1
|
Dongre DS, Saha UB, Saroj SD. Exploring the role of gut microbiota in antibiotic resistance and prevention. Ann Med 2025; 57:2478317. [PMID: 40096354 PMCID: PMC11915737 DOI: 10.1080/07853890.2025.2478317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND/INTRODUCTION Antimicrobial resistance (AMR) and the evolution of multiple drug-resistant (MDR) bacteria is of grave public health concern. To combat the pandemic of AMR, it is necessary to focus on novel alternatives for drug development. Within the host, the interaction of the pathogen with the microbiome plays a pivotal role in determining the outcome of pathogenesis. Therefore, microbiome-pathogen interaction is one of the potential targets to be explored for novel antimicrobials. MAIN BODY This review focuses on how the gut microbiome has evolved as a significant component of the resistome as a source of antibiotic resistance genes (ARGs). Antibiotics alter the composition of the native microbiota of the host by favouring resistant bacteria that can manifest as opportunistic infections. Furthermore, gut dysbiosis has also been linked to low-dosage antibiotic ingestion or subtherapeutic antibiotic treatment (STAT) from food and the environment. DISCUSSION Colonization by MDR bacteria is potentially acquired and maintained in the gut microbiota. Therefore, it is pivotal to understand microbial diversity and its role in adapting pathogens to AMR. Implementing several strategies to prevent or treat dysbiosis is necessary, including faecal microbiota transplantation, probiotics and prebiotics, phage therapy, drug delivery models, and antimicrobial stewardship regulation.
Collapse
Affiliation(s)
- Devyani S Dongre
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Ujjayni B Saha
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| |
Collapse
|
2
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Unraveling the nutritional challenges in epilepsy: Risks, deficiencies, and management strategies: A systematic review. World J Exp Med 2025; 15:104328. [DOI: 10.5493/wjem.v15.i2.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malnutrition and epilepsy share a complex bidirectional relationship, with malnutrition serving as a potential risk factor for epilepsy development, while epilepsy, in turn, often exerts profound effects on nutritional status. Nutritional interventions have emerged as a critical adjunctive approach in epilepsy management.
AIM To explore the multifaceted associations between malnutrition and epilepsy, structured into three primary sections: (1) Elucidating the impact of malnutrition as a risk factor for epilepsy onset; (2) Examining the reciprocal influence of epilepsy on nutritional status, and (3) Evaluating diverse nutritional interventions in the management of epilepsy.
METHODS A systematic search was conducted across PubMed, Scopus, and Web of Science databases utilizing defined keywords related to malnutrition, epilepsy, and nutritional interventions. Inclusion criteria encompassed various study types, including clinical trials, animal models, cohort studies, case reports, meta-analyses, systematic reviews, guidelines, editorials, and review articles. Four hundred sixteen pertinent references were identified, with 198 review articles, 153 research studies, 21 case reports, 24 meta-analyses, 14 systematic reviews, 4 guidelines, and 2 editorials meeting the predefined criteria.
RESULTS The review revealed the intricate interplay between malnutrition and epilepsy, highlighting malnutrition as a potential risk factor in epilepsy development and elucidating how epilepsy often leads to nutritional deficiencies. Findings underscored the importance of nutritional interventions in managing epilepsy, showing their impact on seizure frequency, neuronal function, and overall brain health.
CONCLUSION This systematic review emphasizes the bidirectional relationship between malnutrition and epilepsy while emphasizing the critical role of nutritional management in epilepsy treatment. The multifaceted insights underscore the need for a holistic approach to addressing nutritional aspects alongside conventional epilepsy management strategies.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
3
|
Rezaei AR, Ates F, Sulik A, Toczyłowski K. 'Smart', microbiome-sparing antibacterial therapy with a focus on the novel Lolamicin: an overview. Infection 2025:10.1007/s15010-025-02538-4. [PMID: 40220252 DOI: 10.1007/s15010-025-02538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE Antibiotic resistance (AR) is an escalating worldwide health emergency, requiring inventive strategies for antibiotic treatment. This review examines the tactics used in designing smart antibiotics, with a specific emphasis on the mechanism of action of lolamicin, a newly developed microbiome-sparing antibiotic. METHODS We review the recent advances in smart antibiotic development, particularly those aiming to preserve the gut microbiome while effectively targeting pathogens. The study focuses on lolamicin's selective targeting mechanism, its inhibition of the LolCDE complex in Gram-negative bacteria. RESULTS Lolamicin works by blocking the LolCDE complex, which is crucial for transporting lipoproteins in Gramnegative bacteria. It offers a significant improvement compared to conventional antibiotics and other microbiomesparing options by safeguarding the microbiome and reducing the development of resistance. However, its limited range of effectiveness - namely against certain harmful bacteria such as Pseudomonas aeruginosa - and the possibility of bacteria becoming resistant to it, remain areas of concern. CONCLUSION Lolamicin presents a hopeful resolution by selectively attacking Gram-negative bacteria while leaving the beneficial gut flora unharmed. Further investigation and rigorous clinical testing are essential to fully harness its promise and confirm its long-term utility in combating antibiotic resistance.
Collapse
Affiliation(s)
- Ahmad Reza Rezaei
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland
| | - Furkan Ates
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland
| | - Artur Sulik
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland
| | - Kacper Toczyłowski
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland.
| |
Collapse
|
4
|
Gudnadottir U, Fransson E, Ljungman G, Wikman A, Vlieghe E, Engstrand L, Brusselaers N. Prenatal and Early Childhood Exposure to Proton Pump Inhibitors and Antibiotics and the Risk of Childhood Cancer: A Nationwide Population-Based Cohort Study. Drug Saf 2025; 48:375-388. [PMID: 39666165 PMCID: PMC11903606 DOI: 10.1007/s40264-024-01500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Our microbiome is established during infancy, a time important for later health and long-term effects. Proton pump inhibitors and antibiotics are regularly prescribed during pregnancy. Both drugs cause microbiome disturbance and have been associated with increased cancer risk in adults, but effects of these drugs on the growing foetus and infant remain understudied. AIM The aim of this study is to study the association between prenatal and early life proton pump inhibitor and antibiotics exposure and the risk of childhood cancer. METHODS This study is a retrospective population-based cohort design, using registry data on all births (n = 722,372) in Sweden between 2006 and 2016, according to the STROBE checklist. For women who had multiple children in the timeframe of the study, only the first child during the time period was included in the cohort. Exposure was defined as either ≥ 1 proton pump inhibitor or antibiotics prescription during pregnancy, or during the first 2 years of life. Outcome was defined as cancer at any time during the follow-up or cancer after the age of 2 years for early life exposure. Multivariable Cox proportional hazard models were used to calculate hazard ratios. RESULTS In total, 1091 (0.2%) children were diagnosed with malignant cancer during the follow-up. Prenatal exposure to proton pump inhibitors and antibiotics were not associated with an increased risk of cancer. Regarding early life exposure, proton pump inhibitors were associated with an increased risk of cancer at age two or older (adjusted hazard ratio [aHR] 3.68, 95% confidence interval [CI] 2.24-6.06). CONCLUSIONS We did not find evidence that prenatal proton pump inhibitors and antibiotics were associated with overall childhood cancer. However, proton pump inhibitors during early life were associated with an increased risk of childhood cancer, but indication on drug use was not available and confounding by indication may be present.
Collapse
Affiliation(s)
- Unnur Gudnadottir
- Department of Microbiology, Tumour and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Tomtebodavägen 16, Solna, 171 65, Stockholm, Sweden.
| | - Emma Fransson
- Department of Microbiology, Tumour and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Tomtebodavägen 16, Solna, 171 65, Stockholm, Sweden
- Department of Women's and Children's health, Uppsala University, Sjukhusvägen 7, 753 09, Uppsala, Sweden
| | - Gustaf Ljungman
- Department of Women's and Children's health, Uppsala University, Sjukhusvägen 7, 753 09, Uppsala, Sweden
| | - Anna Wikman
- Department of Women's and Children's health, Uppsala University, Sjukhusvägen 7, 753 09, Uppsala, Sweden
| | - Erika Vlieghe
- Department of Family Medicine and Population Health, Global Health Institute, University of Antwerp, 2610, Antwerp, Belgium
| | - Lars Engstrand
- Department of Microbiology, Tumour and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Tomtebodavägen 16, Solna, 171 65, Stockholm, Sweden
| | - Nele Brusselaers
- Department of Microbiology, Tumour and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Tomtebodavägen 16, Solna, 171 65, Stockholm, Sweden
- Department of Family Medicine and Population Health, Global Health Institute, University of Antwerp, 2610, Antwerp, Belgium
- Department of Public Health and Primary Care, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
5
|
Rivera-Rodriguez DE, Busby C, Cervantes-Barragan L, Weiss DS. Widespread heteroresistance to antibiotics in Lactobacillus species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644958. [PMID: 40196655 PMCID: PMC11974758 DOI: 10.1101/2025.03.24.644958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Lactobacilli are prevalent members of the intestinal and reproductive tract microbiota of humans and other species. They are commonly used in probiotics and various food products due to their beneficial effects on human health. For example, these beneficial microbes are used to treat diarrhea caused by antibiotic therapy and are commonly given during antibiotic treatment. Despite the many studies conducted to understand the beneficial effects of Lactobacilli, less is known about their resistance and heteroresistance to antibiotics. In this study, we evaluated the resistance heterogeneity in eight Lactobacillus species. Our results demonstrate that several Lactobacilli species, including Lactobacillus rhamnosus, are heteroresistant to antibiotics, a recently discovered phenotype commonly seen in multidrug-resistant organisms that cause clinical failures but understudied in commensals and probiotics.
Collapse
Affiliation(s)
- Dormarie E. Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chayse Busby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | | | - David S. Weiss
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
6
|
Raju NP, Ansari A, Patil G, Sheeraz MS, Kukade S, Kumar S, Kapley A, Qureshi A. Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater. J Basic Microbiol 2025; 65:e2400330. [PMID: 39676299 DOI: 10.1002/jobm.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks.
Collapse
Affiliation(s)
- Neenu P Raju
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Aamir Ansari
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Gandhali Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Mohammed Shahique Sheeraz
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sushrut Kukade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Shailendra Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
7
|
McPherson EJ, Chowdhry M, Dipane MV, Marahrens B, Pena DD, Stavrakis AI. Antibiotic-Loaded Calcium Sulphate Beads for Treatment of Acute Periprosthetic Joint Infection in Total Knee Arthroplasty: Results Based on Risk Stratification. J Clin Med 2025; 14:1531. [PMID: 40095454 PMCID: PMC11899950 DOI: 10.3390/jcm14051531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Background: A post-operative or late acute periprosthetic joint infection (PJI) after Total Knee Arthroplasty (TKA) requires a protocol of aggressive joint Debridement, modular implant Exchange, Component Retention, and post-operative Antimicrobial therapy (DECRA). Recently, the novel addition of intra-articular Antimicrobial Loaded Calcium Sulphate (AL-CaSO4) beads during DECRA has been utilized to improve microbial eradication. This study reviews a consecutive series of DECRA TKA procedures with AL-CaSO4 beads with a standardized antimicrobial regimen. We hypothesize AL-CaSO4 beads will not improve infection-free implant survival in compromised hosts and limbs. Methods: This consecutive series included DECRA procedures for acute post-operative or late hematogenous PJI-TKA (primary and revision) detected within 4 weeks. One gram of vancomycin powder and 240 mg of liquid tobramycin were added to 10 cc of CaSO4 powder to create 3.0 and 4.8 mm beads delivered into the joint at closure. All patients were risk stratified according to McPherson Staging and followed for a minimum of 1 year. Results: Forty-two patients were studied. The infection-free success rate of DECRA with AL-CaSO4 was 62% (26/42) at 1 year. Average bead volume per case was 18.6 cc (range = 10-40 cc). McPherson Host stage and Limb Score were found to be significantly correlated with the success of the DECRA (p < 0.05). The success rate was highest in A-hosts (87.5%), declining to 50% in B-hosts, and 25% in C-hosts. Similarly, the success rate was highest for patients with Limb score 1 (100%), declining to 58.6% with Limb score 2, and 20% with Limb score 3. Importantly, a previous episode of infection in the affected joint was associated with significantly increased failure (p = 0.000025). Conclusions: This study reports an overall higher infection-free success rate of DECRA using AL-CaSO4 beads compared to the current literature. Antibiotic beads provide an advantage in selected groups that include A or B hosts and Limb scores of 1 or 2. In C-hosts, where the immune system is weak, or Limb score 3, where the wound is compromised and leaks, antibiotic beads do not improve success. Importantly, DECRAs should not be considered curative with a prior history of joint infection. In these difficult circumstances, one should consider an exchange protocol.
Collapse
Affiliation(s)
- Edward J. McPherson
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90404, USA; (E.J.M.); (M.V.D.); (D.D.P.); (A.I.S.)
| | - Madhav Chowdhry
- Department of Continuing Education, University of Oxford, Oxford OX1 2JA, UK
| | - Matthew V. Dipane
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90404, USA; (E.J.M.); (M.V.D.); (D.D.P.); (A.I.S.)
| | - Benedikt Marahrens
- Department of Internal Medicine, Brandenburg Medical School, Neuruppin, 14770 Brandenburg, Germany;
| | - Diego Dela Pena
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90404, USA; (E.J.M.); (M.V.D.); (D.D.P.); (A.I.S.)
| | - Alexandra I. Stavrakis
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90404, USA; (E.J.M.); (M.V.D.); (D.D.P.); (A.I.S.)
| |
Collapse
|
8
|
Sceglovs A, Skadins I, Chitto M, Kroica J, Salma-Ancane K. Failure or future? Exploring alternative antibacterials: a comparative analysis of antibiotics and naturally derived biopolymers. Front Microbiol 2025; 16:1526250. [PMID: 39963493 PMCID: PMC11830819 DOI: 10.3389/fmicb.2025.1526250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
The global crisis of antimicrobial resistance (AMR) is escalating due to the misuse and overuse of antibiotics, the slow development of new therapies, and the rise of multidrug-resistant (MDR) infections. Traditional antibiotic treatments face limitations, including the development of resistance, disruption of the microbiota, adverse side effects, and environmental impact, emphasizing the urgent need for innovative alternative antibacterial strategies. This review critically examines naturally derived biopolymers with intrinsic (essential feature) antibacterial properties as a sustainable, next-generation alternative to traditional antibiotics. These biopolymers may address bacterial resistance uniquely by disrupting bacterial membranes rather than cellular functions, potentially reducing microbiota interference. Through a comparative analysis of the mechanisms and applications of antibiotics and antibacterial naturally derived biopolymers, this review highlights the potential of such biopolymers to address AMR while supporting human and environmental health.
Collapse
Affiliation(s)
- Artemijs Sceglovs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | | | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | - Kristine Salma-Ancane
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
9
|
Văcărean-Trandafir IC, Amărandi RM, Ivanov IC, Dragoș LM, Mențel M, Iacob Ş, Muşină AM, Bărgăoanu ER, Roată CE, Morărașu Ș, Țuțuianu V, Ciobanu M, Dimofte MG. Impact of antibiotic prophylaxis on gut microbiota in colorectal surgery: insights from an Eastern European stewardship study. Front Cell Infect Microbiol 2025; 14:1468645. [PMID: 39872941 PMCID: PMC11770057 DOI: 10.3389/fcimb.2024.1468645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Antibiotic overuse is driving a global rise in antibiotic resistance, highlighting the need for robust antimicrobial stewardship (AMS) initiatives to improve prescription practices. While antimicrobials are essential for treating sepsis and preventing surgical site infections (SSIs), they can inadvertently disrupt the gut microbiota, leading to postoperative complications. Treatment methods vary widely across nations due to differences in drug choice, dosage, and therapy duration, affecting antibiotic resistance rates, which can reach up to 51% in some countries. In Romania and the Republic of Moldova, healthcare practices for surgical antibiotic prophylaxis differ significantly despite similarities in genetics, culture, and diet. Romania's stricter healthcare regulations result in more standardized antibiotic protocols, whereas Moldova's limited healthcare funding leads to less consistent practices and greater variability in treatment outcomes. Methods This study presents the results of a prospective cross-border investigation involving 86 colorectal cancer patients from major oncological hospitals in Romania and Moldova. We analyzed fecal samples collected from patients before and 7 days post-antibiotic treatment, focusing on the V3-V4 region of the 16S rRNA gene. Results Our findings indicate that inconsistent antibiotic prophylaxis policies-varying in type, dosage, or therapy duration-significantly impacted the gut microbiota and led to more frequent dysbiosis compared to stricter prophylactic antibiotic practices (single dose, single product, limited time). Discussion We emphasize the need for standardized antibiotic prophylaxis protocols to minimize dysbiosis and its associated risks, promoting more effective antimicrobial use, particularly in low- and middle-income countries (LMICs).
Collapse
Affiliation(s)
| | | | | | | | - Mihaela Mențel
- TRANSCEND Research Centre, Regional Institute of Oncology, Iasi, Romania
| | - Ştefan Iacob
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ana-Maria Muşină
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Cristian Ene Roată
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ștefan Morărașu
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Valeri Țuțuianu
- Scientific Laboratory of Cancer Biology, Institute of Oncology, Chișinău, Moldova
| | - Marcel Ciobanu
- Surgical Oncology Department, Proctology, Institute of Oncology, Chișinău, Moldova
| | - Mihail-Gabriel Dimofte
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
10
|
Chen Y, Ding H, Wang Q, Huang Z, Zhang C, Li W, Lin Y, Guo Y, Fang X, Zhang W. Can "LITE" Procedure Combined With a Short Course Antibiotic Treatment Be Effective in Treating the Chronic PJI?-A Prospective Randomized Controlled Trial. Orthop Surg 2025; 17:94-104. [PMID: 39428209 PMCID: PMC11735367 DOI: 10.1111/os.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE The prevailing treatment for chronic periprosthetic joint infection (PJI) is a two-stage exchange, yet the optimal duration of antibiotic therapy following this procedure remains a topic of debate. This study aimed to determine whether a short course of postoperative antibiotic therapy can maintain infection control rates following a long interval two-stage exchange (LITE) for PJI. METHODS We conducted a prospective study enrolling patients with chronic PJI who underwent the LITE procedure at our institution from April 2018 to November 2021. Patients were randomly assigned to receive either a long course (12 weeks) or short course (2 weeks) of postoperative antibiotics. The pathogens, antibiotics, inflammatory markers, antibiotic-related complications, cases of reinfection, or re-operation were recorded. Continuous variables were analyzed using the two-sample t-test or Mann-Whitney U test, and categorical variables were analyzed using Fisher's exact tests. Kaplan-Meier survival analysis was used to compare infection control rates. RESULTS A total of 60 patients with chronic PJI who completed the LITE procedure were included in the study (30 patients per group). All patients were followed for a minimum of 24 months (mean 39.2 ± 13.0 months). We observed that the infection control rate in the short-course group was not inferior to that in the long-course group (96.7% vs. 96.7%, p = 1.000). CONCLUSIONS For patients with chronic PJI undergoing the LITE procedure, a 2-week course of postoperative antibiotics suffices to maintain infection control rates. TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR1900027089.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedic SurgeryNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institute of OrthopedicsThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Haiqi Ding
- Department of Orthopaedic SurgeryNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institute of OrthopedicsThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Qijin Wang
- Department of Orthopaedic SurgeryNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institute of OrthopedicsThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Zida Huang
- Department of Orthopaedic SurgeryNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institute of OrthopedicsThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Chaofan Zhang
- Department of Orthopaedic SurgeryNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institute of OrthopedicsThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Wenbo Li
- Department of Orthopaedic SurgeryNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institute of OrthopedicsThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Yansheng Lin
- Department of Orthopedic SurgeryChangtai County HospitalZhangzhouChina
| | - Yufeng Guo
- Department of Orthopedic SurgeryChangtai County HospitalZhangzhouChina
| | - Xinyu Fang
- Department of Orthopaedic SurgeryNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institute of OrthopedicsThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Wenming Zhang
- Department of Orthopaedic SurgeryNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institute of OrthopedicsThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| |
Collapse
|
11
|
Reyes Z, Stovall MC, Punyamurthula S, Longo M, Maraganore D, Solch-Ottaiano RJ. The impact of gut microbiome and diet on post-acute sequelae of SARS-CoV-2 infection. J Neurol Sci 2024; 467:123295. [PMID: 39550783 DOI: 10.1016/j.jns.2024.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Long COVID, also known as Post COVID-19 condition by the World Health Organization or Post-Acute Sequelae of SARS-CoV-2 infection (PASC), is defined as the development of symptoms such as post-exertional malaise, dysgeusia, and partial or full anosmia three months after initial SARS-CoV-2 infection. The multisystem effects of PASC make it difficult to distinguish from its mimickers. Further, a comprehensive evaluation of the gut microbiome, nutrition, and PASC has yet to be studied. The gut-brain axis describes bidirectional immune, neural, endocrine, and humoral modulatory interactions between the gut microbiome and brain function. We explore recent studies that support an association between alterations in gut microbiome diversity and the severity of acute-phase COVID-19, and how these may be affected by diets rich in antioxidants and fiber. The Mediterranean Diet (MeDi) has demonstrated promising neuroprotective effects through its anti-inflammatory processes. Further, diets rich in fiber increase gut diversity and increase the amount of short-chain fatty acids (SCFAs) within the body-both shown to protect from acute COVID-19 complications. Long-term changes to the gut microbiome persist after acute infection and may increase susceptibility to PASC. This study builds on existing knowledge of determinants of PASC and highlights a relationship between nutrition, gut microbiome, acute-phase COVID-19, and, subsequently, PASC susceptibility.
Collapse
Affiliation(s)
- Zabrina Reyes
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America
| | - Mary Catherine Stovall
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America
| | - Sanjana Punyamurthula
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America
| | - Michele Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America
| | - Demetrius Maraganore
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America; Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, United States of America; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, United States of America
| | - Rebecca J Solch-Ottaiano
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America; Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, United States of America; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, United States of America.
| |
Collapse
|
12
|
Özdemir A, Buyuktuncer Z. Dietary legumes and gut microbiome: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39607793 DOI: 10.1080/10408398.2024.2434725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The gut microbiome plays a crucial role in human health, affecting metabolic, immune, and cognitive functions. While the impact of various dietary components on the microbiome is well-studied, the effect of legumes remains less explored. This review examines the influence of legume consumption on gut microbiome composition, diversity, and metabolite production, based on 10 human and 21 animal studies. Human studies showed mixed results, with some showing increased microbial diversity and others finding no significant changes. However, legume consumption was linked to increases in beneficial bacteria like Bifidobacterium and Faecalibacterium. Animal studies generally indicated enhanced microbial diversity and composition changes, though these varied by legume type and the host's health. Some studies highlighted legume-induced shifts in bacteria associated with better metabolic health. Overall, the review emphasizes the complexity of legume-microbiome interactions and the need for standardized methodologies and longitudinal studies. While legumes have the potential to positively affect the gut microbiome, the effects are nuanced and depend on context. Future research should investigate the long-term impacts of legume consumption on microbiome stability and its broader health implications, particularly for disease prevention and dietary strategies.
Collapse
Affiliation(s)
- Aslıhan Özdemir
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Türkiye
| | - Zehra Buyuktuncer
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
13
|
Tsoumbris PR, Vincent RM, Jaschke PR. Designing a simple and efficient phage biocontainment system using the amber suppressor initiator tRNA. Arch Virol 2024; 169:248. [PMID: 39557717 DOI: 10.1007/s00705-024-06170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Multidrug-resistant infections are becoming increasingly prevalent worldwide. One of the fastest-emerging alternative and adjuvant therapies being proposed is phage therapy. Naturally isolated phages are used in the vast majority of phage therapy treatments today. Engineered phages are being developed to enhance the effectiveness of phage therapy, but concerns over their potential escape remain a salient issue. To address this problem, we designed a biocontained phage system based on conditional replication using amber stop codon suppression. This system can be easily installed on any natural phage with a known genome sequence. To test the system, we individually mutated the start codons of three essential capsid genes in phage φX174 to the amber stop codon (UAG). These phages were able to efficiently infect host cells expressing the amber initiator tRNA, which suppresses the amber stop codon and initiates translation at TAG stop codons. The amber phage mutants were also able to successfully infect host cells and reduce their population on solid agar and liquid culture but could not produce infectious particles in the absence of the amber initiator tRNA or complementing capsid gene. We did not detect any growth-inhibiting effects on E. coli strains known to lack a receptor for φX174 and we showed that engineered phages have a limited propensity for reversion. The approach outlined here may be useful to control engineered phage replication in both the lab and clinic.
Collapse
Affiliation(s)
- Pamela R Tsoumbris
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Russel M Vincent
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
14
|
Xu WB, Wang YF, Meng SY, Zhang XT, Wang YR, Liu ZY. Effects of antibiotic and disinfectant exposure on the mouse gut microbiome and immune function. Microbiol Spectr 2024; 12:e0061124. [PMID: 39292002 PMCID: PMC11536992 DOI: 10.1128/spectrum.00611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
This study explores the effects of disinfectant and antibiotic exposure on gut health, focusing on gut microbiota balance and gut immune function. Our analysis indicates that disinfectants increase the proportion of Gram-positive bacteria, particularly increasing Staphylococcus levels, while antibiotics increase the proportion of Gram-negative bacteria, especially Bacteroides levels. These changes disrupt microbial harmony and affect the gut microbiome's functional capacity. Additionally, our research reveals that both disinfectants and antibiotics reduce colon length and cause mucosal damage. A significant finding is the downregulation of NLRC4, a key immune system regulator in the gut, accompanied by changes in immune factor expression. This interaction between chemical exposure and immune system dysfunction increases susceptibility to inflammatory bowel disease and other gut conditions. Given the importance of disinfectants in disease prevention, this study advocates for a balanced approach to their use, aiming to protect public health while minimizing adverse effects on the gut microbiome and immune function. IMPORTANCE Disinfectants are extensively employed across various sectors, such as the food sector. Disinfectants are widely used in various sectors, including the food processing industry, animal husbandry, households, and pharmaceuticals. Their extensive application risks environmental contamination, impacting water and soil quality. However, the effect of disinfectant exposure on the gut microbiome and the immune function of animals remains a significant, unresolved issue with profound public health implications. This highlights the need for increased scrutiny and more regulated use of disinfectants to mitigate unintended consequences on gut health and maintain immune system integrity.
Collapse
Affiliation(s)
- Wen-Bo Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yun-Fan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Si-Yu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Xiao-Tong Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yi-Rong Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| |
Collapse
|
15
|
Haghshenas L, Banihashemi S, Malekzadegan Y, Catanzaro R, Moghadam Ahmadi A, Marotta F. Microbiome as an endocrine organ and its relationship with eye diseases: Effective factors and new targeted approaches. World J Gastrointest Pathophysiol 2024; 15:96446. [PMID: 39355345 PMCID: PMC11440246 DOI: 10.4291/wjgp.v15.i5.96446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Microbiome is an endocrine organ that refers to both the complicated biological system of microbial species that colonize our bodies and their genomes and surroundings. Recent studies confirm the connection between the microbiome and eye diseases, which are involved in the pathogenesis of eye diseases, including age-related macular disorders, diabetic retinopathy, glaucoma, retinitis pigmentosa, dry eye, and uveitis. The aim of this review is to investigate the microbiome in relation to eye health. First, a brief introduction of the characteristics of the gut microorganisms terms of composition and work, the role of dysbiosis, the gut microbiome and the eye microbiome in the progression of eye illnesses are highlighted, then the relationship among the microbiome and the function of the immune system and eye diseases, the role of inflammation and aging and the immune system, It has been reviewed and finally, the control and treatment goals of microbiome and eye diseases, the role of food factors and supplements, biotherapy and antibiotics in relation to microbiome and eye health have been reviewed.
Collapse
Affiliation(s)
- Leila Haghshenas
- Department of Clinical Bioinformatics, Harvard Medical School, Boston, MA 02115, United States
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham NG1 4FQ, United Kingdom
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh 3919676651, Iran
| | - Roberto Catanzaro
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Catania, Italy
| | - Amir Moghadam Ahmadi
- Department of Neuroimmunology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Francesco Marotta
- Department of Human Nutrition and Food Sciences, Texas Women University, Milano 20154, Italy
| |
Collapse
|
16
|
Sait AM, Day PJR. Interconnections between the Gut Microbiome and Alzheimer's Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:8619. [PMID: 39201303 PMCID: PMC11354889 DOI: 10.3390/ijms25168619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is known to accumulate amyloid-β (Aβ) and tau protein. Clinical studies have not identified pathogenesis mechanisms or produced an effective cure for AD. The Aβ monoclonal antibody lecanemab reduces Aβ plaque formation for the treatment of AD, but more studies are required to increase the effectiveness of drugs to reduce cognitive decline. The lack of AD therapy targets and evidence of an association with an acute neuroinflammatory response caused by several bacteria and viruses in some individuals has led to the establishment of the infection hypothesis during the last 10 years. How pathogens cross the blood-brain barrier is highly topical and is seen to be pivotal in proving the hypothesis. This review summarizes the possible role of the gut microbiome in the pathogenesis of AD and feasible therapeutic approaches and current research limitations.
Collapse
Affiliation(s)
- Ahmad M. Sait
- Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Philip J. R. Day
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
17
|
Miller EA, Amato R, Ponder JB, Bueno I. Survey of antimicrobial and probiotic use practices in wildlife rehabilitation in the United States. PLoS One 2024; 19:e0308261. [PMID: 39088546 PMCID: PMC11293748 DOI: 10.1371/journal.pone.0308261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024] Open
Abstract
Antimicrobial resistance is a global health concern. As such, there have been increased efforts to monitor and standardize antimicrobial prescribing practices in humans and domestic animals. In contrast, there is relatively little known about specific prescribing practices in wild animals despite the wide use of antimicrobials and other microbial interventions, such as probiotics to treat captive wildlife. Therefore, the goal of this study was to examine current antimicrobial and probiotic use from a cross-section of wildlife rehabilitation facilities in the United States. An anonymous electronic survey was sent to 105 United States permitted wildlife facilities to collect information about admissions, current antimicrobial and probiotic use practices, and current staff knowledge and attitudes surrounding antimicrobial resistance and probiotic effectiveness. Respondents from over 50% of facilities participated in the survey (54/105), including 45 facilities that treated birds. All facilities reported using antimicrobials, including some from groups considered critically important for human medicine, for a wide range of medical conditions and prophylaxis. Among antibiotics, enrofloxacin and amoxicillin-clavulanic acid were the most commonly used. Antifungals were not as widespread, but itraconazole was the most commonly used. Over 75% of respondents said that their facilities would benefit from having standardized antimicrobial guidelines in place. Probiotics were also used in more than 50% of facilities, but there was notable disparity in opinions regarding their efficacy. The results of this survey are a first step towards understanding antimicrobial and probiotic use practices in the treatment of captive wildlife and developing an antimicrobial stewardship program for wildlife rehabilitation.
Collapse
Affiliation(s)
- Elizabeth A. Miller
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Rachel Amato
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Julia B. Ponder
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Irene Bueno
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| |
Collapse
|
18
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
19
|
Ki KC, Lewis EL, Wu E, Oliaro FJ, Aubry LM, Knapp CR, Kapheim KM, DeNardo D, French SS. High sugar diet alters immune function and the gut microbiome in juvenile green iguanas (Iguana iguana). J Exp Biol 2024; 227:jeb246981. [PMID: 38804667 DOI: 10.1242/jeb.246981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The present work aimed to study whether a high sugar diet can alter immune responses and the gut microbiome in green iguanas. Thirty-six iguanas were split into four treatment groups using a 2×2 design. Iguanas received either a sugar-supplemented diet or a control diet, and either a lipopolysaccharide (LPS) injection or a phosphate-buffered saline (PBS) injection. Iguanas were given their respective diet treatment through the entire study (∼3 months) and received a primary immune challenge 1 and 2 months into the experiment. Blood samples and cloacal swabs were taken at various points in the experiment and used to measure changes in the immune system (bacterial killing ability, lysis and agglutination scores, LPS-specific IgY concentrations), and alterations in the gut microbiome. We found that a sugar diet reduces bacterial killing ability following an LPS challenge, and sugar and the immune challenge temporarily alters gut microbiome composition while reducing alpha diversity. Although sugar did not directly reduce lysis and agglutination following the immune challenge, the change in these scores over a 24-h period following an immune challenge was more drastic (it decreased) relative to the control diet group. Moreover, sugar increased constitutive agglutination outside of the immune challenges (i.e. pre-challenge levels). In this study, we provide evidence that a high sugar diet affects the immune system of green iguanas (in a disruptive manner) and alters the gut microbiome.
Collapse
Affiliation(s)
- Kwanho C Ki
- Department of Biology, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
- Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| | - Erin L Lewis
- Department of Biology, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
- Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| | - Elizabeth Wu
- Psychology Department, Arizona State University, 950 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Francis J Oliaro
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL 60605, USA
| | - Lise M Aubry
- Department of Fish, Wildlife and Conservation, Colorado State University, 1474 Campus Delivery, Fort Collins, CO 80523-1474, USA
| | - Charles R Knapp
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL 60605, USA
| | - Karen M Kapheim
- Department of Biology, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| | - Dale DeNardo
- School of Life Science, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Susannah S French
- Department of Biology, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
- Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
20
|
Charest AM, Reed E, Bozorgzadeh S, Hernandez L, Getsey NV, Smith L, Galperina A, Beauregard HE, Charest HA, Mitchell M, Riley MA. Nisin Inhibition of Gram-Negative Bacteria. Microorganisms 2024; 12:1230. [PMID: 38930612 PMCID: PMC11205666 DOI: 10.3390/microorganisms12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aims: This study investigates the activity of the broad-spectrum bacteriocin nisin against a large panel of Gram-negative bacterial isolates, including relevant plant, animal, and human pathogens. The aim is to generate supportive evidence towards the use/inclusion of bacteriocin-based therapeutics and open avenues for their continued development. Methods and Results: Nisin inhibitory activity was screened against a panel of 575 strains of Gram-negative bacteria, encompassing 17 genera. Nisin inhibition was observed in 309 out of 575 strains, challenging the prevailing belief that nisin lacks effectiveness against Gram-negative bacteria. The genera Acinetobacter, Helicobacter, Erwinia, and Xanthomonas exhibited particularly high nisin sensitivity. Conclusions: The findings of this study highlight the promising potential of nisin as a therapeutic agent for several key Gram-negative plant, animal, and human pathogens. These results challenge the prevailing notion that nisin is less effective or ineffective against Gram-negative pathogens when compared to Gram-positive pathogens and support future pursuits of nisin as a complementary therapy to existing antibiotics. Significance and Impact of Study: This research supports further exploration of nisin as a promising therapeutic agent for numerous human, animal, and plant health applications, offering a complementary tool for infection control in the face of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Adam M. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Ethan Reed
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Samantha Bozorgzadeh
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Lorenzo Hernandez
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Natalie V. Getsey
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Liam Smith
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Anastasia Galperina
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hadley E. Beauregard
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hailey A. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Mathew Mitchell
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| | - Margaret A. Riley
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| |
Collapse
|
21
|
Büttner R, Schwermer M, Ostermann T, Längler A, Zuzak T. Expert consensus-based clinical recommendation for an integrative anthroposophic treatment approach to acute tonsillitis in childhood. Complement Ther Med 2024; 81:103031. [PMID: 38432580 DOI: 10.1016/j.ctim.2024.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Medical guidelines are an important basis for qualitative and cost-effective patient care. However, there is a lack of clinical recommendations in anthroposophic medicine (AM), an integrative medicine approach frequently practised in Europe. Acute tonsillitis, which includes tonsillopharyngitis, is a common childhood disease. that is mostly caused by a viral infection. Symptomatic treatment is therefore of high importance, and AM can offer several therapy options. METHODS 53 physicians from Germany, Spain, Netherlands, Switzerland, Austria, and Hungary with at least one year of experience in anthroposophic paediatric medicine were invited to participate in an online Delphi process. The process comprises five survey rounds starting with open-ended questions and ending with final statements, which need 75% agreement of experts to reach consensus. Expert answers were evaluated by two independent reviewers using MAXQDA and Excel. RESULTS Response rate was between 28% and 45%. The developed recommendation included 15 subtopics. These covered clinical, diagnostic, therapeutic and psychosocial aspects of acute tonsillitis. Six subtopics achieved a high consensus (>90%) and nine subtopics achieved consensus (75-90%). CONCLUSION The clinical recommendation for acute tonsillitis in children aims to simplify everyday patient care and provide decision-making support when considering and prescribing anthroposophic therapies. Moreover, the recommendation makes AM more transparent for physicians, parents, and maybe political stakeholders as well.
Collapse
Affiliation(s)
- Rebecca Büttner
- Department of Pediatrics, Gemeinschaftskrankenhaus Herdecke, Germany; Integrative Pediatrics, Witten/Herdecke University, Faculty of Health, Germany
| | - Melanie Schwermer
- Department of Pediatrics, Gemeinschaftskrankenhaus Herdecke, Germany; Integrative Pediatrics, Witten/Herdecke University, Faculty of Health, Germany.
| | - Thomas Ostermann
- Department of Psychology, Chair of Research Methodology and Statistics in Psychology, Witten/Herdecke University, Germany
| | - Alfred Längler
- Department of Pediatrics, Gemeinschaftskrankenhaus Herdecke, Germany; Integrative Pediatrics, Witten/Herdecke University, Faculty of Health, Germany
| | - Tycho Zuzak
- Department of Pediatrics, Gemeinschaftskrankenhaus Herdecke, Germany; Faculty of Medicine, University of Duisburg-Essen, Germany
| |
Collapse
|
22
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. The Profound Influence of Gut Microbiome and Extracellular Vesicles on Animal Health and Disease. Int J Mol Sci 2024; 25:4024. [PMID: 38612834 PMCID: PMC11012031 DOI: 10.3390/ijms25074024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
23
|
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, Fejfarová V. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha) 2024; 69:259-282. [PMID: 38095802 DOI: 10.1007/s12223-023-01119-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 04/11/2024]
Abstract
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
Collapse
Affiliation(s)
- Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic.
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
24
|
Nickel KB, Durkin MJ, Olsen MA, Sahrmann JM, Neuner E, O’Neil CA, Butler AM. Utilization of broad- versus narrow-spectrum antibiotics for the treatment of outpatient community-acquired pneumonia among adults in the United States. Pharmacoepidemiol Drug Saf 2024; 33:e5779. [PMID: 38511244 PMCID: PMC11016291 DOI: 10.1002/pds.5779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE To characterize antibiotic utilization for outpatient community-acquired pneumonia (CAP) in the United States. METHODS We conducted a cohort study among adults 18-64 years diagnosed with outpatient CAP and a same-day guideline-recommended oral antibiotic fill in the MarketScan® Commercial Database (2008-2019). We excluded patients coded for chronic lung disease or immunosuppressive disease; recent hospitalization or frequent healthcare exposure (e.g., home wound care, patients with cancer); recent antibiotics; or recent infection. We characterized utilization of broad-spectrum antibiotics (respiratory fluoroquinolone, β-lactam + macrolide, β-lactam + doxycycline) versus narrow-spectrum antibiotics (macrolide, doxycycline) overall and by patient- and provider-level characteristics. Per 2007 IDSA/ATS guidelines, we stratified analyses by otherwise healthy patients and patients with comorbidities (coded for diabetes; chronic heart, liver, or renal disease; etc.). RESULTS Among 263 914 otherwise healthy CAP patients, 35% received broad-spectrum antibiotics (not recommended); among 37 161 CAP patients with comorbidities, 44% received broad-spectrum antibiotics (recommended). Ten-day antibiotic treatment durations were the most common for all antibiotic classes except macrolides. From 2008 to 2019, broad-spectrum antibiotic use substantially decreased from 45% to 19% in otherwise healthy patients (average annual percentage change [AAPC], -7.5% [95% CI -9.2%, -5.9%]), and from 55% to 29% in patients with comorbidities (AAPC, -5.8% [95% CI -8.8%, -2.6%]). In subgroup analyses, broad-spectrum antibiotic use varied by age, geographic region, provider specialty, and provider location. CONCLUSIONS Real-world use of broad-spectrum antibiotics for outpatient CAP declined over time but remained common, irrespective of comorbidity status. Prolonged duration of therapy was common. Antimicrobial stewardship is needed to aid selection according to comorbidity status and to promote shorter courses.
Collapse
Affiliation(s)
- Katelin B. Nickel
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J. Durkin
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Margaret A. Olsen
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - John M. Sahrmann
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth Neuner
- Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Caroline A. O’Neil
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M. Butler
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
25
|
Waitzberg D, Guarner F, Hojsak I, Ianiro G, Polk DB, Sokol H. Can the Evidence-Based Use of Probiotics (Notably Saccharomyces boulardii CNCM I-745 and Lactobacillus rhamnosus GG) Mitigate the Clinical Effects of Antibiotic-Associated Dysbiosis? Adv Ther 2024; 41:901-914. [PMID: 38286962 PMCID: PMC10879266 DOI: 10.1007/s12325-024-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Dysbiosis corresponds to the disruption of a formerly stable, functionally complete microbiota. In the gut, this imbalance can lead to adverse health outcomes in both the short and long terms, with a potential increase in the lifetime risks of various noncommunicable diseases and disorders such as atopy (like asthma), inflammatory bowel disease, neurological disorders, and even behavioural and psychological disorders. Although antibiotics are highly effective in reducing morbidity and mortality in infectious diseases, antibiotic-associated diarrhoea is a common, non-negligible clinical sign of gut dysbiosis (and the only visible one). Re-establishment of a normal (functional) gut microbiota is promoted by completion of the clinically indicated course of antibiotics, the removal of any other perturbing external factors, the passage of time (i.e. recovery through the microbiota's natural resilience), appropriate nutritional support, and-in selected cases-the addition of probiotics. Systematic reviews and meta-analyses of clinical trials have confirmed the strain-specific efficacy of some probiotics (notably the yeast Saccharomyces boulardii CNCM I-745 and the bacterium Lactobacillus rhamnosus GG) in the treatment and/or prevention of antibiotic-associated diarrhoea in children and in adults. Unusually for a probiotic, S. boulardii is a eukaryote and is not therefore directly affected by antibiotics-making it suitable for administration in cases of antibiotic-associated diarrhoea. A robust body of evidence from clinical trials and meta-analyses shows that the timely administration of an adequately dosed probiotic (upon initiation of antibiotic treatment or within 48 h) can help to prevent or resolve the consequences of antibiotic-associated dysbiosis (such as diarrhoea) and promote the resilience of the gut microbiota and a return to the pre-antibiotic state. A focus on the prescription of evidence-based, adequately dosed probiotics should help to limit unjustified and potentially ineffective self-medication.
Collapse
Affiliation(s)
- Dan Waitzberg
- Department of Gastroenterology, LIM-35, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Iva Hojsak
- Referral Centre for Pediatric Gastroenterology and Nutrition, School of Medicine, University of Zagreb, Zagreb, Croatia
- University of Zagreb Medical School, Zagreb, Croatia
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, San Diego, and Rady Children's Hospital, University of California, San Diego, CA, USA
| | - Harry Sokol
- Gastroenterology Department, Saint-Antoine Hospital, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France.
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| |
Collapse
|
26
|
Majumder S, Kiritkumar Makwana R, Shetty V, Mukherjee S, Narayan P. Cardiovascular diseases and the heart-gut cross talk. Indian Heart J 2024; 76:94-100. [PMID: 38070671 PMCID: PMC11143509 DOI: 10.1016/j.ihj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 12/02/2023] [Indexed: 06/01/2024] Open
Abstract
The purpose of this narrative review is to provide a comprehensive overview of current research on heart-gut cross talk and its implications for cardiovascular disease. To uncover relevant preclinical and clinical research examining heart-gut cross talk, a thorough literature search was undertaken utilising electronic databases. The chosen publications were critically examined, and major findings were synthesised to offer a thorough perspective on the subject. We want to synthesise the most recent study findings, explain the underlying mechanisms, and provide potential treatment techniques. By exploring bidirectional connection between the heart and the gut, we shed light on novel future options for the prevention and treatment of cardiovascular diseases. The heart-gut cross talk is an exciting field of study with implications for cardiovascular disease. Understanding the complex connection between the heart and the gastrointestinal tract may lead to the development of novel therapeutic targets and therapies for the prevention and management of cardiovascular diseases. Future research should concentrate on identifying the specific processes driving this crosstalk as well as assessing the efficacy of therapies targeting the gut microbiota and the gut-brain axis in improving cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Varun Shetty
- Department of Cardiac Surgery, Narayana Health, India
| | | | | |
Collapse
|
27
|
Das SC, Zubiatin Tasmin M, Afrin A, Ahmed T, Lahiry A, Rahman S. Challenges in the profitability of small-scale broiler farming by avoiding injudicious use of drugs and additives. Heliyon 2024; 10:e25001. [PMID: 38317959 PMCID: PMC10839958 DOI: 10.1016/j.heliyon.2024.e25001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
The aim of the current study was to determine the present scenario of injudicious use of drugs and additives in small-scale broiler operations and whether broilers can be produced successfully and profitably without the injudicious use of drugs and additives. First, a survey was undertaken in relation to farmers' basic information and general management methods in commercial broilers, with special attention given to the usage of medications and additives in drinking water. Second, based on the survey data, an experimental trial was carried out to compare the growth performance and economic profitability of rearing broilers with and without the use of said drugs and additives. A total of 540 broiler DOCs were allotted into three treatments: T1 = self-formulated feed (SFF) with judicious use of drugs and additives; T2 = commercial feed with judicious use of drugs and additives (JUDA) and T3 = commercial feed with injudicious use of drugs and additives (InJUDA), with six replications (30 birds/replication) in each. The results showed that the farmers used a variety of drugs and additives in 35 days of broiler rearing; however, the farmers usually did not consult with veterinary practitioners, instead relying on and being instructed by local dealers and medicine company representatives. Although the medications and additives account for almost 6-8% of total production costs, the experimental trial clearly demonstrated that the broilers kept with either JUDA or InJUDA showed statistically (p < 0.05) similar BW (2181.93 g & 2222.53 g/bird), BWG (2110.0 g & 2129.91 g/bird), and FCR (1.62 & 1.57, respectively), whereas broilers in the SFF group showed significantly lower growth performances (BW = 1799.31 g/bird, BWG = 1746.19 g/bird, and FCR = 1.93, respectively). The net profit per kg bird in the JUDA group was substantially (p < 0.05) greater (BDT- 27.34/-), followed by the SFF group (BDT- 25.56/) and the InJUDA group (BDT- 24.49/-). Taken together, these findings suggest that profitable broiler farming is possible without the injudicious use of drugs and additives.
Collapse
Affiliation(s)
- Shubash Chandra Das
- Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Afifa Afrin
- Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Tanvir Ahmed
- Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Ankon Lahiry
- Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shahina Rahman
- Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
28
|
Brzychczy-Sroka B, Talaga-Ćwiertnia K, Sroka-Oleksiak A, Gurgul A, Zarzecka-Francica E, Ostrowski W, Kąkol J, Drożdż K, Brzychczy-Włoch M, Zarzecka J. Standardization of the protocol for oral cavity examination and collecting of the biological samples for microbiome research using the next-generation sequencing (NGS): own experience with the COVID-19 patients. Sci Rep 2024; 14:3717. [PMID: 38355866 PMCID: PMC10867075 DOI: 10.1038/s41598-024-53992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
To date, publications have shown that compositions of oral microbiota differ depending on their habitats (e.g. tongue, tonsils, pharynx). The absence of set standards for the choice of the areas and conditions of material collection makes the oral microbiome one of the most difficult environments for a comparative analysis with other researchers, which is a meaningful limitation during an assessment of the potential effects of microorganisms as biomarkers in the courses of various human diseases. Therefore, standardisation of basic conditions of a dental examination and collection of material for the next generation sequencing (NGS) is worth attempting. The standardisation of the dental exam and collection of the clinical materials: saliva, swab from the tongue ridge, hard palate, palatine tonsils and oropharynx, supragingival plaque and subgingival plaque. Protocol involved the patients (n = 60), assigned to 3 groups: I-COVID-19 convalescents who received antibiotics, n = 17, II-COVID-19 convalescents, n = 23 and III-healthy individuals, n = 20. The collected biological samples were used to conduct NGS (16S rRNA). The conditions of patient preparation for collecting biological materials as well as the schedule of dental examination, were proposed. Based on the research conducted, we have indicated the dental indicators that best differentiate the group of COVID-19 patients (groups I and II) from healthy people (group III). These include the DMFT, D and BOP indices. The use of alpha and beta diversity analysis provided an overall insight into the diversity of microbial communities between specific niches and patient groups. The most different diversity between the studied group of patients (group II) and healthy people (group III) was noted in relation to the supragingival plaque. The order of activities during the dental exam as well as while collecting and securing clinical materials is particularly important to avoid technical errors and material contamination which may result in erroneous conclusions from the analyses of the results of sensitive tests such as the NGS. It has been shown that the dental indices: DMFT, D number, PI and BOP are the best prognostic parameters to assess the oral health. Based on beta diversity the most sensitive niche and susceptible to changes in the composition of the microbiota is the supragingival plaque. The procedures developed by our team can be applied as ready-to-use forms in studies conducted by other researchers.
Collapse
Affiliation(s)
- Barbara Brzychczy-Sroka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Talaga-Ćwiertnia
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland.
| | - Agnieszka Sroka-Oleksiak
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Kraków, Poland
| | - Elżbieta Zarzecka-Francica
- Department of Prosthodontics and Orthodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Wojciech Ostrowski
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Kąkol
- University Hospital in Cracow, Temporary COVID Ward No. 1, Kraków, Poland
| | - Kamil Drożdż
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Joanna Zarzecka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
29
|
Tarantino G, Citro V. Could Adverse Effects of Antibiotics Due to Their Use/Misuse Be Linked to Some Mechanisms Related to Nonalcoholic Fatty Liver Disease? Int J Mol Sci 2024; 25:1993. [PMID: 38396671 PMCID: PMC10888279 DOI: 10.3390/ijms25041993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Nonalcoholic fatty liver disease, recently re-named metabolic dysfunction-associated steatotic fatty liver disease, is considered the most prevalent liver disease worldwide. Its molecular initiation events are multiple and not always well-defined, comprising insulin resistance, chronic low-grade inflammation, gut dysbiosis, and mitochondrial dysfunction, all of them acting on genetic and epigenetic grounds. Nowadays, there is a growing public health threat, which is antibiotic excessive use and misuse. This widespread use of antibiotics not only in humans, but also in animals has led to the presence of residues in derived foods, such as milk and dairy products. Furthermore, antibiotics have been used for many decades to control certain bacterial diseases in high-value fruit and vegetables. Recently, it has been emphasised that antibiotic-induced changes in microbial composition reduce microbial diversity and alter the functional attributes of the microbiota. These antibiotic residues impact human gut flora, setting in motion a chain of events that leads straight to various metabolic alterations that can ultimately contribute to the onset and progression of NAFLD.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Medical School of Naples, Federico II University, 80131 Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, Umberto I Hospital, Nocera Inferiore (SA), 84014 Nocera Inferiore, Italy;
| |
Collapse
|
30
|
Ryguła I, Pikiewicz W, Grabarek BO, Wójcik M, Kaminiów K. The Role of the Gut Microbiome and Microbial Dysbiosis in Common Skin Diseases. Int J Mol Sci 2024; 25:1984. [PMID: 38396663 PMCID: PMC10889245 DOI: 10.3390/ijms25041984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Dermatoses are an increasingly common problem, particularly in developed countries. The causes of this phenomenon include genetic factors and environmental elements. More and more scientific reports suggest that the gut microbiome, more specifically its dysbiosis, also plays an important role in the induction and progression of diseases, including dermatological diseases. The gut microbiome is recognised as the largest endocrine organ, and has a key function in maintaining human homeostasis. In this review, the authors will take a close look at the link between the gut-skin axis and the pathogenesis of dermatoses such as atopic dermatitis, psoriasis, alopecia areata, and acne. The authors will also focus on the role of probiotics in remodelling the microbiome and the alleviation of dermatoses.
Collapse
Affiliation(s)
- Izabella Ryguła
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Wojciech Pikiewicz
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| | - Beniamin Oskar Grabarek
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| | - Michał Wójcik
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| | - Konrad Kaminiów
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| |
Collapse
|
31
|
Sah RK, Nandan A, Kv A, S P, S S, Jose A, Venkidasamy B, Nile SH. Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: A review. Asian J Psychiatr 2024; 91:103861. [PMID: 38134565 DOI: 10.1016/j.ajp.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Increased exposure to stress is associated with stress-related disorders, including depression, anxiety, and neurodegenerative conditions. However, susceptibility to stress is not seen in every individual exposed to stress, and many of them exhibit resilience. Thus, developing resilience to stress could be a big breakthrough in stress-related disorders, with the potential to replace or act as an alternative to the available therapies. In this article, we have focused on the recent advancements in gut microbiome research and the potential role of the gut-brain axis (GBA) in developing resilience or susceptibility to stress. There might be a complex interaction between the autonomic nervous system (ANS), immune system, endocrine system, microbial metabolites, and bioactive lipids like short-chain fatty acids (SCFAs), neurotransmitters, and their metabolites that regulates the communication between the gut microbiota and the brain. High fiber intake, prebiotics, probiotics, plant supplements, and fecal microbiome transplant (FMT) could be beneficial against gut dysbiosis-associated brain disorders. These could promote the growth of SCFA-producing bacteria, thereby enhancing the gut barrier and reducing the gut inflammatory response, increase the expression of the claudin-2 protein associated with the gut barrier, and maintain the blood-brain barrier integrity by promoting the expression of tight junction proteins such as claudin-5. Their neuroprotective effects might also be related to enhancing the expression of brain-derived neurotrophic factor (BDNF) and glucagon-like peptide (GLP-1). Further investigations are needed in the field of the gut microbiome for the elucidation of the mechanisms by which gut dysbiosis contributes to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Athira Kv
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India.
| | - Prashant S
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Sathianarayanan S
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Mangalore, India
| | - Asha Jose
- JSS College of Pharmacy, JSS Academy of Higher Education and research, Ooty 643001, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
32
|
Gulumbe BH, Abdulrahim A. Pushing the frontiers in the fight against antimicrobial resistance: the potential of fecal and maggot therapies. Future Sci OA 2023; 9:FSO899. [PMID: 37753364 PMCID: PMC10518815 DOI: 10.2144/fsoa-2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) warrants innovative therapeutic strategies. Fecal microbiota transplantation (FMT) and maggot debridement therapy (MDT) represent paradigm-shifting approaches, leveraging biological systems to mitigate AMR. FMT restores a healthy gut microbiome, providing a biotherapeutic counter to pathogenic bacteria, thereby reducing reliance on traditional antibiotics. Conversely, MDT, a form of bio-debridement, utilizes the antimicrobial secretions of maggots to cleanse wounds and eliminate resistant bacteria. Despite the promise these therapies hold, their broader clinical adoption faces multifaceted challenges including the need for rigorous scientific substantiation, standardized protocols, deepened understanding of mechanisms of action, and surmounting regulatory and public acceptance barriers. However, their potential integration with precision medicine could revolutionize disease management, particularly with antibiotic-resistant infections.
Collapse
Affiliation(s)
- Bashar Haruna Gulumbe
- Department of Microbiology, Faculty of Science, Federal University, Kalgo, Birnin Kebbi, PMB, 1157, Nigeria
| | - Abdulrakib Abdulrahim
- Department of Microbiology, Faculty of Science, Federal University, Kalgo, Birnin Kebbi, PMB, 1157, Nigeria
| |
Collapse
|
33
|
Brzychczy- Sroka B, Talaga-Ćwiertnia K, Sroka-Oleksiak A, Gurgul A, Zarzecka-Francica E, Ostrowski W, Kąkol J, Zarzecka J, Brzychczy-Włoch M. Oral microbiota study of the patients after hospitalisation for COVID-19, considering selected dental indices and antibiotic therapy using the next generation sequencing method (NGS). J Oral Microbiol 2023; 15:2264591. [PMID: 37840855 PMCID: PMC10569355 DOI: 10.1080/20002297.2023.2264591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Background Poor oral hygiene and the increased incidence and severity of periodontitis may exacerbate SARS-CoV-2 infection. The aim was to evaluate the oral microbiota of 60 participants divided into groups: COVID-19 convalescents who received antibiotics during hospitalization (I), COVID-19 convalescents without antibiotic therapy (II) and healthy individuals (III). Materials and Methods Dental examination was conducted, and oral health status was evaluated using selected dental indexes. Clinical samples (saliva, dorsal swabs, supragingival and subgingival plaque) were collected and used for metagenomic library to the next-generation sequencing (NGS) preparation. Results Each of the clinical materials in particular groups of patients showed a statistically significant and quantitatively different bacterial composition. Patients from group I showed significantly worse oral health, reflected by higher average values of dental indexes and also a higher percentage of Veillonella, Tannerella, Capnocytophaga and Selenomonas genera in comparison to other groups. Additionally, a statistically significant decrease in the amount of Akkermansia type in both groups with COVID-19 was observed for all materials. Conclusions The primary factor affecting the composition of oral microbiota was not the SARS-CoV-2 infection itself, but the use of antibiotic therapy. The increased percentage of pro-inflammatory pathogens observed in COVID-19 patients underscores the importance of preventing periodontal disease and improving oral hygiene in the future.
Collapse
Affiliation(s)
- Barbara Brzychczy- Sroka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Talaga-Ćwiertnia
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Sroka-Oleksiak
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Kraków, Poland
| | - Elżbieta Zarzecka-Francica
- Department of Prosthodontics and Orthodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Wojciech Ostrowski
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Joanna Zarzecka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
34
|
Mc Loughlin J, Hinchion J. The gut microbiome and cardiac surgery an unusual symphony. Perfusion 2023; 38:1330-1339. [PMID: 35466814 DOI: 10.1177/02676591221097219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The relationship between the gut microbiome and various organ systems has gained interest throughout the scientific community in recent times. The understanding of these complex relationships has greatly improved with clinical benefits now being seen. Cardiopulmonary bypass (CPB) is a form of extracorporeal circulation that provides circulatory and respiratory support during cardiac surgery. This physiological support facilitates a still and bloodless field facilitating operations on the heart to be performed. Through various mechanisms CPB results in a systemic inflammatory response syndrome (SIRS). This response can vary from mild hypotension to multiple organ failure. It remains difficult to predict the degree to which a patient will experience SIRS post-operatively. The relationship between the composition of the gut microbiome and inflammatory processes associated with disease has been seen across several fields including gastroenterology, neurology, psychiatry and cardiology. To date, minimal research has been undertaken to examine the impact the gut microbiome has on outcomes following cardiac surgery. This review paper explores the pathophysiology behind the SIRS response associated with CPB for cardiac surgery and the hypothesis that a correlation exists between a patients gut microbiome composition and the degree of inflammatory response experienced following cardiac surgery.
Collapse
Affiliation(s)
- Joseph Mc Loughlin
- Department of Cardiothoracic Surgery, Cork University Hospital, Cork, Ireland
| | - J Hinchion
- Department of Cardiothoracic Surgery, Cork University Hospital, Cork, Ireland
| |
Collapse
|
35
|
Hoskinson C, Jiang RY, Stiemsma LT. Elucidating the roles of the mammary and gut microbiomes in breast cancer development. Front Oncol 2023; 13:1198259. [PMID: 37664075 PMCID: PMC10470065 DOI: 10.3389/fonc.2023.1198259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
The mammary microbiome is a newly characterized bacterial niche that might offer biological insight into the development of breast cancer. Together with in-depth analysis of the gut microbiome in breast cancer, current evidence using next-generation sequencing and metabolic profiling suggests compositional and functional shifts in microbial consortia are associated with breast cancer. In this review, we discuss the fundamental studies that have progressed this important area of research, focusing on the roles of both the mammary tissue microbiome and the gut microbiome. From the literature, we identified the following major conclusions, (I) There are unique breast and gut microbial signatures (both compositional and functional) that are associated with breast cancer, (II) breast and gut microbiome compositional and breast functional dysbiosis represent potential early events of breast tumor development, (III) specific breast and gut microbes confer host immune responses that can combat breast tumor development and progression, and (IV) chemotherapies alter the microbiome and thus maintenance of a eubiotic microbiome may be key in breast cancer treatment. As the field expectantly advances, it is necessary for the role of the microbiome to continue to be elucidated using multi-omic approaches and translational animal models in order to improve predictive, preventive, and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | - Leah T. Stiemsma
- Natural Science Division, Pepperdine University, Malibu, CA, United States
| |
Collapse
|
36
|
Ritter K, Vetter D, Wernersbach I, Schwanz T, Hummel R, Schäfer MKE. Pre-traumatic antibiotic-induced microbial depletion reduces neuroinflammation in acute murine traumatic brain injury. Neuropharmacology 2023:109648. [PMID: 37385435 DOI: 10.1016/j.neuropharm.2023.109648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The connection between dysbiosis of the gut microbiome and diseases and injuries of the brain has attracted considerable interest in recent years. Interestingly, antibiotic-induced microbial dysbiosis has been implicated in the pathogenesis of traumatic brain injury (TBI), while early administration of antibiotics associates with improved survival in TBI patients. In animal models of TBI, short- or long-term administration of antibiotics, both peri- or post-operatively, were shown to induce gut microbiome dysbiosis but also anti-inflammatory and neuroprotective effects. However, the acute consequences of microbial dysbiosis on TBI pathogenesis after discontinuation of antibiotic treatment are elusive. In this study, we tested whether pre-traumatic antibiotic-induced microbial depletion by vancomycin, amoxicillin, and clavulanic acid affects pathogenesis during the acute phase of TBI in adult male C57BL/6 mice. Pre-traumatic microbiome depletion did not affect neurological deficits over 72 h post injury (hpi) and brain histopathology, including numbers of activated astrocytes and microglia, at 72 hpi. However, astrocytes and microglia were smaller after pre-traumatic microbiome depletion compared to vehicle treatment at 72hpi, indicating less inflammatory activation. Accordingly, TBI-induced gene expression of the inflammation markers Interleukin-1β, complement component C3, translocator protein TSPO and the major histocompatibility complex MHC2 was attenuated in microbiome-depleted mice along with reduced Immunoglobulin G extravasation as a proxy of blood-brain barrier (BBB) impairment. These results suggest that the gut microbiome contributes to early neuroinflammatory responses to TBI but does not have a significant impact on brain histopathology and neurological deficits.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany.
| | - Diana Vetter
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany.
| | - Isa Wernersbach
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany.
| | - Thomas Schwanz
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany.
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany.
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany; Research Center for Immunotherapy (FZI), Germany; Focus Program Translational Neurosciences (FTN), Germany.
| |
Collapse
|
37
|
Zhang K, Zhang Y, Chao M, Hao Z. Prevalence, Pathogenic Bacterial Profile and Antimicrobial Susceptibility Pattern of Urinary Tract Infection Among Children with Congenital Anomalies of the Kidney and Urinary Tract. Infect Drug Resist 2023; 16:4101-4112. [PMID: 37396068 PMCID: PMC10312322 DOI: 10.2147/idr.s399442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/15/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose The study was to detect the pathogenic bacterial profile and antibiogram among children with congenital anomalies of the kidney and urinary tract (CAKUT). Patients and Methods A retrospective analysis was performed using medical records of urine culture results and antibiotic susceptibility results in patients with UTIs from March 2017 to March 2022. Antimicrobial susceptibility pattern was determined by a standard agar disc diffusion method. Results A total of 568 children were included. The proportion of culture-positive UTI was 59.15% (336/568). More than nine types of bacteria were isolated with most pathogens being Gram-negative species. Among Gram-negative isolates, the predominant bacteria were Escherichia coli (30.95%, 104/336) followed by Klebsiella pneumoniae (9.23%). Escherichia coli isolates were highly sensitive to amikacin (95.19%), ertapenem (94.23%), nitrofurantoin (93.27%), imipenem (91.35%), and piperacillin-tazobactam (90.38%) and high rate of resistant were also detected to ampicillin (92.31%), cephazolin (73.08%), ceftriaxone (70.19%), trimethoprim-sulfamethoxazole (61.54%) and ampicillin-sulbactam (57.69%). Klebsiella pneumoniae isolates showed sensitive to ertapenem (96.77%), amikacin (96.77%), imipenem (93.55%), piperacillin-tazobactam (90.32%) and gentamicin (83.87%), while highly resistant were observed to ampicillin (96.77%), cephazolin (74.19%), ceftazidime (61.29%), ceftriaxone (61.29%), and aztreonam (61.29%). The isolated Gram-positive bacteria mainly contained Enterococcus faecalis and Enterococcus faecium (each 15.77%). Enterococcus faecalis were sensitive to vancomycin, penicillin-G, tigecycline, nitrofurantoin and linezolid (100%, 94.34%, 88.68%, 88.68%, 86.79, respectively) and resistant to tetracycline (86.79%), quinupristi (83.02%), erythromycin (73.58%). Enterococcus faecium also showed a similar result. Multiple drug resistance (MDR) was observed in 264 (80.00%) of the 360 bacterial isolates. Only age was significantly associated with a culture-positive UTI. Conclusion A higher prevalence of culture-positive UTI was detected. Escherichia coli was the most prevalent uropathogen followed by Enterococcus faecalis and Enterococcus faecium. These uropathogens showed highly resistant to the commonly used antibiotics. Moreover, MDR was commonly observed. Thus, empiric therapy is unsatisfactory as drug sensitivity always varies over time.
Collapse
Affiliation(s)
- Kaiping Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui Province, 230000, People’s Republic of China
- Department of Urology, Anhui Provincial Children’s Hospital/Children’s Hospital of Fudan University (Affiliated Anhui Branch), Hefei, Anhui Province, 230000, People’s Republic of China
| | - Yin Zhang
- Department of Urology, Anhui Provincial Children’s Hospital/Children’s Hospital of Fudan University (Affiliated Anhui Branch), Hefei, Anhui Province, 230000, People’s Republic of China
| | - Min Chao
- Department of Urology, Anhui Provincial Children’s Hospital/Children’s Hospital of Fudan University (Affiliated Anhui Branch), Hefei, Anhui Province, 230000, People’s Republic of China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui Province, 230000, People’s Republic of China
| |
Collapse
|
38
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
39
|
Smith D, Jheeta S, López-Cortés GI, Street B, Fuentes HV, Palacios-Pérez M. On the Inheritance of Microbiome-Deficiency: Paediatric Functional Gastrointestinal Disorders, the Immune System and the Gut–Brain Axis. GASTROINTESTINAL DISORDERS 2023; 5:209-232. [DOI: 10.3390/gidisord5020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Like the majority of non-communicable diseases that have recently gained attention, functional gastrointestinal (GI) disorders (FGID) in both children and adults are caused by a variety of medical conditions. In general, while it is often thought that common conditions such as obesity may cause other problems, for example, asthma or mental health issues, more consideration needs to be given to the possibility that they could both be brought on by a single underlying problem. Based on the variations in non-communicable disease, in recent years, our group has been revisiting the exact role of the intestinal microbiome within the Vertebrata. While the metabolic products of the microbiome have a role to play in the adult, our tentative conclusion is that the fully functioning, mutualistic microbiome has a primary role: to transfer antigen information from the mother to the neonate in order to calibrate its immune system, allowing it to survive within the microbial environment into which it will emerge. Granted that the microbiome possesses such a function, logic suggests the need for a robust, flexible, mechanism allowing for the partition of nutrition in the mature animal, thus ensuring the continued existence of both the vertebrate host and microbial guest, even under potentially unfavourable conditions. It is feasible that this partition process acts by altering the rate of peristalsis following communication through the gut–brain axis. The final step of this animal–microbiota symbiosis would then be when key microbes are transferred from the female to her progeny, either live offspring or eggs. According to this scheme, each animal inherits twice, once from its parents’ genetic material and once from the mother’s microbiome with the aid of the father’s seminal microbiome, which helps determine the expression of the parental genes. The key point is that the failure of this latter inheritance in humans leads to the distinctive manifestations of functional FGID disorders including inflammation and gut motility disturbances. Furthermore, it seems likely that the critical microbiome–gut association occurs in the first few hours of independent life, in a process that we term handshaking. Note that even if obvious disease in childhood is avoided, the underlying disorders may intrude later in youth or adulthood with immune system disruption coexisting with gut–brain axis issues such as excessive weight gain and poor mental health. In principle, investigating and perhaps supplementing the maternal microbiota provide clinicians with an unprecedented opportunity to intervene in long-term disease processes, even before the child is born.
Collapse
Affiliation(s)
- David Smith
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Sohan Jheeta
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Georgina I. López-Cortés
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | | | - Hannya V. Fuentes
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Miryam Palacios-Pérez
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| |
Collapse
|
40
|
Carelli LL, D'Aquila P, Rango FD, Incorvaia A, Sena G, Passarino G, Bellizzi D. Modulation of Gut Microbiota through Low-Calorie and Two-Phase Diets in Obese Individuals. Nutrients 2023; 15:nu15081841. [PMID: 37111060 PMCID: PMC10140827 DOI: 10.3390/nu15081841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Different nutritional regimens have been reported to exert beneficial effects on obesity through the regulation of the composition and function of gut microbiota. In this context, we conducted in obese subjects two dietary interventions consisting of a low-calorie and two-phase (ketogenic plus low-calorie) diet for 8 weeks. Anthropometric and clinical parameters were evaluated at baseline and following the two diets, and gut microbiota composition was assessed by 16S rRNA gene sequencing. A significant reduction was observed for abdominal circumference and insulin levels in the subjects following the two-phase diet. Significant differences in gut microbial composition were observed after treatment compared to the baseline. Both diets induced taxonomic shifts including a decrease in Proteobacteria, which are recognized as dysbiosis markers and enrichment of Verrucomicrobiaceae, which has recently emerged as an effective probiotic. An increase in Bacteroidetes, constituting the so-called good bacteria, was observable only in the two-phase diet. These findings provide evidence that a targeted nutritional regimen and an appropriate use of probiotics can modulate gut microbiota to reach a favorable composition and achieve the balance often compromised by different pathologies and conditions, such as obesity.
Collapse
Affiliation(s)
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | | | - Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
41
|
Erinle TJ, Boulianne M, Adewole D. Red osier dogwood extract vs. trimethoprim-sulfadiazine (Part 2). Pharmacodynamic effects on ileal and cecal microbiota of broiler chickens challenged orally with Salmonella Enteritidis. Poult Sci 2023; 102:102550. [PMID: 36854216 PMCID: PMC9982684 DOI: 10.1016/j.psj.2023.102550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
With the subsisting restrictions on the use of antibiotics in poultry production, the use of plant extracts has shown some promising antimicrobial capacity similar to antibiotics; however, such capacity is largely dependent on their total polyphenol concentration and profile. Given the emerging antimicrobial potential of red osier dogwood (ROD) extract, the study aimed to investigate the pharmacodynamic effect of ROD extract on the ileal and cecal microbiota of broiler chickens challenged orally with Salmonella Enteritidis (SE). A 21 d 4 × 2 factorial experiment was conducted based on 2 main factors, including diets and SE challenge. A total of 384 one-day-old mixed-sex Cobb-500 broiler chicks were randomly allotted to 4 dietary treatments; Negative control (NC), NC + 0.075 mg trimethoprim-sulfadiazine (TMP/SDZ)/kg of diet, and NC containing either 0.3 or 0.5% ROD extract. On d 1, half of the birds were orally challenged with 0.5 mL of phosphate-buffered saline (Noninfected group) and the remaining half with 0.5 mL of 3.1 × 105 CFU/mL SE (Infected group). Dietary treatments were randomly assigned to 8 replicate cages at 6 birds/cage. On d 21, 10 birds/treatment were euthanized and eviscerated to collect ileal and cecal digesta for gut microbiota analysis. The ileal and cecal microbiota was dominated by phyla Firmicutes, Proteobacteria, and Actinobacteriota. The SE infection decreased (P < 0.05) the relative abundance of Proteobacteria and Actinobacteriota in the ileum and ceca, respectively, however, it increased (P < 0.05) Proteobacteria in the ceca. Both 0.3 and 0.5% ROD extracts (P < 0.05) depressed the relative abundance of Actinobacteriota in the ileum but marginally improved (P < 0.05) it in the ceca compared to the TMP/SDZ treatment. Dietary TMP/SDZ increased (P < 0.05) genus Bifidobacterium at the ileal and cecal segments compared to other treatments. Dietary 0.3 and 0.5% marginally improved (P < 0.05) Bifidobacterium in the ceca and depressed (P < 0.05) Weissella and was comparably similar to TMP/SDZ in the ileum. Regardless of the dietary treatments and SE infection, alpha diversity differed (P < 0.05) between ileal and cecal microbiota. Beta diversity was distinct (P < 0.05) in both ileal and cecal digesta along the SE infection model. Conclusively, both ROD extract levels yielded a pharmacodynamic effect similar to antibiotics on ileal and cecal microbiota.
Collapse
Affiliation(s)
- Taiwo J Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
42
|
Essock-Burns T, Lawhorn S, Wu L, McClosky S, Moriano-Gutierrez S, Ruby EG, McFall-Ngai MJ. Maturation state of colonization sites promotes symbiotic resiliency in the Euprymna scolopes-Vibrio fischeri partnership. MICROBIOME 2023; 11:68. [PMID: 37004104 PMCID: PMC10064550 DOI: 10.1186/s40168-023-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Many animals and plants acquire their coevolved symbiotic partners shortly post-embryonic development. Thus, during embryogenesis, cellular features must be developed that will promote both symbiont colonization of the appropriate tissues, as well as persistence at those sites. While variation in the degree of maturation occurs in newborn tissues, little is unknown about how this variation influences the establishment and persistence of host-microbe associations. RESULTS The binary symbiosis model, the squid-vibrio (Euprymna scolopes-Vibrio fischeri) system, offers a way to study how an environmental gram-negative bacterium establishes a beneficial, persistent, extracellular colonization of an animal host. Here, we show that bacterial symbionts occupy six different colonization sites in the light-emitting organ of the host that have both distinct morphologies and responses to antibiotic treatment. Vibrio fischeri was most resilient to antibiotic disturbance when contained within the smallest and least mature colonization sites. We show that this variability in crypt development at the time of hatching allows the immature sites to act as a symbiont reservoir that has the potential to reseed the more mature sites in the host organ when they have been cleared by antibiotic treatment. This strategy may produce an ecologically significant resiliency to the association. CONCLUSIONS The data presented here provide evidence that the evolution of the squid-vibrio association has been selected for a nascent organ with a range of host tissue maturity at the onset of symbiosis. The resulting variation in physical and chemical environments results in a spectrum of host-symbiont interactions, notably, variation in susceptibility to environmental disturbance. This "insurance policy" provides resiliency to the symbiosis during the critical period of its early development. While differences in tissue maturity at birth have been documented in other animals, such as along the infant gut tract of mammals, the impact of this variation on host-microbiome interactions has not been studied. Because a wide variety of symbiosis characters are highly conserved over animal evolution, studies of the squid-vibrio association have the promise of providing insights into basic strategies that ensure successful bacterial passage between hosts in horizontally transmitted symbioses. Video Abstract.
Collapse
Affiliation(s)
- Tara Essock-Burns
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA
| | - Susannah Lawhorn
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Leo Wu
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Sawyer McClosky
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Silvia Moriano-Gutierrez
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Department of Fundamental Biology, University of Lausanne, Lausanne, Switzerland
| | - Edward G Ruby
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA
| | - Margaret J McFall-Ngai
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA.
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA.
| |
Collapse
|
43
|
Zhao Z, Liu Y, Jiang H, Yu H, Qin G, Qu M, Xiao W, Lin Q. Microbial profiles and immune responses in seahorse gut and brood pouch under chronic exposure to environmental antibiotics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114711. [PMID: 36868035 DOI: 10.1016/j.ecoenv.2023.114711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Ocean antibiotics pose substantial risks to the adaptation and lifespan of marine organisms. Seahorses are unique owing to the occurrence of brood pouches, male pregnancy, and loss of gut-associated lymphatic tissues and spleen, which lead to increased sensitivity to environmental changes. This study evaluated the changes in microbial diversity and immune responses within the gut and brood pouch in the lined seahorse Hippocampus erectus under chronic exposure to environmental levels of triclosan (TCS) and sulfamethoxazole (SMX), which are common antibiotics in coastal regions. The results showed that microbial abundance and diversity within the gut and brood pouch of seahorses were significantly changed following antibiotics treatment, with the expression of core genes involved in immunity, metabolism, and circadian rhythm processes evidently regulated. Notably, the abundance of potential pathogens in brood pouches was considerably increased upon treatment with SMX. Transcriptome analysis revealed that the expression of toll-like receptors, c-type lectins, and inflammatory cytokine genes in brood pouches was significantly upregulated. Notably, some essential genes related to male pregnancy significantly varied after antibiotic treatment, implying potential effects on seahorse reproduction. This study provides insights into the physiological adaptation of marine animals to environmental changes resulting from human activity.
Collapse
Affiliation(s)
- Zhanwei Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Han Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanghong Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Oh S, Park SH, Choi JH, Kim SL, Kim M, Lee S, Yi MH, Lee IY, Yong TS, Kim JY. The microbiota in feces of domestic pigeons in Seoul, Korea. Heliyon 2023; 9:e14997. [PMID: 37095944 PMCID: PMC10121612 DOI: 10.1016/j.heliyon.2023.e14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
In Korea, feral pigeons pose significant public health risks because they carry various zoonotic pathogens. Human population density is a significant factor in zoonotic disease events. Seoul is one of the largest cities by population density among developed countries and where most of the homeless population in Korea exists. We designed this study to compare the microbiota of pigeon feces by regional characteristics and the presence of homeless individuals. Therefore, this study used 16S rRNA amplicon sequencing to detect possible pathogenic microbes and assess the current risk of zoonosis in Seoul, South Korea. Pigeon fecal samples (n = 144) obtained from 19 public sites (86 and 58 fecal samples from regions in and outside Seoul, respectively) were examined. Potentially pathogenic bacteria were also detected in the fecal samples; Campylobacter spp. was found in 19 samples from 13 regions, Listeriaceae was found in seven samples, and Chlamydia spp. was found in three samples from two regions. Principal coordinates analysis and permutational multivariate analysis of variance revealed a significant difference in bacterial composition between the regions in Seoul (n = 86) and outside Seoul (n = 58) and between the regions with (n = 81) and without (n = 63) homeless individuals. Overall, this study identified various potentially pathogenic microorganisms in pigeon feces at public sites in South Korea. Moreover, this study demonstrates that the microbial composition was influenced by regional characteristics and homelessness. Taken together, this study provides important information for public health strategic planning and disease control.
Collapse
|
45
|
Rymer TL, Pillay N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes). PLoS One 2023; 18:e0281533. [PMID: 36827295 PMCID: PMC9956021 DOI: 10.1371/journal.pone.0281533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
The gut microbiota are critical for maintaining the health and physiological function of individuals. However, illness and treatment with antibiotics can disrupt bacterial community composition, the consequences of which are largely unknown in wild animals. In this study, we described and quantified the changes in bacterial community composition in response to illness and treatment with antibiotics in a native Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). We collected faecal samples during an undiagnosed illness outbreak in a captive colony of animals, and again at least one year later, and quantified the microbiome at each time point using 16s ribosomal rRNA gene sequencing. Gut bacterial composition was quantified at different taxonomic levels, up to family. Gut bacterial composition changed between time periods, indicating that illness, treatment with antibiotics, or a combination affects bacterial communities. While some bacterial groups increased in abundance, others decreased, suggesting differential effects and possible co-adapted and synergistic interactions. Our findings provide a greater understanding of the dynamic nature of the gut microbiome of a native Australian rodent species and provides insights into the management and ethical well-being of animals kept under captive conditions.
Collapse
Affiliation(s)
- Tasmin L. Rymer
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Queensland, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
46
|
Flow-Based Fmoc-SPPS Preparation and SAR Study of Cathelicidin-PY Reveals Selective Antimicrobial Activity. Molecules 2023; 28:molecules28041993. [PMID: 36838983 PMCID: PMC9959817 DOI: 10.3390/molecules28041993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Antimicrobial peptides (AMPs) hold promise as novel therapeutics in the fight against multi-drug-resistant pathogens. Cathelicidin-PY (NH2-RKCNFLCKLKEKLRTVITSHIDKVLRPQG-COOH) is a 29-residue disulfide-cyclised antimicrobial peptide secreted as an innate host defence mechanism by the frog Paa yunnanensis (PY) and reported to possess broad-spectrum antibacterial and antifungal properties, exhibiting low cytotoxic and low hemolytic activity. Herein, we detail the total synthesis of cathelicidin-PY using an entirely on-resin synthesis, including assembly of the linear sequence by rapid flow Fmoc-SPPS and iodine-mediated disulfide bridge formation. By optimising a synthetic strategy to prepare cathelicidin-PY, this strategy was subsequently adapted to prepare a bicyclic head-to-tail cyclised derivative of cathelicidin-PY. The structure-activity relationship (SAR) of cathelicidin-PY with respect to the N-terminally positioned disulfide was further probed by preparing an alanine-substituted linear analogue and a series of lactam-bridged peptidomimetics implementing side chain to side chain cyclisation. The analogues were investigated for antimicrobial activity, secondary structure by circular dichroism (CD), and stability in human serum. Surprisingly, the disulfide bridge emerged as non-essential to antimicrobial activity and secondary structure but was amenable to synthetic modification. Furthermore, the synthetic AMP and multiple analogues demonstrated selective activity towards Gram-negative pathogen E. coli in physiologically relevant concentrations of divalent cations.
Collapse
|
47
|
Nandi D, Parida S, Sharma D. The gut microbiota in breast cancer development and treatment: The good, the bad, and the useful! Gut Microbes 2023; 15:2221452. [PMID: 37305949 PMCID: PMC10262790 DOI: 10.1080/19490976.2023.2221452] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Regardless of the global progress in early diagnosis and novel therapeutic regimens, breast carcinoma poses a devastating threat, and the advances are somewhat marred by high mortality rates. Breast cancer risk prediction models based on the known risk factors are extremely useful, but a large number of breast cancers develop in women with no/low known risk. The gut microbiome exerts a profound impact on the host health and physiology and has emerged as a pivotal frontier in breast cancer pathogenesis. Progress in metagenomic analysis has enabled the identification of specific changes in the host microbial signature. In this review, we discuss the microbial and metabolomic changes associated with breast cancer initiation and metastatic progression. We summarize the bidirectional impact of various breast cancer-related therapies on gut microbiota and vice-versa. Finally, we discuss the strategies to modulate the gut microbiota toward a more favorable state that confers anticancer effects.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sheetal Parida
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
48
|
Shams M, Hamdy E, Abd-elsadek D. Are multiple courses of antibiotics a potential risk factor for COVID-19 infection and severity? ONE HEALTH BULLETIN 2023; 3:10. [DOI: 10.4103/2773-0344.378589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
49
|
Yu J, Yin Y, Yu Y, Cheng M, Zhang S, Jiang S, Dong M. Effect of concomitant antibiotics use on patient outcomes and adverse effects in patients treated with ICIs. Immunopharmacol Immunotoxicol 2022; 45:386-394. [PMID: 36382735 DOI: 10.1080/08923973.2022.2145966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiuhang Yu
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yichuang Yin
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mei Dong
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
50
|
Microbiome–Gut Dissociation in the Neonate: Autism-Related Developmental Brain Disease and the Origin of the Placebo Effect. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
While the importance of the intestinal microbiome has been realised for a number of years, the significance of the phrase microbiota–gut–brain axis is only just beginning to be fully appreciated. Our recent work has focused on the microbiome as if it were a single entity, modifying the expression of the genetic inheritance of the individual by the generation of interkingdom signalling molecules, semiochemicals, such as dopamine. In our view, the purpose of the microbiome is to convey information about the microbial environment of the mother so as to calibrate the immune system of the new-born, giving it the ability to distinguish harmful pathogens from the harmless antigens of pollen, for example, or to help distinguish self from non-self. In turn, this requires the partition of nutrition between the adult and its microbiome to ensure that both entities remain viable until the process of reproduction. Accordingly, the failure of a degraded microbiome to interact with the developing gut of the neonate leads to failure of this partition in the adult: to low faecal energy excretion, excessive fat storage, and concomitant problems with the immune system. Similarly, a weakened gut–brain axis distorts interoceptive input to the brain, increasing the risk of psychiatric diseases such as autism. These effects account for David Barker’s 1990 suggestion of “the fetal and infant origins of adult disease”, including schizophrenia, and David Strachan’s 1989 observation of childhood immune system diseases, such as hay fever and asthma. The industrialisation of modern life is increasing the intensity and scale of these physical and psychiatric diseases and it seems likely that subclinical heavy metal poisoning of the microbiome contributes to these problems. Finally, the recent observation of Harald Brüssow, that reported intestinal bacterial composition does not adequately reflect the patterns of disease, would be accounted for if microbial eukaryotes were the key determinant of microbiome effectiveness. In this view, the relative success of “probiotic” bacteria is due to their temporary immune system activation of the gut–brain axis, in turn suggesting a potential mechanism for the placebo effect.
Collapse
|