1
|
Han R, Luo L, Wei C, Qiao Y, Xie J, Pan X, Xing J. Stiffness-tunable biomaterials provide a good extracellular matrix environment for axon growth and regeneration. Neural Regen Res 2025; 20:1364-1376. [PMID: 39075897 PMCID: PMC11624885 DOI: 10.4103/nrr.nrr-d-23-01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 03/16/2024] [Indexed: 07/31/2024] Open
Abstract
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix-a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
Collapse
Affiliation(s)
- Ronglin Han
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lanxin Luo
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Caiyan Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yaru Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiming Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
2
|
Xu Q, He X, Mou Y, Sun D, Zhang X, Han J, Liu X, Liu X, Ren X, Wang D, Wang J, Ma C, Zhang Q, Li A. Magnesium ions regulate the Warburg effect to promote the differentiation of enteric neural crest cells into neurons. Stem Cell Res Ther 2025; 16:19. [PMID: 39849616 PMCID: PMC11755793 DOI: 10.1186/s13287-024-04121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons. MATERIALS AND METHODS We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation. Non-targeted metabolomic sequencing, cellular acidification rate, oxygen consumption, and western blot analyzed sugar metabolism changes. D-glucose-13C6 isotope tracing identified key glucose flux changes. Surface plasmon resonance was used to detect the binding affinity of magnesium ions with key glycolysis genes. The elastic modulus of the hydrogel was measured using a universal testing machine, while pore size and porosity were assessed with scanning electron microscopy. Swelling ratios were determined using gravimetric analysis. In vivo, ENCCs in hydrogels were transplanted into renal capsule and subcutaneously, and magnesium ions' effects on ENCCs differentiation were evaluated. RESULTS Magnesium ions increased glycolysis levels during ENCCs differentiation into neurons, along with significant upregulation of neuronal markers β-Tubulin and ubiquitin C-terminal hydrolase L1, and enhanced functional neuronal properties. D-glucose-13C6 tracing results showed increased carbon flux in the glycolytic pathway after magnesium supplementation. The binding affinity of magnesium ions with the glycolytic key enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was found to be 1.08 μM. Inhibiting glycolysis suppressed ENCCs differentiation into neurons, emphasizing its crucial role. The double-cross-linked hydrogel gelatin methacryloyl-alginate (gelMA-ALMA), cross-linked with magnesium ions, showed promise in enhancing ENCCs differentiation in vivo without causing systemic hypermagnesemia. CONCLUSION Magnesium ions promote ENCCs differentiation into neurons by activating the Warburg effect. The GelMA-ALMA hydrogel serves as an effective localized magnesium delivery system, supporting neuronal differentiation in vivo.
Collapse
Affiliation(s)
- Qiongqian Xu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xixi He
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yaru Mou
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dong Sun
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xintao Zhang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jichang Han
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyang Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xingjian Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xue Ren
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Dongming Wang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jian Wang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chuncan Ma
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of Pediatric Surgery, Xiangxi Tujia and Miao Autonomous Prefecture People's Hospital, Xiangxi, China
| | - Qiangye Zhang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Honkamäki L, Kulta O, Puistola P, Hopia K, Emeh P, Isosaari L, Mörö A, Narkilahti S. Hyaluronic Acid-Based 3D Bioprinted Hydrogel Structure for Directed Axonal Guidance and Modeling Innervation In Vitro. Adv Healthc Mater 2025; 14:e2402504. [PMID: 39502022 DOI: 10.1002/adhm.202402504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Indexed: 01/03/2025]
Abstract
Neurons form predefined connections and innervate target tissues through elongating axons, which are crucial for the development, maturation, and function of these tissues. However, innervation is often overlooked in tissue engineering (TE) applications. Here, multimaterial 3D bioprinting is used to develop a novel 3D axonal guidance structure in vitro. The approach uses the stiffness difference of acellular hyaluronic acid-based bioink printed as two alternating, parallel-aligned filaments. The structure has soft passages incorporated with guidance cues for axonal elongation while the stiff bioink acts as a structural support and contact guidance. The mechanical properties and viscosity differences of the bioinks are confirmed. Additionally, human pluripotent stem cell (hPSC) -derived neurons form a 3D neuronal network in the softer bioink supplemented with guidance cues whereas the stiffer restricts the network formation. Successful 3D multimaterial bioprinting of the axonal structure enables complete innervation by peripheral neurons via soft passages within 14 days of culture. This model provides a novel, stable, and long-term platform for studies of 3D innervation and axonal dynamics in health and disease.
Collapse
Affiliation(s)
- Laura Honkamäki
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Oskari Kulta
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Paula Puistola
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Karoliina Hopia
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Promise Emeh
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Lotta Isosaari
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Anni Mörö
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Susanna Narkilahti
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| |
Collapse
|
4
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
5
|
Huang YH, Vaez Ghaemi R, Cheon J, Yadav VG, Frostad JM. The mechanical effects of chemical stimuli on neurospheres. Biomech Model Mechanobiol 2024; 23:1319-1329. [PMID: 38613619 DOI: 10.1007/s10237-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/10/2024] [Indexed: 04/15/2024]
Abstract
The formulation of more accurate models to describe tissue mechanics necessitates the availability of tools and instruments that can precisely measure the mechanical response of tissues to physical loads and other stimuli. In this regard, neuroscience has trailed other life sciences owing to the unavailability of representative live tissue models and deficiency of experimentation tools. We previously addressed both challenges by employing a novel instrument called the cantilevered-capillary force apparatus (CCFA) to elucidate the mechanical properties of mouse neurospheres under compressive forces. The neurospheres were derived from murine stem cells, and our study was the first of its kind to investigate the viscoelasticity of living neural tissues in vitro. In the current study, we demonstrate the utility of the CCFA as a broadly applicable tool to evaluate tissue mechanics by quantifying the effect that oxidative stress has on the mechanical properties of neurospheres. We treated mouse neurospheres with non-cytotoxic levels of hydrogen peroxide and subsequently evaluated the storage and loss moduli of the tissues under compression and tension. We observed that the neurospheres exhibit viscoelasticity consistent with neural tissue and show that elastic modulus decreases with increasing size of the neurosphere. Our study yields insights for establishing rheological measurements as biomarkers by laying the groundwork for measurement techniques and showing that the influence of a particular treatment may be misinterpreted if the size dependence is ignored.
Collapse
Affiliation(s)
- Yun-Han Huang
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Roza Vaez Ghaemi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - James Cheon
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Vikramaditya G Yadav
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| | - John M Frostad
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
- Department of Food Science, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
6
|
Peng J. Alginate-gelatin hydrogel promotes the neurogenic differentiation potential of bone marrow CD117 + hematopoietic stem cells. Regen Ther 2024; 26:1030-1036. [PMID: 39569341 PMCID: PMC11576937 DOI: 10.1016/j.reth.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
People still hold the concept of using cell-based treatments to regenerate missing neurons in high esteem. CD117+ cells are considered favorable stem cells for regenerative medicine. The objective of this research was to examine the impact of Alginate-Gelatin (Alg-Gel) hydrogel on the process of neurogenic differentiation of CD117+ cells utilizing a cytokines secretion test conducted in a laboratory setting. To achieve this objective, bone marrow-CD117+ cells were isolated using the MACS technique and then transformed into neuron cells using a neurogenic differentiation medium. The characterization of enriched CD117+ cells has been done with flow cytometry as well as immunocytochemistry. Next, the cells underwent western blotting assay to evaluate the signaling pathways. Subsequently, the culture media was obtained from both groups in order to determine cytokine levels. The study revealed that the Alg-Gel hydrogel had a notable impact on enhancing the protein expression of neuron markers such as β-tubulin and Wnt/catenin signaling pathway components in CD117+ neurogenic differentiated cells. Furthermore, the cultured medium from the experimental group exhibited a notable abundance of IL-6 and IL-10 in comparison to the control group. The observed in vitro effects of Alg-Gel hydrogel on neurogenic differentiation of CD117+ cells are likely to be caused by the cytokines that are released.
Collapse
Affiliation(s)
- Jinshan Peng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, No.5 Yiheyuan Road, Haidian, Beijing, 100871, China
| |
Collapse
|
7
|
Ege D, Boccaccini AR. Investigating the Effect of Processing and Material Parameters of Alginate Dialdehyde-Gelatin (ADA-GEL)-Based Hydrogels on Stiffness by XGB Machine Learning Model. Bioengineering (Basel) 2024; 11:415. [PMID: 38790283 PMCID: PMC11117982 DOI: 10.3390/bioengineering11050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. Several processing variables affect the final properties of the hydrogel, including degree of oxidation, gelatin content and type of crosslinking agent. In addition, in 3D-printed structures, pore size and the possible addition of a filler to make a hydrogel composite also affect the final physical and biological properties. This study utilized datasets from 13 research papers, encompassing 33 unique combinations of ADA concentration, gelatin concentration, CaCl2 and microbial transglutaminase (mTG) concentrations (as crosslinkers), pore size, bioactive glass (BG) filler content, and one identified target property of the hydrogels, stiffness, utilizing the Extreme Boost (XGB) machine learning algorithm to create a predictive model for understanding the combined influence of these parameters on hydrogel stiffness. The stiffness of ADA-GEL hydrogels is notably affected by the ADA to GEL ratio, and higher gelatin content for different ADA gel concentrations weakens the scaffold, likely due to the presence of unbound gelatin. Pore size and the inclusion of a BG particulate filler also have a significant impact on stiffness; smaller pore sizes and higher BG content lead to increased stiffness. The optimization of ADA-GEL composition and the inclusion of BG fillers are key determinants to tailor the stiffness of these 3D printed hydrogels, as found by the analysis of the available data.
Collapse
Affiliation(s)
- Duygu Ege
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
- Institute of Biomedical Engineering, Bogazici University, Rasathane St., Kandilli, 34684 İstanbul, Turkey
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
| |
Collapse
|
8
|
Olguín Y, Selva M, Benavente D, Orellana N, Montenegro I, Madrid A, Jaramillo-Pinto D, Otero MC, Corrales TP, Acevedo CA. Effect of Electrical Stimulation on PC12 Cells Cultured in Different Hydrogels: Basis for the Development of Biomaterials in Peripheral Nerve Tissue Engineering. Pharmaceutics 2023; 15:2760. [PMID: 38140099 PMCID: PMC10747664 DOI: 10.3390/pharmaceutics15122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Extensive damage to peripheral nerves is a health problem with few therapeutic alternatives. In this context, the development of tissue engineering seeks to obtain materials that can help recreate environments conducive to cellular development and functional repair of peripheral nerves. Different hydrogels have been studied and presented as alternatives for future treatments to emulate the morphological characteristics of nerves. Along with this, other research proposes the need to incorporate electrical stimuli into treatments as agents that promote cell growth and differentiation; however, no precedent correlates the simultaneous effects of the types of hydrogel and electrical stimuli. This research evaluates the neural differentiation of PC12 cells, relating the effect of collagen, alginate, GelMA, and PEGDA hydrogels with electrical stimulation modulated in four different ways. Our results show significant correlations for different cultivation conditions. Electrical stimuli significantly increase neural differentiation for specific experimental conditions dependent on electrical frequency, not voltage. These backgrounds allow new material treatment schemes to be formulated through electrical stimulation in peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Yusser Olguín
- Departamento de Química y Medio Ambiente, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Mónica Selva
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Diego Benavente
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Ivan Montenegro
- Centro de Investigaciones Biomédicas, Escuela de Obstetricia, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2390123, Chile;
| | - Diego Jaramillo-Pinto
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Republica 252, Santiago 8370071, Chile;
| | - Tomas P. Corrales
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Cristian A. Acevedo
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| |
Collapse
|
9
|
Karakaya E, Schöbel L, Zhong Y, Hazur J, Heid S, Forster L, Teßmar J, Boccaccini AR, Detsch R. How to Determine a Suitable Alginate for Biofabrication Approaches using an Extensive Alginate Library? Biomacromolecules 2023. [DOI: 10.1021/acs.biomac.2c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Emine Karakaya
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Lisa Schöbel
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Yu Zhong
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Jonas Hazur
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Susanne Heid
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Leonard Forster
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Jörg Teßmar
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| |
Collapse
|
10
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
11
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
12
|
Hodge JG, Robinson JL, Mellott AJ. Novel hydrogel system eliminates subculturing and improves retention of nonsenescent mesenchymal stem cell populations. Regen Med 2023; 18:23-36. [PMID: 36222003 PMCID: PMC9732917 DOI: 10.2217/rme-2022-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022] Open
Abstract
Aim: To compare the physiological behavior of mesenchymal stem/stromal cells (MSCs) within an expandable tissue-mimetic 3D system relative to in vitro expansion in a traditional 2D system. Methods: Adipose-derived MSCs (ASCs) were continuously cultured for 6 weeks on either 2D culture plastic or in a 3D hydrogel system that eliminated subculturing. ASCs were assessed for senescence, 'stem-like' MSC markers, and ability for their secretome to augment a secondary cell population. Results: The 3D hydrogel system resulted in an enhanced retention of more regenerative, nonsenescent ASC populations that exhibited increased expression of 'stem-like' MSC surface markers. Conclusion: This study introduces a proof-of-concept design for a novel modular 3D system that can improve in vitro expansion of stem-like cell populations for future regenerative therapies.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jennifer L Robinson
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Ronawk, LLC, Olathe, KS 66062, USA
| |
Collapse
|
13
|
Janzen D, Bakirci E, Faber J, Andrade Mier M, Hauptstein J, Pal A, Forster L, Hazur J, Boccaccini AR, Detsch R, Teßmar J, Budday S, Blunk T, Dalton PD, Villmann C. Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation. Adv Healthc Mater 2022; 11:e2201826. [PMID: 35993391 PMCID: PMC11468248 DOI: 10.1002/adhm.202201826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/28/2023]
Abstract
3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30-500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca2+ imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases.
Collapse
Affiliation(s)
- Dieter Janzen
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Ezgi Bakirci
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Jessica Faber
- Department of Mechanical EngineeringInstitute of Applied MechanicsFriedrich‐Alexander University of Erlangen‐NürnbergEgerlandstrasse 591058ErlangenGermany
| | - Mateo Andrade Mier
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Julia Hauptstein
- Department of TraumaHand, Plastic and Reconstructive SurgeryUniversity Hospital WürzburgOberdürrbacher Str. 697080WürzburgGermany
| | - Arindam Pal
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Leonard Forster
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
| | - Jonas Hazur
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander University of Erlangen‐NürnbergCauerstr. 691058ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander University of Erlangen‐NürnbergCauerstr. 691058ErlangenGermany
| | - Rainer Detsch
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander University of Erlangen‐NürnbergCauerstr. 691058ErlangenGermany
| | - Jörg Teßmar
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
| | - Silvia Budday
- Department of Mechanical EngineeringInstitute of Applied MechanicsFriedrich‐Alexander University of Erlangen‐NürnbergEgerlandstrasse 591058ErlangenGermany
| | - Torsten Blunk
- Department of TraumaHand, Plastic and Reconstructive SurgeryUniversity Hospital WürzburgOberdürrbacher Str. 697080WürzburgGermany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
- Phil and Penny Knight Campus for Accelerating Scientific ImpactUniversity of Oregon1505 Franklin BlvdEugeneOR97403USA
| | - Carmen Villmann
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| |
Collapse
|
14
|
de Melo BAG, Mundim MV, Lemes RMR, Cruz EM, Ribeiro TN, Santiago CF, da Fonsêca JHL, Benincasa JC, Stilhano RS, Mantovani N, Santana LC, Durães‐Carvalho R, Diaz RS, Janini LMR, Maricato JT, Porcionatto MA. 3D Bioprinted Neural-Like Tissue as a Platform to Study Neurotropism of Mouse-Adapted SARS-CoV-2. Adv Biol (Weinh) 2022; 6:e2200002. [PMID: 35521969 PMCID: PMC9347594 DOI: 10.1002/adbi.202200002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Indexed: 01/28/2023]
Abstract
The effects of neuroinvasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) become clinically relevant due to the numerous neurological symptoms observed in Corona Virus Disease 2019 (COVID-19) patients during infection and post-COVID syndrome or long COVID. This study reports the biofabrication of a 3D bioprinted neural-like tissue as a proof-of-concept platform for a more representative study of SARS-CoV-2 brain infection. Bioink is optimized regarding its biophysical properties and is mixed with murine neural cells to construct a 3D model of COVID-19 infection. Aiming to increase the specificity to murine cells, SARS-CoV-2 is mouse-adapted (MA-SARS-CoV-2) in vitro, in a protocol first reported here. MA-SARS-CoV-2 reveals mutations located at the Orf1a and Orf3a domains and is evolutionarily closer to the original Wuhan SARS-CoV-2 strain than SARS-CoV-2 used for adaptation. Remarkably, MA-SARS-CoV-2 shows high specificity to murine cells, which present distinct responses when cultured in 2D and 3D systems, regarding cell morphology, neuroinflammation, and virus titration. MA-SARS-CoV-2 represents a valuable tool in studies using animal models, and the 3D neural-like tissue serves as a powerful in vitro platform for modeling brain infection, contributing to the development of antivirals and new treatments for COVID-19.
Collapse
Affiliation(s)
- Bruna A. G. de Melo
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Mayara V. Mundim
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Robertha M. R. Lemes
- Department of Biological SciencesUniversidade Federal de São PauloDiadema09920‐540Brazil
| | - Elisa M. Cruz
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Tais N. Ribeiro
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Carolina F. Santiago
- Department of MicrobiologyImmunology and ParasitoloyEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Jéssica H. L. da Fonsêca
- Department of Manufacturing and Materials EngineeringFaculdade de Engenharia MecânicaUniversidade Estadual de CampinasCampinasSP13083‐860Brazil
| | - Julia C. Benincasa
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Roberta S. Stilhano
- Department of Physiological SciencesFaculdade de Ciências MédicasSanta Casa de São PauloSão Paulo01221‐020Brazil
| | - Nathalia Mantovani
- Department of MedicineEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Luiz C. Santana
- Department of MedicineEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Ricardo Durães‐Carvalho
- Department of MicrobiologyImmunology and ParasitoloyEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Ricardo S. Diaz
- Department of MedicineEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Luiz M. R. Janini
- Department of MicrobiologyImmunology and ParasitoloyEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Juliana T. Maricato
- Department of MicrobiologyImmunology and ParasitoloyEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Marimelia A. Porcionatto
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| |
Collapse
|
15
|
Optogenetically Engineered Neurons Differentiated from Human SH-SY5Y Cells Survived and Expressed ChR2 in 3D Hydrogel. Biomedicines 2022; 10:biomedicines10071534. [PMID: 35884839 PMCID: PMC9313127 DOI: 10.3390/biomedicines10071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022] Open
Abstract
The cases of brain degenerative disease will rise as the human population ages. Current treatments have a transient effect and lack an investigative system that is physiologically relevant for testing. There is evidence suggesting optogenetic stimulation is a potential strategy; however, an in vitro disease and optogenetic model requires a three-dimensional microenvironment. Alginate is a promising material for tissue and optogenetic engineering. Although it is bioinert, alginate hydrogel is transparent and therefore allows optical penetration for stimulation. In this study, alginate was functionalized with arginine-glycine-aspartate acid (RGD) to serve as a 3D platform for encapsulation of human SH-SY5Y cells, which were optogenetically modified and characterized. The RGD-alginate hydrogels were tested for swelling and degradation. Prior to encapsulation, the cells were assessed for neuronal expression and optical-stimulation response. The results showed that RGD-alginate possessed a consistent swelling ratio of 18% on day 7, and degradation remained between 3.7−5% throughout 14 days. Optogenetically modified SH-SY5Y cells were highly viable (>85%) after lentiviral transduction and neuronal differentiation. The cells demonstrated properties of functional neurons, developing beta III tubulin (TuJ1)-positive long neurites, forming neural networks, and expressing vGlut2. Action potentials were produced upon optical stimulation. The neurons derived from human SH-SY5Y cells were successfully genetically modified and encapsulated; they survived and expressed ChR2 in an RGD-alginate hydrogel system.
Collapse
|
16
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Jury M, Matthiesen I, Rasti Boroojeni F, Ludwig SL, Civitelli L, Winkler TE, Selegård R, Herland A, Aili D. Bioorthogonally Cross-Linked Hyaluronan-Laminin Hydrogels for 3D Neuronal Cell Culture and Biofabrication. Adv Healthc Mater 2022; 11:e2102097. [PMID: 35114074 PMCID: PMC11468931 DOI: 10.1002/adhm.202102097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Laminins (LNs) are key components in the extracellular matrix of neuronal tissues in the developing brain and neural stem cell niches. LN-presenting hydrogels can provide a biologically relevant matrix for the 3D culture of neurons toward development of advanced tissue models and cell-based therapies for the treatment of neurological disorders. Biologically derived hydrogels are rich in fragmented LN and are poorly defined concerning composition, which hampers clinical translation. Engineered hydrogels require elaborate and often cytotoxic chemistries for cross-linking and LN conjugation and provide limited possibilities to tailor the properties of the materials. Here a modular hydrogel system for neural 3D cell cultures, based on hyaluronan and poly(ethylene glycol), that is cross-linked and functionalized with human recombinant LN-521 using bioorthogonal copper-free click chemistry, is shown. Encapsulated human neuroblastoma cells demonstrate high viability and grow into spheroids. Long-term neuroepithelial stem cells (lt-NES) cultured in the hydrogels can undergo spontaneous differentiation to neural fate and demonstrate significantly higher viability than cells cultured without LN. The hydrogels further support the structural integrity of 3D bioprinted structures and maintain high viability of bioprinted and syringe extruded lt-NES, which can facilitate biofabrication and development of cell-based therapies.
Collapse
Affiliation(s)
- Michael Jury
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| | - Isabelle Matthiesen
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
| | - Fatemeh Rasti Boroojeni
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| | - Saskia L. Ludwig
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
| | - Livia Civitelli
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalWest WingUniversity of OxfordOxfordOX3 9DUUK
| | - Thomas E. Winkler
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
- Institute of MicrotechnologyCenter of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweig38106Germany
| | - Robert Selegård
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| | - Anna Herland
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
- AIMES, Center for Integrated Medical and Engineering ScienceDepartment of NeuroscienceKarolinska InstituteSolna171 65Sweden
- Division of NanobiotechnologyDepartment of Protein Science, Science for Life LaboratoryKTH Royal Institute of TechnologyStockholm17165Sweden
| | - Daniel Aili
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| |
Collapse
|
18
|
Araszkiewicz AM, Oliveira EP, Svendsen T, Drela K, Rogujski P, Malysz-Cymborska I, Fiedorowicz M, Reis RL, Oliveira JM, Walczak P, Janowski M, Lukomska B, Stanaszek L. Manganese-Labeled Alginate Hydrogels for Image-Guided Cell Transplantation. Int J Mol Sci 2022; 23:ijms23052465. [PMID: 35269609 PMCID: PMC8910205 DOI: 10.3390/ijms23052465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Cell transplantation has been studied extensively as a therapeutic strategy for neurological disorders. However, to date, its effectiveness remains unsatisfactory due to low precision and efficacy of cell delivery; poor survival of transplanted cells; and inadequate monitoring of their fate in vivo. Fortunately, different bio-scaffolds have been proposed as cell carriers to improve the accuracy of cell delivery, survival, differentiation, and controlled release of embedded stem cells. The goal of our study was to establish hydrogel scaffolds suitable for stem cell delivery that also allow non-invasive magnetic resonance imaging (MRI). We focused on alginate-based hydrogels due to their natural origin, biocompatibility, resemblance to the extracellular matrix, and easy manipulation of gelation processes. We optimized the properties of alginate-based hydrogels, turning them into suitable carriers for transplanted cells. Human adipose-derived stem cells embedded in these hydrogels survived for at least 14 days in vitro. Alginate-based hydrogels were also modified successfully to allow their injectability via a needle. Finally, supplementing alginate hydrogels with Mn ions or Mn nanoparticles allowed for their visualization in vivo using manganese-enhanced MRI. We demonstrated that modified alginate-based hydrogels can support therapeutic cells as MRI-detectable matrices.
Collapse
Affiliation(s)
- Antonina M. Araszkiewicz
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
| | - Eduarda P. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (E.P.O.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | | | | | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
| | - Izabela Malysz-Cymborska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (E.P.O.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (E.P.O.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Piotr Walczak
- Program for Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (P.W.); (M.J.)
| | - Miroslaw Janowski
- Program for Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (P.W.); (M.J.)
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
- Correspondence: ; Tel.: +48-226-086-529
| |
Collapse
|
19
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
20
|
Hazur J, Endrizzi N, Schubert DW, Boccaccini AR, Fabry B. Stress relaxation amplitude of hydrogels determines migration, proliferation, and morphology of cells in 3-D culture. Biomater Sci 2021; 10:270-280. [PMID: 34850787 DOI: 10.1039/d1bm01089a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The viscoelastic behavior of hydrogel matrices sensitively influences the cell behavior in 3-D culture and biofabricated tissue model systems. Previous reports have demonstrated that cells tend to adhere, spread, migrate and proliferate better in hydrogels with pronounced stress relaxation. However, it is currently unknown if cells respond more sensitively to the amplitude of stress relaxation, or to the relaxation time constant. To test this, we compare the behavior of fibroblasts cultured for up to 10 days in alginate and oxidized alginate hydrogels with similar Young's moduli but diverging stress relaxation behavior. We find that fibroblasts elongate, migrate and proliferate better in hydrogels that display a higher stress relaxation amplitude. By contrast, the cells' response to the relaxation time constant was less pronounced and less consistent. Together, these data suggest that it is foremost the stress relaxation amplitude of the matrix that determines the ability of cells to locally penetrate and structurally remodel the matrix on a molecular level, which subsequently leads to better spreading, faster migration, and higher cell proliferation. We conclude that the stress relaxation amplitude is a central design parameter for optimizing cell behavior in 3-D hydrogels.
Collapse
Affiliation(s)
- Jonas Hazur
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nadine Endrizzi
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Dirk W Schubert
- Institute for Polymer Materials, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
21
|
Rosiak P, Latanska I, Paul P, Sujka W, Kolesinska B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 2021; 26:7264. [PMID: 34885846 PMCID: PMC8659150 DOI: 10.3390/molecules26237264] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Modified alginates have a wide range of applications, including in the manufacture of dressings and scaffolds used for regenerative medicine, in systems for selective drug delivery, and as hydrogel materials. This literature review discusses the methods used to modify alginates and obtain materials with new or improved functional properties. It discusses the diverse biological and functional activity of alginates. It presents methods of modification that utilize both natural and synthetic peptides, and describes their influence on the biological properties of the alginates. The success of functionalization depends on the reaction conditions being sufficient to guarantee the desired transformations and provide modified alginates with new desirable properties, but mild enough to prevent degradation of the alginates. This review is a literature description of efficient methods of alginate functionalization using biologically active ligands. Particular attention was paid to methods of alginate functionalization with peptides, because the combination of the properties of alginates and peptides leads to the obtaining of conjugates with properties resulting from both components as well as a completely new, different functionality.
Collapse
Affiliation(s)
- Piotr Rosiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Ilona Latanska
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Paulina Paul
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Witold Sujka
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| |
Collapse
|
22
|
Totten JD, Alhadrami HA, Jiffri EH, McMullen CJ, Seib FP, Carswell HVO. Towards clinical translation of 'second-generation' regenerative stroke therapies: hydrogels as game changers? Trends Biotechnol 2021; 40:708-720. [PMID: 34815101 DOI: 10.1016/j.tibtech.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Stroke is an unmet clinical need with a paucity of treatments, at least in part because chronic stroke pathologies are prohibitive to 'first-generation' stem cell-based therapies. Hydrogels can remodel the hostile stroke microenvironment to aid endogenous and exogenous regenerative repair processes. However, no clinical trials have yet been successfully commissioned for these 'second-generation' hydrogel-based therapies for chronic ischaemic stroke regeneration. This review recommends a path forward to improve hydrogel technology for future clinical translation for stroke. Specifically, we suggest that a better understanding of human host stroke tissue-hydrogel interactions in addition to the effects of scaling up hydrogel volume to human-sized cavities would help guide translation of these second-generation regenerative stroke therapies.
Collapse
Affiliation(s)
- John D Totten
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Hani A Alhadrami
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Essam H Jiffri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Calum J McMullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, UK
| | - Hilary V O Carswell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
23
|
Hung HS, Kao WC, Shen CC, Chang KB, Tang CM, Yang MY, Yang YC, Yeh CA, Li JJ, Hsieh HH. Inflammatory Modulation of Polyethylene Glycol-AuNP for Regulation of the Neural Differentiation Capacity of Mesenchymal Stem Cells. Cells 2021; 10:2854. [PMID: 34831077 PMCID: PMC8616252 DOI: 10.3390/cells10112854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
A nanocomposite composed of polyethylene glycol (PEG) incorporated with various concentrations (~17.4, ~43.5, ~174 ppm) of gold nanoparticles (Au) was created to investigate its biocompatibility and biological performance in vitro and in vivo. First, surface topography and chemical composition was determined through UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), free radical scavenging ability, and water contact angle measurement. Additionally, the diameters of the PEG-Au nanocomposites were also evaluated through dynamic light scattering (DLS) assay. According to the results, PEG containing 43.5 ppm of Au demonstrated superior biocompatibility and biological properties for mesenchymal stem cells (MSCs), as well as superior osteogenic differentiation, adipocyte differentiation, and, particularly, neuronal differentiation. Indeed, PEG-Au 43.5 ppm induced better cell adhesion, proliferation and migration in MSCs. The higher expression of the SDF-1α/CXCR4 axis may be associated with MMPs activation and may have also promoted the differentiation capacity of MSCs. Moreover, it also prevented MSCs from apoptosis and inhibited macrophage and platelet activation, as well as reactive oxygen species (ROS) generation. Furthermore, the anti-inflammatory, biocompatibility, and endothelialization capacity of PEG-Au was measured in a rat model. After implanting the nanocomposites into rats subcutaneously for 4 weeks, PEG-Au 43.5 ppm was able to enhance the anti-immune response through inhibiting CD86 expression (M1 polarization), while also reducing leukocyte infiltration (CD45). Moreover, PEG-Au 43.5 ppm facilitated CD31 expression and anti-fibrosis ability. Above all, the PEG-Au nanocomposite was evidenced to strengthen the differentiation of MSCs into various cells, including fat, vessel, and bone tissue and, particularly, nerve cells. This research has elucidated that PEG combined with the appropriate amount of Au nanoparticles could become a potential biomaterial able to cooperate with MSCs for tissue regeneration engineering.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Wei-Chien Kao
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Chiung-Chyi Shen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (C.-C.S.); (M.-Y.Y.); (Y.-C.Y.)
- Department of Physical Therapy, Hung Kuang University, Taichung 433304, Taiwan
- Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Cheng-Ming Tang
- College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Blood Bank, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| | - Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (C.-C.S.); (M.-Y.Y.); (Y.-C.Y.)
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (C.-C.S.); (M.-Y.Y.); (Y.-C.Y.)
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Jia-Jhan Li
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| |
Collapse
|