanosine (m 7G) Sites via Random Walk on Heterogeneous Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3173-3181. [PMID: 37294648 DOI: 10.1109/tcbb.2023.3284505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent studies revealed that the modification of N7-methylguanosine (m7G) has associations with many human diseases. Effectively identifying disease-associated m7G methylation sites would provide crucial clues for disease diagnosis and treatment. Previous studies have developed computational methods to predict disease-associated m7G sites based on similarities among m7G sites and diseases. However, few have focused on the influence of the known m7G-disease association information on calculating similarity measures of m7G site and disease, which potentially promotes the identification of the disease-associated m7G sites. In this work, we propose а computational method called m7GDP-RW to predict m7G-disease associations by random walk algorithm. m7GDP-RW first incorporates the feature information of m7G site and disease with the known m7G-disease associations to compute m7G site similarity and disease similarity. Then m7GDP-RW combines the known m7G-disease associations with the computed similarity of m7G site and disease to construct a m7G-disease heterogeneous network. Finally, m7GDP-RW utilizes a two-pass random walk with restart algorithm to find novel m7G-disease associations on the heterogeneous network. The experimental results show that our method achieves higher prediction accuracy compared to the existing methods. The study case also demonstrates the effectiveness of m7GDP-RW in discovering potential m7G-disease associations.
Collapse
|
9
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Izdebska WM, Daniluk J, Niklinski J. Microbiome and MicroRNA or Long Non-Coding RNA-Two Modern Approaches to Understanding Pancreatic Ductal Adenocarcinoma. J Clin Med 2023; 12:5643. [PMID: 37685710 PMCID: PMC10488817 DOI: 10.3390/jcm12175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of humans' most common and fatal neoplasms. Nowadays, a number of PDAC studies are being conducted in two different fields: non-coding RNA (especially microRNA and long non-coding RNA) and microbiota. It has been recently discovered that not only does miRNA affect particular bacteria in the gut microbiome that can promote carcinogenesis in the pancreas, but the microbiome also has a visible impact on the miRNA. This suggests that it is possible to use the combined impact of the microbiome and noncoding RNA to suppress the development of PDAC. Nevertheless, insufficient research has focused on bounding both approaches to the diagnosis, treatment, and prevention of pancreatic ductal adenocarcinoma. In this article, we summarize the recent literature on the molecular basis of carcinogenesis in the pancreas, the two-sided impact of particular types of non-coding RNA and the pancreatic cancer microbiome, and possible medical implications of the discovered phenomenon.
Collapse
Affiliation(s)
- Wiktoria Maria Izdebska
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jaroslaw Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
11
|
Dinter J, Friedrich RP, Yang H, Pilarsky C, Mangge H, Pöttler M, Janko C, Alexiou C, Lyer S. Mitoxantrone and Mitoxantrone-Loaded Iron Oxide Nanoparticles Induce Cell Death in Human Pancreatic Ductal Adenocarcinoma Cell Spheroids. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2906. [PMID: 37049199 PMCID: PMC10096321 DOI: 10.3390/ma16072906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Pancreatic ductal adenocarcinoma is a hard-to-treat, deadly malignancy. Traditional treatments, such as surgery, radiation and chemotherapy, unfortunately are still not able to significantly improve long-term survival. Three-dimensional (3D) cell cultures might be a platform to study new drug types in a highly reproducible, resource-saving model within a relevant pathophysiological cellular microenvironment. We used a 3D culture of human pancreatic ductal adenocarcinoma cell lines to investigate a potential new treatment approach using superparamagnetic iron oxide nanoparticles (SPIONs) as a drug delivery system for mitoxantrone (MTO), a chemotherapeutic agent. We established a PaCa DD183 cell line and generated PANC-1SMAD4 (-/-) cells by using the CRISPR-Cas9 system, differing in a prognostically relevant mutation in the TGF-β pathway. Afterwards, we formed spheroids using PaCa DD183, PANC-1 and PANC-1SMAD4 (-/-) cells, and analyzed the uptake and cytotoxic effect of free MTO and MTO-loaded SPIONs by microscopy and flow cytometry. MTO and SPION-MTO-induced cell death in all tumor spheroids in a dose-dependent manner. Interestingly, spheroids with a SMAD4 mutation showed an increased uptake of MTO and SPION-MTO, while at the same time being more resistant to the cytotoxic effects of the chemotherapeutic agents. MTO-loaded SPIONs, with their ability for magnetic drug targeting, could be a future approach for treating pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Jonas Dinter
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, 8036 Graz, Austria
| | - Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Bailey P, Zhou X, An J, Peccerella T, Hu K, Springfeld C, Büchler M, Neoptolemos JP. Refining the Treatment of Pancreatic Cancer From Big Data to Improved Individual Survival. FUNCTION 2023; 4:zqad011. [PMID: 37168490 PMCID: PMC10165547 DOI: 10.1093/function/zqad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 05/13/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers worldwide, most notably in Europe and North America. Great strides have been made in combining the most effective conventional therapies to improve survival at least in the short and medium term. The start of treatment can only be made once a diagnosis is made, which at this point, the tumor volume is already very high in the primary cancer and systemically. If caught at the earliest opportunity (in circa 20% patients) surgical resection of the primary followed by combination chemotherapy can achieve 5-year overall survival rates of 30%-50%. A delay in detection of even a few months after symptom onset will result in the tumor having only borderline resectabilty (in 20%-30% of patients), in which case the best survival is achieved by using short-course chemotherapy before tumor resection as well as adjuvant chemotherapy. Once metastases become visible (in 40%-60% of patients), cure is not possible, palliative cytotoxics only being able to prolong life by few months. Even in apparently successful therapy in resected and borderline resectable patients, the recurrence rate is very high. Considerable efforts to understand the nature of pancreatic cancer through large-scale genomics, transcriptomics, and digital profiling, combined with functional preclinical models, using genetically engineered mouse models and patient derived organoids, have identified the critical role of the tumor microenvironment in determining the nature of chemo- and immuno-resistance. This functional understanding has powered fresh and exciting approaches for the treatment of this cancer.
Collapse
Affiliation(s)
- Peter Bailey
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Xu Zhou
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Jingyu An
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Teresa Peccerella
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Kai Hu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Disease (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
13
|
Eptaminitaki GC, Zaravinos A, Stellas D, Panagopoulou M, Karaliota S, Baltsavia I, Iliopoulos I, Chatzaki E, Iliopoulos D, Baritaki S. Genome-Wide Analysis of lncRNA-mRNA Co-Expression Networks in CD133+/CD44+ Stem-like PDAC Cells. Cancers (Basel) 2023; 15:cancers15041053. [PMID: 36831395 PMCID: PMC9954787 DOI: 10.3390/cancers15041053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the second most prevalent gastrointestinal malignancy and the most common type of pancreatic cancer is linked with poor prognosis and, eventually, with high mortality rates. Early detection is seldom, while tumor heterogeneity and microarchitectural alterations benefit PDAC resistance to conventional therapeutics. Although emerging evidence suggest the core role of cancer stem cells (CSCs) in PDAC aggressiveness, unique stem signatures are poorly available, thus limiting the efforts of anti-CSC-targeted therapy. Herein, we report the findings of the first genome-wide analyses of mRNA/lncRNA transcriptome profiling and co-expression networks in PDAC cell line-derived CD133+/CD44+ cells, which were shown to bear a CSC-like phenotype in vitro and in vivo. Compared to CD133-/CD44- cells, the CD133+/CD44+ population demonstrated significant expression differences in both transcript pools. Using emerging bioinformatic tools, we performed lncRNA target coding gene prediction analysis, which revealed significant Gene Ontology (GO), pathway, and network enrichments in many dyregulated lncRNA nearby (cis or trans) mRNAs, with reported involvement in the regulation of CSC phenotype and functions. In this context, the construction of lncRNA/mRNA networks by ingenuity platforms identified the lncRNAs ATF2, CHEK1, DCAF8, and PAX8 to interact with "hub" SC-associated mRNAs. In addition, the expressions of the above lncRNAs retrieved by TCGA-normalized RNAseq gene expression data of PAAD were significantly correlated with clinicopathological features of PDAC, including tumor grade and stage, nodal metastasis, and overall survival. Overall, our findings shed light on the identification of CSC-specific lncRNA signatures with potential prognostic and therapeutic significance in PDAC.
Collapse
Affiliation(s)
- Giasemi C. Eptaminitaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Basic and Translational Cancer Research Center (BTCRC), Genomics and Systems Biology Laboratory, Cancer Genetics, Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Sevasti Karaliota
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ismini Baltsavia
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Iliopoulos
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | | | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence: ; Tel.: +30-281-039-4727
| |
Collapse
|
14
|
Zhang X, Xu Z, Dai X, Zhang X, Wang X. Research progress of neoantigen-based dendritic cell vaccines in pancreatic cancer. Front Immunol 2023; 14:1104860. [PMID: 36761724 PMCID: PMC9905145 DOI: 10.3389/fimmu.2023.1104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
The mutation of the crucial genes such as tumor suppressors or oncogenes plays an important role in the initiation and development of tumors. The non-synonymous mutations in the tumor cell genome will produce non-autologous proteins (neoantigen) to activate the immune system by activating CD4+ and CD8+ T cells. Neoantigen-based peptide vaccines have exhibited exciting therapeutic effects in treating various cancers alone or in combination with other therapeutic strategies. Furthermore, antigen-loaded DC vaccines are more powerful in inducing stronger immune responses than vaccines generated by antigens and adjuvants. Therefore, neoantigen-based dendritic cell (DC) vaccines could achieve promising effects in combating some malignant tumors. In this review, we summarized and discussed the recent research progresses of the neoantigen, neoantigen-based vaccines, and DC-based vaccine in pancreatic cancers (PCs). The combination of the neoantigen and DC-based vaccine in PC was also highlighted. Therefore, our work will provide more detailed evidence and novel opinions to promote the development of a personalized neoantigen-based DC vaccine for PC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Zheng Xu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,*Correspondence: Xueju Wang,
| |
Collapse
|
15
|
Busato D, Mossenta M, Dal Bo M, Macor P, Toffoli G. The Proteoglycan Glypican-1 as a Possible Candidate for Innovative Targeted Therapeutic Strategies for Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810279. [PMID: 36142190 PMCID: PMC9499405 DOI: 10.3390/ijms231810279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic cancers, with a 5-year survival rate of 7% and 80% of patients diagnosed with advanced or metastatic malignancies. Despite recent advances in diagnostic testing, surgical techniques, and systemic therapies, there remain limited options for the effective treatment of PDAC. There is an urgent need to develop targeted therapies that are able to differentiate between cancerous and non-cancerous cells to reduce side effects and better inhibit tumor growth. Antibody-targeted strategies are a potentially effective option for introducing innovative therapies. Antibody-based immunotherapies and antibody-conjugated nanoparticle-based targeted therapies with antibodies targeting specific tumor-associated antigens (TAA) can be proposed. In this context, glypican-1 (GPC1), which is highly expressed in PDAC and not expressed or expressed at very low levels in non-malignant lesions and healthy pancreatic tissues, is a useful TAA that can be achieved by a specific antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy. In this review, we describe the main clinical features of PDAC. We propose the proteoglycan GPC1 as a useful TAA for PDAC-targeted therapies. We also provide a digression on the main developed approaches of antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy, which can be used to target GPC1.
Collapse
Affiliation(s)
- Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0434-659816
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
16
|
Raja Arul GL, Toruner MD, Gatenby RA, Carr RM. Ecoevolutionary biology of pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:730-740. [PMID: 35821188 DOI: 10.1016/j.pan.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer, is an aggressive disease predicted to be the 2nd cause of cancer mortality in the US by 2040. While first-line therapy has improved, 5-year overall survival has only increased from 5 to ∼10%, and surgical resection is only available for ∼20% of patients as most present with advanced disease, which is invariably lethal. PDAC has well-established highly recurrent mutations in four driver genes including KRAS, TP53, CDKN2A, and SMAD4. Unfortunately, these genetic drivers are not currently therapeutically actionable. Despite extensive sequencing efforts, few additional significantly recurrent and druggable drivers have been identified. In the absence of targetable mutations, chemotherapy remains the mainstay of treatment for most patients. Further, the role of the above driver mutations on PDAC initiation and early development is well-established. However, these mutations alone cannot account for PDAC heterogeneity nor discern early from advanced disease. Taken together, management of PDAC is an example highlighting the shortcomings of the current precision medicine paradigm. PDAC, like other malignancies, represents an ecoevolutionary process. Better understanding the disease through this lens can facilitate the development of novel therapeutic strategies to better control and cure PDAC. This review aims to integrate the current understanding of PDAC pathobiology into an ecoevolutionary framework.
Collapse
Affiliation(s)
| | - Merih D Toruner
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ryan M Carr
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Osei-Bordom DC, Serifis N, Brown ZJ, Hewitt DB, Lawal G, Sachdeva G, Cloonan DJ, Pawlik TM. Pancreatic ductal adenocarcinoma: Emerging therapeutic strategies. Surg Oncol 2022; 43:101803. [PMID: 35830772 DOI: 10.1016/j.suronc.2022.101803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/11/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022]
Abstract
The seventh leading cause of cancer-related death globally, pancreatic ductal adenocarcinoma (PDAC) involves the exocrine pancreas and constitutes greater than 90% of all pancreatic cancers. Surgical resection in combination with systemic chemotherapy with or without radiation remains the mainstay of treatment and the only potentially curative treatment option. While there has been improvement in systemic chemotherapy, long-term survival among patients with PDAC remains poor. Improvement in the understanding of tumorigenesis, genetic mutations, the tumor microenvironment (TME), immunotherapies, as well as targeted therapies continued to drive advances in PDAC treatment. We herein review the TME, genetic landscape, as well as various metabolic pathways associated with PDAC tumorigenesis relative to emerging therapies.
Collapse
Affiliation(s)
- Daniel C Osei-Bordom
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK; Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Nikolaos Serifis
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zachary J Brown
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - D Brock Hewitt
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Gbemisola Lawal
- Department of Surgery, Arrowhead Regional Cancer Center, California University of Science and Medicine, Colton, CA, USA
| | - Gagandeep Sachdeva
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK
| | - Daniel J Cloonan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
18
|
Mehra S, Singh S, Nagathihalli N. Emerging Role of CREB in Epithelial to Mesenchymal Plasticity of Pancreatic Cancer. Front Oncol 2022; 12:925687. [PMID: 35800049 PMCID: PMC9253527 DOI: 10.3389/fonc.2022.925687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive solid malignancy with a high rate of metastasis and therapeutic resistance as its major hallmarks. Although a defining mutational event in pancreatic cancer initiation is the presence of oncogenic KRAS, more advanced PDAC lesions accumulate additional genomic alterations, including loss of tumor suppressor gene TP53. Co-occurrence of mutant KRAS and TP53 in PDAC promotes hyperactivation of cancer cell signaling pathways driving epithelial to mesenchymal plasticity (EMP). The cellular process of EMP influences the biological behavior of cancer cells by increasing their migratory and invasive properties, thus promoting metastasis. Our previous work has demonstrated that oncogenic KRAS-mediated activation of cyclic AMP response element-binding protein 1 (CREB) is one of the critical drivers of PDAC aggressiveness. The therapeutic approach of targeting this key transcription factor attenuates tumor burden in genetically engineered mouse models (GEMMs) of this disease. Herein, we discuss the significant role of CREB in perpetuating disease aggressiveness and therapeutic resistance through the EMP process. Furthermore, this review updates the therapeutic implications of targeting CREB, highlighting the challenges and emerging approaches in PDAC.
Collapse
Affiliation(s)
- Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samara Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nagaraj Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
- *Correspondence: Nagaraj Nagathihalli,
| |
Collapse
|
19
|
Sellner F, Thalhammer S, Klimpfinger M. Isolated Pancreatic Metastases of Renal Cell Cancer: Genetics and Epigenetics of an Unusual Tumour Entity. Cancers (Basel) 2022; 14:1539. [PMID: 35326690 PMCID: PMC8945920 DOI: 10.3390/cancers14061539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
Isolated pancreatic metastases of renal cell carcinoma (isPMRCC) are a rare manifestation of metastatic renal cell carcinoma (mRCC) characterized by two peculiarities: (1). The definite or at least long-term exclusive occurrence of metastases in the pancreas and (2). an unusual low tumour aggressiveness with slow tumour progression and consecutive, good treatment results. According to current knowledge, the exclusive occurrence of pancreatic metastases is due to a highly specific and highly selective seed and soil mechanism, which does not allow metastases settlement outside the pancreas, and whose detailed genetic/epigenetic causes are not yet elucidated. Recent studies have shed light on some of the pathways involved for the protracted course of the disease and highlighted a special genetic profile (lack of loss of 9p, lower weight genome instability index, low frequency of BAP1 alterations, and a high frequency of PBRM1 loss), which deviates from the conventional mRCC profile. Finally, the question of the reasons for the long-term relative genetic stability of the involved cell clones, which is an essential prerequisite for a favourable prognosis, remains unanswered.
Collapse
Affiliation(s)
- Franz Sellner
- Department of General-, Visceral- and Vascular Surgery, Clinic Favoriten—Kaiser Franz Josef Hospital, 1100 Vienna, Austria;
| | - Sabine Thalhammer
- Department of General-, Visceral- and Vascular Surgery, Clinic Favoriten—Kaiser Franz Josef Hospital, 1100 Vienna, Austria;
| | - Martin Klimpfinger
- Clinical Institute of Pathology, Medical University, 1090 Vienna, Austria;
| |
Collapse
|
20
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
21
|
Hyun S, Park D. Challenges in genomic analysis of model systems and primary tumors of pancreatic ductal adenocarcinoma. Comput Struct Biotechnol J 2022; 20:4806-4815. [PMID: 36147673 PMCID: PMC9464644 DOI: 10.1016/j.csbj.2022.08.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive tumor behavior and poor prognosis. Recent next-generation sequencing (NGS)-based genomic studies have provided novel treatment modes for pancreatic cancer via the identification of cancer driver variants and molecular subtypes in PDAC. Genome-wide approaches have been extended to model systems such as patient-derived xenografts (PDXs), organoids, and cell lines for pre-clinical purposes. However, the genomic characteristics vary in the model systems, which is mainly attributed to the clonal evolution of cancer cells during their construction and culture. Moreover, fundamental limitations such as low tumor cellularity and the complex tumor microenvironment of PDAC hinder the confirmation of genomic features in the primary tumor and model systems. The occurrence of these phenomena and their associated complexities may lead to false insights into the understanding of mechanisms and dynamics in tumor tissues of patients. In this review, we describe various model systems and discuss differences in the results based on genomics and transcriptomics between primary tumors and model systems. Finally, we introduce practical strategies to improve the accuracy of genomic analysis of primary tissues and model systems.
Collapse
|
22
|
A New Oxadiazole-Based Topsentin Derivative Modulates Cyclin-Dependent Kinase 1 Expression and Exerts Cytotoxic Effects on Pancreatic Cancer Cells. Molecules 2021; 27:molecules27010019. [PMID: 35011251 PMCID: PMC8746667 DOI: 10.3390/molecules27010019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal form of cancer characterized by drug resistance, urging new therapeutic strategies. In recent years, protein kinases have emerged as promising pharmacological targets for the treatment of several solid and hematological tumors. Interestingly, cyclin-dependent kinase 1 (CDK1) is overexpressed in PDAC tissues and has been correlated to the aggressive nature of these tumors because of its key role in cell cycle progression and resistance to the induction of apoptosis. For these reasons, CDK1 is one of the main causes of chemoresistance, representing a promising pharmacological target. In this study, we report the synthesis of new 1,2,4-oxadiazole compounds and evaluate their ability to inhibit the cell growth of PATU-T, Hs766T, and HPAF-II cell lines and a primary PDAC cell culture (PDAC3). Compound 6b was the most active compound, with IC50 values ranging from 5.7 to 10.7 µM. Molecular docking of 6b into the active site of CDK1 showed the ability of the compound to interact effectively with the adenosine triphosphate binding pocket. Therefore, we assessed its ability to induce apoptosis (which increased 1.5- and 2-fold in PATU-T and PDAC3 cells, respectively) and to inhibit CDK1 expression, which was reduced to 45% in Hs766T. Lastly, compound 6b passed the ADME prediction, showing good pharmacokinetic parameters. These data demonstrate that 6b displays cytotoxic activity, induces apoptosis, and targets CDK1, supporting further studies for the development of similar compounds against PDAC.
Collapse
|
23
|
Murase W, Kamakura Y, Kawakami S, Yasuda A, Wagatsuma M, Kubota A, Kojima H, Ohta T, Takahashi M, Mutoh M, Tanaka T, Maeda H, Miyashita K, Terasaki M. Fucoxanthin Prevents Pancreatic Tumorigenesis in C57BL/6J Mice That Received Allogenic and Orthotopic Transplants of Cancer Cells. Int J Mol Sci 2021; 22:13620. [PMID: 34948416 PMCID: PMC8707761 DOI: 10.3390/ijms222413620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Fucoxanthin (Fx) is a marine carotenoid with anti-inflammatory and anti-cancer properties in various animal models of carcinogenesis. However, there is currently no information on the effects of Fx in animal models of pancreatic cancer. We investigated the chemopreventive effects of Fx in C57BL/6J mice that received allogenic and orthotopic transplantations of cancer cells (KMPC44) derived from a pancreatic cancer murine model (Ptf1aCre/+; LSL-krasG12D/+). Using microarray, immunofluorescence, western blot, and siRNA analyses, alterations in cancer-related genes and protein expression were evaluated in pancreatic tumors of Fx-administered mice. Fx administration prevented the adenocarcinoma (ADC) development of pancreatic and parietal peritoneum tissues in a pancreatic cancer murine model, but not the incidence of ADC. Gene and protein expressions showed that the suppression of chemokine (C-C motif) ligand 21 (CCL21)/chemokine receptor 7 (CCR7) axis, its downstream of Rho A, B- and T-lymphocyte attenuator (BTLA), N-cadherin, αSMA, pFAK(Tyr397), and pPaxillin(Tyr31) were significantly suppressed in the pancreatic tumors of mice treated with Fx. In addition, Ccr7 knockdown significantly attenuated the growth of KMPC44 cells. These results suggest that Fx is a promising candidate for pancreatic cancer chemoprevention that mediates the suppression of the CCL21/CCR7 axis, BTLA, tumor microenvironment, epithelial mesenchymal transition, and adhesion.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Yukino Kamakura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Serina Kawakami
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Momoka Wagatsuma
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Mami Takahashi
- Central Animal Division, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori 036-8561, Japan;
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan;
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| |
Collapse
|
24
|
Takagi K, Shimomura A, Imura J, Mori H, Noguchi A, Tanaka S, Minamisaka T, Nishida T, Hatta H, Nakajima T. Interleukin-32 regulates downstream molecules and promotes the invasion of pancreatic cancer cells. Oncol Lett 2021; 23:14. [PMID: 34820013 PMCID: PMC8607317 DOI: 10.3892/ol.2021.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022] Open
Abstract
Pancreatic cancer is a malignant neoplasm with high invasiveness and poor prognosis. In a previous study, a highly invasive pancreatic cancer cell line was established and found to feature enhanced interleukin-32 (IL-32) expression. However, whether IL-32 promotes the invasiveness by enhancing or suppressing the expression of IL-32 through regulating downstream molecules was unclear. To investigate the effect of IL-32, cells were established with high levels of expression or downregulated IL-32; their invasive ability was measured using a real-time measurement system and the expression of some candidate downstream molecules involved in invasion was evaluated in the two cell types. The morphological changes in both cell types and the localization of IL-32 expression in pancreatic cancer tissues were studied using immunohistochemistry. Among the several splice variants of IL-32, cells transfected with the ε isoform had increased invasiveness, whereas the IL-32-suppressed cells had reduced invasiveness. Several downstream molecules, whose expression was changed in the two cell types, were monitored. Notably, changes of E-cadherin, CLDN1, CD44, CTGF and Wnt were documented. The morphologies of the two cell types differed from the original cell line. Immunohistochemically, the expression of IL-32 was observed only in tumor cells and not in normal pancreatic cells. In conclusion, IL-32 was found to promote the invasiveness of pancreatic cancer cells by regulating downstream molecules.
Collapse
Affiliation(s)
- Kohji Takagi
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Akiko Shimomura
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Akira Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Shinichi Tanaka
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Takashi Minamisaka
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Takeshi Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Hideki Hatta
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Takahiko Nakajima
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
25
|
Lu T, Prakash J. Nanomedicine Strategies to Enhance Tumor Drug Penetration in Pancreatic Cancer. Int J Nanomedicine 2021; 16:6313-6328. [PMID: 34552327 PMCID: PMC8450289 DOI: 10.2147/ijn.s279192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with one of the worst survival rates due to its insidious onset and resistance to therapies. Most therapeutics show a desired anticancer effect in vitro; however, very poor efficacy in vivo because of the limited drug delivery and penetration into pancreatic tumors attributed to the abundance of the tumor stroma, ie, the fibrotic tumor microenvironment surrounding the cancer cells. For a better understanding of the challenges posed by the pancreatic tumor stroma, we outline the key features of the tumor microenvironment. Then we highlight major strategies used to tackle the challenges to improve drug penetration into the tumor and achieve enhanced efficacy (pre)clinically. Furthermore, we describe nanomedicine strategies to modulate the tumor stroma, degrade the extracellular matrix, and co-deliver multi-functional drugs, to improve the chemotherapeutics delivery and penetration into pancreatic tumors.
Collapse
Affiliation(s)
- Tao Lu
- Engineered Therapeutics Group, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics Group, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
26
|
Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM, Savage SR, Krug K, Clark DJ, Schnaubelt M, Chen L, da Veiga Leprevost F, Eguez RV, Yang W, Pan J, Wen B, Dou Y, Jiang W, Liao Y, Shi Z, Terekhanova NV, Cao S, Lu RJH, Li Y, Liu R, Zhu H, Ronning P, Wu Y, Wyczalkowski MA, Easwaran H, Danilova L, Mer AS, Yoo S, Wang JM, Liu W, Haibe-Kains B, Thiagarajan M, Jewell SD, Hostetter G, Newton CJ, Li QK, Roehrl MH, Fenyö D, Wang P, Nesvizhskii AI, Mani DR, Omenn GS, Boja ES, Mesri M, Robles AI, Rodriguez H, Bathe OF, Chan DW, Hruban RH, Ding L, Zhang B, Zhang H. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021; 184:5031-5052.e26. [PMID: 34534465 PMCID: PMC8654574 DOI: 10.1016/j.cell.2021.08.023] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/19/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Liwei Cao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - T Mamie Lih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Houxiang Zhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Peter Ronning
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ludmila Danilova
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Arvind Singh Mer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Seungyeul Yoo
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Joshua M Wang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pei Wang
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | | | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
27
|
Kisling SG, Natarajan G, Pothuraju R, Shah A, Batra SK, Kaur S. Implications of prognosis-associated genes in pancreatic tumor metastasis: lessons from global studies in bioinformatics. Cancer Metastasis Rev 2021; 40:721-738. [PMID: 34591244 PMCID: PMC8556170 DOI: 10.1007/s10555-021-09991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.
Collapse
Affiliation(s)
- Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
28
|
Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2021; 13:cancers13174389. [PMID: 34503199 PMCID: PMC8430873 DOI: 10.3390/cancers13174389] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy.
Collapse
|
29
|
Lin A, Feng J, Chen X, Wang D, Wong M, Zhang G, Na J, Zhang T, Chen Z, Chen YT, Nancy Du YC. High levels of truncated RHAMM cooperate with dysfunctional p53 to accelerate the progression of pancreatic cancer. Cancer Lett 2021; 514:79-89. [PMID: 34044069 PMCID: PMC8235875 DOI: 10.1016/j.canlet.2021.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has the lowest survival rate out of all types of cancer. Pancreatic cancer patients are often diagnosed at advanced stages, hence an urgent need for a better therapeutic development of this devastating disease. Receptor for hyaluronan-mediated motility (RHAMM), not expressed in adult normal pancreas, has been suggested as a prognostic factor and a potential therapeutic target for pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine tumor (PNET). In this study, we initially sought to determine whether genetic deletion of RHAMM would slow down pancreatic cancer progression using Rhamm-/- mice. However, we found that Rhamm-/- mice expressed a truncated HMMRΔexon8-16 protein at higher abundance levels than wild-type RHAMM. While HMMRΔexon8-16 did not enable malignant progression of pancreatic intraepithelial neoplasia in p48-Cre; LSL-KRASG12D mice, it accelerated the formation of invasive PDAC and shortened the survival of p48-Cre; LSL-KRASG12D mice with heterozygous p53 knockout. KrasG12D PDAC mice with homozygous p53 knockout mice died around 10 weeks, and the effect of HMMRΔexon8-16 was not apparent in these short lifespan mice. In addition, HMMRΔexon8-16 shortened the survival of PNET-bearing RIP-Tag mice, which had inactivated p53. In our analysis of TCGA dataset, pancreatic cancer patients with mutant TP53 or loss of one copy of TP53 had higher RHAMM expression, which, combined, predicted worse outcomes. Taken together, by collaborating with dysfunctional p53, high levels of HMMRΔexon8-16 , which lacks the centrosome targeting domain and degrons for interaction with the Anaphase-Promoting Complex (APC), accelerated pancreatic cancer progression.
Collapse
Affiliation(s)
- Anthony Lin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jennifer Feng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Megan Wong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - George Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joseph Na
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tiantian Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
30
|
Mollinedo F, Gajate C. Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer. Cancers (Basel) 2021; 13:4173. [PMID: 34439330 PMCID: PMC8394177 DOI: 10.3390/cancers13164173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, shows a dismal and grim overall prognosis and survival rate, which have remained virtually unchanged for over half a century. PDAC is the most lethal of all cancers, with the highest mortality-to-incidence ratio. PDAC responds poorly to current therapies and remains an incurable malignancy. Therefore, novel therapeutic targets and drugs are urgently needed for pancreatic cancer treatment. Selective induction of apoptosis in cancer cells is an appealing approach in cancer therapy. Apoptotic cell death is highly regulated by different signaling routes that involve a variety of subcellular organelles. Endoplasmic reticulum (ER) stress acts as a double-edged sword at the interface of cell survival and death. Pancreatic cells exhibit high hormone and enzyme secretory functions, and thereby show a highly developed ER. Thus, pancreatic cancer cells display a prominent ER. Solid tumors have to cope with adverse situations in which hypoxia, lack of certain nutrients, and the action of certain antitumor agents lead to a complex interplay and crosstalk between ER stress and autophagy-the latter acting as an adaptive survival response. ER stress also mediates cell death induced by a number of anticancer drugs and experimental conditions, highlighting the pivotal role of ER stress in modulating cell fate. The alkylphospholipid analog prototype edelfosine is selectively taken up by tumor cells, accumulates in the ER of a number of human solid tumor cells-including pancreatic cancer cells-and promotes apoptosis through a persistent ER-stress-mediated mechanism both in vitro and in vivo. Here, we discuss and propose that direct ER targeting may be a promising approach in the therapy of pancreatic cancer, opening up a new avenue for the treatment of this currently incurable and deadly cancer. Furthermore, because autophagy acts as a cytoprotective response to ER stress, potentiation of the triggering of a persistent ER response by combination therapy, together with the use of autophagy blockers, could improve the current gloomy expectations for finding a cure for this type of cancer.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, C/Ramiro de Maeztu 9, E-28040 Madrid, Spain;
| | | |
Collapse
|
31
|
Palacín-Aliana I, García-Romero N, Asensi-Puig A, Carrión-Navarro J, González-Rumayor V, Ayuso-Sacido Á. Clinical Utility of Liquid Biopsy-Based Actionable Mutations Detected via ddPCR. Biomedicines 2021; 9:906. [PMID: 34440110 PMCID: PMC8389639 DOI: 10.3390/biomedicines9080906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide and remains a major public health challenge. The introduction of more sensitive and powerful technologies has permitted the appearance of new tumor-specific molecular aberrations with a significant cancer management improvement. Therefore, molecular pathology profiling has become fundamental not only to guide tumor diagnosis and prognosis but also to assist with therapeutic decisions in daily practice. Although tumor biopsies continue to be mandatory in cancer diagnosis and classification, several studies have demonstrated that liquid biopsies could be used as a potential tool for the detection of cancer-specific biomarkers. One of the main advantages is that circulating free DNA (cfDNA) provides information about intra-tumoral heterogeneity, reflecting dynamic changes in tumor burden. This minimally invasive tool has become an accurate and reliable instrument for monitoring cancer genetics. However, implementing liquid biopsies across the clinical practice is still ongoing. The main challenge is to detect genomic alterations at low allele fractions. Droplet digital PCR (ddPCR) is a powerful approach that can overcome this issue due to its high sensitivity and specificity. Here we explore the real-world clinical utility of the liquid biopsy ddPCR assays in the most diagnosed cancer subtypes.
Collapse
Affiliation(s)
- Irina Palacín-Aliana
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (A.A.-P.); (V.G.-R.)
- Fundación de Investigación HM Hospitales, HM Hospitales, 28015 Madrid, Spain
- Faculty of Science, Universidad de Alcalá, 28801 Madrid, Spain
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Adrià Asensi-Puig
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (A.A.-P.); (V.G.-R.)
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | | | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
32
|
Shih CY, Chattopadhyay A, Wu CH, Tien YW, Lu TP. Transcript annotation tool (TransAT): an R package for retrieving annotations for transcript-specific genetic variants. BMC Bioinformatics 2021; 22:350. [PMID: 34182919 PMCID: PMC8240296 DOI: 10.1186/s12859-021-04243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An individual's genetics play a role in how RNA transcripts are generated from DNA and consequently in their translation into protein. Transcriptional and translational profiling of patients furnishes the information that a specific marker is present; however, it fails to provide evidence whether the marker correlates with response to a therapeutic agent. A comparative analysis of the frequency of genetic variants, such as single nucleotide polymorphisms (SNPs), in diseased and general populations can identify pathogenic variants in individual patients. This is in part because SNPs have considerable effects on protein function and gene expression when they occur in coding regions and regulatory sequences, respectively. Therefore, a tool that can help users to obtain the allele frequency for a corresponding transcript is the need of the day. Several annotation tools such as SNPnexus and VariED are publicly available; however, none of them can use transcript IDs as input and provide the corresponding genomic positions of variants. RESULTS In this study, we developed an R package, called transcript annotation tool (TransAT), that provides (i) SNP ID and genomic position for a user-provided transcript ID from patients, and (ii) allele frequencies for the SNPs from publicly available global populations. All data elements are extracted, collected, and displayed in an easily downloadable format in two simple command lines. TransAT is available on Windows/Linux/MacOS and is operative for R version 4.0.4 or later. It is available at https://github.com/ShihChingYu/TransAT and can be downloaded and installed using devtools::install_github("ShihChingYu/TransAT", force=T) on the R execution page. Thereafter, all functions can be executed by loading the package into R with library(TransAT). CONCLUSIONS TransAT is a novel tool that seamlessly provides genetic annotations for queried transcripts. Such easily obtainable information would be greatly advantageous for physicians, assisting them to make individualized decisions about specific drug treatments. Moreover, allele frequencies from user-chosen global ethnic populations will highlight the importance of ethnicity and its effect on patient pathogenicity.
Collapse
Affiliation(s)
- Ching-Yu Shih
- Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan
| | - Chien-Hui Wu
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, 10055, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Pin Lu
- Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan.
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, 10055, Taiwan.
| |
Collapse
|
33
|
Sato H, Liss AS, Mizukami Y. Large-duct pattern invasive adenocarcinoma of the pancreas-a variant mimicking pancreatic cystic neoplasms: A minireview. World J Gastroenterol 2021; 27:3262-3278. [PMID: 34163110 PMCID: PMC8218369 DOI: 10.3748/wjg.v27.i23.3262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer currently has no subtypes that inform clinical decisions; hence, there exists an opportunity to rearrange the morphological and molecular taxonomy that guides a better understanding of tumor characteristics. Nonetheless, accumulating studies to date have revealed the large-duct type variant, a unique subtype of pancreatic ductal adenocarcinoma (PDA) with cystic features. This subtype often radiographically mimics intraductal papillary mucinous neoplasms (IPMNs) and involves multiple small cysts occasionally associated with solid masses. The "bunch-of-grapes" sign, an imaging characteristic of IPMNs, is absent in large-duct PDA. Large-duct PDA defines the mucin profile, and genetic alterations are useful in distinguishing large-duct PDA from IPMNs. Histologically, neoplastic ducts measure over 0.5 mm, forming large ductal elements. Similar to classic PDAs, this subtype is frequently accompanied by perineural invasion and abundant desmoplastic reactions, and KRAS mutations in codon 12 are nearly ubiquitous. Despite such morphological similarities with IPMNs, the prognosis of large-duct PDA is equivalent to that of classic PDA. Differential diagnosis is therefore essential.
Collapse
Affiliation(s)
- Hiroki Sato
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 0788510, Hokkaido, Japan
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Andrew Scott Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Yusuke Mizukami
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 0788510, Hokkaido, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 0650033, Hokkaido, Japan
| |
Collapse
|
34
|
Yin F, Dong J, Kang LI, Liu X. Hippo-YAP signaling in digestive system tumors. Am J Cancer Res 2021; 11:2495-2507. [PMID: 34249412 PMCID: PMC8263672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023] Open
Abstract
The Hippo pathway is an evolutionally conserved pathway and plays an important role in regulating tissue hemostasis and organ size control. Deregulation of the Hippo pathway is implicated in various human digestive system tumors. The past two decades have witnessed the discovery and elucidation of key signaling components and molecular mechanisms of the Hippo pathway. Among these, the signaling transducers YAP/TAZ are in the center of this complex network to sense and respond to extracellular cues such as cell contact, matrix stiffness and growth factors. In this review, we summarize the biological and clinical significance of Hippo-YAP signaling in the digestive system tumors, and explore the novel therapeutic strategies for targeting Hippo-YAP signaling.
Collapse
Affiliation(s)
- Feng Yin
- Department of Pathology and Anatomical Sciences, University of MissouriColumbia, Missouri, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmaha, Nebraska, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of MedicineSt. Louis, Missouri, USA
| | - Xiuli Liu
- Department of Pathology, Immunology and Lab Medicine, University of FloridaGainesville, Florida, USA
| |
Collapse
|
35
|
Xu C, Cao X, Cao X, Liu L, Qiu Y, Li X, Zhou L, Ning Y, Ren K, Cao J. Isovitexin Inhibits Stemness and Induces Apoptosis in Hepatocellular Carcinoma SK-Hep-1 Spheroids by Upregulating miR-34a Expression. Anticancer Agents Med Chem 2021; 20:1654-1663. [PMID: 32329692 DOI: 10.2174/1871520620666200424123139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND We previously demonstrated that isovitexin (apigenin-6-C-glucoside, ISOV) suppressed the stemness of human Hepatocellular Carcinoma (HCC) cells. However, the mechanism of its action remains to be deciphered. OBJECTIVE The current study was to examine whether ISOV regulates the miR-34a expression and hence suppresses the stemness of HCC SK-Hep-1 cells. METHODS After identification of the stemness, apoptosis resistance and decreased miR-34a expression of spheres from SK-Hep-1 cells (SK-SC), we utilized transfection of a miR-34a mimic or inhibitor to investigate the effects of ISOV on miR-34a, Bcl-2, Bax and Mcl-1 expression in order to understand the mechanism underlying ISOV-mediated repression of stemness and promotion of apoptosis. RESULTS Our results demonstrated that SK-SC displayed higher stemness and resistance to apoptosis, as well as reduced miR-34a levels compared to SK-Hep-1 cells. ISOV suppressed sphere and colony formation, and decreased CD44+ cell populations. In addition, ABCG2, ALDH1, and NANOG mRNA levels were decreased, while there was a concomitant increase in miR-34a levels. With regards to apoptosis-related proteins, ISOV increased Bax protein levels, and reduced Bcl-2 and Mcl-1 protein levels in SK-SC. Importantly, there was a cooperative effect when miR-34a was overexpressed in the presence of ISOV in SK-SC, and down-regulation of miR-34a attenuated the effects of ISOV in SK-Hep-1 cells. CONCLUSION We suggest that ISOV-mediated miR-34a upregulation induces apoptosis and suppresses the stemness of SK-SC. Our data indicate that ISOV exhibits therapeutic potential for the treatment of HCC.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, Hunan 410013, China,Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha,
Hunan 410013, China
| | - Xiaocheng Cao
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, Hunan 410013, China,Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha,
Hunan 410013, China
| | - XiaoZheng Cao
- Department of Pharmacy, the Second Clinical Medical School of Jinan University, Shenzhen People’s
Hospital, Shenzhen 518020, China,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis,
Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Lihua Liu
- Department of Pharmacy, the Second Clinical Medical School of Jinan University, Shenzhen People’s
Hospital, Shenzhen 518020, China,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis,
Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yebei Qiu
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, Hunan 410013, China,Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha,
Hunan 410013, China
| | - Xiang Li
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, Hunan 410013, China,Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha,
Hunan 410013, China
| | - Lingli Zhou
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, Hunan 410013, China,Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha,
Hunan 410013, China
| | - Yingxia Ning
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Kaiqun Ren
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, Hunan 410013, China,Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha,
Hunan 410013, China
| | - Jianguo Cao
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, Hunan 410013, China,Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha,
Hunan 410013, China
| |
Collapse
|
36
|
Otto L, Rahn S, Daunke T, Walter F, Winter E, Möller JL, Rose-John S, Wesch D, Schäfer H, Sebens S. Initiation of Pancreatic Cancer: The Interplay of Hyperglycemia and Macrophages Promotes the Acquisition of Malignancy-Associated Properties in Pancreatic Ductal Epithelial Cells. Int J Mol Sci 2021; 22:ijms22105086. [PMID: 34064969 PMCID: PMC8151031 DOI: 10.3390/ijms22105086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive solid malignancies with a poor prognosis. Obesity and type 2 diabetes mellitus (T2DM) are two major risk factors linked to the development and progression of PDAC, both often characterized by high blood glucose levels. Macrophages represent the main immune cell population in PDAC contributing to PDAC development. It has already been shown that pancreatic ductal epithelial cells (PDEC) undergo epithelial–mesenchymal transition (EMT) when exposed to hyperglycemia or macrophages. Thus, this study aimed to investigate whether concomitant exposure to hyperglycemia and macrophages aggravates EMT-associated alterations in PDEC. Exposure to macrophages and elevated glucose levels (25 mM glucose) impacted gene expression of EMT inducers such as IL-6 and TNF-α as well as EMT transcription factors in benign (H6c7-pBp) and premalignant (H6c7-kras) PDEC. Most strikingly, exposure to hyperglycemic coculture with macrophages promoted downregulation of the epithelial marker E-cadherin, which was associated with an elevated migratory potential of PDEC. While blocking IL-6 activity by tocilizumab only partially reverted the EMT phenotype in H6c7-kras cells, neutralization of TNF-α by etanercept was able to clearly impair EMT-associated properties in premalignant PDEC. Altogether, the current study attributes a role to a T2DM-related hyperglycemic, inflammatory micromilieu in the acquisition of malignancy-associated alterations in premalignant PDEC, thus providing new insights on how metabolic diseases might promote PDAC initiation.
Collapse
Affiliation(s)
- Lilli Otto
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Sascha Rahn
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany; (S.R.); (S.R.-J.)
| | - Tina Daunke
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Frederik Walter
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Elsa Winter
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Julia Luisa Möller
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany;
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany; (S.R.); (S.R.-J.)
| | - Daniela Wesch
- Institute of Immunology, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany;
| | - Heiner Schäfer
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
- Correspondence: ; Tel.: +49-431-500-30501
| |
Collapse
|
37
|
Huang C, Iovanna J, Santofimia-Castaño P. Targeting Fibrosis: The Bridge That Connects Pancreatitis and Pancreatic Cancer. Int J Mol Sci 2021; 22:4970. [PMID: 34067040 PMCID: PMC8124541 DOI: 10.3390/ijms22094970] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic fibrosis is caused by the excessive deposits of extracellular matrix (ECM) and collagen fibers during repeated necrosis to repair damaged pancreatic tissue. Pancreatic fibrosis is frequently present in chronic pancreatitis (CP) and pancreatic cancer (PC). Clinically, pancreatic fibrosis is a pathological feature of pancreatitis and pancreatic cancer. However, many new studies have found that pancreatic fibrosis is involved in the transformation from pancreatitis to pancreatic cancer. Thus, the role of fibrosis in the crosstalk between pancreatitis and pancreatic cancer is critical and still elusive; therefore, it deserves more attention. Here, we review the development of pancreatic fibrosis in inflammation and cancer, and we discuss the therapeutic strategies for alleviating pancreatic fibrosis. We further propose that cellular stress response might be a key driver that links fibrosis to cancer initiation and progression. Therefore, targeting stress proteins, such as nuclear protein 1 (NUPR1), could be an interesting strategy for pancreatic fibrosis and PC treatment.
Collapse
Affiliation(s)
| | | | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France; (C.H.); (J.I.)
| |
Collapse
|
38
|
Aguilera KY, Dawson DW. WNT Ligand Dependencies in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:671022. [PMID: 33996827 PMCID: PMC8113755 DOI: 10.3389/fcell.2021.671022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
WNT signaling promotes the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) through wide-ranging effects on cellular proliferation, survival, differentiation, stemness, and tumor microenvironment. Of therapeutic interest is a genetically defined subset of PDAC known to have increased WNT/β-catenin transcriptional activity, growth dependency on WNT ligand signaling, and response to pharmacologic inhibitors of the WNT pathway. Here we review mechanisms underlying WNT ligand addiction in pancreatic tumorigenesis, as well as the potential utility of therapeutic approaches that functionally antagonize WNT ligand secretion or frizzled receptor binding.
Collapse
Affiliation(s)
- Kristina Y. Aguilera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
39
|
Li W, Wu H, Xu X, Zhang Y. Comprehensive analysis of genomic and immunological profiles in Chinese and Western hepatocellular carcinoma populations. Aging (Albany NY) 2021; 13:11564-11594. [PMID: 33867349 PMCID: PMC8109067 DOI: 10.18632/aging.202853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023]
Abstract
In this study, we explored the genomic and immune cell infiltration profiles among four distinct Hepatocellular carcinoma (HCC) types. This study included 100 patients (all tumors and adjacent liver tissues received WES sequencing) with HCC from the West China Hospital (WCH) and patients were divided into WCH-HBV-HCC group and WCH-NonHBV-HCC group. Additionally, this study included 106 HBV-related HCC (TCGA-HBV-HCC) and 69 alcoholic HCC (TCGA-Alcol-HCC) patients from the TCGA. We analyzed the high-frequency gene mutation, copy number variation (CNV), mutation spectrum, signatures and immune cell infiltration of these four groups. This study showed significant differences in gene mutation and CNV level among four HCC groups. Compared to genomic level, there is no significant difference between TCGA-HBV-HCC and TCGA-Alcol-HCC groups in fractions of tumor-infiltrating immune cells. According to the status of immune cell infiltration, patients were classified into immune-HIGH, immune-MIX and immune-LOW group, respectively. In the WCH-HBV-HCC and TCGA-HBV-HCC groups, more patients in the Immune-LOW group had TP53 mutation. Except for TP53, neither the other gene mutation nor tumor mutation burden was found to be associated with immune cell infiltration in the WCH-HBV-HCC, TCGA-HBV-HCC and TCGA-Alcol-HCC groups. In the CNV level, we found that samples with low immune infiltrate had higher number of deleted or amplified genes in the TCGA-HBV-HCC and TCGA-Alcol-HCC groups. We found comprehensive genomic heterogeneity among four HCC groups. The total gene CNV level, not the mutational burden of HCC, is associated with immune cell infiltration in HCC. TP53 mutation may injury the immune response of the HBV-related HCC.
Collapse
Affiliation(s)
- Wei Li
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Wu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xuewen Xu
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yange Zhang
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Tang R, Liu X, Wang W, Hua J, Xu J, Liang C, Meng Q, Liu J, Zhang B, Yu X, Shi S. Identification of the Roles of a Stemness Index Based on mRNA Expression in the Prognosis and Metabolic Reprograming of Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:643465. [PMID: 33912458 PMCID: PMC8071957 DOI: 10.3389/fonc.2021.643465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Background Cancer stem cells (CSCs) are widely thought to contribute to the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC). CSCs share biological features with adult stem cells, such as longevity, self-renewal capacity, differentiation, drug resistance, and the requirement for a niche; these features play a decisive role in cancer progression. A prominent characteristic of PDAC is metabolic reprogramming, which provides sufficient nutrients to support rapid tumor cell growth. However, whether PDAC stemness is correlated with metabolic reprogramming remains unknown. Method RNA sequencing data of PDAC, including read counts and fragments per kilobase of transcript per million mapped reads (FPKM), were collected from The Cancer Genome Atlas-Pancreatic Adenocarcinoma (TCGA-PAAD) database. Single-sample gene set enrichment analysis (GSEA) was used to calculate the relative activities of metabolic pathways in each PDAC sample. Quantitative real-time PCR was performed to validate the expression levels of genes of interest. Results The overall survival (OS) of patients with high mRNA expression-based stemness index (mRNAsi) values was significantly worse than that of their counterparts with low mRNAsi values (P = 0.003). This survival disadvantage was independent of baseline clinical characteristics. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and GSEA showed that the differentially expressed genes between patients with high and low mRNAsi values were mainly enriched in oncogenic and metabolic pathways. Weighted gene coexpression network analysis (WGCNA) revealed 8 independent gene modules that were significantly associated with mRNAsi and 12 metabolic pathways. Unsupervised clustering based on the key genes in each module identified two PDAC subgroups characterized by different mRNAsi values and metabolic activities. Univariate Cox regression analysis identified 14 genes beneficial to OS from 95 key genes selected from the eight independent gene modules from WGCNA. Among them, MAGEH1, MAP3K3, and PODN were downregulated in both pancreatic tissues and cell lines. Conclusion The present study showed that PDAC samples with high mRNAsi values exhibited aberrant activation of multiple metabolic pathways, and the patients from whom these samples were obtained had a poor prognosis. Future studies are expected to investigate the underlying mechanism based on the crosstalk between PDAC stemness and metabolic rewiring.
Collapse
Affiliation(s)
- Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaomeng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Wang H, Cui G, Yu B, Sun M, Yang H. Cancer Stem Cell Niche in Colorectal Cancer and Targeted Therapies. Curr Pharm Des 2020; 26:1979-1993. [PMID: 32268862 DOI: 10.2174/1381612826666200408102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are a sub-population of tumor cells found in many human cancers that are endowed with self-renewal and pluripotency. CSCs may be more resistant to conventional anticancer therapies than average cancer cells, as they can easily escape the cytotoxic effects of standard chemotherapy, thereby resulting in tumor relapse. Despite significant progress in related research, effective elimination of CSCs remains an unmet clinical need. CSCs are localized in a specialized microenvironment termed the niche, which plays a pivotal role in cancer multidrug resistance. The niche components of CSCs, such as the extracellular matrix, also physically shelter CSCs from therapeutic agents. Colorectal cancer is the most common malignancy worldwide and presents a relatively transparent process of cancer initiation and development, making it an ideal model for CSC niche research. Here, we review recent advances in the field of CSCs using colorectal cancer as an example to illustrate the potential therapeutic value of targeting the CSC niche. These findings not only provide a novel theoretical basis for in-depth discussions on tumor occurrence, development, and prognosis evaluation, but also offer new strategies for the targeted treatment of cancer.
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China.,Laboratory medical college, Jilin Medical University, Jilin, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Meiyan Sun
- Laboratory medical college, Jilin Medical University, Jilin, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
42
|
Diffuse Pancreatic Carcinoma with Hepatic Metastases. Case Rep Oncol Med 2020; 2020:8815745. [PMID: 33194237 PMCID: PMC7648702 DOI: 10.1155/2020/8815745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022] Open
Abstract
Pancreatic cancer is one of the seven leading causes of cancer death worldwide. Diffuse pancreatic carcinoma is very rare and underreported in the literature. Many advances have been made in the diagnosis and management of pancreatic cancer. However, most pancreatic cancer cases are detected at the terminal or metastatic stages. Therefore, timely diagnosis and therapeutic management are desirable goals for this disease. Although the proliferation of pancreatic cancer has been reduced by intervention, more work is needed to treat and prevent the disease. The purpose of this article is to present a case of a 54-year-old male with pancreatic cancer and to review the epidemiology, diagnosis, management, and prevention of pancreatic tumors in general as well as pancreatic carcinoma in particular.
Collapse
|
43
|
Safa AR. Epithelial-mesenchymal transition: a hallmark in pancreatic cancer stem cell migration, metastasis formation, and drug resistance. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:36. [PMID: 34841087 PMCID: PMC8623975 DOI: 10.20517/2394-4722.2020.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis, tumor progression, and chemoresistance are the major causes of death in patients with pancreatic ductal adenocarcinoma (PDAC). Tumor dissemination is associated with the activation of an epithelial-to-mesenchymal transition (EMT) process, a program by which epithelial cells lose their cell polarity and cell-to-cell adhesion, and acquire migratory and invasive abilities to become mesenchymal stem cells (MSC). These MSCs are multipotent stromal cells capable of differentiating into various cell types and trigger the phenotypic transition from an epithelial to a mesenchymal state. Therefore, EMT promotes migration and survival during cancer metastasis and confers stemness features to particular subsets of cells. Furthermore, a major problem limiting our ability to treat PDAC is the existence of rare populations of pancreatic cancer stem cells (PCSCs) or cancer-initiating cells in pancreatic tumors. PCSCs may represent sub-populations of tumor cells resistant to therapy which are most crucial for driving invasive tumor growth. These cells are capable of regenerating the cellular heterogeneity associated with the primary tumor when xenografted into mice. Therefore, the presence of PCSCs has prognostic relevance and influences the therapeutic response of tumors. PCSCs express markers of cancer stem cells (CSCs) including CD24, CD133, CD44, and epithelial specific antigen as well as the drug transporter ABCG2 grow as spheroids in a defined growth medium. A major difficulty in studying tumor cell dissemination and metastasis has been the identification of markers that distinguish metastatic cancer cells from cells that are normally circulating in the bloodstream or at sites where these cells metastasize. Evidence highlights a linkage between CSC and EMT. In this review, The current understanding of the PCSCs, signaling pathways regulating these cells, PDAC heterogeneity, EMT mechanism, and links between EMT and metastasis in PCSCs are summarised. This information may provide potential therapeutic strategies to prevent EMT and trigger CSC growth inhibition and cell death.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
44
|
Li C, Ge M, Chen D, Sun T, Jiang H, Xie Y, Lu H, Zhang B, Han L, Chen J, Zhu J. RPL21 siRNA Blocks Proliferation in Pancreatic Cancer Cells by Inhibiting DNA Replication and Inducing G1 Arrest and Apoptosis. Front Oncol 2020; 10:1730. [PMID: 33014855 PMCID: PMC7509406 DOI: 10.3389/fonc.2020.01730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Our previous study showed that the ribosomal protein L21 (RPL21) may play an important role in the development and survival of pancreatic cancer. In this article, RNA interference (RNAi) experiments were performed with RPL21-specific small interfering RNA (siRNA) to elucidate the mechanism by which RPL21 controls PC PANC-1 and BxPC-3 cell proliferation. Methods In the present study, PANC-1, BxPC-3 cells, and BALB/c nude mice were used to investigate antitumor effect and mechanism by which RPL21 controls cell proliferation and apoptosis in vitro and in vivo. The effects of RPL21 knockdown on PANC-1 and BxPC-3 cell proliferation, cell cycle and cell apoptosis in vitro were determined using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays and flow cytometry assay. The mechanism of RPL21 regulating cell proliferation was investigated using transcriptome sequencing analysis and luciferase reporter assay. The effects of RPL21 knockdown on PANC-1 and BxPC-3 cell proliferation in vivo were determined using BALB/c nude mice tumor model. Results In PANC-1 and BxPC-3 cells, the knockdown of RPL21 expression with corresponding siRNA suppressed cell proliferation in vitro and in vivo, inhibited DNA replication, and induced arrests in the G1 phase of the cell cycle. Further results showed that the mini-chromosome maintenance (MCM) protein family (MCM2-7), CCND1 and CCNE1 were down-regulated significantly in PANC-1 and BxPC-3 cells after transfected with RPL21 siRNA, which suggests that the suppression of DNA replication is due to the reduced expression of MCM2-7 family, and the induction of G1 arrest is correlated with the inhibition of CCND1 and CCNE1. Luciferase reporter assay showed that RPL21 controls the DNA replication and G1-S phase progression possibly through the regulation of E2F1 transcription factor in PC cells. Moreover, RPL21 siRNA showed an apoptosis-inducing effect only in BxPC-3 and PANC-1 cells but not in normal HPDE6-C7 cells. The increase of caspase-8 activities and the loss of mitochondrial membrane potential after RPL21 silencing indicates that the RPL21 gene may be involved in caspase-8-related mitochondrial apoptosis. Conclusion Our findings suggest that siRNA against the RPL21 gene possesses a potential anti-cancer activity for PC cells by inhibiting their proliferation and DNA replication, as well as inducing cell cycle G1 arrest and cell apoptosis.
Collapse
Affiliation(s)
- Chaodong Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
| | - Mei Ge
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Daijie Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Tao Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Jiang
- Jecho Laboratories, Inc., Frederick, MD, United States
| | - Yueqing Xie
- Jecho Laboratories, Inc., Frederick, MD, United States
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Han
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
| | - Junsheng Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China.,Jecho Laboratories, Inc., Frederick, MD, United States
| |
Collapse
|
45
|
Takahashi H, Katsuta E, Yan L, Tokumaru Y, Katz MH, Takabe K. Transcriptomic Profile of Lymphovascular Invasion, a Known Risk Factor of Pancreatic Ductal Adenocarcinoma Metastasis. Cancers (Basel) 2020; 12:E2033. [PMID: 32722116 PMCID: PMC7465682 DOI: 10.3390/cancers12082033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphovascular invasion (LVI) is an aggressive pathologic feature and considered a risk factor for distant metastasis. We hypothesized that pancreatic ductal adenocarcinomas (PDACs) with LVI are associated with shorter survival, as well as aggressive cancer biology and lymphangiogenesis in transcriptomic analysis. Utilizing the cancer genome atlas (TCGA)-PDAC cohort, we found that positive LVI was significantly associated with positive perineural invasion (PNI) (p = 0.023), and higher American Joint Committee on Cancer (AJCC) T (p = 0.017) and N (p < 0.001) categories. Furthermore, positive LVI was associated with shorter overall survival (OS) (p = 0.014) and was an independent risk factor of poor OS. Although there was no association between LVI status and lymphangiogenesis, epithelial-mesenchymal transition (EMT), or metastasis-related genes, Gene Set Enrichment Analysis revealed a strong association with cell-proliferation-related gene sets such as mitotic spindles (Normalized enrichment score (NES) = 1.76, p = 0.016) and G2/M checkpoints (NES = 1.75, p = 0.036), as well as with transforming growth factor beta (TGF-beta) signaling (NES = 1.61, p = 0.043), which is a known mechanism of metastasis in PDACs. In conclusion, positive LVI was an independent risk factor of poor OS in PDACs. We found that PDACs with LVI were possibly associated with accelerated cell proliferation and enhanced TGF-beta signaling independent of lymphangiogenesis. Transcriptomic profiling elucidates more precise tumor biology of LVI-positive PDACs.
Collapse
Affiliation(s)
- Hideo Takahashi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (H.T.); (E.K.); (Y.T.)
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (H.T.); (E.K.); (Y.T.)
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (H.T.); (E.K.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Matthew H.G. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (H.T.); (E.K.); (Y.T.)
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY 14260, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
46
|
Taghizadeh H, Müllauer L, Mader RM, Schindl M, Prager GW. Applied precision medicine in metastatic pancreatic ductal adenocarcinoma. Ther Adv Med Oncol 2020; 12:1758835920938611. [PMID: 32699558 PMCID: PMC7357054 DOI: 10.1177/1758835920938611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metastatic pancreatic ductal adenocarcinoma (mPDAC) bears a dismal prognosis due to the limited activity of systemic chemotherapy. In our platform for precision medicine, we aim to offer molecular-guided treatments to patients without further standard therapy options. METHODS In this single center, real-world retrospective analysis of our platform, we describe the molecular-based therapy approaches used in all 50 patients diagnosed with therapy-refractory mPDAC. A molecular portrait of the tumor specimens was created by next-generation sequencing, immunohistochemistry (IHC), microsatellite instability (MSI) testing, and fluorescence in situ hybridization. RESULTS In total, we detected 123 mutations in 50 patients. The five most frequent mutations were KRAS (n = 40; 80%), TP53 (n = 29; 58%), CDKN2A (n = 8; 16%), SMAD4 (n = 4; 8%), and NOTCH1 (n = 4; 8%), which together accounted for 40.2% of all mutations. Two patients had gene fusions, namely, TBL1XR1-PIK3CA and EIF3E-RSPO2. IHC detected expression of EGFR, phosphorylated mTOR, and PTEN in 36 (72%), 33 (66%), and 17 patients (34%), respectively. For 14 (28%) of the 50 patients, a targeted therapy was suggested based on the identified molecular targets. The recommended treatments included the mTOR inhibitor everolimus (n = 3), pembrolizumab (n = 3), palbociclib (n = 2), nintedanib (n = 2), and cetuximab, crizotinib, tamoxifen, and the combination of lapatinib and trastuzumab, in one patient each.Finally, five patients received the recommended therapy. Four patients died due to disease progression before radiological assessment. One patient was treated with nintedanib and achieved stable disease for 6 months. CONCLUSION Based on our observations, precision medicine approaches are feasible and implementable in clinical routine and may provide molecular-based therapy recommendations for mPDAC.
Collapse
Affiliation(s)
- Hossein Taghizadeh
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Austria
- Comprehensive Cancer Center Vienna, Austria
| | - Leonhard Müllauer
- Comprehensive Cancer Center Vienna, Austria
- Clinical Institute of Pathology, Medical University Vienna, Vienna, Austria
| | - Robert M. Mader
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Austria
- Comprehensive Cancer Center Vienna, Austria
| | - Martin Schindl
- Comprehensive Cancer Center Vienna, Austria
- Department of Surgery, Division of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerald W. Prager
- Department of Medicine I, Clinical Division of Oncology, Comprehensive Cancer Center Vienna, Precision Cancer Medicine Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Austria
| |
Collapse
|
47
|
Takagi K, Imura J, Shimomura A, Noguchi A, Minamisaka T, Tanaka S, Nishida T, Hatta H, Nakajima T. Establishment of highly invasive pancreatic cancer cell lines and the expression of IL-32. Oncol Lett 2020; 20:2888-2896. [PMID: 32782605 PMCID: PMC7400074 DOI: 10.3892/ol.2020.11825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Compared to tumors of other organs, pancreatic cancer is highly aggressive; with one of its biological features being that, despite a prominent fibrotic stroma, there is remarkable infiltration of tumor cells. This characteristic is considered to be the main reason for the poor prognosis of patients with pancreatic cancer. Therefore, in order to elucidate the factors that contribute to this high invasiveness, a selective invasion method was used to establish four highly invasive subclones from six human pancreatic cancer cell lines. The results demonstrated that two cell lines did not exhibit enhanced invasiveness. Microarray analysis revealed that, in the highly invasive cell lines, several genes were expressed at high levels, compared with the original cell lines. These highly expressed genes were recognized only in highly invasive cells. Among them, IL-32 was most strongly upregulated in the highly invasive cells, compared with cells with a low invasive potential, as well as the original cells. RT-qPCR and western blot analysis confirmed the high levels of expression of IL-32 in highly invasive cells at the RNA and protein levels. In addition, immunohistochemical analysis of resected surgical materials revealed that the tumor cells expressed IL-32 and, in particular, many IL-32 positive cells were seen at the invasive front of the tumor tissue. IL-32 is a cytokine that is widely involved in the development of cancer and has recently received considerable attention. This cytokine has multiple splice variants and shows a wide variety of behaviors, depending on the tumor type and primary organ. Although some hypotheses have been proposed to explain the activity of IL-32, a unified view has not been agreed. In the present study, through the establishment of highly invasive cells from pancreatic cancer and a comprehensive gene analysis, it is suggested that IL-32 may serve an important role as a molecule involved in the invasiveness of this neoplasm.
Collapse
Affiliation(s)
- Kohji Takagi
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Akiko Shimomura
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Akira Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Takashi Minamisaka
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Shinichi Tanaka
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Takeshi Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Hideki Hatta
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Takahiko Nakajima
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| |
Collapse
|
48
|
Rocha-Brito KJP, Fonseca EMB, Oliveira BGDF, Fátima ÂD, Ferreira-Halder CV. Calix[6]arene diminishes receptor tyrosine kinase lifespan in pancreatic cancer cells and inhibits their migration and invasion efficiency. Bioorg Chem 2020; 100:103881. [PMID: 32388429 DOI: 10.1016/j.bioorg.2020.103881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is a challenging malignancy, mainly due to aggressive regional involvement, early systemic dissemination, high recurrence rate, and subsequent low patient survival. Scientific advances have contributed in particular by identification of molecular targets as well as the definition of the mechanism of action of the drug candidate in the cellular microenvironment. Previously, we have reported the identification of the molecular mechanisms by which calix[6]arene (CLX6) reduces the viability and proliferation of pancreatic cancer cells. Now, we show the biochemical mechanisms by which CLX6 decreases the aggressiveness of Panc-1 cells, focusing specifically on receptor tyrosine kinases (RTK). The results show that clathrin-mediated endocytosis is involved in CLX6-induced AXL receptor tyrosine kinase degradation in Panc-1 cells. This response may be related to the interaction of CLX6 with the tyrosine kinase receptor binding site (such as AXL). As a result, RTK is internalized and degraded by endocytosis, a condition that negatively impacts events dependent on its signaling. Additionally, CLX6 inhibits migration and invasion of Panc-1 cells by downregulating FAK (downstream mediator of AXL) activity and reducing expression levels of MMP2 and MMP9, directly related to the metastatic profile of these cells. It is noteworthy that according to the mechanism proposed here, CLX6 appears as a candidate to be used in therapeutic protocols of patients that display high expression of AXL and consequently, poor diagnosis.
Collapse
Affiliation(s)
- Karin Juliane Pelizzaro Rocha-Brito
- Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; Department of Medicine, Health Sciences Center, University Center of Maringá, Maringá, Paraná, Brazil
| | - Emanuella Maria Barreto Fonseca
- Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; Federal Institute of Education, Science and Technology of São Paulo, São Roque, São Paulo, Brazil
| | | | - Ângelo de Fátima
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
49
|
Par-4 mediated Smad4 induction in PDAC cells restores canonical TGF-β/ Smad4 axis driving the cells towards lethal EMT. Eur J Cell Biol 2020; 99:151076. [PMID: 32439219 DOI: 10.1016/j.ejcb.2020.151076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Deregulation of TGF-β signaling is intricately engrossed in the pathophysiology of pancreatic adenocarcinomas (PDACs). The role of TGF-β all through pancreatic cancer initiation and progression is multifarious and somewhat paradoxical. TGF-β plays a tumor suppressive role in early-stage pancreatic cancer by promoting apoptosis and inhibiting epithelial cell cycle progression, but incites tumor promotion in late-stage by modulating genomic instability, neo-angiogenesis, immune evasion, cell motility, and metastasis. Here, we provide evidences that Par-4 acts as one of the vital mediators to regulate TGF-β/Smad4 pathway, wherein, Par-4 induction/over-expression induced EMT which was later culminated in to apoptosis in presence of TGF-β via positive regulation of Smad4. Intriguingly, Par-4-/- cells were devoid of significant Smad4 induction compared to Par-4+/+ cells in presence of TGF-β and ectopic Par-4 steadily augmented Smad4 expression by restoring TGF-β/Smad4 axis in Panc-1 cells. Further, our FACS and western blotting results unveiled that Par-4 dragged the PDAC cells to G1 arrest in presence of TGF-β byelevating p21 and p27 levels while attenuating Cyclin E and A levels and augmenting caspase 3 cleavage triggering lethal EMT. Through restoration of Smad4, we further establish that in BxPC3 cell line (Smad4-/-), Smad4 is essential for Par-4 to indulge TGF-β dependent lethal EMT program. The mechanistic relevance of Par-4 mediated Smad4 activation was additionally validated by co-immunoprecipitation wherein disruption of NM23H1-STRAP interaction by Par-4 rescues TGF-β/Smad4 pathway in PDAC and mediates the tumor suppressive role of TGF-β, therefore serving as a vital cog to restore the apoptotic functions of TGF-β pathway.
Collapse
|
50
|
Guo X, Zhou Q, Su D, Luo Y, Fu Z, Huang L, Li Z, Jiang D, Kong Y, Li Z, Chen R, Chen C. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Mol Cancer 2020; 19:83. [PMID: 32375768 PMCID: PMC7201986 DOI: 10.1186/s12943-020-01196-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background Accumulating evidence suggests that circular RNAs (circRNAs) are important participants in cancer progression. However, the biological processes and underlying mechanisms of circRNAs in pancreatic ductal adenocarcinoma (PDAC) are unclear. Method CircRNAs were verified by Sanger sequencing. Colony formation, 5-Ethynyl-2′-deoxyuridine (EdU), and Transwell assays were performed to investigate the effect of circBFAR on the proliferation, invasion, and migration of PDAC cells in vitro. RNA pull-down assays were conducted to verify the binding of circBFAR with microRNA miR-34b-5p. Results In the present study, we identified a novel circRNA (termed as circBFAR, hsa_circ_0009065) that was upregulated in a 208-case cohort of patients with PDAC. The ectopic expression of circBFAR correlated positively with the tumor-node-metastasis (TNM) stage and was related to poorer prognosis of patients with PDAC. Moreover, circBFAR knockdown dramatically inhibited the proliferation and motility of PDAC cells in vitro and their tumor-promoting and metastasis properties in in vivo models. Mechanistically, circBFAR upregulated mesenchymal-epithelial transition factor (MET) expression via sponging miR-34b-5p. Additionally, circBFAR overexpression increased the expression of MET and activated downstream phosphorylation of Akt (Ser 473) and further activated the MET/PI3K/Akt signaling pathway, which ultimately promoted the progression of PDAC cells. Importantly, application of MET inhibitors could significantly attenuate circBFAR-mediated tumorigenesis in vivo. Conclusions Our findings showed that circBFAR plays an important role in the proliferation and metastasis of PDAC, which might be explored as a potential prognostic marker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Quanbo Zhou
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Dan Su
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Yuming Luo
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhiqiang Fu
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Leyi Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhiguo Li
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Decan Jiang
- Affiliated Huadu Hospital, Southern Medical University, 48 Xinhua Road, Huadu District, Guangzhou, Guangdong, 510800, P. R. China
| | - Yao Kong
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhihua Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China.
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510080, P.R. China.
| | - Changhao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China. .,Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China.
| |
Collapse
|