1
|
Javdan M, Bagheri A, Moloudi J, Khazaee S, Saber A. Investigating the relationship between MIND diet and postpartum depressive symptoms. BMC Womens Health 2025; 25:166. [PMID: 40205390 PMCID: PMC11980062 DOI: 10.1186/s12905-025-03705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Postpartum depressive symptoms (PPD) create negative and destructive changes in the mother's mood and disrupts the family atmosphere and raising the child in a healthy relationship with the mother. However, to date, no study has been found that investigated the relationship between the Mediterranean-DASH Intervention for Neurodegenerative Delay diet (Mind diet) and PPD in women. Therefore, the present study aimed to investigate the association between MIND diet and PPD. METHODS This cross-sectional study was conducted on 214 women (2-8 weeks after childbirth) who were referred to comprehensive health service centers. Data were collected using Edinburgh postnatal depression scale (EPDS), Beck, and semi-quantitative food frequency questionnaires including 148 food items (FFQ). After collecting the data and scoring them, analysis of covariance (ANCOVA) and regression logistic analyses were done to determine the relationship between postpartum depressive symptoms and mind diet. RESULTS According to the results, the prevalence of postpartum depressive symptoms was 15.4%. In the adjusted model, the mean and standard deviation of postpartum depressive symptoms scores in the third tertile were significantly lower than the first one (P < 0.001). Moreover, the adjusted model of logistic regression analysis showed that the chance of postpartum depressive symptoms was significantly lower in those who had the more following MIND diet compared to those who had less following (OR: 0.04, 95% CI: 0.006-0.37; P < 0.001). CONCLUSIONS In conclusion, following the MIND diet was inversely associated with the likelihood of postpartum depressive symptoms.
Collapse
Affiliation(s)
- Mitra Javdan
- Student Research Committee, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Bagheri
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jalal Moloudi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salman Khazaee
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Lee CL, Lin YC, Kuo TH. The impact of social partners: investigating mixed-strain housing effects on aging in female mice. Biogerontology 2024; 25:1263-1274. [PMID: 39261412 DOI: 10.1007/s10522-024-10139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Aging is a multifaceted process characterized by the gradual decline of physiological functions and can be modulated by various internal and external factors. While social interactions have been shown to affect behaviors and physiology in different species, the impact of social partners on aging-related phenotypes and lifespan in mice remains understudied. To address this question, we investigated various aging-related traits and lifespan in two mouse strains, C57BL/6J and BALB/c, under two different housing conditions: mixed-strain and same-strain housing. Analyses using a Generalized Linear Model revealed significant differences between the two strains in several phenotypes, including metabolic, anxiety-like, and electrocardiographic traits. However, surprisingly, housing conditions did not significantly affect most of the examined parameters, including overall lifespan. Only 3 out of 25 traits-body weight change in a metabolic cage, running wheel activity, and survival days of a quartiles of mice with middle lifespans-were influenced by housing conditions in a strain-dependent manner. Together, our study suggested a minimal influence of co-housing with social partners from different genetic backgrounds on aging-related phenotypes. This result demonstrates the feasibility of mixed housing for mouse husbandry and, more importantly, provides valuable insights for future research on the social influences on the aging process in mice.
Collapse
Affiliation(s)
- Chih-Lin Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Chiao Lin
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| |
Collapse
|
3
|
Zhu Y, Yeo EN, Smith KM, Greenberg AS, Rowan S. Aging Modulates the Effect of Dietary Glycemic Index on Gut Microbiota Composition in Mice. J Nutr 2024; 154:2852-2861. [PMID: 39019160 PMCID: PMC11393168 DOI: 10.1016/j.tjnut.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Gut microbiome composition profoundly impacts host physiology and is modulated by several environmental factors, most prominently diet. The composition of gut microbiota changes over the lifespan, particularly during the earliest and latest stages. However, we know less about diet-aging interactions on the gut microbiome. We previously showed that diets with different glycemic indices, based on the ratio of rapidly digested amylopectin to slowly digested amylose, led to altered composition of gut microbiota in male C57BL/6J mice. OBJECTIVES Here, we examined the role of aging in influencing dietary effects on gut microbiota composition and aimed to identify gut bacterial taxa that respond to diet and aging. METHODS We studied 3 age groups of male C57BL/6J wild-type mice: young (4 mo), middle-aged (13.5 mo), and old (22 mo), all fed either high glycemic (HG) or low glycemic (LG) diets matched for caloric content and macronutrient composition. Fecal microbiome composition was determined by 16S rDNA metagenomic sequencing and was evaluated for changes in α- and β-diversity and bacterial taxa that change by age, diet, or both. RESULTS Young mice displayed lower α-diversity scores than middle-aged counterparts but exhibited more pronounced differences in β-diversity between diets. In contrast, old mice had slightly lower α-diversity scores than middle-aged mice, with significantly higher β-diversity distances. Within-group variance was lowest in young, LG-fed mice and highest in old, HG-fed mice. Differential abundance analysis revealed taxa associated with both aging and diet. Most differential taxa demonstrated significant interactions between diet and aging. Notably, several members of the Lachnospiraceae family increased with aging and HG diet, whereas taxa from the Bacteroides_H genus increased with the LG diet. Akkermansia muciniphila decreased with aging. CONCLUSIONS These findings illustrate the complex interplay between diet and aging in shaping the gut microbiota, potentially contributing to age-related disease.
Collapse
Affiliation(s)
- Ying Zhu
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States; Division of Biochemical and Molecular Nutrition, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Emily N Yeo
- Division of Biochemical and Molecular Nutrition, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey M Smith
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States; Division of Biochemical and Molecular Nutrition, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Andrew S Greenberg
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States; Division of Biochemical and Molecular Nutrition, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States; Division of Endocrinology, Diabetes and Metabolism, Tufts University School of Medicine, Boston, MA, United States
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States; Division of Biochemical and Molecular Nutrition, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, United States.
| |
Collapse
|
4
|
Escudero-Bautista S, Omaña-Covarrubias A, Nez-Castro AT, López-Pontigo L, Pimentel-Pérez M, Chávez-Mejía A. Impact of Gut Microbiota on Aging and Frailty: A Narrative Review of the Literature. Geriatrics (Basel) 2024; 9:110. [PMID: 39311235 PMCID: PMC11417718 DOI: 10.3390/geriatrics9050110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Aging is a natural, complex, and individual process that focuses on the progressive decay of the body and a decrease in cell function that begins in approximately the sixth decade of life and ends with death. Current scientific evidence shows that the aging process is mostly related to genetic load and varies because of the environment. Therefore, aging can be adjusted through the intervention of factors that control homeostasis in genetic, biochemical, and immunological processes, including those involving the gut microbiota. Indeed, the diversity of the gut microbiota decreases during aging, based on the presence of modifications in the hormonal, immunological, and operational processes of the gastrointestinal tract. These modifications lead to a state of dysbiosis. However, altering bacterial communities remains complicated due to the great diversity of factors that influence their modification. Alterations caused by the aging process are known to foster dysbiosis and correspond to conditions that determine the degree of frailty in senior citizens. Consequently, the microbial structure can be used as a biomarker for geriatric care in the promotion of healthy aging.
Collapse
Affiliation(s)
- Selene Escudero-Bautista
- Department of Gerontology, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico (L.L.-P.); (M.P.-P.)
| | - Arianna Omaña-Covarrubias
- Department of Nutrition, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| | - Ana Teresa Nez-Castro
- Department of Nutrition, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| | - Lydia López-Pontigo
- Department of Gerontology, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico (L.L.-P.); (M.P.-P.)
| | - Maribel Pimentel-Pérez
- Department of Gerontology, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico (L.L.-P.); (M.P.-P.)
| | - Alonso Chávez-Mejía
- Department of Medicine, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| |
Collapse
|
5
|
Kim J, Lee Y, Kim M, Won CW, Kim MK, Shim JS. Dietary patterns and intrinsic capacity in older adults: a 6-year prospective cohort study. J Nutr Health Aging 2024; 28:100314. [PMID: 38986175 DOI: 10.1016/j.jnha.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES Only a few studies have investigated dietary patterns and intrinsic capacity (IC). This study examined the prospective associations between dietary patterns, IC, and IC sub-domains over 6 years in community-dwelling Korean older adults. DESIGN A prospective cohort study. SETTING AND PARTICIPANTS Data were obtained from participants aged 70-84 years in the Korean Frailty and Aging Cohort Study (2016-2022). The study population included 665 enrollees at baseline who completed IC and dietary data. METHODS Dietary data were obtained from baseline surveys of the nutritional sub-cohort using two nonconsecutive 24-hour dietary recalls, and dietary patterns were derived using cluster analysis. IC was constructed by measuring cognitive, locomotor, vitality, sensory, and psychological domains. A generalized estimating equation was used to analyze the longitudinal associations between dietary patterns, IC, and IC sub-domain scores. RESULTS In total, 665 enrollees were included in the analysis. After adjusting for confounders, in older men, the dietary pattern of cluster 1 (variety of healthy foods and alcohols) compared to that of cluster 2 (rice and kimchi) was positively associated with changes in the IC score (ß = 0.41, 95% confidence interval [CI] = 0.04-0.78). In older women, the dietary pattern of cluster 1 (variety of healthy foods) was positively associated with changes in the IC score (ß = 0.30, 95% CI = 0.02-0.58), IC score group (ß = 0.11, 95% CI = 0.02-0.20), and psychological domain (ß = 0.25, 95% CI = 0.11-0.38) compared to that of cluster 3 (rice, vegetables, and kimchi). CONCLUSIONS Dietary patterns (variety of healthy foods) were positively associated with changes in IC scores and their sub-domains in older adults.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, 164 World cup-ro, Youngtong-gu, Suwon 16499, Republic of Korea; Institute on Aging, Ajou University Medical Center, 164 World cup-ro, Youngtong-gu, Suwon 16499, Republic of Korea
| | - Yunhwan Lee
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, 164 World cup-ro, Youngtong-gu, Suwon 16499, Republic of Korea; Institute on Aging, Ajou University Medical Center, 164 World cup-ro, Youngtong-gu, Suwon 16499, Republic of Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, 23 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Chang Won Won
- Department of Family Medicine, Kyung Hee University Medical Center, 23 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Mi Kyung Kim
- Department of Preventive Medicine, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jee-Seon Shim
- Cardiovascular and Metabolic Diseases Etiology Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Muroga Y, Kaga H, Bui TH, Sugimoto M, Someya Y, Kakehi S, Tabata H, Naito H, Abudurezake A, Shi H, Otsuka H, Yoshizawa Y, Kawamori R, Watada H, Tamura Y. Dietary characteristics of urban community-dwelling older adults with low muscle mass: the bunkyo health study: a cross-sectional study. BMC Geriatr 2024; 24:614. [PMID: 39026160 PMCID: PMC11256605 DOI: 10.1186/s12877-024-05218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND With the aging of the population worldwide, extending healthy life expectancy is an urgent issue. Muscle mass has been reported to be associated with physical independence and longevity. This study aimed to investigate the characteristics of food intake in urban community-dwelling older adults with low muscle mass. METHODS This cross-sectional study used baseline data from the Bunkyo Health Study, which included 1618 urban community-dwelling older adults aged 65-84 years. All participants underwent measurement of body composition using bioelectrical impedance analysis and evaluation of nutrient and food intake using the brief-type self-administered diet history questionnaire. Participants were stratified by sex and divided into robust or low skeletal muscle mass index (SMI) groups according to the Asian Working Group for Sarcopenia criteria to compare differences in nutrient and food intake. RESULTS The mean age and body mass index were 73.1 ± 5.4 years and 22.6 ± 3.1 kg/m2, respectively. The prevalence of low SMI was 31.1% in men and 43.3% in women. In men, all food intake, including total energy intake, was similar between the low SMI group and the robust group. In women, the low SMI group had less total energy intake, and consumed lower amounts of energy-producing nutrients (protein, fat, and carbohydrates), but there were only small differences in the intake of specific foods. CONCLUSIONS There were sex differences in food intake characteristics between urban community-dwelling older adults with low SMI and those who were robust. Advising women to increase their energy intake may be important in preventing muscle loss, and further research is needed in men.
Collapse
Grants
- KAKENHI (18H03184) the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- KAKENHI (18H03184) the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- KAKENHI (18H03184) the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- KAKENHI (18H03184) the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- the Mizuno Sports Promotion Foundation
- the Mitsui Life Social Welfare Foundation
Collapse
Affiliation(s)
- Yukiko Muroga
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Thu Hien Bui
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mari Sugimoto
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuki Someya
- Department of Sportology Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Saori Kakehi
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Sportology Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroki Tabata
- Department of Sportology Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Center for Healthy Life Expectancy, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hitoshi Naito
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Abulaiti Abudurezake
- Department of Sportology Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Huicong Shi
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hikaru Otsuka
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuyo Yoshizawa
- Department of Center for Healthy Life Expectancy, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Faculty of International Liberal Arts, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Sportology Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Sportology Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yoshifumi Tamura
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Sportology Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Center for Healthy Life Expectancy, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Faculty of International Liberal Arts, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
7
|
Liu Y, Kang M, Wei W, Hui J, Gou Y, Liu C, Zhou R, Wang B, Shi P, Liu H, Cheng B, Jia Y, Wen Y, Zhang F. Dietary diversity score and the acceleration of biological aging: a population-based study of 88,039 participants. J Nutr Health Aging 2024; 28:100271. [PMID: 38810510 DOI: 10.1016/j.jnha.2024.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES Our study aimed to investigate the association of dietary diversity score (DDS), as reflected by five dietary categories, with biological age acceleration. DESIGN A cross-sectional study. SETTING AND PARTICIPANTS This study included 88,039 individuals from the UK Biobank. METHODS Biological age (BA) was assessed using Klemerae-Doubal (KDM) and PhenoAge methods. The difference between BA and chronological age represents the age acceleration (AgeAccel), termed as "KDMAccel" and "PhenoAgeAccel". AgeAccel > 0 indicates faster aging. Generalized linear regression models were performed to assess the associations of DDS with AgeAccel. Similar analyses were performed for the five dietary categories. RESULTS After adjusting for multiple variables, DDS was inversely associated with KDMAccel (βHigh vs Low= -0.403, 95%CI: -0.492 to -0.314, P < 0.001) and PhenoAgeAccel (βHigh vs Low= -0.545, 95%CI: -0.641 to -0.450, P < 0.001). Each 1-point increment in the DDS was associated with a 4.4% lower risk of KDMAccel and a 5.6% lower risk of PhenoAgeAccel. The restricted cubic spline plots demonstrated a non-linear dose-response association between DDS and the risk of AgeAccel. The consumption of grains (βKDMAccel = -0.252, βPhenoAgeAccel = -0.197), vegetables (βKDMAccel = -0.044, βPhenoAgeAccel = -0.077) and fruits (βKDMAccel = -0.179, βPhenoAgeAccel = -0.219) was inversely associated with the two AgeAccel, while meat and protein alternatives (βKDMAccel = 0.091, βPhenoAgeAccel = 0.054) had a positive association (All P < 0.001). Stratified analysis revealed stronger accelerated aging effects in males, smokers, and drinkers. A strengthening trend in the association between DDS and AgeAccel as TDI quartiles increased was noted. CONCLUSIONS This study suggested that food consumption plays a role in aging process, and adherence to a higher diversity dietary is associated with the slowing down of the aging process.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Meijuan Kang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yifan Gou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chen Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ruixue Zhou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bingyi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Panxing Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
8
|
Bali P, Lal P, Sivapuram MS, Kutikuppala LVS, Avti P, Chanana A, Kumar S, Anand A. Mind over Microbes: Investigating the Interplay between Lifestyle Factors, Gut Microbiota, and Brain Health. Neuroepidemiology 2024; 58:426-448. [PMID: 38531341 DOI: 10.1159/000538416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) of the human body comprises several species of microorganisms. This microorganism plays a significant role in the physiological and pathophysiological processes of various human diseases. METHODS The literature review includes studies that describe causative factors that influence GM. The GM is sensitive to various factors like circadian rhythms, environmental agents, physical activity, nutrition, and hygiene that together impact the functioning and composition of the gut microbiome. This affects the health of the host, including the psycho-neural aspects, due to the interconnectivity between the brain and the gut. Hence, this paper examines the relationship of GM with neurodegenerative disorders in the context of these aforesaid factors. CONCLUSION Future studies that identify the regulatory pathways associated with gut microbes can provide a causal link between brain degeneration and the gut at a molecular level. Together, this review could be helpful in designing preventive and treatment strategies aimed at GM, so that neurodegenerative diseases can be treated.
Collapse
Affiliation(s)
- Parul Bali
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Parth Lal
- Advance Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhava Sai Sivapuram
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Peda Avutapalli, India
| | | | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Saurabh Kumar
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Centre for Cognitive Science and Phenomenology, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Kushkevych I, Martínková K, Mráková L, Giudici F, Baldi S, Novak D, Gajdács M, Vítězová M, Dordevic D, Amedei A, Rittmann SKMR. Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:79-89. [PMID: 38486888 PMCID: PMC10939707 DOI: 10.15698/mic2024.03.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Considerable evidence has accumulated regarding the molecular relationship between gut microbiota (GM) composition and the onset (clinical presentation and prognosis of ulcerative colitis (UC)). In addition, it is well documented that short-chain fatty acid (SCFA)-producing bacteria may play a fundamental role in maintaining an anti-inflammatory intestinal homeostasis, but sulfate- and sulfite reducing bacteria may be responsible for the production of toxic metabolites, such as hydrogen sulfide and acetate. Hence, the present study aimed to assess the GM composition - focusing on sulfate-reducing bacteria (SRB) - in patients with severe, severe-active and moderate UC. Each one of the six enrolled patients provided two stool samples in the following way: one sample was cultivated in a modified SRB-medium before 16S rRNA sequencing and the other was not cultivated. Comparative phylogenetic analysis was conducted on each sample. Percentage of detected gut microbial genera showed considerable variation based on the patients' disease severity and cultivation in the SRB medium. In detail, samples without cultivation from patients with moderate UC showed a high abundance of the genera Bacteroides, Bifidobacterium and Ruminococcus, but after SRB cultivation, the dominant genera were Bacteroides, Klebsiella and Bilophila. On the other hand, before SRB cultivation, the main represented genera in patients with severe UC were Escherichia-Shigella, Proteus, Methanothermobacter and Methanobacterium. However, after incubation in the SRB medium Bacteroides, Proteus, Alistipes and Lachnoclostridium were predominant. Information regarding GM compositional changes in UC patients may aid the development of novel therapeutic strategies (e.g., probiotic preparations containing specific bacterial strains) to counteract the mechanisms of virulence of harmful bacteria and the subsequent inflammatory response that is closely related to the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Kristýna Martínková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Lenka Mráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - David Novak
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simon K.-M. R. Rittmann
- Department of Functional and Evolutionary Ecology, Archaea Physiology & Biotechnology Group, Universität Wien, 1030 Wien, Austria
| |
Collapse
|
10
|
Shackebaei D, Hesari M, Ramezani-Aliakbari S, Pashaei M, Yarmohammadi F, Ramezani-Aliakbari F. Cardioprotective effect of naringin against the ischemia/reperfusion injury of aged rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1209-1218. [PMID: 37650890 DOI: 10.1007/s00210-023-02692-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Aging is known as a main risk factor in the development of cardiovascular diseases. Naringin (NRG) is a flavonoid compound derived from citrus fruits. It possesses a wide spectrum of pharmacological properties, including antioxidant anti-inflammatory, and cardioprotective. This investigation aimed to assess the cardioprotective effect of NRG against the ischemia/reperfusion (I/R) injury in aged rats. In this study, D-galactose (D-GAL) at the dose of 150 mg/kg/day for 8 weeks was used to induce aging in rats. Rats were orally gavaged with NRG (40 or 100 mg/kg/day), in co-treatment with D-GAL, for 8 weeks. The Langendorff isolated heart was used to evaluate the effect of NRG on I/R injury in aged rats. NRG treatment diminished myocardial hypertrophy and maximum contracture level in aged animals. During the pre-ischemic phase, reduced heart rate was normalized by NRG. The effects of D-GAL on the left ventricular end diastolic pressure (LVDP), the rate pressure product (RPP), and the minimum and maximum rate of left ventricular pressure (±dp/dt) improved by NRG treatment in the perfusion period. NRG also enhanced post-ischemic recovery of cardiac functional parameters (± dp/dt, and RPP) in isolated hearts. An increase in serum levels of the lactate dehydrogenase (LDH), the creatine kinase-MB (CK-MB), and the tumor necrosis factor-alpha (TNF-α) were reversed by NRG in aged rats. It also normalized the D-GAL-decreased the superoxide dismutase (SOD) activity in the heart tissue. NRG treatment alleviated cardiac injury in aged hearts under conditions of I/R. NRG may improve aging-induced cardiac dysfunction through anti-oxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Cardiovascular Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soudabeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mosayeb Pashaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The review attempts to highlight various dietary approaches for healthy aging; it examines the current evidence regarding the impact of various dietary components on physiological, cognitive, and functional outcomes in older adults. The aim is to promote nutritional awareness to add to what is currently reported in this field that helps for the needful revisions in the policy and in the current national nutrition strategy to incorporate effective public health communication on nutrition and aging. RECENT FINDINGS The relationship between diet and healthy aging is becoming increasingly clear with recent studies. Consuming a balanced diet that includes nutrient-rich foods, such as fruits, vegetables, whole grains, lean proteins, and healthy fats, has been linked to a lower risk of chronic diseases and better overall health in older adults. Specific dietary factors that have been found to be beneficial for healthy aging include adherence to a Mediterranean-style diet, Okinawa diet, Dietary Approaches to Stop Hypertension (DASH) diet, and caloric restriction as well as the healthy eating index. Therefore, making dietary changes that promote healthy aging can be an important strategy for maintaining physical and cognitive function and preventing age-related diseases. Adopting a healthy diet in older age can be an effective strategy for maintaining optimal health and function with adequate intake of protein, fiber, vitamin D, and omega-3 fatty acids for better physical function, bone health, muscle strength, cognitive function, and lower risk of chronic diseases and disability.
Collapse
|
12
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
13
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
14
|
Xiong R, Gunter C, Fleming E, Vernon SD, Bateman L, Unutmaz D, Oh J. Multi-'omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host Microbe 2023; 31:273-287.e5. [PMID: 36758521 PMCID: PMC10353054 DOI: 10.1016/j.chom.2023.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/14/2022] [Accepted: 12/30/2022] [Indexed: 02/11/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive. Here, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short-term (<4 years, n = 75) or long-term disease (>10 years, n = 79) compared with healthy controls (n = 79). First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations. Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis and a reduction in plasma butyrate, bile acids, and benzoate. In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.
Collapse
Affiliation(s)
- Ruoyun Xiong
- The Jackson Laboratory, Farmington, CT 06032, USA; The University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | - Julia Oh
- The Jackson Laboratory, Farmington, CT 06032, USA.
| |
Collapse
|
15
|
Montalà-Flaquer M, Cañete-Massé C, Vaqué-Alcázar L, Bartrés-Faz D, Peró-Cebollero M, Guàrdia-Olmos J. Spontaneous brain activity in healthy aging: An overview through fluctuations and regional homogeneity. Front Aging Neurosci 2023; 14:1002811. [PMID: 36711210 PMCID: PMC9877451 DOI: 10.3389/fnagi.2022.1002811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction This study aims to explore whole-brain resting-state spontaneous brain activity using fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) strategies to find differences among age groups within a population ranging from middle age to older adults. Methods The sample comprised 112 healthy persons (M = 68.80, SD = 7.99) aged 48-89 who were split into six age groups (< 60, 60-64, 65-69, 70-74, 75-79, and ≥ 80). Fractional amplitude of low-frequency fluctuation and ReHo analyses were performed and were compared among the six age groups, and the significant results commonly found across groups were correlated with the gray matter volume of the areas and the age variable. Results Increased activity was found using fALFF in the superior temporal gyrus and inferior frontal gyrus when comparing the first group and the fifth. Regarding ReHo analysis, Group 6 showed increased ReHo in the temporal lobe (hippocampus), right and left precuneus, right caudate, and right and left thalamus depending on the age group. Moreover, significant correlations between age and fALFF and ReHo clusters, as well as with their gray matter volume were found, meaning that the higher the age, the higher the regional synchronization, the lower the fALFF activation, and the lower gray matter of the right thalamus. Conclusion Both techniques have been shown to be valuable and usable tools for disentangling brain changes in activation in a very low interval of years in healthy aging.
Collapse
Affiliation(s)
- Marc Montalà-Flaquer
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, Universitat de Barcelona, Barcelona, Spain,UB Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain,*Correspondence: Marc Montalà-Flaquer,
| | - Cristina Cañete-Massé
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, Universitat de Barcelona, Barcelona, Spain,UB Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain,Department of Medicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Bartrés-Faz
- Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain,Department of Medicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maribel Peró-Cebollero
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, Universitat de Barcelona, Barcelona, Spain,UB Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain,Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Joan Guàrdia-Olmos
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, Universitat de Barcelona, Barcelona, Spain,UB Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain,Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Neag MA, Vulturar DM, Gherman D, Burlacu CC, Todea DA, Buzoianu AD. Gastrointestinal microbiota: A predictor of COVID-19 severity? World J Gastroenterol 2022; 28:6328-6344. [PMID: 36533107 PMCID: PMC9753053 DOI: 10.3748/wjg.v28.i45.6328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by a severe acute respiratory syndrome coronavirus 2 infection, has raised serious concerns worldwide over the past 3 years. The severity and clinical course of COVID-19 depends on many factors (e.g., associated comorbidities, age, etc) and may have various clinical and imaging findings, which raises management concerns. Gut microbiota composition is known to influence respiratory disease, and respiratory viral infection can also influence gut microbiota. Gut and lung microbiota and their relationship (gut-lung axis) can act as modulators of inflammation. Modulating the intestinal microbiota, by improving its composition and diversity through nutraceutical agents, can have a positive impact in the prophylaxis/treatment of COVID-19.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| | - Damiana-Maria Vulturar
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400332, Romania
| | - Diana Gherman
- Department of Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Codrin-Constantin Burlacu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Doina Adina Todea
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400332, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| |
Collapse
|
17
|
Honeys with anti-inflammatory capacity can alter the elderly gut microbiota in an ex vivo gut model. Food Chem 2022; 392:133229. [PMID: 35679723 DOI: 10.1016/j.foodchem.2022.133229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022]
Abstract
The anti-inflammatory effect of different sourced honeys and the impact on elderly gut microbiota were studied in terms of chemical compositions, anti-inflammatory effect and gut microbiota modulating capacities. All four honeys suppressed the production of pro-inflammatory markers NO, IL-1β and IL-6 induced by lipopolysaccharide and promoted the expression of anti-inflammatory cytokines IL-10 in RAW 264.7 cells. Moreover, in the ex vivo batch gut model using elderly fecal microbiota (referred to as microcosm), it was showed that the addition of honeys increased the abundance of beneficial lactobacilli, decreased the abundance of potentially harmful Gram negative enteric bacteria, and exerted a beneficial effect on the production of short chain fatty acids. The concentration of gallic acid in honeys was positively correlated with the expression level of IL-10 and the abundance of lactobacilli. These findings indicate honeys with anti-inflammatory capacity have great potential for regulating the elderly gut microbiota which would lead to health benefits.
Collapse
|
18
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
19
|
Arias-Rojas A, Iatsenko I. The Role of Microbiota in Drosophila melanogaster Aging. FRONTIERS IN AGING 2022; 3:909509. [PMID: 35821860 PMCID: PMC9261426 DOI: 10.3389/fragi.2022.909509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Intestinal microbial communities participate in essential aspects of host biology, including nutrient acquisition, development, immunity, and metabolism. During host aging, dramatic shifts occur in the composition, abundance, and function of the gut microbiota. Although such changes in the microbiota are conserved across species, most studies remain descriptive and at most suggest a correlation between age-related pathology and particular microbes. Therefore, the causal role of the microbiota in host aging has remained a challenging question, in part due to the complexity of the mammalian intestinal microbiota, most of which is not cultivable or genetically amenable. Here, we summarize recent studies in the fruit fly Drosophila melanogaster that have substantially progressed our understanding at the mechanistic level of how gut microbes can modulate host aging.
Collapse
Affiliation(s)
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
20
|
Nadeem U, Boachie-Mensah M, Zhang J, Skondra D. Gut microbiome and retinal diseases: an updated review. Curr Opin Ophthalmol 2022; 33:195-201. [PMID: 35132003 DOI: 10.1097/icu.0000000000000836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The gut microbiome, trillions of microorganisms residing in our digestive tract, is now believed to play a significant role in retinal diseases. Breakthroughs in computational biology and specialized animal models have allowed researchers not only to characterize microbes associated with retinal diseases, but also to provide early insights into the function of the microbiome in relation to biological processes in the retinal microenvironment. This review aims to provide an update on recent advances in the current knowledge on the relationship between the gut microbiome and retinal disorders. RECENT FINDINGS Recent work demonstrates distinct gut microbial compositions associated with retinal diseases such as agerelated macular degeneration and retinopathy of prematurity. Currently, it is believed that gut dysbiosis leads to increased gut permeability, elevated circulation of bacterial products, microbial metabolites and inflammatory mediators that result in immune dysregulation at distant anatomic sites including the retina. SUMMARY Emerging evidence for the gut-retina axis can elucidate previously unknown pathways involved in retinal diseases and also presents an exciting potential therapeutic avenue. Further preclinical and clinical studies are necessary to establish causation and delineate the precise relationship of the gut microbiome with retinal disorders.
Collapse
Affiliation(s)
| | | | | | - Dimitra Skondra
- Department of Ophthalmology and Visual Science
- Microbiome Medicine Program, Retina Microbiome Team, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Oxidative Stress and Inflammation: From Mechanisms to Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10040753. [PMID: 35453503 PMCID: PMC9031318 DOI: 10.3390/biomedicines10040753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress and inflammation are two phenomena that are directly involved in practically all pathologies and especially in aging [...].
Collapse
|
22
|
Antinozzi M, Giffi M, Sini N, Gallè F, Valeriani F, De Vito C, Liguori G, Romano Spica V, Cattaruzza MS. Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review. Biomedicines 2022; 10:biomedicines10020510. [PMID: 35203720 PMCID: PMC8962244 DOI: 10.3390/biomedicines10020510] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
The intestinal microbiota is a crucial regulator of human health and disease because of its interactions with the immune system. Tobacco smoke also influences the human ecosystem with implications for disease development. This systematic review aims to analyze the available evidence, until June 2021, on the relationship between traditional and/or electronic cigarette smoking and intestinal microbiota in healthy human adults. Of the 2645 articles published in PubMed, Scopus, and Web of Science, 13 were included in the review. Despite differences in design, quality, and participants’ characteristics, most of the studies reported a reduction in bacterial species diversity, and decreased variability indices in smokers’ fecal samples. At the phylum or genus level, the results are very mixed on bacterial abundance both in smokers and non-smokers with two exceptions. Prevotella spp. appears significantly increased in smokers and former smokers but not in electronic cigarette users, while Proteobacteria showed a progressive increase in Desulfovibrio with the number of pack-years of cigarette (p = 0.001) and an increase in Alphaproteobacteria (p = 0.04) in current versus never smokers. This attempt to systematically characterize the effects of tobacco smoking on the composition of gut microbiota gives new perspectives on future research in smoking cessation and on a new possible use of probiotics to contrast smoke-related dysbiosis.
Collapse
Affiliation(s)
- Martina Antinozzi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| | - Monica Giffi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| | - Nicolò Sini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| | - Francesca Gallè
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
- Correspondence: (F.G.); (F.V.)
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy;
- Correspondence: (F.G.); (F.V.)
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy;
| | - Maria Sofia Cattaruzza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| |
Collapse
|
23
|
|
24
|
Rubio-Tomás T, Rueda-Robles A, Plaza-Díaz J, Álvarez-Mercado AI. Nutrition and cellular senescence in obesity-related disorders. J Nutr Biochem 2022; 99:108861. [PMID: 34517097 DOI: 10.1016/j.jnutbio.2021.108861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/29/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Adequate nutrition is vital for immune homeostasis. However, the incidence of obesity is increasing worldwide due to the adoption of the Western diet and a sedentary lifestyle. Obesity is associated with chronic inflammation which alters the function of adipose tissue, liver, pancreas, and the nervous system. Inflammation is related to cellular senescence, distinguished by irreversible cell cycle arrest. Senescent cells secrete the senescence-associated secretory phenotype (SASP) which contains pro-inflammatory factors. Targeting processes in senescence might have a salutary approach to obesity. The present review highlights the impact of an unhealthy diet on tissues affected by obesity, and the mechanisms that promote the consequent inflammation and senescence.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; School of Medicine, University of Crete, Herakleion, Crete, Greece
| | - Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Julio Plaza-Díaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON Canada; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada Spain.
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada Spain.
| |
Collapse
|
25
|
Wu L, Xie X, Liang T, Ma J, Yang L, Yang J, Li L, Xi Y, Li H, Zhang J, Chen X, Ding Y, Wu Q. Integrated Multi-Omics for Novel Aging Biomarkers and Antiaging Targets. Biomolecules 2021; 12:39. [PMID: 35053186 PMCID: PMC8773837 DOI: 10.3390/biom12010039] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is closely related to the occurrence of human diseases; however, its exact biological mechanism is unclear. Advancements in high-throughput technology provide new opportunities for omics research to understand the pathological process of various complex human diseases. However, single-omics technologies only provide limited insights into the biological mechanisms of diseases. DNA, RNA, protein, metabolites, and microorganisms usually play complementary roles and perform certain biological functions together. In this review, we summarize multi-omics methods based on the most relevant biomarkers in single-omics to better understand molecular functions and disease causes. The integration of multi-omics technologies can systematically reveal the interactions among aging molecules from a multidimensional perspective. Our review provides new insights regarding the discovery of aging biomarkers, mechanism of aging, and identification of novel antiaging targets. Overall, data from genomics, transcriptomics, proteomics, metabolomics, integromics, microbiomics, and systems biology contribute to the identification of new candidate biomarkers for aging and novel targets for antiaging interventions.
Collapse
Affiliation(s)
- Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| |
Collapse
|
26
|
Wang X, Zhang Z, Wang X, Bao Q, Wang R, Duan Z. The Impact of Host Genotype, Intestinal Sites and Probiotics Supplementation on the Gut Microbiota Composition and Diversity in Sheep. BIOLOGY 2021; 10:biology10080769. [PMID: 34440001 PMCID: PMC8389637 DOI: 10.3390/biology10080769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Three sampling strategies with a 16s rRNA high-throughput sequencing and gene expression assay (by RT-PCR) were designed, to better understand the host and probiotics effect on gut microbiota in sheep. Sampling: (1) colon contents and back-fat tissues from small-tailed Han sheep (SHS), big-tailed Hulun Buir sheep (BHBS), and short-tailed Steppe sheep (SHBS) (n = 12, 14, 12); (2) jejunum, cecum and colon contents, and feces from Tan sheep (TS, n = 6); (3) feces from TS at 4 time points (nonfeeding, 30 and 60 feeding days, and stop feeding 30 days) with probiotics supplementation (n = 7). The results indicated SHS had the highest Firmicutes abundance, the thinnest back-fat, and the lowest expression of C/EBPβ, C/EBPδ, ATGL, CFD, and SREBP1. Some bacteria orders and families could be potential biomarkers for sheep breeds with a distinct distribution of bacterial abundance, implying the host genotype is predominant in shaping unique microbiota under a shared environment. The microbiota diversity and Bifidobacterial populations significantly changed after 60 days of feeding but restored to its initial state, with mostly colonies, after 30 days ceased. The microbiota composition was greatly different between the small and large intestines, but somewhat different between the large intestine and feces; feces may be reliable for studying large intestinal microbiota in ruminants.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (X.W.); (Q.B.)
| | - Zhichao Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (X.W.); (Q.B.)
| | - Xiaoping Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (X.W.); (Q.B.)
| | - Qi Bao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (X.W.); (Q.B.)
| | - Rujing Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (R.W.); (Z.D.); Tel.: +86-551-6559-2968 (R.W.); +86-10-6480-3631 (Z.D.)
| | - Ziyuan Duan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (X.W.); (Q.B.)
- Correspondence: (R.W.); (Z.D.); Tel.: +86-551-6559-2968 (R.W.); +86-10-6480-3631 (Z.D.)
| |
Collapse
|
27
|
Stromsnes K, Correas AG, Lehmann J, Gambini J, Olaso-Gonzalez G. Anti-Inflammatory Properties of Diet: Role in Healthy Aging. Biomedicines 2021; 9:922. [PMID: 34440125 PMCID: PMC8389628 DOI: 10.3390/biomedicines9080922] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a physiological process involved in the defenses of the body and the repair of tissues. It is acutely activated by infections, trauma, toxins, or allergic reactions. However, if it becomes chronic, inflammation can end up stimulating the development of diseases such as cardiovascular disease, autoimmune disease, neurological disease, or cancer. Additionally, during aging, inflammation becomes increasingly more chronic. Furthermore, we found that certain foods, such as saturated fats, have pro-inflammatory activity. Taking this into account, in this review we have discussed different diets with possible anti-inflammatory activity, the commonly ingested components of each diet and their active compounds. In addition, we have proposed some dietary guidelines, as well as a list of compounds present in foods with anti-inflammatory activity, outlining how to combine them to achieve optimal anti-inflammatory effects. Therefore, we can conclude that the compounds in our diet with anti-inflammatory activity could help alleviate the inflammatory processes derived from diseases and unhealthy diets, and thereby promote healthy aging.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Insitute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (A.G.C.); (G.O.-G.)
| | - Angela G. Correas
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Insitute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (A.G.C.); (G.O.-G.)
| | - Jenny Lehmann
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany;
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Insitute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (A.G.C.); (G.O.-G.)
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Insitute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (A.G.C.); (G.O.-G.)
| |
Collapse
|
28
|
Zhang J, Zhao A. Dietary Diversity and Healthy Aging: A Prospective Study. Nutrients 2021; 13:nu13061787. [PMID: 34073820 PMCID: PMC8225052 DOI: 10.3390/nu13061787] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Population aging is a global phenomenon. The present study determined the effects of dietary diversity score (DDS) and food consumption on healthy aging. A subset of the data of the China Health and Nutrition Survey was utilized in this study. DDSs were calculated using the dietary data collected in the years 2009 and 2011. A healthy aging score (HAS) was calculated by summing the standardized scores on physical functional limitation, comorbidity, cognitive function, and psychological stress based on the data collected in the year 2015, with a lower HAS indicating a healthier aging process. Life quality was self-reported in the year 2015. This study found that DDS was inversely associated with HAS (T3 vs. T1: β −0.16, 95%CI −0.20 to −0.11, p-trend <0.001). The consumption of meat and poultry, aquatic products, and fruits was inversely associated with HAS, and participants in the highest tertile of staple foods consumption had a higher HAS than those in the lowest tertile. HAS was inversely associated with good self-reported life quality and positively associated with bad life quality. In conclusion, food consumption may influence the aging process, and adherence to a diverse diet is associated with a healthier aging process in elderly people.
Collapse
Affiliation(s)
- Jian Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100091, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100091, China;
- Correspondence: ; Tel.: +86-138-1113-1994
| |
Collapse
|
29
|
TMA/TMAO in Hypertension: Novel Horizons and Potential Therapies. J Cardiovasc Transl Res 2021; 14:1117-1124. [PMID: 33709384 DOI: 10.1007/s12265-021-10115-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Hypertension is the most prevalent chronic disease and a risk factor for various diseases. Although its mechanisms and therapies are constantly being updated and developed, they are still not fully clarified. In recent years, novel gut microbiota and its metabolites have attracted widespread attention. It is strongly linked with physiological and pathological systems, especially TMA and TMAO. TMA is formed by intestinal microbial metabolism of choline and L-carnitine and converted into TMAO by FMO3. This paper collected and collated the latest researches and mainly discussed the following four parts. It introduced gut microbiota; provided a focus on TMA, TMA-producing bacteria, and TMAO; summarized the alternations in hypertensive patients and animals; discussed the mechanisms of TMAO with two respects; and summarized the regulatory factors may be as new interventions and therapies of hypertension. And, more relevant studies are still prospected to be accomplished between hypertension and TMA/TMAO for further clinical services.
Collapse
|