1
|
Wu Y, Liu Y, Zhang Y, Wang X, Wang W. Targeted delivery of neratinib/xanthan gum-capped calcium carbonate nanoparticles induces apoptosis through PI3K/AKT pathway in breast cancer mice model. Int J Biol Macromol 2025; 310:142963. [PMID: 40222535 DOI: 10.1016/j.ijbiomac.2025.142963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Breast cancer (BC) continues to be the most common malignancy among women, presenting therapeutic challenges including drug resistance. This study examines the effectiveness of neratinib-loaded xanthan gum-capped calcium carbonate nanoparticles (NB/XG@CaCO₃NPs) for targeted breast cancer treatment. The nanoparticles were synthesized using the co-precipitation method, characterized, and assessed against MCF7 and MDA-MB231 breast cancer cell lines. In vitro, NB/XG@CaCO₃NPs demonstrated considerable cytotoxicity at approximately 50 μg/mL, whereas non-cancerous HMEC cells retained high viability. Flow cytometry demonstrated an 85.2 % apoptosis rate, signifying effective cancer cell mortality. Mechanistic investigations validated that the downregulation of the PI3K/AKT pathway facilitated the anti-tumor effects. In vivo, NB/XG@CaCO₃NPs administered intravenously to cadmium chloride-induced breast cancer mice significantly diminished tumor volume and enhanced histomorphology without causing major organ toxicity. qRT-PCR and western blot analysis further confirmed tumor suppression at the molecular level. These results indicate that NB/XG@CaCO₃NPs present a viable targeted treatment for BC, efficiently suppressing tumor proliferation while maintaining biocompatibility.
Collapse
Affiliation(s)
- Yilin Wu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yanxi Liu
- Department of Plastic and Reconstructive Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yawen Zhang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xuekui Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
2
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
3
|
Zhang S, Li M, Zeng J, Zhou S, Yue F, Chen Z, Ma L, Wang Y, Wang F, Luo J. Somatostatin receptor-targeted polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic hepatocellular carcinoma therapy. J Nanobiotechnology 2025; 23:127. [PMID: 39979929 PMCID: PMC11844079 DOI: 10.1186/s12951-025-03214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
INTRODUCTION The CRISPR/Cas9 system-based gene therapy can fundamentally address the issues of cancer occurrence, development, progression, and metastasis. However, the lack of targeting and effectiveness hinders gene therapy from entering clinical application. Herein, a somatostatin receptor-targeted polymeric nanoplatform is developed for the delivery of a PD-L1-targeted CRISPR/Cas9 system and synergistic treatment of hepatocellular carcinoma. This nanoplatform can effectively incorporate the CRISPR/Cas9 system and the chemotherapeutic drug paclitaxel to simultaneously address the biological safety and packaging capacity issues of viral vectors. After the octreotide-modified polymer (LNA-PEG-OCT) guided the nanoparticle into hepatoma carcinoma cells, the nanoparticle protected the CRISPR/Cas9 ribonucleoprotein complex (RNP) and achieved lysosomal escape. Then, the RNP reached the target gene (PD-L1) under the guidance of the single guide RNA (sgRNA) in the RNP. The PD-L1 gene editing efficiency reached up to 55.8% for HepG2 cells in vitro and 46.0% for tumor tissues in vivo, leading to effective suppression of PD-L1 protein expression. Substantial inhibition of hepatocellular carcinoma cell proliferation and further 79.45% growth repression against subcutaneous xenograft tumors were achieved. Overall, this somatostatin receptor-targeted polymeric nanoplatform system not only provides a promising nanocarrier for CRISPR/Cas9 system delivery, but also expands the potential of combining gene editing and chemotherapy.
Collapse
Affiliation(s)
- Suqin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Meng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jingyi Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Songli Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Feifan Yue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhaoyi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Jingwen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
4
|
Ferro C, Matos AI, Serpico L, Fontana F, Chiaro J, D'Amico C, Correia A, Koivula R, Kemell M, Gaspar MM, Acúrcio RC, Cerullo V, Santos HA, Florindo HF. Selenium Nanoparticles Synergize with a KRAS Nanovaccine against Breast Cancer. Adv Healthc Mater 2025; 14:e2401523. [PMID: 39205539 PMCID: PMC11834378 DOI: 10.1002/adhm.202401523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Selenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment. All optimized SeNP are spherical, <100 nm, and with a narrow size distribution. BSA-stabilized SeNPs produced under acidic conditions present the highest stability in medium, plasma, and at physiological pH, maintaining their size ≈50-60 nm for an extended period. SeNPs demonstrate enhanced toxicity in cancer cell lines while sparing primary human dermal fibroblasts, underscoring their potential as effective anticancer agents. Moreover, the combination of BSA-SeNPs with a nanovaccine results in a strong tumor growth reduction in an EO771 breast cancer mouse model, demonstrating a three-fold decrease in tumor size. This synergistic anticancer effect not only highlights the role of SeNPs as effective anticancer agents but also offers valuable insights for developing innovative combinatorial approaches using SeNPs to improve the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Cláudio Ferro
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Ana I. Matos
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Luigia Serpico
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Flavia Fontana
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Jacopo Chiaro
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Carmine D'Amico
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Alexandra Correia
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Risto Koivula
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Marianna Kemell
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Maria Manuela Gaspar
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Rita C. Acúrcio
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Vincenzo Cerullo
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Helena F. Florindo
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| |
Collapse
|
5
|
Verma R, Kumar K, Bhatt S, Yadav M, Kumar M, Tagde P, Rajinikanth PS, Tiwari A, Tiwari V, Nagpal D, Mittal V, Kaushik D. Untangling Breast Cancer: Trailing Towards Nanoformulations-based Drug Development. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:76-98. [PMID: 37519201 DOI: 10.2174/1872210517666230731091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127021, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shailendra Bhatt
- Shrinathji Institute of Pharmacy, Shrinathji Society for Higher Education, Upali Oden, Nathdwara, Rajasmand, Rajasthan, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, 462026, Madhya Pradesh, India
- PRISAL Foundation, Pharmaceutical Royal International Society, New Dehli, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Amebdkar University, Lucknow, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
6
|
Singh DD, Haque S, Kim Y, Han I, Yadav DK. Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer. Front Immunol 2024; 15:1455211. [PMID: 39720730 PMCID: PMC11666570 DOI: 10.3389/fimmu.2024.1455211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the most complex and daunting subtype of breast cancer affecting women globally. Regrettably, treatment options for TNBC remain limited due to its clinical complexity. However, immunotherapy has emerged as a promising avenue, showing success in developing effective therapies for advanced cases and improving patient outcomes. Improving TNBC treatments involves reducing side effects, minimizing systemic toxicity, and enhancing efficacy. Unlike traditional cancer immunotherapy, engineered nonmaterial's can precisely target TNBC, facilitating immune cell access, improving antigen presentation, and triggering lasting immune responses. Nanocarriers with enhanced sensitivity and specificity, specific cellular absorption, and low toxicity are gaining attention. Nanotechnology-driven immunoengineering strategies focus on targeted delivery systems using multifunctional molecules for precise tracking, diagnosis, and therapy in TNBC. This study delves into TNBC's tumour microenvironment (TME) remodeling, therapeutic resistance, and immunoengineering strategies using nanotechnology.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
7
|
Komal, Nanda BP, Singh L, Bhatia R, Singh A. Paclitaxel in colon cancer management: from conventional chemotherapy to advanced nanocarrier delivery systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9449-9474. [PMID: 38990305 DOI: 10.1007/s00210-024-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
Paclitaxel, a potent chemotherapeutic agent derived from the bark of the Pacific yew tree, has demonstrated significant efficacy in the treatment of various cancers, including colon cancer. This comprehensive review delves into the conventional treatments for colon cancer, emphasizing the crucial role of paclitaxel in contemporary management strategies. It explores the intricate process of sourcing and synthesizing paclitaxel, highlighting the importance of its structural properties in its anticancer activity. The review further elucidates the mechanism of action of paclitaxel, its pharmacological effects, and its integration into chemotherapy regimens for colon cancer. Additionally, novel drug delivery systems, such as nanocarriers, liposomes, nanoparticles, microspheres, micelles, microemulsions, and niosomes, are examined for their potential to enhance the therapeutic efficacy of paclitaxel. The discussion extends to recent clinical trials and patents, showcasing advancements in paclitaxel formulations aimed at improving treatment outcomes. The review concludes with prospects in the field underscoring the ongoing innovation and potential breakthroughs in colon cancer therapy.
Collapse
Affiliation(s)
- Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Bibhu Prasad Nanda
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Lovekesh Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
9
|
Yang T, Zhang N, Liu Y, Yang R, Wei Z, Liu F, Song D, Wang L, Wei J, Li Y, Shen D, Liang G. Nanoplatelets modified with RVG for targeted delivery of miR-375 and temozolomide to enhance gliomas therapy. J Nanobiotechnology 2024; 22:623. [PMID: 39402578 PMCID: PMC11476726 DOI: 10.1186/s12951-024-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Gliomas are one of the most frequent primary brain tumors and pose a serious threat to people's lives and health. Platelets, a crucial component of blood, have been applied as drug delivery carriers for disease diagnosis and treatment. In this study, we designed engineered nanoplatelets for targeted delivery of therapeutic miR-375 and temozolomide (TMZ, a first-line glioma treatment agent) to enhance glioma therapy. Nanoplatelets were prepared through mild ultrasound, TMZ and miR-375 were co-loaded through ultrasound and electrostatic interactions, respectively, to combine chemotherapy with gene therapy against glioma. To improve the blood brain barrier (BBB) crossing efficiency and glioma targeting ability, the nanoplatelets were modified with central nervous system-specific rabies viral glycoprotein peptide (RVG) through thiol-maleimide click reaction. The RVG modified nanoplatelets co-loaded TMZ and miR-375 (NR/TMZ/miR-375) not only inherited the good stability and remarkable biocompatibility of platelets, but also promoted the cellular uptake and penetration of glioma tissues, and effectively induced cell apoptosis to enhance the therapeutic effect of drugs. In vivo studies showed that NR/TMZ/miR-375 significantly increased the circulation time of TMZ, and exhibited superior combined antitumor effects. In summary, this multifunctional 'natural' nanodrug delivery system provides a potent, scalable, and safety approach for platelet-based combined cancer chemotherapy and gene therapy.
Collapse
Affiliation(s)
- Tingting Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
- Zhumadian Cental Hospital, Zhumadian, 463000, China
| | - Nan Zhang
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Yuanyuan Liu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Ruyue Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Zhaoyi Wei
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Futai Liu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Dan Song
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Longwei Wang
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Jiangyan Wei
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Yuanpei Li
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Deliang Shen
- Key Laboratory of Cardiac Injury and Repair of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China.
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
10
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
11
|
Jacob EM, Huang J, Chen M. Lipid nanoparticle-based mRNA vaccines: a new frontier in precision oncology. PRECISION CLINICAL MEDICINE 2024; 7:pbae017. [PMID: 39171210 PMCID: PMC11336688 DOI: 10.1093/pcmedi/pbae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
The delivery of lipid nanoparticle (LNP)-based mRNA therapeutics has captured the attention of the vaccine research community as an innovative and versatile tool for treating a variety of human malignancies. mRNA vaccines are now in the limelight as an alternative to conventional vaccines owing to their high precision, low-cost, rapid manufacture, and superior safety profile. Multiple mRNA vaccine platforms have been developed to target several types of cancer, and many have demonstrated encouraging results in animal models and human trials. The effectiveness of these new mRNA vaccines depends on the efficacy and stability of the antigen(s) of interest generated and the reliability of their delivery to antigen-presenting cells (APCs), especially dendritic cells (DCs). In this review, we provide a detailed overview of mRNA vaccines and their delivery strategies and consider future directions and challenges in advancing and expanding this promising vaccine platform to widespread therapeutic use against cancer.
Collapse
Affiliation(s)
- Eden M Jacob
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Ming Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
12
|
Nehal N, Rohilla A, Sartaj A, Baboota S, Ali J. Folic acid modified precision nanocarriers: charting new frontiers in breast cancer management beyond conventional therapies. J Drug Target 2024; 32:855-873. [PMID: 38748872 DOI: 10.1080/1061186x.2024.2356735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer presents a significant global health challenge, ranking highest incidence rate among all types of cancers. Functionalised nanocarriers offer a promising solution for precise drug delivery by actively targeting cancer cells through specific receptors, notably folate receptors. By overcoming the limitations of passive targeting in conventional therapies, this approach holds the potential for enhanced treatment efficacy through combination therapy. Encouraging outcomes from studies like in vitro and in vivo, underscore the promise of this innovative approach. This review explores the therapeutic potential of FA (Folic acid) functionalised nanocarriers tailored for breast cancer management, discussing various chemical modification techniques for functionalization. It examines FA-conjugated nanocarriers containing chemotherapeutics to enhance treatment efficacy and addresses the pharmacokinetic aspect of these functionalised nanocarriers. Additionally, the review integrates active targeting via folic acid with theranostics, photothermal therapy, and photodynamic therapy, offering a comprehensive management strategy. Emphasising rigorous experimental validation for practical utility, the review underscores the need to bridge laboratory research to clinical application. While these functionalised nanocarriers show promise, their credibility and applicability in real-world settings necessitate thorough validation for effective clinical use.
Collapse
Affiliation(s)
- Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Aashish Rohilla
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
13
|
Banthia P, Vyas R, Jain A, Daga D, Ichikawa T, Kulshrestha V, Sharma A, Agarwal RD, Kapoor N, Gambhir L, Gautam S, Sharma G. Biogenic Ag-doped ZnO nanostructures induced cytotoxicity in luminal A and triple-negative human breast cancer cells. Nanomedicine (Lond) 2024; 19:2479-2493. [PMID: 39466383 PMCID: PMC11520553 DOI: 10.1080/17435889.2024.2347825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 10/30/2024] Open
Abstract
Aim: To evaluate the apoptosis-inducing properties of undoped and silver-doped-zinc-oxide nanoparticles (SDZONs) synthesized using Boswellia serrata against MCF-7 (Luminal-A) and MDA-MB-231 (Triple-negative) breast cancer cell lines.Methodology: Nanostructures were developed by facile biohydrothermal method and characterized by x-ray diffraction (XRD), Fourier transform infrared (FTIR), and high resolution transmission electron microscopy (HR-TEM). The comparative effect of doping and dose concentration of nanostructures on cytotoxicity was measured using MTT and trypan-blue-exclusion assay.Results: SDZONs exhibited greater cytotoxicity (20.71%, 27.31% cell viability) as compared with undoped nanostructures (35.81%, 37.08% cell viability) against MCF 7 and MDA-MB-231, respectively.Conclusion: The activity of biogenic nanostructures was highly dependent on doping, dose, and type of cell lines used. The novel biogenic SDZONs could be exploited as a promising, cost-effective, and environmentally benign strategy to curb breast cancer.
Collapse
Affiliation(s)
- Poonam Banthia
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| | - Rishi Vyas
- Department of Physics, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, Rajasthan302017, India
| | - Ankur Jain
- Centre for Renewable Energy & Storage, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| | - Dhiraj Daga
- Department of Radiation Oncology, Jawahar Lal Nehru Medical College & Hospital, Ajmer, Rajasthan305001, India
| | - Takayuki Ichikawa
- Graduate School of Advanced Science & Engineering, Hiroshima University, Higashi, Hiroshima739-8527, Japan
| | - Vaibhav Kulshrestha
- CSIR-Central Salt & Marine Chemical Research Institute, Bhavnagar, Gujarat364002, India
| | - Asha Sharma
- Dept. of Zoology, Swargiya P.N.K.S. Govt. PG College, Dausa, Rajasthan303303, India
| | - RD Agarwal
- Dept. of Botany, retd. Professor, University of Rajasthan, Jaipur, Rajasthan302004, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| | - Lokesh Gambhir
- School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand248001, India
| | - Shilpi Gautam
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| |
Collapse
|
14
|
Kanchan S, Marwaha D, Tomar B, Agrawal S, Mishra S, Kapoor R, Sushma, Jha G, Sharma D, Bhatta RS, Mishra PR, Rath SK. Nanocarrier - Mediated Salinomycin Delivery Induces Apoptosis and Alters EMT Phenomenon in Prostate Adenocarcinoma. AAPS PharmSciTech 2024; 25:104. [PMID: 38724836 DOI: 10.1208/s12249-024-02817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 09/05/2024] Open
Abstract
Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.
Collapse
Affiliation(s)
- Sonam Kanchan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Mishra
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Radhika Kapoor
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sushma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Gaurav Jha
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Moles E, Chang DW, Mansfeld FM, Duly A, Kimpton K, Logan A, Howard CB, Thurecht KJ, Kavallaris M. EGFR Targeting of Liposomal Doxorubicin Improves Recognition and Suppression of Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:3623-3639. [PMID: 38660023 PMCID: PMC11042481 DOI: 10.2147/ijn.s450534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy. Nevertheless, liposomal drugs lack selectivity for the cancer cells and have a limited ability to penetrate the tumor site, which severely limits their therapeutic potential. Epidermal growth factor receptor (EGFR) is overexpressed in NSCLC tumors in about 80% of patients, thus representing a promising NSCLC-specific target for redirecting liposome-embedded chemotherapy to the tumor site. Methods Herein, we investigated the targeting of PEGylated liposomal doxorubicin (Caelyx), a powerful off-the-shelf antitumoral liposomal drug, to EGFR as a therapeutic strategy to improve the specific delivery and intratumoral accumulation of chemotherapy in NSCLC. EGFR-targeting of Caelyx was enabled through its complexing with a polyethylene glycol (PEG)/EGFR bispecific antibody fragment. Tumor targeting and therapeutic potency of our treatment approach were investigated in vitro using a panel of NSCLC cell lines and 3D tumoroid models, and in vivo in a cell line-derived tumor xenograft model. Results Combining Caelyx with our bispecific antibody generated uniform EGFR-targeted particles with improved binding and cytotoxic efficacy toward NSCLC cells. Effects were exclusive to cancer cells expressing EGFR, and increments in efficacy positively correlated with EGFR density on the cancer cell surface. The approach demonstrated increased penetration within 3D spheroids and was effective at targeting and suppressing the growth of NSCLC tumors in vivo while reducing drug delivery to the heart. Conclusion EGFR targeting represents a successful approach to enhance the selectivity and therapeutic potency of liposomal chemotherapy toward NSCLC.
Collapse
Affiliation(s)
- Ernest Moles
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - David W Chang
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
| | - Friederike M Mansfeld
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
| | - Alastair Duly
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Kathleen Kimpton
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
| | - Amy Logan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
Kumari NU, Pardhi E, Chary PS, Mehra NK. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther Deliv 2024; 15:279-303. [PMID: 38374774 DOI: 10.4155/tde-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with various morphological features, clinicopathological conditions and responses to different therapeutic options, which is responsible for high mortality and morbidity in women. The heterogeneity of BC necessitates new strategies for diagnosis and treatment, which is possible only by cautious harmonization of the advanced nanomaterials. Recent developments in vesicular nanocarrier therapy indicate a paradigm shift in breast cancer treatment by providing an integrated approach to address current issues. This review provides a detailed classification of various nanovesicles in the treatment of BC with a special emphasis on recent advances, challenges in translating nanomaterials and future potentials.
Collapse
Affiliation(s)
- Nalla Usha Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
17
|
Eluu SC, Obayemi JD, Salifu AA, Yiporo D, Oko AO, Aina T, Oparah JC, Ezeala CC, Etinosa PO, Ugwu CM, Esimone CO, Soboyejo WO. In-vivo studies of targeted and localized cancer drug release from microporous poly-di-methyl-siloxane (PDMS) devices for the treatment of triple negative breast cancer. Sci Rep 2024; 14:31. [PMID: 38167999 PMCID: PMC10761815 DOI: 10.1038/s41598-023-50656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) treatment is challenging and frequently characterized by an aggressive phenotype and low prognosis in comparison to other subtypes. This paper presents fabricated implantable drug-loaded microporous poly-di-methyl-siloxane (PDMS) devices for the delivery of targeted therapeutic agents [Luteinizing Hormone-Releasing Hormone conjugated paclitaxel (PTX-LHRH) and Luteinizing Hormone-Releasing Hormone conjugated prodigiosin (PG-LHRH)] for the treatment and possible prevention of triple-negative cancer recurrence. In vitro assessment using the Alamar blue assay demonstrated a significant reduction (p < 0.05) in percentage of cell growth in a time-dependent manner in the groups treated with PG, PG-LHRH, PTX, and PTX-LHRH. Subcutaneous triple-negative xenograft breast tumors were then induced in athymic female nude mice that were four weeks old. Two weeks later, the tumors were surgically but partially removed, and the device implanted. Mice were observed for tumor regrowth and organ toxicity. The animal study revealed that there was no tumor regrowth, six weeks post-treatment, when the LHRH targeted drugs (LHRH-PTX and LHRH-PGS) were used for the treatment. The possible cytotoxic effects of the released drugs on the liver, kidney, and lung are assessed using quantitative biochemical assay from blood samples of the treatment groups. Ex vivo histopathological results from organ tissues showed that the targeted cancer drugs released from the implantable drug-loaded device did not induce any adverse effect on the liver, kidneys, or lungs, based on the results of qualitative toxicity studies. The implications of the results are discussed for the targeted and localized treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- S C Eluu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - J D Obayemi
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences and Bioengineering Centre, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01609, USA
| | - A A Salifu
- Department of Engineering, Morrissey College of Arts and Science, Boston College, Boston, USA
| | - D Yiporo
- Department of Mechanical Engineering, Ashesi University, Berekuso, Ghana
| | - A O Oko
- Department of Biology and Biotechnology, David Umahi Federal, University of Health Sciences, Uburu, Nigeria
| | - T Aina
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - J C Oparah
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - C C Ezeala
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - P O Etinosa
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA
| | - C M Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - C O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - W O Soboyejo
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA.
- Department of Biomedical Engineering, Gateway Park Life Sciences and Bioengineering Centre, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01609, USA.
- Department of Engineering, SUNY Polytechnic Institute, 100 Seymour Rd, Utica, NY, 13502, USA.
| |
Collapse
|
18
|
Abdelmaksoud NM, Sallam AAM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Al-Noshokaty TM, Elrebehy MA, Elshaer SS, Mahmoud NA, Fathi D, Rizk NI, Elballal MS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Alzheimer's disease. Pathol Res Pract 2024; 253:155007. [PMID: 38061270 DOI: 10.1016/j.prp.2023.155007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) is a multifaceted, advancing neurodegenerative illness that is responsible for most cases of neurological impairment and dementia in the aged population. As the disease progresses, affected individuals may experience cognitive decline, linguistic problems, affective instability, and behavioral changes. The intricate nature of AD reflects the altered molecular mechanisms participating in the affected human brain. MicroRNAs (miRNAs, miR) are essential for the intricate control of gene expression in neurobiology. miRNAs exert their influence by modulating the transcriptome of brain cells, which typically exhibit substantial genetic activity, encompassing gene transcription and mRNA production. Presently, comprehensive studies are being conducted on AD to identify miRNA-based signatures that are indicative of the disease pathophysiology. These findings can contribute to the advancement of our understanding of the mechanisms underlying this disorder and can inform the development of therapeutic interventions based on miRNA and related RNA molecules. Therefore, this comprehensive review provides a detailed holistic analysis of the latest advances discussing the emerging role of miRNAs in the progression of AD and their possible application as potential biomarkers and targets for therapeutic interventions in future studies.
Collapse
Affiliation(s)
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Naira Ali Mahmoud
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
19
|
Valizadeh A, Asghari S, Abbaspoor S, Jafari A, Raeisi M, Pilehvar Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1909. [PMID: 37258422 DOI: 10.1002/wnan.1909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 06/02/2023]
Abstract
Nanofibers (NFs) with practical drug-loading capacities, high stability, and controllable release have caught the attention of investigators due to their potential applications in on-demand drug delivery devices. Developing novel and efficient multidisciplinary management of locoregional cancer treatment through the design of smart NF-based systems integrated with combined chemotherapy and hyperthermia could provide stronger therapeutic advantages. On the other hand, implanting directly at the tumor area is a remarkable benefit of hyperthermia NF-based drug delivery approaches. Hence, implantable smart hyperthermia NFs might be very hopeful for tumor treatment in the future and provide new avenues for developing highly efficient localized drug delivery systems. Indeed, features of the smart NFs lead to the construction of a reversibly flexible nanostructure that enables hyperthermia and facile switchable release of antitumor agents to eradicate cancer cells. Accordingly, this study covers recent updates on applications of implantable smart hyperthermia NFs regarding their current scope and future outlook. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saleheh Abbaspoor
- Chemical Engineering Department, School of Engineering, Damghan University, Damghan, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Mollaei M, Homayouni Tabrizi M, Es-Haghi A. The folate-linked chitosan-coated Kaempferol/HSA nano-transporters (FCKH-NTs) as the selective apoptotic inducer in human MCF-7 breast cancer cell line. Drug Dev Ind Pharm 2023; 49:658-665. [PMID: 37814890 DOI: 10.1080/03639045.2023.2268739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Kaempferol, the natural bioactive flavonoid, has been utilized as an efficient anti-breast cancer compound. In the current study, the Kaempferol's cellular uptake and its aqueous solubility were improved by using human serum albumin (HSA) as the Kaempferol adjuvant and encapsulating it with the folate-linked chitosan polymer to evaluate the apoptotic, activity of the novel-formulated Kaempferol in human MCF-7 breast cancer cells. METHODS The folate-linked chitosan-coated Kaempferol/HSA nano-transporters (FCKH-NTs) were synthesized and characterized using FTIR, FESEM, DLS, and Zeta potential analysis. The nano-transporters' selective cytotoxicity was studied by applying an MTT assay on the cancerous MCF-7 cells compared with normal HFF cell lines. Cell death type determination was determined by analyzing the expression of apoptotic (BAX and Cas-8) and anti-apoptotic genes (BCL2 and NF-κB). The FCKH-NTs apoptotic activity was verified by studying the flow cytometry and AO/PI staining results. RESULT The 126-nm FCKH-NTs (PDI = 0.282) selectively induced apoptotic death in human MCF-7 breast cancer cells by up-regulating the BAX, Nf- κB, and Cas-8 gene expression. The apoptotic activity of FCKH-NTs was verified by detecting the SubG1-arrested cancer cells and increased apoptotic bodies in AO/PI staining images. CONCLUSION The FCKH-NTs exhibited a selective-cytotoxic impact on human MCF-7 breast cancer cells compared with normal HFF cells, which can be due to the folate receptor-mediated endocytosis mechanism of the nano-transporters. Therefore, the FCKH-NTs have the potential to be used as a selective anti-breast cancer compound.
Collapse
Affiliation(s)
- Mahshad Mollaei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
21
|
Ahmed SA, Gaber MH, Salama AA, Ali SA. Efficacy of copper nanoparticles encapsulated in soya lecithin liposomes in treating breast cancer cells (MCF-7) in vitro. Sci Rep 2023; 13:15576. [PMID: 37730859 PMCID: PMC10511430 DOI: 10.1038/s41598-023-42514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Cancer is one of the leading causes of death, which has attracted the attention of the scientific world to the search for efficient methods for treatment. With the great development and regeneration of nanotechnology over the last 25 years, various nanoparticles in different structures, shapes and composites provide good potential for cancer therapy. There are several drugs approved by FDA used in breast cancer treatment like Cyclophosphamide, Doxorubicin Hydrochloride, Femara, Herceptin, etc. Each has several side effects as well as treatment, which limits the use of drugs due to heart failure, pulmonary dysfunction, or immunodeficiency. Recently, such side effects are greatly reduced by using innovative delivery techniques. Some drugs have been approved for use in cancer treatment under the concept of drug delivery, such as Doxil (liposomal loaded doxorubicin). The purpose of this study is to investigate the effect of copper nanoparticles (CuNPs) as a drug model for cancer treatment, either in their free form or encapsulated in Soy lecithin liposomes (SLP) from plant origin as a cheap source of lipids. CuNPs were prepared by the chemical reduction method and loaded onto SLP through the thin film hydration method. The drug model Cu/SLP was successfully combined. The characteristics of the free CuNPs, liposomes, and the combined form, zeta potential, size distribution, drug encapsulation efficiency (EE%), drug release profile, Fourier transform infrared (FTIR), and transmission electron microscopy (TEM), were checked, followed by an in vitro study on the breast cancer cell line Mcf-7 as a model for cytotoxicity evaluation. The optimal Cu/SLP had a particle mean size of 81.59 ± 14.93 nm, a negative zeta potential of - 50.7 ± 4.34 mV, loaded CuNPs showed an EE% of 78.9%, a drug release profile for about 50% of the drug was released after 6 h, and FTIR analysis was recorded. The cytotoxicity assay showed that the IC50 of Cu/SLP is smaller than that of free CuNPs. These results give clear evidence of the efficacy of using the combined Cu/SLP rather than CuNPs alone as a model drug carrier prepared from plant origin against cancer, both medically and economically.
Collapse
Affiliation(s)
- Shaimaa A Ahmed
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University (Girl's Branch), Cairo, Egypt
| | - Mohamed H Gaber
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Aida A Salama
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University (Girl's Branch), Cairo, Egypt
| | - Said A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
22
|
Liu M, Pan X, Gan Y, Gao M, Li X, Liu Z, Ma X, Geng M, Meng X, Ma N, Li J. Titanium Carbide MXene Quantum Dots-Modified Hydroxyapatite Hollow Microspheres as pH/Near-Infrared Dual-Response Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13325-13334. [PMID: 37612781 DOI: 10.1021/acs.langmuir.3c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Titanium carbide MXene quantum dots (MQDs) possess intrinsic regulatory properties and selective toxicity to cancer cells. Here, MDQs were selected for the modification of hydroxyapatite (HA) microspheres, and MXene quantum dots-modified hydroxyapatite (MQDs-HA) hollow microspheres with controllable shapes and sizes were prepared as bone drug carriers. The results show that the prepared MQDs-HA hollow microspheres had a large BET surface area (231.2 m2/g), good fluorescence, and low toxicity. In addition, MQDs-HA showed a mild storage-release behavior and good responsiveness of pH and near-infrared (NIR). Thus, the MQDs-HA hollow microspheres have broad application prospects in the field of drug delivery and photothermal therapy.
Collapse
Affiliation(s)
- Miaomiao Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuanjing Gan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Gao
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinran Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhen Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Geng
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangqi Meng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
| | - Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Ngema LM, Adeyemi SA, Marimuthu T, Ubanako PN, Ngwa W, Choonara YE. Surface Immobilization of Anti-VEGF Peptide on SPIONs for Antiangiogenic and Targeted Delivery of Paclitaxel in Non-Small-Cell Lung Carcinoma. ACS APPLIED BIO MATERIALS 2023. [PMID: 37384895 PMCID: PMC10354746 DOI: 10.1021/acsabm.3c00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
A design has been established for the surface decoration of superparamagnetic iron oxide nanoparticles (SPIONs) with anti-vascular endothelial growth factor peptide, HRH, to formulate a targeted paclitaxel (PTX) delivery nanosystem with notable tumor targetability and antiangiogenic activity. The design methodology included (i) tandem surface functionalization via coupling reactions, (ii) pertinent physicochemical characterization, (iii) in vitro assessment of drug release, anti-proliferative activity, and quantification of vascular endothelial growth factor A (VEGF-A) levels, and (iv) in vivo testing using a lung tumor xenograft mouse model. Formulated CLA-coated PTX-SPIONs@HRH depicted a size and surface charge of 108.5 ± 3.5 nm and -30.4 ± 2.3 mV, respectively, and a quasi-spherical shape relative to pristine SPIONs. Fourier transform infrared (FTIR) analysis and estimation of free carboxylic groups supported the preparation of the CLA-coated PTX-SPIONs@HRH. CLA-coated PTX-SPIONs@HRH exhibited high PTX loading efficiency (98.5%) and sustained release in vitro, with a marked dose dependent anti-proliferative activity in A549 lung adenocarcinoma cells, complimented by an enhanced cellular uptake. CLA-coated PTX-SPIONs@HRH significantly reduced secretion levels of VEGF-A in human dermal microvascular endothelial cells from 46.9 to 35.6 pg/mL compared to untreated control. A 76.6% tumor regression was recorded in a lung tumor xenograft mouse model following intervention with CLA-coated PTX-SPIONs@HRH, demonstrating tumor targetability and angiogenesis inhibition. CLA-coated PTX-SPIONs@HRH enhanced the half-life of PTX by almost 2-folds and demonstrated a prolonged PTX plasma circulation time from a subcutaneous injection (SC). Thus, it is suggested that CLA-coated PTX-SPIONs@HRH could provide a potential effective treatment modality for non-small-cell lung carcinoma as a nanomedicine.
Collapse
Affiliation(s)
- Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Philemon N Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Wilfred Ngwa
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
24
|
Suksiriworapong J, Pongprasert N, Bunsupa S, Taresco V, Crucitti VC, Janurai T, Phruttiwanichakun P, Sakchaisri K, Wongrakpanich A. CD44-Targeted Lipid Polymer Hybrid Nanoparticles Enhance Anti-Breast Cancer Effect of Cordyceps militaris Extracts. Pharmaceutics 2023; 15:1771. [PMID: 37376218 DOI: 10.3390/pharmaceutics15061771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to improve the anticancer effect of Cordyceps militaris herbal extract (CME) on breast cancer cells with hyaluronic acid (HYA) surface-decorated lipid polymer hybrid nanoparticles (LPNPs) and evaluate the applicability of a synthesized poly(glycerol adipate) (PGA) polymer for LPNP preparation. Firstly, cholesterol- and vitamin E-grafted PGA polymers (PGA-CH and PGA-VE, respectively) were fabricated, with and without maleimide-ended polyethylene glycol. Subsequently, CME, which contained an active cordycepin equaling 9.89% of its weight, was encapsulated in the LPNPs. The results revealed that the synthesized polymers could be used to prepare CME-loaded LPNPs. The LPNP formulations containing Mal-PEG were decorated with cysteine-grafted HYA via thiol-maleimide reactions. The HYA-decorated PGA-based LPNPs substantially enhanced the anticancer effect of CME against MDA-MB-231 and MCF-7 breast cancer cells by enhancing cellular uptake through CD44 receptor-mediated endocytosis. This study demonstrated the successful targeted delivery of CME to the CD44 receptors of tumor cells by HYA-conjugated PGA-based LPNPs and the new application of synthesized PGA-CH- and PGA-VE-based polymers in LPNP preparation. The developed LPNPs showed promising potential for the targeted delivery of herbal extracts for cancer treatment and clear potential for translation in in vivo experiments.
Collapse
Affiliation(s)
| | - Nutthachai Pongprasert
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Thitapa Janurai
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Krisada Sakchaisri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
25
|
Kaur N, Shriwastav S, Dev J, Aman S, Hassan M, Kumar A, Bala R, Singh M. Mechanistic insights of Euphorbia milii des moul mediated biocompatible and non-cytotoxic, antimicrobial nanoparticles: an answer to multidrug resistant bacteria. World J Microbiol Biotechnol 2023; 39:210. [PMID: 37246185 DOI: 10.1007/s11274-023-03653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
The emergence of drug-resistant microbial pathogens is a matter of global concern and become more serious if they linked with healthcare-associated infections (HAIs). As per World Health Organization statistics, multidrug-resistant (MDR) bacterial pathogens account for between 7 and 12% of the worldwide burden of HAIs. The need for an effective and environmentally sustainable response to this situation is urgent. The primary goal of this study was to create copper nanoparticles that are biocompatible and non-toxic by using an extract of Euphorbia des moul, and then to test these nanoparticles' bactericidal efficacy against MDR strains of Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, and Acinetobacter baumannii. UV-Vis spectroscopy, dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy techniques were used to characterize the biogenic G-CuNPs. It was found that G-CuNPs were spherical in shape, with an average diameter of ~ 40 nm and a charge density of - 21.52 mV. The G-CuNPs fully eradicated the MDR strains at a dosage of 2 mg/ml with 3 h of incubation time. Mechanistic analysis showed that the G-CuNPs efficiently disrupted the cell membrane and damaged the DNA and by generating more reactive oxygen species. Moreover, cytotoxic examination revealed that G-CuNPs displayed < 5% toxicity at 2 mg/ml concentration on human RBCs, PBMCs, and A549 cell lines, suggesting that they are biocompatible. This nano-bioagent is an eco-friendly, non-cytotoxic, non-hemolytic organometallic copper nanoparticles (G-CuNPs) with a high therapeutic index for possible use in the prevention of biomedical device-borne infections by preparing an antibacterial layer on indwelling medical devices. However, its potential clinical use has to be further studied through in vivo testing with an animal model.
Collapse
Affiliation(s)
- Narinder Kaur
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Shalini Shriwastav
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Jai Dev
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India.
| | - Mahmudul Hassan
- Center for interdisciplinary biomedical research, Adesh University, Bhatinda, Punjab, India.
| | - Ajay Kumar
- Department of Microbiology, Maharishi Markandeshwar Medical College and Hospital, Maharishi Markandeshwar University, Solan, Himachal Pradesh, India.
| | - Rosy Bala
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India.
| | - Meenakshi Singh
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
26
|
Arivarasan VK, Consul C. Bacteriophage as cargo and its application in nanomedicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:173-189. [PMID: 37770170 DOI: 10.1016/bs.pmbts.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bacteriophages are viruses that infect the bacteria. However, different studies conducted on the same display a wide range of applications in terms of therapeutic purposes. The structure of a bacteriophage includes the head (site for the storage of its genetic material) and a tail (serves the purpose of detection, ligand-receptor binding and insertion of the genetic material into the host organism). The head being a storehouse of genetic material, the contents of the same are often manipulated for therapeutic purposes. In some cases, these bacteriophages are modified as virus like particles (VLPs), which are employed as carriers for transportation of the desired components to the target site, thereby being reliable alternatives for therapeutic purposes. The distinctive properties of these VLPs include their biocompatibility, abundant space for accommodation of desired components, bio processivity, target specificity, does not interfere with the on-going metabolic processes; thereby being agents of choice for various therapeutic purposes. The bacteriophages play significant roles in delivery of certain components thereby enhancing their therapeutic applications. These include biomolecules such as enzymes, peptide-based drugs, CRISPR along with others. Apart from this, bacteriophage targeted delivery has also shown promising results in cancer treatments and vaccination strategies. Bacteriophages are therefore, promising delivery agents and can be opted for delivery of either single or combination of compounds in future treatment strategies.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Chitrakshi Consul
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
27
|
Zhou F, Li H, Liu Y, Deng H, Rong J, Zhao J. Hyaluronan derivative decorated calcium carbonate nanoparticle as a potential platform for breast cancer synergistic therapy via blood coagulation and drug delivery. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
28
|
Parvathaneni V, Shukla SK, Gupta V. Development and Characterization of Folic Acid-Conjugated Amodiaquine-Loaded Nanoparticles-Efficacy in Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15031001. [PMID: 36986861 PMCID: PMC10053199 DOI: 10.3390/pharmaceutics15031001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The objective of this study was to construct amodiaquine-loaded, folic acid-conjugated polymeric nanoparticles (FA-AQ NPs) to treat cancer that could be scaled to commercial production. In this study, folic acid (FA) was conjugated with a PLGA polymer followed by the formulation of drug-loaded NPs. The results of the conjugation efficiency confirmed the conjugation of FA with PLGA. The developed folic acid-conjugated nanoparticles demonstrated uniform particle size distributions and had visible spherical shapes under transmission electron microscopy. The cellular uptake results suggested that FA modification could enhance the cellular internalization of nanoparticulate systems in non-small cell lung cancer, cervical, and breast cancer cell types. Furthermore, cytotoxicity studies showed the superior efficacy of FA-AQ NPs in different cancer cells such as MDAMB-231 and HeLA. FA-AQ NPs had better anti-tumor abilities demonstrated via 3D spheroid cell culture studies. Therefore, FA-AQ NPs could be a promising drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
29
|
Seyedi SMR, Asoodeh A, Darroudi M. The human immune cell simulated anti-breast cancer nanorobot: the efficient, traceable, and dirigible anticancer bio-bot. Cancer Nanotechnol 2022; 13:44. [DOI: 10.1186/s12645-022-00150-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Various types of cancer therapy strategies have been investigated and successfully applied so far. There are a few modern strategies for improving drug selectivity and biocompatibility, such as nanoparticle-based drug delivery systems. Herein, we designed the traceable enzyme-conjugated magnetic nanoparticles to target human breast cancer cells by simulating the innate immune cell’s respiratory explosion response.
Methods
The human immune cell simulated anti-breast cancer-nanorobot (hisABC-NB) was produced by conjugating the mouse-derived iNOS and human-originated MPO enzymes on the folate-linked chitosan-coated Fe3O4 nanoparticles. The synthesized nanoparticles were functionalized with folic acid as the breast cancer cell detector. Then, the hisABC-NB’s stability and structural properties were characterized by studying Zeta-potential, XRD, FTIR, VSM, FESEM, and DLS analysis. Next, the selectivity and anti-tumor activity of the hisABC-NB were comparatively analyzed on both normal (MCF-10) and cancerous (MCF-7) human breast cells by analyzing the cells’ survival, apoptotic gene expression profile (P53, BAX, BCL2), and flow cytometry data. Finally, the hisABC-NB’s traceability was detected by T2-weighted MRI imaging on the balb-c breast tumor models.
Results
The hisABC-NB significantly reduced the MCF-7 human breast cancer cells by inducing apoptosis response and arresting the cell cycle at the G2/M phase compared with the normal cell type (MCF-10). Moreover, the hisABC-NB exhibited a proper MRI contrast at the tumor region of treated mice compared with the non-treated type, which approved their appropriate MRI-mediated traceability.
Conclusion
The hisABC-NB’s traceability, dirigibility, and selective cytotoxicity were approved, which are the three main required factors for an efficient anticancer compound. Therefore, it has the potential to be used as an intelligent safe anticancer agent for human breast cancer treatment. However, several in vitro and in vivo studies are required to clarify its selectivity, stability, and safety.
Collapse
|
30
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
31
|
PEGylated Strontium Sulfite Nanoparticles with Spontaneously Formed Surface-Embedded Protein Corona Restrict Off-Target Distribution and Accelerate Breast Tumour-Selective Delivery of siRNA. J Funct Biomater 2022; 13:jfb13040211. [PMID: 36412852 PMCID: PMC9680366 DOI: 10.3390/jfb13040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
As transporters of RNAi therapeutics in preclinical and clinical studies, the application of nanoparticles is often hindered by their susceptibility to opsonin-mediated clearance, poor biological stability, ineffectual targeting, and undesirable effects on healthy cells. Prolonging the blood circulation time while minimizing the off-target distribution and associated toxicity is indispensable for the establishment of a clinically viable delivery system for therapeutic small interfering RNAs (siRNAs). Herein, we report a scalable and straightforward approach to fabricate non-toxic and biodegradable pH-responsive strontium sulfite nanoparticles (SSNs) wrapped with a hydrophilic coating material, biotinylated PEG to lessen unforeseen biological interactions. Surface functionalization of SSNs with PEG led to the generation of small and uniformly distributed particles with a significant affinity towards siRNAs and augmented internalization into breast cancer cells. A triple quadrupole liquid chromatography-mass spectrometry (LC-MS) was deployed to identify the proteins entrapped onto the SSNs, with the help of SwissProt.Mus_musculus database. The results demonstrated the reduction of opsonin proteins adsorption owing to the stealth effect of PEG. The distribution of PEGylated SSNs in mice after 4 h and 24 h of intravenous administration in breast tumour-bearing mice was found to be significantly less to the organs of the reticuloendothelial system (RES) and augmented accumulation in the tumour region. The anti-EGFR siRNA-loaded PEG-SSNs exerted a significant inhibitory effect on tumour development in the murine breast cancer model without any significant toxicity to healthy tissues. Therefore, PEGylated SSNs open up a new avenue for tumour-selective efficient delivery of siRNAs in managing breast cancer.
Collapse
|
32
|
Overcoming challenges to enable targeting of metastatic breast cancer tumour microenvironment with nano-therapeutics: Current status and future perspectives. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Massironi N, Colombo M, Cosentino C, Fiandra L, Mauri M, Kayal Y, Testa F, Torri G, Urso E, Vismara E, Vlodavsky I. Heparin-Superparamagnetic Iron Oxide Nanoparticles for Theranostic Applications. Molecules 2022; 27:molecules27207116. [PMID: 36296711 PMCID: PMC9611043 DOI: 10.3390/molecules27207116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were engineered with an organic coating composed of low molecular weight heparin (LMWH) and bovine serum albumin (BSA), providing heparin-based nanoparticle systems (LMWH@SPIONs). The purpose was to merge the properties of the heparin skeleton and an inorganic core to build up a targeted theranostic nanosystem, which was eventually enhanced by loading a chemotherapeutic agent. Iron oxide cores were prepared via the co-precipitation of iron salts in an alkaline environment and oleic acid (OA) capping. Dopamine (DA) was covalently linked to BSA and LMWH by amide linkages via carbodiimide coupling. The following ligand exchange reaction between the DA-BSA/DA-LMWH and OA was conducted in a biphasic system composed of water and hexane, affording LMWH@SPIONs stabilized in water by polystyrene sulfonate (PSS). Their size and morphology were investigated via dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The LMWH@SPIONs’ cytotoxicity was tested, showing marginal or no toxicity for samples prepared with PSS at concentrations of 50 µg/mL. Their inhibitory activity on the heparanase enzyme was measured, showing an effective inhibition at concentrations comparable to G4000 (N-desulfo-N-acetyl heparin, a non-anticoagulant and antiheparanase heparin derivative; Roneparstat). The LMWH@SPION encapsulation of paclitaxel (PTX) enhanced the antitumor effect of this chemotherapeutic on breast cancer cells, likely due to an improved internalization of the nanoformulated drug with respect to the free molecule. Lastly, time-domain NMR (TD-NMR) experiments were conducted on LMWH@SPIONs obtaining relaxivity values within the same order of magnitude as currently used commercial contrast agents.
Collapse
Affiliation(s)
- Nicolò Massironi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126 Milan, Italy
| | - Cesare Cosentino
- Istituto di Ricerche Chimiche e Biochimiche “Giuliana Ronzoni”, 20133 Milan, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126 Milan, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano Bicocca, 20125 Milan, Italy
| | - Yasmina Kayal
- Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa 2611001, Israel
| | - Filippo Testa
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126 Milan, Italy
| | - Giangiacomo Torri
- Istituto di Ricerche Chimiche e Biochimiche “Giuliana Ronzoni”, 20133 Milan, Italy
- Correspondence: (G.T.); (E.V.); Tel.: +39-02-7064-1624 (G.T.); +39-02-2399-3088 (E.V.)
| | - Elena Urso
- Istituto di Ricerche Chimiche e Biochimiche “Giuliana Ronzoni”, 20133 Milan, Italy
| | - Elena Vismara
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
- Correspondence: (G.T.); (E.V.); Tel.: +39-02-7064-1624 (G.T.); +39-02-2399-3088 (E.V.)
| | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa 2611001, Israel
| |
Collapse
|
34
|
Dutta S, Chakraborty P, Basak S, Ghosh S, Ghosh N, Chatterjee S, Dewanjee S, Sil PC. Synthesis, characterization, and evaluation of in vitro cytotoxicity and in vivo antitumor activity of asiatic acid-loaded poly lactic-co-glycolic acid nanoparticles: A strategy of treating breast cancer. Life Sci 2022; 307:120876. [PMID: 35961595 DOI: 10.1016/j.lfs.2022.120876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 01/22/2023]
Abstract
Asiatic acid (AA), an aglycone of pentacyclic triterpene glycoside, obtained from the leaves of Centella asiatica exerts anticancer effects by inhibiting cellular proliferation and inducing apoptosis in a wide range of carcinogenic distresses. However, its chemotherapeutic efficacy is dampened by its low bioavailability. Polymeric nanoparticles (NPs) exhibit therapeutic efficacy and compliance by improving tissue penetration and lowering toxicity. Thus, to increase the therapeutic effectiveness of AA in the treatment of breast cancer, AA-loaded poly lactic-co-glycolic acid (PLGA) NPs (AA-PLGA NPs) have been formulated. The AA-PLGA NPs were characterized on the basis of their average particle size, zeta potential, electron microscopic imaging, drug loading, and entrapment efficiency. The NPs exhibited sustained drug release profile in vitro. Developed NPs exerted dose-dependent cytotoxicity to MCF-7 and MDA-MB-231 cells without damaging normal cells. The pro-oxidant and pro-apoptotic properties of AA-PLGA NPs were determined by the study of the cellular levels of SOD, CAT, GSH-GSSG, MDA, protein carbonylation, ROS, mitochondrial membrane potential, and FACS analyses on MCF-7 cells. Immunoblotting showed that AA-PLGA NPs elicited an intrinsic pathway of apoptosis in MCF-7 cells. In vivo studies on female BALB/c mice exhibited reduced volume of mammary pad tumor tissues and augmented expression of caspase-3 when administered with AA-PLGA NPs. No systemic adverse effect of AA-PLGA NPs was observed in our studies. Thus, AA-PLGA NPs can act as an efficient drug delivery system against breast cancer.
Collapse
Affiliation(s)
- Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Susmita Basak
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
35
|
Pandey M, Wen PX, Ning GM, Xing GJ, Wei LM, Kumar D, Mayuren J, Candasamy M, Gorain B, Jain N, Gupta G, Dua K. Intraductal delivery of nanocarriers for ductal carcinoma in situ treatment: a strategy to enhance localized delivery. Nanomedicine (Lond) 2022; 17:1871-1889. [PMID: 36695306 DOI: 10.2217/nnm-2022-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ductal carcinoma in situ describes the most commonly occurring, noninvasive malignant breast disease, which could be the leading factor in invasive breast cancer. Despite remarkable advancements in treatment options, poor specificity, low bioavailability and dose-induced toxicity of chemotherapy are the main constraint. A unique characteristic of nanocarriers may overcome these problems. Moreover, the intraductal route of administration serves as an alternative approach. The direct nanodrug delivery into mammary ducts results in the accumulation of anticancer agents at targeted tissue for a prolonged period with high permeability, significantly decreasing the tumor size and improving the survival rate. This review focuses mainly on the intraductal delivery of nanocarriers in treating ductal carcinoma in situ, together with potential clinical translational research.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia.,Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Pung Xiau Wen
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Giam Mun Ning
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Gan Jia Xing
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Liu Man Wei
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 602105, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
36
|
Janani SK, Dhanabal SP, Sureshkumar R, Nikitha Upadhyayula SS. Anti-nucleolin Aptamer as a Boom in Rehabilitation of Breast Cancer. Curr Pharm Des 2022; 28:3114-3126. [PMID: 36173049 DOI: 10.2174/1381612828666220928105044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Breast cancer is the second leading cause of cancer-related deaths. It is important to target the complex pathways using a suitable targeted delivery system. Targeted delivery systems can effectively act on cancer cells and lead to the annihilation of tumor proliferation. They mainly employ targeting agents like aptamers linked to the formulation. Based on the expression of the receptors on the surface of the cancer cells, suitable aptamers can be developed. AS1411 is one such aptamer that has the ability to bind to the over-expressed nucleolin present in breast cancer cells. Nucleolin is a phosphoprotein that is involved in various aspects, like cell growth, differentiation and survival. Mostly they are found in the nucleolus, nucleus, cytoplasm and cell surface. The shuttling effect of the nucleolin between the nucleus and cytoplasm serves as a bonus for the AS1411 aptamer. Because of the shutting effect, the internalization of the drug compound or chemotherapeutic drug inside the cell can be achieved. In this article, we have discussed nucleolin, anti-nucleolin aptamer, namely, AS1411, and its application in exhibiting various anticancer activities, including apoptosis, anti-angiogenesis, anti-metastasis, stimulation of tumor suppressor (i.e., P53), and inhibition of tumor inducer. Further, the ways of internalization, namely macropinocytosis, are also discussed. Additionally, we have also discussed the superiority of the aptamer compared to the antibodies as well as the limitations of the aptamers. By considering all the above parameters, we hope this aptamer will be effective in the management and eradication of breast cancer cells.
Collapse
Affiliation(s)
- S K Janani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - S P Dhanabal
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Sai Surya Nikitha Upadhyayula
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
37
|
Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors. Vaccines (Basel) 2022; 10:vaccines10091431. [PMID: 36146510 PMCID: PMC9502313 DOI: 10.3390/vaccines10091431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer treatment using plant-virus-based nanoparticles (PVNPs) has achieved considerable success in preclinical studies. PVNP-based breast cancer therapies include non-targeted and targeted nanoplatforms for delivery of anticancer therapeutic chemo and immune agents and cancer vaccines for activation of local and systemic antitumor immunity. Interestingly, PVNP platforms combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve tumor efficacy treatment. These applications can be achieved by encapsulation of a wide range of active ingredients and conjugating ligands for targeting immune and tumor cells. This review presents the current breast cancer treatments based on PVNP platforms.
Collapse
|
38
|
Preparation and in vivo imaging of a novel potential αvβ3 targeting PET/MRI dual-modal imaging agent. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
39
|
Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, Jadhav R, Patil A, Singh SK, Dua K, Jha NK, Disouza J, Patravale V. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release 2022; 349:812-830. [PMID: 35914614 DOI: 10.1016/j.jconrel.2022.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Breast cancer (BC) is a highly diagnosed and topmost cause of death in females worldwide. Drug repurposing (DR) has shown great potential against BC by overcoming major shortcomings of approved anticancer therapeutics. However, poor physicochemical properties, pharmacokinetic performance, stability, non-selectivity to tumors, and side effects are severe hurdles in repurposed drug delivery against BC. The variety of nanocarriers (NCs) has shown great promise in delivering repurposed therapeutics for effective treatment of BC via improving solubility, stability, tumor selectivity and reducing toxicity. Besides, delivering repurposed cargos via theranostic NCs can be helpful in the quick diagnosis and treatment of BC. Localized delivery of repurposed candidates through apt NCs can diminish the systemic side effects and improve anti-tumor effectiveness. However, breast tumor variability and tumor microenvironment have created several challenges to nanoparticulate delivery of repurposed cargos. This review focuses on DR as an ingenious strategy to treat BC and circumvent the drawbacks of approved anticancer therapeutics. Various nanoparticulate avenues delivering repurposed therapeutics, including non-oncology cargos and vaccines to target BC effectively, are discussed along with case studies. Moreover, clinical trial information on repurposed medications and vaccines for the treatment of BC is covered along with various obstacles in nanoparticulate drug delivery against cancer that have been so far identified. In a nutshell, DR and drug delivery of repurposed drugs via NCs appears to be a propitious approach in devastating BC.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Varsha Khadake
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Pradnya Marale
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India; S. D. Patil Institute of Pharmacy, Urun-Islampur, Maharashtra 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Gadhinglaj, Maharashtra, India
| | - Rajendra Jadhav
- Bharati Vidyapeeth (Deemed to be University) Pune, Institute of Management, Kolhapur, India
| | - Ajit Patil
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
40
|
Bie N, Yong T, Wei Z, Gan L, Yang X. Extracellular vesicles for improved tumor accumulation and penetration. Adv Drug Deliv Rev 2022; 188:114450. [PMID: 35841955 DOI: 10.1016/j.addr.2022.114450] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs), including microparticles and exosomes, have emerged as potential tools for tumor targeting delivery during the past years. Recently, mass of strategies are applied to assist EVs to accumulate and penetrate into deep tumor sites. In this review, EVs from different cells with unique innate characters and engineered approaches (e.g. chemical engineering, genetical engineering and biomimetic engineering) as drug delivery systems to enhance tumor accumulation and penetration are summarized. Meanwhile, efficient biological function modulation (e.g. extracellular matrix degradation, mechanical property regulation and transcytosis) is introduced to facilitate tumor accumulation and penetration of EVs. Finally, the prospects and challenges on further clinical applications of EVs are discussed.
Collapse
Affiliation(s)
- Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
41
|
Halder J, Pradhan D, Biswasroy P, Rai VK, Kar B, Ghosh G, Rath G. Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer. J Drug Target 2022; 30:1055-1075. [PMID: 35786242 DOI: 10.1080/1061186x.2022.2095389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Breast cancer (BC) is the deadliest malignant disorder globally, with a significant mortality rate. The development of tolerance throughout cancer treatment and non-specific targeting limits the drug's response. Currently, nano therapy provides an interdisciplinary area for imaging, diagnosis, and targeted drug delivery for BC. Several overexpressed biomarkers, proteins, and receptors are identified in BC, which can be potentially targeted by using nanomaterial for drug/gene/immune/photo-responsive therapy and bio-imaging. In recent applications, magnetic iron oxide nanoparticles (IONs) have shown tremendous attention to the researcher because they combine selective drug delivery and imaging functionalities. IONs can be efficaciously functionalised for potential application in BC therapy and diagnosis. In this review, we explored the current application of IONs in chemotherapeutics delivery, gene delivery, immunotherapy, photo-responsive therapy, and bio-imaging for BC based on their molecular mechanism. In addition, we also highlighted the effect of IONs' size, shape, dimension, and functionalization on BC targeting and imaging. To better comprehend the functionalization potential of IONs, this paper provides an outline of BC cellular development. IONs for BC theranostic are also reviewed based on their clinical significance and future aspects.
Collapse
Affiliation(s)
- Jitu Halder
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Prativa Biswasroy
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
42
|
Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced Permeability and Retention Effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther 2022; 39:102915. [PMID: 35597441 DOI: 10.1016/j.pdpdt.2022.102915] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | | - Surya Prakash Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
43
|
Phytosterol-Loaded Surface-Tailored Bioactive-Polymer Nanoparticles for Cancer Treatment: Optimization, In Vitro Cell Viability, Antioxidant Activity, and Stability Studies. Gels 2022; 8:gels8040219. [PMID: 35448120 PMCID: PMC9026838 DOI: 10.3390/gels8040219] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
This study aimsto optimize, characterize, and assess the phytosterol-loaded surface-tailored bioactive Alginate/Chitosan NPs for antitumor efficacy against breast cancer. β-Sitosterol-loaded Alginate/Chitosan nanoparticles (β-SIT-Alg/Ch-NPs) were fabricated using an ion-gelation technique, and then the NPs’ surfaces were activated using an EDC/sulfo-NHS conjugation reaction. The activated chitosan NPs werefunctionalized with folic acid (FA), leveled as β-SIT-Alg/Ch-NPs-FA. Moreover, the functionalized NPs were characterized for size distribution, polydispersity index (PDI), and surface charge, FT-IR and DSC. β-SIT released from β-SIT-Alg/Ch-NPs was estimated in various biorelevant media of pH 7.4, 6.5, and 5.5, and data werefitted into various kinetic models. The cytotoxic study of β-SIT-Alg/Ch-NPs-FA against the cancer cell line was established. The antioxidant study of developed β-SIT-Alg/Ch-NPs was performed using DPPH assay. The stability of developed optimized formulation was assessed in phosphate buffer saline (PBS, pH 7.4), as per ICH guidelines. The drug-entrapped Alg/Ch-NPs-FA appeared uniform and nonaggregated, and the nanoscale particle measured a mean size of 126 ± 8.70 nm. The %drug encapsulation efficiency and %drug loading in β-SIT-Alg/Ch-NPs-FA were 91.06 ± 2.6% and 6.0 ± 0.52%, respectively. The surface charge on β-SIT-Alg/Ch-NPs-FA was measured as +25 mV. The maximum β-SIT release from β-SIT-Alg/Ch-NPs-FA was 71.50 ± 6.5% in pH 5.5. The cytotoxic assay expressed an extremely significant antitumor effect by β-SIT-Alg/Ch-NPs-FA when compared to β-SIT-suspension (p < 0.001). The antioxidant capacity of β-SIT-Alg/Ch-NPs-FA was 91 ± 5.99% compared to 29 ± 8.02% for β-SIT-suspension. The stability of NPs noticed an unworthy alteration (p > 0.05) in particle sizes and other parameters under study in the specific period.
Collapse
|
44
|
Pilch J, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Augustin E, Nowicka AM. Foliate-Targeting Quantum Dots- β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms23031261. [PMID: 35163186 PMCID: PMC8835877 DOI: 10.3390/ijms23031261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
Targeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) with foliate-targeting properties for the delivery of anticancer compound C-2028. C-2028 was bound to the nanoconjugate via an inclusion complex with β-CD. The effect of using FA in QDs-β-CD(C-2028)-FA nanoconjugates on cytotoxicity, cellular uptake, and the mechanism of internalization in cancer (H460, Du-145, and LNCaP) and normal (MRC-5 and PNT1A) cells was investigated. The QDs-β-CD(C-2028)-FA were characterized using DLS (dynamic light scattering), ZP (zeta potential), quartz crystal microbalance with dissipation (QCM-D), and UV-vis spectroscopy. The conjugation of C-2028 with non-toxic QDs or QDs-β-CD-FA did not change the cytotoxicity of this compound. Confocal microscopy studies proved that the use of FA in nanoconjugates significantly increased the amount of delivered compound, especially to cancer cells. QDgreen-β-CD(C-2028)-FA enters the cells through multiple endocytosis pathways in different levels, depending on the cell line. To conclude, the use of FA is a good self-navigating molecule in the QDs platform for drug delivery to cancer cells.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| | - Patrycja Kowalik
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Ewa Paluszkiewicz
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Ewa Augustin
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Anna M. Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| |
Collapse
|
45
|
A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. Int Immunopharmacol 2021; 103:108433. [PMID: 34922248 DOI: 10.1016/j.intimp.2021.108433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022]
Abstract
Nanosized drug carriers have received a major attention in cancer therapeutics and theranostics. The immuno-nanomedicine is a combination of monoclonal antibody (mAb)/mAb-drug-nanoparticles. The immuno-nanomedicine offers a promising strategy to target cancer cells. However, the understating of nanotechnology, cancer biology, immunomedicine, and nanoparticle surface chemistry has provided a better clue to prepare the effective immuno-nanomedicine for cancer therapy. Moreover, the selection of nanoparticles type and its composition is essential for development of efficient drug delivery system (DDS) to target the cancer cell site. Immuno-nanomedicine works in the ligand-receptor binding mechanism through the interaction of mAb conjugated nanoparticles and specific antigen over expressed on target cancer cells. Therefore, the selection of specific receptors in the cancer cell and their ligand is important to prepare the active immuno-nanomedicines. Moreover, the factors such as drug loading, entrapment efficiency, size, shape, and ligand conjugation of a nanocarrier are considered as major factors for a better cancer cell, internalization, drug release, and cancer cell ablation. The target-based over-expression of antigen, mAb is engineered and conjugated with nanoparticles for successful targeting of the cancer cells without causing adverse effects to normal cells. Therefore, this review analyzed the fundamental factors in the immuno-nanomedicine for breast cancer and its technical challenges in the fabrication of the antibody alone/and drug conjugated nanoparticles.
Collapse
|
46
|
Zhang Y, Yang H, Wei D, Zhang X, Wang J, Wu X, Chang J. Mitochondria-targeted nanoparticles in treatment of neurodegenerative diseases. EXPLORATION (BEIJING, CHINA) 2021; 1:20210115. [PMID: 37323688 PMCID: PMC10191038 DOI: 10.1002/exp.20210115] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/31/2021] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDs) are a class of heterogeneous diseases that includes Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Mitochondria play an important role in oxidative balance and metabolic activity of neurons; therefore, mitochondrial dysfunction is associated with NDs and mitochondria are considered a potential treatment target for NDs. Several obstacles, including the blood-brain barrier (BBB) and cell/mitochondrial membranes, reduce the efficiency of drug entry into the target lesions. Therefore, a variety of neuron mitochondrial targeting strategies has been developed. Among them, nanotechnology-based treatments show especially promising results. Owing to their adjustable size, appropriate charge, and lipophilic surface, nanoparticles (NPs) are the ideal theranostic system for crossing the BBB and targeting the neuronal mitochondria. In this review, we discussed the role of dysfunctional mitochondria in ND pathogenesis as well as the physiological barriers to various treatment strategies. We also reviewed the use and advantages of various NPs (including organic, inorganic, and biological membrane-coated NPs) for the treatment and diagnosis of NDs. Finally, we summarized the evidence and possible use for the promising role of NP-based theranostic systems in the treatment of mitochondrial dysfunction-related NDs.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Han Yang
- School of Life and Health ScienceThe Chinese University of Hong KongShenzhenP. R. China
| | - Daohe Wei
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Xinhui Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Jian Wang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Xiaoli Wu
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Jin Chang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| |
Collapse
|
47
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|