1
|
Unterberger S, Terrazzini N, Sacre S. Convalescent COVID-19 monocytes exhibit altered steady-state gene expression and reduced TLR2, TLR4 and RIG-I induced cytokine expression. Hum Immunol 2025; 86:111249. [PMID: 39922089 DOI: 10.1016/j.humimm.2025.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, can induce trained immunity in monocytes. Trained immunity is the result of metabolic and epigenetic reprogramming of progenitor cells leading to an altered inflammatory response to subsequent activation. To investigate the monocyte response 3-6 months post SARS-CoV-2 infection, steady-state gene expression and innate immune receptor stimulation were investigated in monocytes from unvaccinated SARS-CoV-2 naïve individuals and convalescent COVID-19 participants. The differentially expressed genes (DEGs) identified were involved in the regulation of innate immune signalling pathways associated with anti-viral defence. COVID-19 participants who had experienced severe symptoms exhibited a larger number of DEGs than participants that had mild symptoms. Interestingly, genes encoding receptors that recognise SARS-CoV-2 RNA were downregulated. DDX58, encoding retinoic-acid inducible gene I (RIG-I), was downregulated which corresponded with a reduced response to RIG-I activation. Furthermore, toll-like receptor (TLR)1/2 and TLR4 activation also exhibited reduced cytokine secretion from convalescent COVID-19 monocytes. These data suggest that following SARS-CoV-2 infection, monocytes exhibit altered steady-state gene expression and reduced responsiveness to innate immune receptor activation. As both RIG-I and TLRs recognise components of SARS-CoV-2, this may lead to a moderated inflammatory response to SARS-CoV-2 reinfection in the months following the initial infection.
Collapse
Affiliation(s)
- Sarah Unterberger
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Nadia Terrazzini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK.
| |
Collapse
|
2
|
Ahmadi Badi S, Kariman A, Bereimipour A, Shojaie S, Aghsadeghi M, Khatami S, Masotti A. Association Between Altered Microbiota Composition and Immune System-Related Genes in COVID-19 Infection. Mol Biotechnol 2025; 67:957-973. [PMID: 38456962 DOI: 10.1007/s12033-024-01096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024]
Abstract
Microbiota and immunity affect the host's susceptibility to SARS-CoV-2 infection and the severity of COVID-19. This study aimed to identify significant alterations in the microbiota composition, immune signaling pathways, their potential association, and candidate microRNA in COVID-19 patients using an in silico study model. Enrichment online databases and Python programming were utilized to analyze GSE164805, GSE180594, and GSE182279, as well as NGS data of microbiota composition (PRJNA650244 and PRJNA660302) associated with COVID-19, employing amplicon-based/marker gene sequencing methods. C1, TNF, C2, IL1, and CFH genes were found to have a significant impact on immune signaling pathways. Additionally, we observed a notable decrease in Bacteroides spp. and Faecalibacterium sp., while Escherichia coli, Streptococcus spp., and Akkermansia muciniphila showed increased abundance in COVID-19. Notably, A. muciniphila demonstrated an association with immunity through C1 and TNF, while Faecalibacterium sp. was linked to C2 and IL1. The correlation between E. coli and CFH, as well as IL1 and Streptococcus spp. with C2, was identified. hsa-let-7b-5p was identified as a potential candidate that may be involved in the interaction between the microbiota composition, immune response, and COVID-19. In conclusion, integrative in silico analysis shows that these microbiota members are potentially crucial in the immune responses against COVID-19.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran.
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Arian Kariman
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Bereimipour
- Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | | | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
3
|
Wang X, Almet AA, Nie Q. Detecting global and local hierarchical structures in cell-cell communication using CrossChat. Nat Commun 2024; 15:10542. [PMID: 39627184 PMCID: PMC11615294 DOI: 10.1038/s41467-024-54821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Cell-cell communication (CCC) occurs across different biological scales, ranging from interactions between large groups of cells to interactions between individual cells, forming a hierarchical structure. Globally, CCC may exist between clusters or only subgroups of a cluster with varying size, while locally, a group of cells as sender or receiver may exhibit distinct signaling properties. Current existing methods infer CCC from single-cell RNA-seq or Spatial Transcriptomics only between predefined cell groups, neglecting the existing hierarchical structure within CCC that are determined by signaling molecules, in particular, ligands and receptors. Here, we develop CrossChat, a novel computational framework designed to infer and analyze the hierarchical cell-cell communication structures using two complementary approaches: a global hierarchical structure using a multi-resolution clustering method, and multiple local hierarchical structures using a tree detection method. This framework provides a comprehensive approach to understand the hierarchical relationships within CCC that govern complex tissue functions. By applying our method to two nonspatial scRNA-seq datasets sampled from COVID-19 patients and mouse embryonic skin, and two spatial transcriptomics datasets generated from Stereo-seq of mouse embryo and 10x Visium of mouse wounded skin, we showcase CrossChat's functionalities for analyzing both global and local hierarchical structures within cell-cell communication.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Mathematics, University of California, Irvine, CA, USA
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA.
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
4
|
Ramarapu R, Wulcan JM, Chang H, Moore PF, Vernau W, Keller SM. Single cell RNA-sequencing of feline peripheral immune cells with V(D)J repertoire and cross species analysis of T lymphocytes. Front Immunol 2024; 15:1438004. [PMID: 39620216 PMCID: PMC11604454 DOI: 10.3389/fimmu.2024.1438004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/23/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction The domestic cat (Felis catus) is a valued companion animal and a model for virally induced cancers and immunodeficiencies. However, species-specific limitations such as a scarcity of immune cell markers constrain our ability to resolve immune cell subsets at sufficient detail. The goal of this study was to characterize circulating feline T cells and other leukocytes based on their transcriptomic landscape and T-cell receptor repertoire using single cell RNA-sequencing. Methods Peripheral blood from 4 healthy cats was enriched for T cells by flow cytometry cell sorting using a mouse anti-feline CD5 monoclonal antibody. Libraries for whole transcriptome, αβ T cell receptor transcripts and γδ T cell receptor transcripts were constructed using the 10x Genomics Chromium Next GEM Single Cell 5' reagent kit and the Chromium Single Cell V(D)J Enrichment Kit with custom reverse primers for the feline orthologs. Results Unsupervised clustering of whole transcriptome data revealed 7 major cell populations - T cells, neutrophils, monocytic cells, B cells, plasmacytoid dendritic cells, mast cells and platelets. Sub cluster analysis of T cells resolved naive (CD4+ and CD8+), CD4+ effector T cells, CD8+ cytotoxic T cells and γδ T cells. Cross species analysis revealed a high conservation of T cell subsets along an effector gradient with equitable representation of veterinary species (horse, dog, pig) and humans with the cat. Our V(D)J repertoire analysis identified a subset of CD8+ cytotoxic T cells with skewed TRA and TRB gene usage, conserved TRA and TRB junctional motifs, restricted TRA/TRB pairing and reduced diversity in TRG junctional length. We also identified a public γδ T cell subset with invariant TRD and TRG chains and a CD4+ TEM-like phenotype. Among monocytic cells, we resolved three clusters of classical monocytes with polarization into pro- and anti-inflammatory phenotypes in addition to a cluster of conventional dendritic cells. Lastly, our neutrophil sub clustering revealed a larger mature neutrophil cluster and a smaller exhausted/activated cluster. Discussion Our study is the first to characterize subsets of circulating T cells utilizing an integrative approach of single cell RNA-sequencing, V(D)J repertoire analysis and cross species analysis. In addition, we characterize the transcriptome of several myeloid cell subsets and demonstrate immune cell relatedness across different species.
Collapse
MESH Headings
- Animals
- Cats
- Single-Cell Analysis
- Transcriptome
- Species Specificity
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Dogs
- Sequence Analysis, RNA
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- RNA-Seq
- V(D)J Recombination/genetics
Collapse
Affiliation(s)
- Raneesh Ramarapu
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Judit M. Wulcan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Peter F. Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - William Vernau
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Stefan M. Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Almulla AF, Thipakorn Y, Zhou B, Vojdani A, Maes M. Immune activation and immune-associated neurotoxicity in Long-COVID: A systematic review and meta-analysis of 103 studies comprising 58 cytokines/chemokines/growth factors. Brain Behav Immun 2024; 122:75-94. [PMID: 39127088 DOI: 10.1016/j.bbi.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Multiple studies have shown that Long COVID (LC) disease is associated with heightened immune activation, as evidenced by elevated levels of inflammatory mediators. However, there is no comprehensive meta-analysis focusing on activation of the immune inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS) along with other immune phenotypes in LC patients. OBJECTIVES This meta-analysis is designed to explore the IRS and CIRS profiles in LC patients, the individual cytokines, chemokines, growth factors, along with C-reactive protein (CRP) and immune-associated neurotoxicity. METHODS To gather relevant studies for our research, we conducted a thorough search using databases such as PubMed, Google Scholar, and SciFinder, covering all available literature up to July 5th, 2024. RESULTS The current meta-analysis encompassed 103 studies that examined multiple immune profiles, C-reactive protein, and 58 cytokines/chemokines/growth factors in 5502 LC patients versus 5962 normal controls (NC). LC patients showed significant increases in IRS/CIRS ratio (standardized mean difference (SMD: 0.156, confidence interval (CI): 0.062;0.250), IRS (SMD: 0.338, CI: 0.236;0.440), M1 macrophage (SMD: 0.371, CI: 0.263;0.480), T helper (Th)1 (SMD: 0.316, CI: 0.185;0.446), Th17 (SMD: 0.439, CI: 0.302;0.577) and immune-associated neurotoxicity (SMD: 0.384, CI: 0.271;0.497). In addition, CRP and 21 different cytokines displayed significantly elevated levels in LC patients compared to NC. CONCLUSION LC disease is characterized by IRS activation and increased immune-associated neurotoxicity.
Collapse
Affiliation(s)
- Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA; Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine. Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Strategic Research and Innovation Program for the Development of MU - PLOVDIV-(SRIPD-MUP), European Union - NextGenerationEU; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
6
|
Wang W, Ma L, Liu B, Ouyang L. The role of trained immunity in sepsis. Front Immunol 2024; 15:1449986. [PMID: 39221248 PMCID: PMC11363069 DOI: 10.3389/fimmu.2024.1449986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction syndrome caused by dysregulated host response to infection, characterized by a systemic inflammatory response to infection. The use of antibiotics, fluid resuscitation, and organ support therapy has limited prognostic benefit in patients with sepsis, and its incidence is not diminishing, which is attracting increased attention in medicine. Sepsis remains one of the most debilitating and expensive illnesses. One of the main reasons of septic mortality is now understood to be disruption of immune homeostasis. Immunotherapy is revolutionizing the treatment of illnesses in which dysregulated immune responses play a significant role. This "trained immunity", which is a potent defense against infection regardless of the type of bacteria, fungus, or virus, is attributed to the discovery that the innate immune cells possess immune memory via metabolic and epigenetic reprogramming. Here we reviewed the immunotherapy of innate immune cells in sepsis, the features of trained immunity, and the relationship between trained immunity and sepsis.
Collapse
Affiliation(s)
| | | | | | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
7
|
Jin Q, Ma W, Zhang W, Wang H, Geng Y, Geng Y, Zhang Y, Gao D, Zhou J, Li L, Gou Y, Zhong B, Li J, Hou W, Lu S. Clinical and hematological characteristics of children infected with the omicron variant of SARS-CoV-2: role of the combination of the neutrophil: lymphocyte ratio and eosinophil count in distinguishing severe COVID-19. Front Pediatr 2024; 12:1305639. [PMID: 38978839 PMCID: PMC11228319 DOI: 10.3389/fped.2024.1305639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Investigate the clinical/hematological characteristics of children infected with the Omicron variant of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and identify an effective indicator to distinguish coronavirus disease 2019 (COVID-19) severity in children. Methods A retrospective study was conducted through electronic medical records from pediatric patients. The demographic, clinical, and routine blood test (RBT) features of children diagnosed by real-time PCR for SARS-CoV-2 were collected. Results Data of 261 patients were analyzed. The most common abnormality shown by RBTs was increased monocyte count (68%). Children had "mild-moderate" or "severe" forms of COVID-19. Prevalence of abnormal neutrophil count (p = 0.048), eosinophil count (p = 0.006), mean corpuscular volume (p = 0.033), mean platelet volume (p = 0.006), platelet-large cell ratio (p = 0.043), and red blood cell distribution width-standard deviation (p = 0.031) were significantly different in the two types. A combination of the neutrophil: lymphocyte ratio (NLR) and eosinophil count for diagnosing severe COVID-19 presented the largest AUC (0.688, 95% CI = 0.599-0.777; p < 0.001), and the AUC increased with a decrease in age. Conclusions Combination of the NLR and eosinophil count might be a promising indicator for identifying severe COVID-19 in children at infection onset.
Collapse
Affiliation(s)
- Qiaoyan Jin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biochemistry and Molecular Biology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenxian Ma
- Department of Biochemistry and Molecular Biology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wei Zhang
- Xijing 986 Hospital Department, Air Force Medical University, Xi’an, China
| | - Huiyuan Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yiongxiang Geng
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Geng
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dan Gao
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lin Li
- Xijing 986 Hospital Department, Air Force Medical University, Xi’an, China
| | - Yaping Gou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xi’an, China
| | - Bo Zhong
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Hou
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Ramarapu R, Wulcan JM, Chang H, Moore PF, Vernau W, Keller SM. Single cell RNA-sequencing of feline peripheral immune cells with V(D)J repertoire and cross species analysis of T lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595010. [PMID: 38826195 PMCID: PMC11142102 DOI: 10.1101/2024.05.21.595010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Introduction The domestic cat (Felis catus) is a valued companion animal and a model for virally induced cancers and immunodeficiencies. However, species-specific limitations such as a scarcity of immune cell markers constrain our ability to resolve immune cell subsets at sufficient detail. The goal of this study was to characterize circulating feline T cells and other leukocytes based on their transcriptomic landscape and T-cell receptor repertoire using single cell RNA-sequencing. Methods Peripheral blood from 4 healthy cats was enriched for T cells by flow cytometry cell sorting using a mouse anti-feline CD5 monoclonal antibody. Libraries for whole transcriptome, alpha/beta T cell receptor transcripts and gamma/delta T cell receptor transcripts were constructed using the 10x Genomics Chromium Next GEM Single Cell 5' reagent kit and the Chromium Single Cell V(D)J Enrichment Kit with custom reverse primers for the feline orthologs. Results Unsupervised clustering of whole transcriptome data revealed 7 major cell populations - T cells, neutrophils, monocytic cells, B cells, plasmacytoid dendritic cells, mast cells and platelets. Sub cluster analysis of T cells resolved naive (CD4+ and CD8+), CD4+ effector T cells, CD8+ cytotoxic T cells and gamma/delta T cells. Cross species analysis revealed a high conservation of T cell subsets along an effector gradient with equitable representation of veterinary species (horse, dog, pig) and humans with the cat. Our V(D)J repertoire analysis demonstrated a skewed T-cell receptor alpha gene usage and a restricted T-cell receptor gamma junctional length in CD8+ cytotoxic T cells compared to other alpha/beta T cell subsets. Among myeloid cells, we resolved three clusters of classical monocytes with polarization into pro- and anti-inflammatory phenotypes in addition to a cluster of conventional dendritic cells. Lastly, our neutrophil sub clustering revealed a larger mature neutrophil cluster and a smaller exhausted/activated cluster. Discussion Our study is the first to characterize subsets of circulating T cells utilizing an integrative approach of single cell RNA-sequencing, V(D)J repertoire analysis and cross species analysis. In addition, we characterize the transcriptome of several myeloid cell subsets and demonstrate immune cell relatedness across different species.
Collapse
Affiliation(s)
- Raneesh Ramarapu
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Judit M Wulcan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Peter F Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - William Vernau
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Stefan M Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
9
|
Li H, Zhao J, Xing Y, Chen J, Wen Z, Ma R, Han F, Huang B, Wang H, Li C, Chen Y, Ning X. Identification of Age-Related Characteristic Genes Involved in Severe COVID-19 Infection Among Elderly Patients Using Machine Learning and Immune Cell Infiltration Analysis. Biochem Genet 2024:10.1007/s10528-024-10802-9. [PMID: 38656671 DOI: 10.1007/s10528-024-10802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms and exacerbate the condition of basic diseases with long COVID-19 syndrome. However, the molecular mechanisms underlying severe COVID-19 in the elderly patients remain unclear. Our study aims to investigate the function of the interaction between disease-characteristic genes and immune cell infiltration in patients with severe COVID-19 infection. COVID-19 datasets (GSE164805 and GSE180594) and aging dataset (GSE69832) were obtained from the Gene Expression Omnibus database. The combined different expression genes (DEGs) were subjected to Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Diseases Ontology functional enrichment analysis, Gene Set Enrichment Analysis, machine learning, and immune cell infiltration analysis. GO and KEGG enrichment analyses revealed that the eight DEGs (IL23A, PTGER4, PLCB1, IL1B, CXCR1, C1QB, MX2, ALOX12) were mainly involved in inflammatory mediator regulation of TRP channels, coronavirus disease-COVID-19, and cytokine activity signaling pathways. Three-degree algorithm (LASSO, SVM-RFE, KNN) and correlation analysis showed that the five DEGs up-regulated the immune cells of macrophages M0/M1, memory B cells, gamma delta T cell, dendritic cell resting, and master cell resisting. Our study identified five hallmark genes that can serve as disease-characteristic genes and target immune cells infiltrated in severe COVID-19 patients among the elderly population, which may contribute to the study of pathogenesis and the evaluation of diagnosis and prognosis in aging patients infected with severe COVID-19.
Collapse
Affiliation(s)
- Huan Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
- Department of Nephrology, The Second People's Hospital of Shaan xi Province, Xi'an, China
| | - Jin Zhao
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia Chen
- Xi'an Medical University, Xi'an, China
| | | | - Rui Ma
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Fengxia Han
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Boyong Huang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Hao Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Cui Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Yang Chen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
10
|
Henao-Agudelo JS, Ayala S, Badiel M, Zea-Vera AF, Matta Cortes L. Classical monocytes-low expressing HLA-DR is associated with higher mortality rate in SARS-CoV-2+ young patients with severe pneumonia. Heliyon 2024; 10:e24099. [PMID: 38268832 PMCID: PMC10803910 DOI: 10.1016/j.heliyon.2024.e24099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Aims This study aimed to investigate whether monocyte dysregulation and hyperinflammation serve as predictive markers for mortality in young patients with SARS-CoV-2 severe pneumonia. Methods A prospective cohort study was conducted in a tertiary-level public University Hospital in Colombia. Forty young adults (18-50 years of age) with severe pneumonia and SARS-CoV-2 infection confirmed by qPCR, were enrroled. Serum cytokines and the monocyte phenotype profile, including PDL1/HLA-DR expression, were determined during the first 24 h of hospitalization. Routine laboratory parameters were measured throughout patient follow-up until either death or hospital discharge. We also included a cohort of twenty-five healthy control subjects. Key findings Elevated levels of IL-10, IL-8, and IL-6 cytokines emerged as robust predictors of mortality in young adults with severe pneumonia due to SARS-CoV-2 infected. A descriptive analysis revealed a cumulative mortality rate of 30 % in unvaccinated and ICU-admitted patients. Patients who died had significantly lower expression of HLA-DR on their classical monocytes subsets (CD14+CD16-) than survivors and healthy controls. Lower expression of HLA-DR was associated with greater clinical severity (APACHE≥12) and bacterial coinfection (relative risk 2.5 95%CI [1.18-5.74]). Notably, the expression of HLA-DR in 27.5 % of CD14+/CD16- monocytes was associated with a significantly lower probability of survival. Significance The early reduction in HLA-DR expression within classical monocytes emerged as an independent predictor of mortality, irrespective of comorbidities. Together with PD-L1 expression and cytokine alterations, these findings support the notion that monocyte immunosuppression plays a fundamental role in the pathogenesis and mortality of young patients infected with SARS-CoV-2. These findings hold significant implications for risk assessment and therapeutic strategies in managing critically ill young adults with SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Sebastian Ayala
- Department of Internal Medicine, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle Evaristo García, Cali, Colombia
| | - Marisol Badiel
- Department of Internal Medicine, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle Evaristo García, Cali, Colombia
| | - Andrés F. Zea-Vera
- School of Basic Sciences, Universidad del Valle, Cali, Colombia
- LCIM//Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Lorena Matta Cortes
- Department of Internal Medicine, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle Evaristo García, Cali, Colombia
| |
Collapse
|
11
|
Lu J, Chen Y, Zhou K, Ling Y, Qin Q, Lu W, Qin L, Mou C, Zhang J, Zheng X, Qin K. Immune characteristics of kidney transplant recipients with acute respiratory distress syndrome induced by COVID-19 at single-cell resolution. Respir Res 2024; 25:34. [PMID: 38238762 PMCID: PMC10795319 DOI: 10.1186/s12931-024-02682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND COVID-19-induced acute respiratory distress syndrome (ARDS) can result in tissue damage and multiple organ dysfunction, especially in kidney transplant recipients (KTRs) receiving immunosuppressive drugs. Presently, single-cell research on COVID-19-induced ARDS is considerably advanced, yet knowledge about ARDS in KTRs is still constrained. METHODS Single-cell RNA sequencing (scRNA-seq) analysis was performed to construct a comprehensive single-cell immune landscape of the peripheral blood mononuclear cells (PBMCs) of eight patients with COVID-19-induced ARDS, five KTRs with COVID-19-induced ARDS, and five healthy individuals. Subsequently, we conducted a comprehensive bioinformatics analysis, including cell clustering, enrichment analysis, trajectory analysis, gene regulatory network analysis, and cell-cell interaction analysis, to investigate the heterogeneity of the immune microenvironment in KTRs with ARDS. RESULT Our study revealed that KTRs exhibit significant heterogeneity with COVID-19-induced ARDS compared with those of other individuals, with significant reductions in T cells, as well as an abnormal proliferation of B cells and monocytes. In the context of dual influences from immunosuppression and viral infection, KTRs exhibited more specific plasma cells, along with significant enrichment of dysfunctional GZMB and XAF1 double-positive effector T cells and IFI27-positive monocytes. Additionally, robust communication existed among T cells and monocytes in cytokine signaling. These effects impede the process of immune reconstitution in KTR patients. CONCLUSION Our findings suggest that KTRs with COVID-19-induced ARDS show elevated antibody levels, impaired T cell differentiation, and dysregulation of innate immunity. In summary, this study provides a theoretical foundation for a comprehensive understanding of COVID-19-induced ARDS in KTRs.
Collapse
Affiliation(s)
- Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Yin Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yicong Ling
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Qianqian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Weisheng Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Lian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Chenglin Mou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China
| | - Xiaowen Zheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Ke Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
- Department of Anesthesiology, Guilin People's Hospital, Guilin, 541002, China.
| |
Collapse
|
12
|
Cianciosi D, Diaz YA, Gaddi AV, Capello F, Savo MT, Palí Casanova RDJ, Martínez Espinosa JC, Pascual Barrera AE, Navarro‐Hortal M, Tian L, Bai W, Giampieri F, Battino M. Can alpha‐linolenic acid be a modulator of “cytokine storm,” oxidative stress and immune response in SARS‐CoV‐2 infection? FOOD FRONTIERS 2024; 5:73-93. [DOI: 10.1002/fft2.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractAlpha‐linolenic acid (ALA) is a long‐chain polyunsaturated essential fatty acid of the Ω3 series found mainly in vegetables, especially in the fatty part of oilseeds, dried fruit, berries, and legumes. It is very popular for its preventive use in several diseases: It seems to reduce the risk of the onset or decrease some phenomena related to inflammation, oxidative stress, and conditions of dysregulation of the immune response. Recent studies have confirmed these unhealthy situations also in patients with severe coronavirus disease 2019 (COVID‐19). Different findings (in vitro, in vivo, and clinical ones), summarized and analyzed in this review, have showed an important role of ALA in other various non‐COVID physiological and pathological situations against “cytokines storm,” chemokines secretion, oxidative stress, and dysregulation of immune cells that are also involved in the infection of the 2019 novel coronavirus. According to the effects of ALA against all the aforementioned situations (also present in patients with a severe clinical picture of severe acute respiratory syndrome‐(CoV‐2) infection), there may be the biologic plausibility of a prophylactic effect of this compound against COVID‐19 symptoms and fatality.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | - Yasmany Armas Diaz
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | | | - Fabio Capello
- International Study Center of Society of Telemedicine and Digital Health Bologna Italy
| | | | - Ramón del Jesús Palí Casanova
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Universidad Internacional Iberoamericana Arecibo Puerto Rico USA
| | - Julio César Martínez Espinosa
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Alina Eugenia Pascual Barrera
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Maria‐Dolores Navarro‐Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre University of Granada Armilla Spain
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang China
| |
Collapse
|
13
|
Shih LJ, Yang CC, Liao MT, Lu KC, Hu WC, Lin CP. An important call: Suggestion of using IL-10 as therapeutic agent for COVID-19 with ARDS and other complications. Virulence 2023; 14:2190650. [PMID: 36914565 PMCID: PMC10026935 DOI: 10.1080/21505594.2023.2190650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has a detrimental impact on public health. COVID-19 usually manifests as pneumonia, which can progress into acute respiratory distress syndrome (ARDS) related to uncontrolled TH17 immune reaction. Currently, there is no effective therapeutic agent to manage COVID-19 with complications. The currently available anti-viral drug remdesivir has an effectiveness of 30% in SARS-CoV-2-induced severe complications. Thus, there is a need to identify effective agents to treat COVID-19 and the associated acute lung injury and other complications. The host immunological pathway against this virus typically involves the THαβ immune response. THαβ immunity is triggered by type 1 interferon and interleukin-27 (IL-27), and the main effector cells of the THαβ immune response are IL10-CD4 T cells, CD8 T cells, NK cells, and IgG1-producing B cells. In particular, IL-10 exerts a potent immunomodulatory or anti-inflammatory effect and is an anti-fibrotic agent for pulmonary fibrosis. Concurrently, IL-10 can ameliorate acute lung injury or ARDS, especially those caused by viruses. Owing to its anti-viral activity and anti-pro-inflammatory effects, in this review, IL-10 is suggested as a possible treatment agent for COVID-19.
Collapse
Affiliation(s)
- Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan
| | - Chun-Chun Yang
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- National Defense Medical Center, Department of Pediatrics, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Pei Lin
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- h Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
14
|
Yang Y, Du T, Yu W, Zhou Y, Yang C, Kuang D, Wang J, Tang C, Wang H, Zhao Y, Yang H, Huang Q, Wu D, Li B, Sun Q, Liu H, Lu S, Peng X. Single-cell transcriptomic atlas of distinct early immune responses induced by SARS-CoV-2 Proto or its variants in rhesus monkey. MedComm (Beijing) 2023; 4:e432. [PMID: 38020713 PMCID: PMC10661830 DOI: 10.1002/mco2.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Immune responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection play a critical role in the pathogenesis and outcome of coronavirus disease 2019 (COVID-19). However, the dynamic profile of immune responses postinfection by SARS-CoV-2 variants of concern (VOC) is not fully understood. In this study, peripheral blood mononuclear cells single-cell sequencing was performed to determine dynamic profiles of immune response to Prototype, Alpha, Beta, and Delta in a rhesus monkey model. Overall, all strains induced dramatic changes in both cellular subpopulations and gene expression levels at 1 day postinfection (dpi), which associated function including adaptive immune response, innate immunity, and IFN response. COVID-19-related genes revealed different gene profiles at 1 dpi among the four SARS-CoV-2 strains, including genes reported in COVID-19 patients with increased risk of autoimmune disease and rheumatic diseases. Delta-infected animal showed inhibition of translation pathway. B cells, T cells, and monocytes showed much commonality rather than specificity among the four strains. Monocytes were the major responders to SARS-CoV-2 infection, and the response lasted longer in Alpha than the other strains. Thus, this study reveals the early immune responses induced by SARS-CoV-2 Proto or its variants in nonhuman primates, which is important information for controlling rapidly evolving viruses.
Collapse
Affiliation(s)
- Yun Yang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Tingfu Du
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Wenhai Yu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Yanan Zhou
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Chengyun Yang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Dexuan Kuang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Junbin Wang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Cong Tang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Haixuan Wang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Yuan Zhao
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Hao Yang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Qing Huang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Daoju Wu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Bai Li
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Qiangming Sun
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationBeijingChina
| | - Hongqi Liu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationBeijingChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationBeijingChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationBeijingChina
- State Key Laboratory of Medical Molecular BiologyDepartment of Molecular Biology and BiochemistryInstitute of Basic Medical SciencesMedical Primate Research CenterNeuroscience CenterChinese Academy of Medical SciencesSchool of Basic MedicinePeking Union Medical CollegeBeijingChina
| |
Collapse
|
15
|
Gu J, Liu Q, Zhang J, Xu S. COVID-19 and trained immunity: the inflammatory burden of long covid. Front Immunol 2023; 14:1294959. [PMID: 38090572 PMCID: PMC10713746 DOI: 10.3389/fimmu.2023.1294959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Severe COVID-19 elicits excessive inflammation mediated by innate immune cells like monocytes. Recent evidence reveals extensive epigenetic changes in monocytes during recovery from severe COVID-19, including increased chromatin accessibility at genes related to cytokine production and leukocyte activation. These changes likely originate from the reprogramming of upstream hematopoietic stem and progenitor cells (HSPCs) and represent "trained immunity". HSPC-to-monocyte transmission of epigenetic memory may explain the persistence of these monocyte alterations despite their short lifespan. IL-6 appears pivotal for imprinting durable epigenetic modifications in monocytes during acute infection, with IL-1β potentially playing a contributory role. The poised inflammatory phenotype of monocytes post-COVID-19 may drive chronic inflammation and tissue damage, contributing to post-acute sequelae of COVID-19 symptoms. COVID-19 could also exacerbate inflammation-related diseases, such multisystem inflammatory syndromes, by altering innate immune tendencies via hematopoietic epigenetic reprogramming. Further clinical investigations quantifying inflammatory mediators and mapping epigenetic changes in HSPCs/monocytes of recovering patients are warranted. Research should also examine whether COVID-19 elicits transgenerational inheritance of epigenetic alterations. Elucidating mechanisms underlying COVID-19-induced monocyte reprogramming and developing interventions targeting key inflammatory regulators like IL-6 may mitigate the sustained inflammatory burden imposed by the aberrant trained immunity post-COVID-19.
Collapse
Affiliation(s)
- Jienan Gu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianhui Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shijie Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Pereira VIC, de Brito Junior LC, Falcão LFM, da Costa Vasconcelos PF, Quaresma JAS, Berg AVVD, Paixão APS, Ferreira RIS, Diks IBC. Monocytes subpopulations pattern in the acute respiratory syndrome coronavirus 2 virus infection and after long COVID-19. Int Immunopharmacol 2023; 124:110994. [PMID: 37804653 DOI: 10.1016/j.intimp.2023.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
INTRODUTION AND OBJECTIVE The present study sought to characterize the pattern of monocyte subpopulations in patients during the course of the infections caused by SARS-CoV-2 virus or who presented long COVID-19 syndrome compared to monocytes from patients with zika virus (Zika) or chikungunya virus (CHIKV). CASUISTRY Study with 89 peripheral blood samples from patients, who underwent hemogram and serology (IgG and IgM) for detection of Zika (Control Group 1, n = 18) or CHIKV (Control Group 2, n = 9), and from patients who underwent hemogram and reverse transcription polymerase chain reaction for detection of SARS-CoV-2 at the acute phase of the disease (Group 3, n = 19); and of patients who presented long COVID-19 syndrome (Group 4, n = 43). The monocyte and subpopulations counts were performed by flow cytometry. RESULTS No significant difference was observed in the total number of monocytes between the groups. The classical (CD14++CD16-) and intermediate (CD14+CD16+) monocytes counts were increased in patients with acute infection or with long COVID-19 syndrome. The monocytes subpopulations counts were lower in patients with infection Zika or CHIKV. CONCLUSION Increase in the monocyte subpopulations in patients with acute infection or with long COVID-19 syndrome may be an important finding of differentiated from the infection Zika or CHIKV.
Collapse
Affiliation(s)
| | - Lacy Cardoso de Brito Junior
- Institute of Biological Sciences at UFPA. Laboratory of General Pathology - Immunopathology and Cytology at FederalUniversity of Pará. Belém, Pará, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Meng QT, Song WQ, Churilov LP, Zhang FM, Wang YF. Psychophysical therapy and underlying neuroendocrine mechanisms for the rehabilitation of long COVID-19. Front Endocrinol (Lausanne) 2023; 14:1120475. [PMID: 37842301 PMCID: PMC10570751 DOI: 10.3389/fendo.2023.1120475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
With the global epidemic and prevention of the COVID-19, long COVID-19 sequelae and its comprehensive prevention have attracted widespread attention. Long COVID-19 sequelae refer to that three months after acute COVID-19, the test of SARS-CoV-2 is negative, but some symptoms still exist, such as cough, prolonged dyspnea and fatigue, shortness of breath, palpitations and insomnia. Its pathological mechanism is related to direct viral damage, immunopathological response, endocrine and metabolism disorders. Although there are more effective methods for treating COVID-19, the treatment options available for patients with long COVID-19 remain quite limited. Psychophysical therapies, such as exercise, oxygen therapy, photobiomodulation, and meditation, have been attempted as treatment modalities for long COVID-19, which have the potential to promote recovery through immune regulation, antioxidant effects, and neuroendocrine regulation. Neuroendocrine regulation plays a significant role in repairing damage after viral infection, regulating immune homeostasis, and improving metabolic activity in patients with long COVID-19. This review uses oxytocin as an example to examine the neuroendocrine mechanisms involved in the psychophysical therapies of long COVID-19 syndrome and proposes a psychophysical strategy for the treatment of long COVID-19.
Collapse
Affiliation(s)
- Qing-Tai Meng
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wu-Qi Song
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Leonid P. Churilov
- Department of Experimental Tuberculosis, St. Petersburg State Research Institute of Phthisiopulmonology, Saint-Petersburg, Russia
| | - Feng-Min Zhang
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Kane AS, Boribong BP, Loiselle M, Chitnis AP, Chavez H, Moldawer LL, Larson SD, Badaki-Makun O, Irimia D, Yonker LM. Monocyte anisocytosis corresponds with increasing severity of COVID-19 in children. Front Pediatr 2023; 11:1177048. [PMID: 37425266 PMCID: PMC10326545 DOI: 10.3389/fped.2023.1177048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Although SARS-CoV-2 infection can lead to severe COVID-19 in children, the role of biomarkers for assessing the risk of progression to severe disease is not well established in the pediatric population. Given the differences in monocyte signatures associated with worsening COVID-19 in adults, we aimed to determine whether monocyte anisocytosis early in the infectious course would correspond with increasing severity of COVID-19 in children. Methods We performed a multicenter retrospective study of 215 children with SARS-CoV-2 infection, Multisystem Inflammatory Syndrome in Children (MIS-C), convalescent COVID-19, and healthy age-matched controls to determine whether monocyte anisocytosis, quantified by monocyte distribution width (MDW) on complete blood count, was associated with increasing severity of COVID-19. We performed exploratory analyses to identify other hematologic parameters in the inflammatory signature of pediatric SARS-CoV-2 infection and determine the most effective combination of markers for assessing COVID-19 severity in children. Results Monocyte anisocytosis increases with COVID-19 severity and need for hospitalization. Although other inflammatory markers such as lymphocyte count, neutrophil/lymphocyte ratio, C-reactive protein, and cytokines correlate with disease severity, these parameters were not as sensitive as MDW for identifying severe disease in children. An MDW threshold of 23 offers a sensitive marker for severe pediatric COVID-19, with improved accuracy when assessed in combination with other hematologic parameters. Conclusion Monocyte anisocytosis corresponds with shifting hematologic profiles and inflammatory markers in children with COVID-19, and MDW serves as a clinically accessible biomarker for severe COVID-19 in children.
Collapse
Affiliation(s)
- Abigail S. Kane
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Brittany P. Boribong
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Maggie Loiselle
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Anagha P. Chitnis
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Hector Chavez
- Department of Pediatrics, Jackson Memorial Hospital, Miami, FL, United States
- Department of Pediatric Emergency Medicine, Holtz Children’s Hospital, Miami, FL, United States
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Shawn D. Larson
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Oluwakemi Badaki-Makun
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Center for Data Science in Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Daniel Irimia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Surgery, Shriners Burn Hospital, Boston, MA, United States
| | - Lael M. Yonker
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Vettori M, Dima F, Henry BM, Carpenè G, Gelati M, Celegon G, Salvagno GL, Lippi G. Effects of Different Types of Recombinant SARS-CoV-2 Spike Protein on Circulating Monocytes' Structure. Int J Mol Sci 2023; 24:ijms24119373. [PMID: 37298324 DOI: 10.3390/ijms24119373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This study investigated the biological effects on circulating monocytes after challenge with SARS-CoV-2 recombinant spike protein. Whole blood collected from seven ostensibly healthy healthcare workers was incubated for 15 min with 2 and 20 ng/mL final concentration of recombinant spike protein of Ancestral, Alpha, Delta, and Omicron variants. Samples were analyzed with Sysmex XN and DI-60 analyzers. Cellular complexity (i.e., the presence of granules, vacuoles and other cytoplasmic inclusions) increased in all samples challenged with the recombinant spike protein of the Ancestral, Alpha, and Delta variants, but not in those containing Omicron. The cellular content of nucleic acids was constantly decreased in most samples, achieving statistical significance in those containing 20 ng/mL of Alpha and Delta recombinant spike proteins. The heterogeneity of monocyte volumes significantly increased in all samples, achieving statistical significance in those containing 20 ng/mL of recombinant spike protein of the Ancestral, Alpha and Delta variants. The monocyte morphological abnormalities after spike protein challenge included dysmorphia, granulation, intense vacuolization, platelet phagocytosis, development of aberrant nuclei, and cytoplasmic extrusions. The SARS-CoV-2 spike protein triggers important monocyte morphological abnormalities, more evident in cells challenged with recombinant spike protein of the more clinically severe Alpha and Delta variants.
Collapse
Affiliation(s)
- Marco Vettori
- Section of Clinical Biochemistry, University of Verona, 37129 Verona, Italy
| | - Francesco Dima
- Section of Clinical Biochemistry, University of Verona, 37129 Verona, Italy
| | - Brandon Michael Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Giovanni Carpenè
- Section of Clinical Biochemistry, University of Verona, 37129 Verona, Italy
| | - Matteo Gelati
- Section of Clinical Biochemistry, University of Verona, 37129 Verona, Italy
| | - Giovanni Celegon
- Section of Clinical Biochemistry, University of Verona, 37129 Verona, Italy
| | - Gian Luca Salvagno
- Section of Clinical Biochemistry, University of Verona, 37129 Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, 37129 Verona, Italy
| |
Collapse
|
20
|
Park J, Dean LS, Jiyarom B, Gangcuangco LM, Shah P, Awamura T, Ching LL, Nerurkar VR, Chow DC, Igno F, Shikuma CM, Devendra G. Elevated circulating monocytes and monocyte activation in COVID-19 convalescent individuals. Front Immunol 2023; 14:1151780. [PMID: 37077911 PMCID: PMC10106598 DOI: 10.3389/fimmu.2023.1151780] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Background Monocytes and macrophages play a pivotal role in inflammation during acute SARS-CoV-2 infection. However, their contribution to the development of post-acute sequelae of SARS-CoV-2 infection (PASC) are not fully elucidated. Methods A cross-sectional study was conducted comparing plasma cytokine and monocyte levels among three groups: participants with pulmonary PASC (PPASC) with a reduced predicted diffusing capacity for carbon monoxide [DLCOc, <80%; (PG)]; fully recovered from SARS-CoV-2 with no residual symptoms (recovered group, RG); and negative for SARS-CoV-2 (negative group, NG). The expressions of cytokines were measured in plasma of study cohort by Luminex assay. The percentages and numbers of monocyte subsets (classical, intermediate, and non-classical monocytes) and monocyte activation (defined by CD169 expression) were analyzed using flow cytometry analysis of peripheral blood mononuclear cells. Results Plasma IL-1Ra levels were elevated but FGF levels were reduced in PG compared to NG. Circulating monocytes and three subsets were significantly higher in PG and RG compared to NG. PG and RG exhibited higher levels of CD169+ monocyte counts and higher CD169 expression was detected in intermediate and non-classical monocytes from RG and PG than that found in NG. Further correlation analysis with CD169+ monocyte subsets revealed that CD169+ intermediate monocytes negatively correlated with DLCOc%, and CD169+ non-classical monocytes positively correlated with IL-1α, IL-1β, MIP-1α, Eotaxin, and IFN-γ. Conclusion This study present evidence that COVID convalescents exhibit monocyte alteration beyond the acute COVID-19 infection period even in convalescents with no residual symptoms. Further, the results suggest that monocyte alteration and increased activated monocyte subsets may impact pulmonary function in COVID-19 convalescents. This observation will aid in understanding the immunopathologic feature of pulmonary PASC development, resolution, and subsequent therapeutic interventions.
Collapse
Affiliation(s)
- Juwon Park
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Logan S. Dean
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Louie Mar Gangcuangco
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Parthav Shah
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Thomas Awamura
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Lauren L. Ching
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Dominic C. Chow
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Fritzie Igno
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Gehan Devendra
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Pulmonary and Critical Care, Queen’s Medical Center, Honolulu, HI, United States
| |
Collapse
|
21
|
Barh D, Aburjaile FF, Tavares TS, da Silva ME, Bretz GPM, Rocha IFM, Dey A, de Souza RP, Góes-Neto A, Ribeiro SP, Alzahrani KJ, Alghamdi AA, Alzahrani FM, Halawani IF, Tiwari S, Aljabali AAA, Lundstrom K, Azevedo V, Ganguly NK. Indian food habit & food ingredients may have a role in lowering the severity & high death rate from COVID-19 in Indians: findings from the first nutrigenomic analysis. Indian J Med Res 2023; 157:293-303. [PMID: 37102510 PMCID: PMC10438415 DOI: 10.4103/ijmr.ijmr_1701_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 04/28/2023] Open
Abstract
Background & objectives During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food components across four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case-control studies are required to support our current findings.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics & Applied Biotechnology, Purba Medinipur, West Bengal, India
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventative Veterinary Medicine, School of Veterinary Medicine, Belo Horizonte, Brazil
| | - Thais Silva Tavares
- Department of Laboratory of Algorithms in Biology, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | | | | - Igor Fernando Martins Rocha
- Department of Centre of Research on Health Vulnerability, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Annesha Dey
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics & Applied Biotechnology, Purba Medinipur, West Bengal, India
| | - Renan Pedra de Souza
- Department of Laboratory of Integrative Biology, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Aristóteles Góes-Neto
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Sérvio Pontes Ribeiro
- Department of Laboratory of Ecology of Diseases & Forests, Nucleus of Biological Research, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahmad A. Alghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim Faisal Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sandeep Tiwari
- Department of Post-Graduation Programs in Microbiology and Immunology, Institute of Biology and Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | | | - Vasco Azevedo
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Nirmal Kumar Ganguly
- Policy Center for Biomedical Research, Translational Health Science & Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
22
|
Vanhorebeek I, Van den Berghe G. The epigenetic legacy of ICU feeding and its consequences. Curr Opin Crit Care 2023; 29:114-122. [PMID: 36794929 PMCID: PMC9994844 DOI: 10.1097/mcc.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
PURPOSE OF REVIEW Many critically ill patients face physical, mental or neurocognitive impairments up to years later, the etiology remaining largely unexplained. Aberrant epigenetic changes have been linked to abnormal development and diseases resulting from adverse environmental exposures like major stress or inadequate nutrition. Theoretically, severe stress and artificial nutritional management of critical illness thus could induce epigenetic changes explaining long-term problems. We review supporting evidence. RECENT FINDINGS Epigenetic abnormalities are found in various critical illness types, affecting DNA-methylation, histone-modification and noncoding RNAs. They at least partly arise de novo after ICU-admission. Many affect genes with functions relevant for and several associate with long-term impairments. As such, de novo DNA-methylation changes in critically ill children statistically explained part of their disturbed long-term physical/neurocognitive development. These methylation changes were in part evoked by early-parenteral-nutrition (early-PN) and statistically explained harm by early-PN on long-term neurocognitive development. Finally, long-term epigenetic abnormalities beyond hospital-discharge have been identified, affecting pathways highly relevant for long-term outcomes. SUMMARY Epigenetic abnormalities induced by critical illness or its nutritional management provide a plausible molecular basis for their adverse effects on long-term outcomes. Identifying treatments to further attenuate these abnormalities opens perspectives to reduce the debilitating legacy of critical illness.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
23
|
Islam MS, Wang Z, Abdel-Mohsen M, Chen X, Montaner LJ. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. J Leukoc Biol 2023; 113:236-254. [PMID: 36807444 DOI: 10.1093/jleuko/qiac001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
A significant number of persons with coronavirus disease 2019 (COVID-19) experience persistent, recurrent, or new symptoms several months after the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This phenomenon, termed post-acute sequelae of SARS-CoV-2 (PASC) or long COVID, is associated with high viral titers during acute infection, a persistently hyperactivated immune system, tissue injury by NETosis-induced micro-thrombofibrosis (NETinjury), microbial translocation, complement deposition, fibrotic macrophages, the presence of autoantibodies, and lymphopenic immune environments. Here, we review the current literature on the immunological imbalances that occur during PASC. Specifically, we focus on data supporting common immunopathogenesis and tissue injury mechanisms shared across this highly heterogenous disorder, including NETosis, coagulopathy, and fibrosis. Mechanisms include changes in leukocyte subsets/functions, fibroblast activation, cytokine imbalances, lower cortisol, autoantibodies, co-pathogen reactivation, and residual immune activation driven by persistent viral antigens and/or microbial translocation. Taken together, we develop the premise that SARS-CoV-2 infection results in PASC as a consequence of acute and/or persistent single or multiple organ injury mediated by PASC determinants to include the degree of host responses (inflammation, NETinjury), residual viral antigen (persistent antigen), and exogenous factors (microbial translocation). Determinants of PASC may be amplified by comorbidities, age, and sex.
Collapse
Affiliation(s)
- Md Sahidul Islam
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Zhaoxiong Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Research Building N22, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| |
Collapse
|
24
|
Liu S, Luo W, Szatmary P, Zhang X, Lin JW, Chen L, Liu D, Sutton R, Xia Q, Jin T, Liu T, Huang W. Monocytic HLA-DR Expression in Immune Responses of Acute Pancreatitis and COVID-19. Int J Mol Sci 2023; 24:3246. [PMID: 36834656 PMCID: PMC9964039 DOI: 10.3390/ijms24043246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease with increasing incidence worldwide. COVID-19 is a potentially life-threatening contagious disease spread throughout the world, caused by severe acute respiratory syndrome coronavirus 2. More severe forms of both diseases exhibit commonalities with dysregulated immune responses resulting in amplified inflammation and susceptibility to infection. Human leucocyte antigen (HLA)-DR, expressed on antigen-presenting cells, acts as an indicator of immune function. Research advances have highlighted the predictive values of monocytic HLA-DR (mHLA-DR) expression for disease severity and infectious complications in both acute pancreatitis and COVID-19 patients. While the regulatory mechanism of altered mHLA-DR expression remains unclear, HLA-DR-/low monocytic myeloid-derived suppressor cells are potent drivers of immunosuppression and poor outcomes in these diseases. Future studies with mHLA-DR-guided enrollment or targeted immunotherapy are warranted in more severe cases of patients with acute pancreatitis and COVID-19.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjuan Luo
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Xiaoying Zhang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Jin
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Langnau C, Janing H, Kocaman H, Gekeler S, Günter M, Petersen-Uribe Á, Jaeger P, Koch B, Kreisselmeier KP, Castor T, Rath D, Gawaz MP, Autenrieth SE, Mueller KAL. Recovery of systemic hyperinflammation in patients with severe SARS-CoV-2 infection. Biomarkers 2023; 28:97-110. [PMID: 36377411 DOI: 10.1080/1354750x.2022.2148745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Patients with cardiovascular disease (CVD) and acute SARS-CoV-2 infection might show an altered immune response during COVID-19. MATERIAL AND METHODS Twenty-three patients with CVD and SARS-CoV-2 infection were prospectively enrolled and received a cardiological assessment at study entry and during follow-up visit. Inclusion criteria of our study were age older than 18 years, presence of CVD, and acute SARS-CoV-2 infection. The median age of the patient cohort was 69 (IQR 55-79) years. 12 (52.2%) patients were men. Peripheral monocytes and chemokine/cytokine profiles were analysed. RESULTS Numbers of classical and non-classical monocytes were significantly decreased during acute SARS-CoV-2 infection compared to 3-month recovery. While classical monocytes reached the expected level in peripheral blood after 3 months, the number of non-classical monocytes remained significantly reduced. DISCUSSION All three monocyte subsets exhibited changes of established adhesion and activation markers. Interestingly, they also expressed higher levels of pro-inflammatory cytokines like macrophage migration inhibitory factor (MIF) at the time of recovery, although MIF was only slightly increased during the acute phase. CONCLUSION Changes of monocyte phenotypes and increased MIF expression after 3-month recovery from acute SARS-CoV-2 infection may indicate persistent, possibly long-lasting, pro-inflammatory monocyte function in CVD patients.
Collapse
Affiliation(s)
- Carolin Langnau
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Henrik Janing
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Hüseyin Kocaman
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Sarah Gekeler
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Manina Günter
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany.,Department of Dendritic Cells in Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Álvaro Petersen-Uribe
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Philippa Jaeger
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Barbara Koch
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Klaus-Peter Kreisselmeier
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Stella E Autenrieth
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany.,Department of Dendritic Cells in Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Karin Anne Lydia Mueller
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
26
|
Sparks R, Lau WW, Liu C, Han KL, Vrindten KL, Sun G, Cox M, Andrews SF, Bansal N, Failla LE, Manischewitz J, Grubbs G, King LR, Koroleva G, Leimenstoll S, Snow L, Chen J, Tang J, Mukherjee A, Sellers BA, Apps R, McDermott AB, Martins AJ, Bloch EM, Golding H, Khurana S, Tsang JS. Influenza vaccination reveals sex dimorphic imprints of prior mild COVID-19. Nature 2023; 614:752-761. [PMID: 36599369 PMCID: PMC10481789 DOI: 10.1038/s41586-022-05670-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.
Collapse
Affiliation(s)
- Rachel Sparks
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - William W Lau
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- Graduate Program in Biological Sciences, University of Maryland, College Park, MD, USA
| | - Kyu Lee Han
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Kiera L Vrindten
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Guangping Sun
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Milann Cox
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | | | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Laura E Failla
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jody Manischewitz
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Lisa R King
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Galina Koroleva
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - LaQuita Snow
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | | | - Brian A Sellers
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Richard Apps
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA.
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA.
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
González-Cuadrado C, Caro-Espada PJ, Chivite-Lacaba M, Utrero-Rico A, Lozano-Yuste C, Gutierrez-Solis E, Morales E, Sandino-Pérez J, Gil-Etayo FJ, Allende-Martínez L, Laguna-Goya R, Paz-Artal E. Hemodialysis-Associated Immune Dysregulation in SARS-CoV-2-Infected End-Stage Renal Disease Patients. Int J Mol Sci 2023; 24:ijms24021712. [PMID: 36675231 PMCID: PMC9865754 DOI: 10.3390/ijms24021712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Patients on hemodialysis show dysregulated immunity, basal hyperinflammation and a marked vulnerability to COVID-19. We evaluated the immune profile in COVID-19 hemodialysis patients and the changes associated with clinical deterioration after the hemodialysis session. Recruited patients included eight hemodialysis subjects with active, PCR-confirmed SARS-CoV-2 infection, five uninfected hemodialysis patients and five healthy controls. In SARS-CoV-2-infected hemodialysis patients TNF-α, IL-6 and IL-8 were particularly increased. Lymphopenia was mostly due to reduction in CD4+ T, B and central memory CD8+ T cells. There was a predominance of classical and intermediate monocytes with reduced HLA-DR expression and enhanced production of pro-inflammatory molecules. Immune parameters were analysed pre- and post-hemodialysis in three patients with COVID-19 symptoms worsening after the hemodialysis session. There was a higher than 2.5-fold increase in GM-CSF, IFN-γ, IL-1β, IL-2, IL-6, IL-17A and IL-21 in serum, and augmentation of monocytes-derived TNF-α, IL-1β and IL-8 and CXCL10 (p < 0.05). In conclusion, COVID-19 in hemodialysis patients associates with alteration of lymphocyte subsets, increasing of pro-inflammatory cytokines and monocyte activation. The observed worsening during the hemodialysis session in some patients was accompanied by augmentation of particular inflammatory cytokines, which might suggest biomarkers and therapeutic targets to prevent or mitigate the hemodialysis-related deterioration during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cecilia González-Cuadrado
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Correspondence: (C.G.-C.); (E.P.-A.); Tel.: +34-628-502-629 (C.G.-C.)
| | | | - Marta Chivite-Lacaba
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Alberto Utrero-Rico
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Claudia Lozano-Yuste
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - Enrique Morales
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Justo Sandino-Pérez
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
| | - Luis Allende-Martínez
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
| | - Rocio Laguna-Goya
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (C.G.-C.); (E.P.-A.); Tel.: +34-628-502-629 (C.G.-C.)
| |
Collapse
|
28
|
Vanderheiden A, Klein RS. Neuroinflammation and COVID-19. Curr Opin Neurobiol 2022; 76:102608. [PMID: 35863101 PMCID: PMC9239981 DOI: 10.1016/j.conb.2022.102608] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a historic pandemic of respiratory disease. COVID-19 also causes acute and post-acute neurological symptoms, which range from mild, such as headaches, to severe, including hemorrhages. Current evidence suggests that there is no widespread infection of the central nervous system (CNS) by SARS-CoV-2, thus what is causing COVID-19 neurological disease? Here, we review potential immunological mechanisms driving neurological disease in COVID-19 patients. We begin by discussing the implications of imbalanced peripheral immunity on CNS function. Next, we examine the evidence for dysregulation of the blood-brain barrier during SARS-CoV-2 infection. Last, we discuss the role myeloid cells may play in promoting COVID-19 neurological disease. Combined, we highlight the role of innate immunity in COVID-19 neuroinflammation and suggest areas for future research.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA; Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA; Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Departments of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Sparks R, Lau WW, Liu C, Han KL, Vrindten KL, Sun G, Cox M, Andrews SF, Bansal N, Failla LE, Manischewitz J, Grubbs G, King LR, Koroleva G, Leimenstoll S, Snow L, Chen J, Tang J, Mukherjee A, Sellers BA, Apps R, McDermott AB, Martins AJ, Bloch EM, Golding H, Khurana S, Tsang JS. Influenza vaccination and single cell multiomics reveal sex dimorphic immune imprints of prior mild COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.02.17.22271138. [PMID: 35233581 PMCID: PMC8887138 DOI: 10.1101/2022.02.17.22271138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Viral infections can have profound and durable functional impacts on the immune system. There is an urgent need to characterize the long-term immune effects of SARS-CoV-2 infection given the persistence of symptoms in some individuals and the continued threat of novel variants. Here we use systems immunology, including longitudinal multimodal single cell analysis (surface proteins, transcriptome, and V(D)J sequences) from 33 previously healthy individuals after recovery from mild, non-hospitalized COVID-19 and 40 age- and sex-matched healthy controls with no history of COVID-19 to comparatively assess the post-infection immune status (mean: 151 days after diagnosis) and subsequent innate and adaptive responses to seasonal influenza vaccination. Identification of both sex-specific and -independent temporally stable changes, including signatures of T-cell activation and repression of innate defense/immune receptor genes (e.g., Toll-like receptors) in monocytes, suggest that mild COVID-19 can establish new post-recovery immunological set-points. COVID-19-recovered males had higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared to healthy males and COVID-19-recovered females, partly attributable to elevated pre-vaccination frequencies of a GPR56 expressing CD8+ T-cell subset in male recoverees that are "poised" to produce higher levels of IFNγ upon inflammatory stimulation. Intriguingly, by day 1 post-vaccination in COVID-19-recovered subjects, the expression of the repressed genes in monocytes increased and moved towards the pre-vaccination baseline of healthy controls, suggesting that the acute inflammation induced by vaccination could partly reset the immune states established by mild COVID-19. Our study reveals sex-dimorphic immune imprints and in vivo functional impacts of mild COVID-19 in humans, suggesting that prior COVID-19, and possibly respiratory viral infections in general, could change future responses to vaccination and in turn, vaccines could help reset the immune system after COVID-19, both in an antigen-agnostic manner.
Collapse
Affiliation(s)
- Rachel Sparks
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA,These authors contributed equally
| | - William W. Lau
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA,These authors contributed equally
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA,Graduate Program in Biological Sciences, University of Maryland, College Park, MD, USA,These authors contributed equally
| | - Kyu Lee Han
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Kiera L. Vrindten
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Guangping Sun
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA,Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Milann Cox
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | | | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Laura E. Failla
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jody Manischewitz
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Lisa R. King
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Galina Koroleva
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - LaQuita Snow
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | | | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | | | | | - Richard Apps
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - Andrew J. Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - John S. Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA,NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA,Correspondence:
| |
Collapse
|
30
|
Kudryavtsev I, Rubinstein A, Golovkin A, Kalinina O, Vasilyev K, Rudenko L, Isakova-Sivak I. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses 2022; 14:1082. [PMID: 35632823 PMCID: PMC9147674 DOI: 10.3390/v14051082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in humans more than two years ago and caused an unprecedented socio-economic burden on all countries around the world. Since then, numerous studies have attempted to identify various mechanisms involved in the alterations of innate and adaptive immunity in COVID-19 patients, with the ultimate goal of finding ways to correct pathological changes and improve disease outcomes. State-of-the-art research methods made it possible to establish precise molecular mechanisms which the new virus uses to trigger multisystem inflammatory syndrome and evade host antiviral immune responses. In this review, we present a comprehensive analysis of published data that provide insight into pathological changes in T and B cell subsets and their phenotypes, accompanying the acute phase of the SARS-CoV-2 infection. This knowledge might help reveal new biomarkers that can be utilized to recognize case severity early as well as to provide additional objective information on the effective formation of SARS-CoV-2-specific immunity and predict long-term complications of COVID-19, including a large variety of symptoms termed the 'post-COVID-19 syndrome'.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Artem Rubinstein
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Alexey Golovkin
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.G.); (O.K.)
| | - Olga Kalinina
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.G.); (O.K.)
| | - Kirill Vasilyev
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Larisa Rudenko
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Irina Isakova-Sivak
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| |
Collapse
|
31
|
Sarkar S, Sen R. Insights into Cardiovascular Defects and Cardiac Epigenome in the Context of COVID-19. EPIGENOMES 2022; 6:epigenomes6020013. [PMID: 35645252 PMCID: PMC9150012 DOI: 10.3390/epigenomes6020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Although few in number, studies on epigenome of the heart of COVID-19 patients show that epigenetic signatures such as DNA methylation are significantly altered, leading to changes in expression of several genes. It contributes to pathogenic cardiac phenotypes of COVID-19, e.g., low heart rate, myocardial edema, and myofibrillar disarray. DNA methylation studies reveal changes which likely contribute to cardiac disease through unknown mechanisms. The incidence of severe COVID-19 disease, including hospitalization, requiring respiratory support, morbidity, and mortality, is disproportionately higher in individuals with co-morbidities. This poses unprecedented strains on the global healthcare system. While their underlying conditions make patients more susceptible to severe COVID-19 disease, strained healthcare systems, lack of adequate support, or sedentary lifestyles from ongoing lockdowns have proved detrimental to their underlying health conditions, thus pushing them to severe risk of congenital heart disease (CHD) itself. Prophylactic vaccines against COVID-19 have ushered new hope for CHD. A common connection between COVID-19 and CHD is SARS-CoV-2’s host receptor ACE2, because ACE2 regulates and protects organs, including the heart, in various ways. ACE2 is a common therapeutic target against cardiovascular disease and COVID-19 which damages organs. Hence, this review explores the above regarding CHDs, cardiovascular damage, and cardiac epigenetics, in COVID-19 patients.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB E2L 4L2, Canada;
| | - Rwik Sen
- Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
- Correspondence:
| |
Collapse
|
32
|
Brauns E, Azouz A, Grimaldi D, Xiao H, Thomas S, Nguyen M, Olislagers V, Vu Duc I, Orte Cano C, Del Marmol V, Pannus P, Libert F, Saussez S, Dauby N, Das J, Marchant A, Goriely S. Functional reprogramming of monocytes in acute and convalescent severe COVID-19 patients. JCI Insight 2022; 7:154183. [PMID: 35380990 PMCID: PMC9090263 DOI: 10.1172/jci.insight.154183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Severe COVID-19 disease is associated with dysregulation of the myeloid compartment during acute infection. Survivors frequently experience long-lasting sequelae, but little is known about the eventual persistence of this immune alteration. Herein, we evaluated TLR-induced cytokine responses in a cohort of mild to critical patients during acute or convalescent phases (n = 97). In the acute phase, we observed impaired cytokine production by monocytes in the patients with the most severe COVID-19. This capacity was globally restored in convalescent patients. However, we observed increased responsiveness to TLR1/2 ligation in patients who recovered from severe disease, indicating that these cells display distinct functional properties at the different stages of the disease. In patients with acute severe COVID-19, we identified a specific transcriptomic and epigenomic state in monocytes that can account for their functional refractoriness. The molecular profile of monocytes from recovering patients was distinct and characterized by increased chromatin accessibility at activating protein 1 (AP1) and MAF loci. These results demonstrate that severe COVID-19 infection has a profound impact on the differentiation status and function of circulating monocytes, during both the acute and the convalescent phases, in a completely distinct manner. This could have important implications for our understanding of short- and long-term COVID-19–related morbidity.
Collapse
Affiliation(s)
- Elisa Brauns
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Hanxi Xiao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Séverine Thomas
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Olislagers
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Ines Vu Duc
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Pieter Pannus
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sven Saussez
- Department of Otolaryngology, Université de Mons, Mons, Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
33
|
Sohn EJ. Functional Roles and Targets of COVID-19 in Blood Cells Determined Using Bioinformatics Analyses. Bioinform Biol Insights 2022; 16:11779322221080266. [PMID: 35221679 PMCID: PMC8874192 DOI: 10.1177/11779322221080266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global epidemic with a high mortality rate. In this study, our goal was to identify the function and associated targets of SARS-CoV-2 from circulating monocytes in the blood and peripheral blood mononuclear cell (PBMC) dataset of patients with COVID-19. Methods The Gene Expression Omnibus database (GSE164805 and GSE180594) was used to identify differentially expressed genes (DEGs). Gene ontology function analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the DEGs were performed using the DAVID database. Results Gene ontology analysis of DEG revealed that GSE164805 and GSE180594 were involved in the regulation of cell migration, upregulation of cell proliferation, and in the activation of the mitogen-activated protein kinase signaling pathway. Kyoto Encyclopedia of Genes and Genomes analysis of GSE164805 revealed that the DEGs were enriched in peroxisome, melanogenesis, and actin regulation. Peroxisome genes were highly expressed in patients with mild and severe COVID-19. Bioinformatics analysis to compare GSE180594 and public data for the single-cell atlas of the peripheral immune response in patients with COVID-19 showed that interferon-associated genes were highly increased in acute COVID-19 PBMC and in CD14+ and CD16+ monocytes from patients with COVID-19. Conclusions We comprehensively analyzed the blood cell gene expression profile data of patients with COVID-19 using bioinformatics methods to preliminary understand the functions and associated targets of DEGs in the blood cells of these patients. Thus, our data provide targets for potential therapies against COVID-19.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, South Korea
| |
Collapse
|
34
|
Brueggeman JM, Zhao J, Schank M, Yao ZQ, Moorman JP. Trained Immunity: An Overview and the Impact on COVID-19. Front Immunol 2022; 13:837524. [PMID: 35251030 PMCID: PMC8891531 DOI: 10.3389/fimmu.2022.837524] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 01/13/2023] Open
Abstract
Effectively treating infectious diseases often requires a multi-step approach to target different components involved in disease pathogenesis. Similarly, the COVID-19 pandemic has become a global health crisis that requires a comprehensive understanding of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection to develop effective therapeutics. One potential strategy to instill greater immune protection against COVID-19 is boosting the innate immune system. This boosting, termed trained immunity, employs immune system modulators to train innate immune cells to produce an enhanced, non-specific immune response upon reactivation following exposure to pathogens, a process that has been studied in the context of in vitro and in vivo clinical studies prior to the COVID-19 pandemic. Evaluation of the underlying pathways that are essential to inducing protective trained immunity will provide insight into identifying potential therapeutic targets that may alleviate the COVID-19 crisis. Here we review multiple immune training agents, including Bacillus Calmette-Guérin (BCG), β-glucan, and lipopolysaccharide (LPS), and the two most popular cell types involved in trained immunity, monocytes and natural killer (NK) cells, and compare the signaling pathways involved in innate immunity. Additionally, we discuss COVID-19 trained immunity clinical trials, emphasizing the potential of trained immunity to fight SARS-CoV-2 infection. Understanding the mechanisms by which training agents activate innate immune cells to reprogram immune responses may prove beneficial in developing preventive and therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Justin M. Brueggeman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States,*Correspondence: Jonathan P. Moorman,
| |
Collapse
|
35
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|