1
|
Kingstad-Bakke B, Lee W, Yount BL, Cleven T, Park H, Sullivan JA, Baric RC, Suresh M. Effector CD8 T cell differentiation in primary and breakthrough SARS-CoV-2 infection in mice. Commun Biol 2025; 8:392. [PMID: 40057586 PMCID: PMC11890755 DOI: 10.1038/s42003-025-07820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The nature of the effector and memory T cell response in the lungs following acute SARS-CoV-2 infections remains largely unknown. To define the pulmonary T-cell response to COVID-19, we compared effector and memory T-cell responses to SARS-CoV-2 and influenza A virus (IAV) in mice. Both viruses elicited potent effector T cell responses in lungs, but memory T cells showed exaggerated contraction in SARS-CoV-2-infected mice. Specifically, unlike the T-bet/EOMES-driven effector transcription program in IAV lungs, SARS-CoV-2-specific CD8 T cells embarked on a STAT-3-centric transcriptional program, a defining characteristic of a pro-fibro-inflammatory program: limited cytotoxicity, diminished expression of tissue-protective inhibitory receptors (PD-1, LAG-3, and TIGIT), and augmented mucosal imprinting (CD103). Circulating CD45RO+HLA-DR+ CD8 T cells in hospitalized COVID-19 patients expressed elevated levels of STAT-3 and low levels of TIGIT. IL-6 blockade experiments implicated IL-6 in STAT-3 induction and downregulation of PD-1 expression on SARS-CoV-2-specific primary effector CD8 T cells. Memory CD8 T cells specific to a single epitope, induced by mucosal vaccination, differentiated into cytotoxic effectors and expressed high levels of CD103, effectively reducing viral burden in lungs following a breakthrough SARS-CoV-2 infection. Our findings have implications for developing targeted immunotherapies to mitigate immunopathology and promote protective T cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Woojong Lee
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Boyd L Yount
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy A Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph C Baric
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Liu Z, Lei M, Bai Y. Chronic Stress Mediates Inflammatory Cytokines Alterations and Its Role in Tumorigenesis. J Inflamm Res 2025; 18:1067-1090. [PMID: 39871957 PMCID: PMC11769853 DOI: 10.2147/jir.s485159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Introduction Prolonged psychological stress is closely associated with cancer due to its role in promoting the release of stress hormones through the sustained activation of the sympathetic-adrenal-medullary system. These hormones interact with receptors on inflammatory cells, leading to the activation of key signaling pathways, including the transcription factors signal transducer and activator of transcription 3 (STAT-3) and kappa-light-chain-enhancer of activated B cells (NF-κB). These factors drive the production of pro-inflammatory substances, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which can influence the initiation and progression of cancer. Purpose This article aims to summarize how the chronic inflammatory environment induced by chronic stress promotes the initiation, progression, and invasion of cancer. By enhancing our understanding of the complex mechanisms through which stress contributes to cancer, we hope to identify new targets for cancer prevention and treatment. Conclusion Chronic stress establishes an inflammatory microenvironment by activating STAT-3 and NF-κB in inflammatory cells. This ongoing inflammation further enhances the activity of these transcription factors, which serve multiple roles: they act as pro-inflammatory agents in inflammatory cells, maintaining chronic inflammation; as oncogenic transcription factors in premalignant cells, promoting cancer initiation; and as pro-differentiation transcription factors in tumor-infiltrating immune cells, facilitating cancer progression. Additionally, the impact of chronic stress varies among different cancer types and individual responses to stress, highlighting the complexity of stress-related cancer mechanisms. Ultimately, this dynamic interplay creates a feedback loop involving IL-6, STAT-3, and TNF-α-NF-κB within the tumor microenvironment, mediating the intricate interactions between inflammation, immunity, and cancer.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Meng Lei
- Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yanxia Bai
- Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
3
|
Song Z, Chen H, Wang X, Zhang Z, Li H, Zhao H, Liu Y, Han Q, Zhang J. Napabucasin-loaded PLGA nanoparticles trigger anti-HCC immune responses by metabolic reprogramming of tumor-associated macrophages. J Transl Med 2024; 22:1125. [PMID: 39707412 DOI: 10.1186/s12967-024-05917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND JAK/STAT3 is one of the critical signaling pathways involved in the occurrence and development of hepatocellular carcinoma (HCC). BBI608 (Napabucasin), as a novel small molecule inhibitor of STAT3, has shown previously excellent anti-HCC effects in vitro and in mouse models. However, low bioavailability, high cytotoxicity and other shortcomings limit its clinical application. In this study, PLGA was selected to prepare Napabucasin PLGA nanoparticles (NPs) by solvent evaporation method, overcoming these limitations and improving the passive targeting effect that nanoparticle mediated. Base on this, we systematically evaluated the anti-HCC effect of Napabucasin-PLGA NPs and explored the underlying mechanisms. METHODS Napabucasin-PLGA NPs were prepared by solvent evaporation method. CCK-8 assay, Annexin V/PI double staining, RT-qPCR, colony formation assay, and Western blotting were performed to evaluate the anti-HCC effect of Napabucasin-PLGA NPs in vitro. Proliferation assay and migration assay were used to detect the effects of Napabucasin-PLGA NPs-treated HCC-TAMs on tumor biological characteristics of HCC cells. Flow cytometry was used to detect anti-HCC immune responses induced by Napabucasin-PLGA NPs in vivo. RESULTS Our results demonstrated that Napabucasin-PLGA NPs could improve the bioavailability of Napabucasin and enhance Napabucasin-mediated the anti-HCC effects in vitro and in vivo with no significant drug toxicity. In addition to the direct inhibitory effects on the tumor biological characteristics of HCC cells, Napabucasin-PLGA NPs could promote the polarization of macrophages from tumor-promoting M2-type to anti-tumor M1-type, improving the tumor immune microenvironment and augmenting T cell-mediated anti-tumor responses. The underlining mechanisms showed Napabucasin-PLGA NPs suppressed the STAT3/FAO signaling axis in HCC-induced tumor-associated macrophages (TAMs). CONCLUSIONS These findings demonstrated Napabucasin-PLGA NPs is a potential therapeutic candidate for HCC, and provided a new theoretical and experimental basis for further development and clinical application of Napabucasin.
Collapse
Affiliation(s)
- Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xueyao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Yi J, Ye Z, Xu H, Zhang H, Cao H, Li X, Wang T, Dong C, Du Y, Dong S, Zhou W. EGCG targeting STAT3 transcriptionally represses PLXNC1 to inhibit M2 polarization mediated by gastric cancer cell-derived exosomal miR-92b-5p. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156137. [PMID: 39566403 DOI: 10.1016/j.phymed.2024.156137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND M2-polarized tumor-associated macrophages (TAMs) predominate in tumor microenvironment (TME) and serve primary functions in tumor progression, including growth, angiogenesis, metastasis, immunosuppression, chemoresistance, and poor prognosis. The reversal of M2 polarization provides a new treatment strategy for cancer. Presently, the molecular mechanisms of M2 polarization have yet to be fully characterized, and there is a lack of effective therapeutic targets and drugs. Cancer cells initiate an immunosuppressive TME by recruiting macrophages and promoting M2 polarization through the secretion of inflammatory factors. Accordingly, blocking cancer cell-induced TAM M2 polarization may present a more effective strategy from the perspective of cancer cells. Hedyotis diffusa Willd (HDW) possesses immunomodulatory and antitumor properties, and is a precious and direct source of small molecule natural products with a dual function of inhibition of tumor growth and tumor cell-mediated M2 polarization. OBJECTIVE To identify a new target promoting gastric cancer (GC) cell growth and GC cell-mediated M2 polarization from mRNA profiles of GC cells treated with HDW injection (HDI) and to excavate a natural product from HDI that can regulate related mRNA and inhibit the aforementioned effects. METHODS RNA sequencing (RNA-seq) was used to analyze HDI-regulated differentially expressed mRNAs (HRmRNAs) in MKN45 cells. Weighted gene co-expression network analysis (WGCNA), univariate and multivariate Cox regression analysis, KM survival curves, and association analysis between HRmRNA and clinical characteristics/tumor infiltrating immune cells (TIICs) individually were utilized to screen out the target HRmRNA associated with prognosis and M2 macrophage infiltration in GC. shRNA lentiviral vectors were used for stably silencing, and transient overexpressing plasmids were constructed for overexpression. CCK8, EdU, colony formation, migration and invasion assays were used to validate the function of drugs and molecules in GC. HDI constituent analysis was performed using UHPLC-QE-MS. A network of HDI constituent-hub transcription factor (TF)-HRmRNA was constructed based on RNA-Seq, network pharmacology and TFs prediction. Exosome isolation and identification were performed using ultracentrifugation, NTA, TEM and western blot. Apoptosis and macrophage phenotypes were determined by flow cytometric analysis. Small RNA-Seq made exosomal miRNA identification. Small molecule interaction with targets were analyzed using molecular docking, SPR and CETSA. The direct relationship between transcription factors and promoters was verified using ChIP-QPCR and dual-luciferase reporter gene assay. A nude mice xenograft tumor model was established for vivo validation. RESULTS HDI inhibited MKN45 cell proliferation, migration, invasion and promoted apoptosis. RNA-Seq identified 2583 HRmRNAs. PLXNC1 was screened out as the target HRmRNA associated with prognosis and M2 macrophage infiltration in GC. PLXNC1 promoted GC cell proliferation and facilitated TAMs M2 polarization by transferring GC cell-derived exosomal miR-92b-5p, inhibiting SOCS7-STAT3 interactions and subsequently activating STAT3 in macrophages. M2 TAMs induced by PLXNC1-mediated GC cell-derived exosomes promoted GC cell migration and invasion. PLXNC1 regulated exosomal miR-92b-5p through the MEK1/MSK1/CREB1 pathway. STAT3 could transcriptionally regulate PLXNC1 expression in GC cells. The network of HDI constituent-hub TF-HRmRNA showed epigallocatechin gallate (EGCG) from HDI targeted STAT3 to transcriptionally regulate PLXNC1 expression. EGCG as a natural product directly bound to STAT3 to diminish its nuclear localization, resulting in the transcriptional repression of PLXNC1 and the reversal of M2 polarization induced by PLXNC1-mediated GC cell-derived exosomes. CONCLUSION PLXNC1 is a novel target exerting dual effects on GC cell proliferation and GC cell-mediated M2 polarization. EGCG derived from HDI inhibits GC cell proliferation and targets STAT3 to inhibit M2 polarization induced by PLXNC1-mediated exosomes derived from GC cells, which may be a multi-target therapeutic agent for GC cell proliferation and immune microenvironment.
Collapse
Affiliation(s)
- Jianfeng Yi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Zhenzhen Ye
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Gansu Provincial Key Laboratory for Mining and Innovation Transformation of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Research Center of Traditional Chinese Medicine of Gansu Province, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Hao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou 310006, Zhejiang, PR China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, PR China
| | - Hui Zhang
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China
| | - Hongtai Cao
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xin Li
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Tianming Wang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Chunlu Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yan Du
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shi Dong
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wence Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China.
| |
Collapse
|
5
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
6
|
Zhao Z, Ma X, Cai Z. The potential role of CD8+ cytotoxic T lymphocytes and one branch connected with tissue-resident memory in non-luminal breast cancer. PeerJ 2024; 12:e17667. [PMID: 39006029 PMCID: PMC11246025 DOI: 10.7717/peerj.17667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Advances in understanding the pathological mechanisms of breast cancer have resulted in the emergence of novel therapeutic strategies. However, triple-negative breast cancer (TNBC), a molecular subtype of breast cancer with a poor prognosis, lacks classical and general therapeutic targets, hindering the clinical application of several therapies to breast cancer. As insights into the unique immunity and molecular mechanisms of TNBC have become more extensive, immunotherapy has gradually become a valuable complementary approach to classical radiotherapy and chemotherapy. CD8+ cells are significant actors in the tumor immunity cycle; thus, research on TNBC immunotherapy is increasingly focused in this direction. Recently, CD8+ tissue-resident memory (TRM) cells, a subpopulation of CD8+ cells, have been explored in relation to breast cancer and found to seemingly play an undeniably important role in tumor surveillance and lymphocytic infiltration. In this review, we summarize the recent advances in the mechanisms and relative targets of CD8+ T cells, and discuss the features and potential applications of CD8+ TRM cells in non-luminal breast cancer immunotherapy.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of Breast Cancer, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xinyu Ma
- Department of Breast Cancer, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhengang Cai
- Department of Breast Cancer, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
7
|
Liu Z, Liu B, Feng Y, Zhao L, Wang Q, He H, Yin T, Zhang Y, Yang L, Gou J, Tang X. Dual-Targeted Self-Adjuvant Heterocyclic Lipidoid@Polyester Hybrid Nanovaccines for Boosting Cancer Immunotherapy. ACS NANO 2024; 18:15557-15575. [PMID: 38837909 DOI: 10.1021/acsnano.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Tumor vaccines have demonstrated a modest response rate, primarily attributed to their inefficient delivery to dendritic cells (DCs), low cross-presentation, DC-intrinsic immunosuppressive signals, and an immunosuppressive tumor microenvironment (TME). Here, draining lymph node (DLN)-targeted and tumor-targeted nanovaccines were proposed to address these limitations, and heterocyclic lipidoid (A18) and polyester (BR647) were synthesized to achieve dual-targeted cancer immunotherapy. Meanwhile, oligo hyaluronic acid (HA) and DMG-PEG2000-Mannose were incorporated to prepare dual-targeted nanovaccines encapsulated with STAT3 siRNA and model antigens. The nanovaccines were designed to target the DLN and the tumor, facilitating the delivery of cargo into the cytoplasm. These dual-targeted nanovaccines improved antigen presentation and DC maturation, activated the stimulator of interferon genes (STING) pathway, enhanced the pro-apoptotic effect, and stimulated antitumor immune responses. Additionally, these dual-targeted nanovaccines overcame immunosuppressive TME, reduced immunosuppressive cells, and promoted the polarization of tumor-associated neutrophils from N2 to N1. Among the four dual-targeted nanovaccines that induced robust antitumor responses, the heterocyclic lipidoid@polyester hybrid nanovaccines (MALO@HBNS) demonstrated the most promising results. Furthermore, a combination strategy involving MALO@HBNS and an anti-PD-L1 antibody exhibited an immensely powerful anticancer role. This work introduced a dual-targeted nanovaccine platform for antitumor treatment, suggesting its potential combination with an immune checkpoint blockade as a comprehensive anticancer strategy.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Boyuan Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yupeng Feng
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Qingqing Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Li Yang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| |
Collapse
|
8
|
Miyazaki A, Kanai Y, Wakamori K, Mizuguchi S, Futatsugi M, Hirano F, Kondo N, Temma T. Synthesis and evaluation of [ 18F]FBNAF, a STAT3-targeting probe, for PET imaging of tumor microenvironment. EJNMMI Radiopharm Chem 2024; 9:46. [PMID: 38834900 DOI: 10.1186/s41181-024-00276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a protein that regulates cell proliferation and differentiation, and it is attracting attention as a new index for evaluating cancer pathophysiology, as its activation has been highly correlated with the development and growth of tumors. With the development of STAT3 inhibitors, the demand for imaging probes will intensify. Noninvasive STAT3 imaging can help determine the cancer status and predict the efficacy of STAT3 inhibitors. In this study, we aimed to develop an imaging probe targeting STAT3 and synthesized [18F]FBNAF, which was derived from a STAT3-selective inhibitor as the lead compound, followed by in vitro and in vivo evaluations of [18F]FBNAF in positron emission tomography for STAT3. RESULTS The results revealed that FBNAF concentration-dependently inhibited STAT3 phosphorylation, similar to the lead compound, thereby supporting radiosynthesis. [18F]FBNAF was easily synthesized from the pinacol boronate ester precursor with suitable radiochemical conversion (46%), radiochemical yield (6.0%), and radiochemical purity (> 97%). [18F]FBNAF exhibited high stability in vitro and in vivo, and radioactivity accumulated in tumor tissues expressing STAT3 with an increasing tumor/blood ratio over time, peaking at 2.6 ± 0.8 at 120 min after injection in tumor-bearing mice. Tumor radioactivity was significantly reduced by the coinjection of a STAT3-selective inhibitor. Furthermore, the localization of radioactivity was almost consistent with STAT3 expression based on ex vivo autoradiography and immunohistochemistry using adjacent tumor sections. CONCLUSIONS Thus, [18F]FBNAF could be the first promising STAT3-targeting probe for PET imaging. A STAT3 imaging probe provides meaningful information on STAT3-associated cancer conditions and in tumor microenvironment.
Collapse
Affiliation(s)
- Anna Miyazaki
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yasukazu Kanai
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
- BNCT Joint Clinical Institute, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| | - Keita Wakamori
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Serina Mizuguchi
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mikiya Futatsugi
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Fuko Hirano
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Naoya Kondo
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
9
|
Chen C, Zhou S, Yang X, Ren M, Qi Y, Mao Y, Yang C. In vitro study of cold atmospheric plasma-activated liquids inhibits malignant melanoma by affecting macrophage polarization through the ROS/JAK2/STAT1 pathway. Biomed Pharmacother 2024; 175:116657. [PMID: 38688171 DOI: 10.1016/j.biopha.2024.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Melanoma is a prevalent malignant skin tumor known for its high invasive ability and a high rate of metastasis, making clinical treatment exceptionally challenging. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment and play a crucial role in tumor survival and development. Cold atmospheric plasma (CAP) is an emerging tool for tumor treatment that has garnered attention from scholars due to its interaction with non-tumor cells in the tumor microenvironment. Here, we used the macrophage lines THP-1 and RAW264.7, as well as the melanoma cell lines A375 and MV3, as research subjects to investigate the effect of plasma-activated liquid (PAL) on macrophage differentiation and its inhibitory effect on melanoma cell proliferation. We confirmed that the killing effect of PAL on melanoma cells was selective. Using flow cytometry and PCR, we discovered that PAL can influence macrophage differentiation. Through in vitro cell coculture, we demonstrated that PAL-treated macrophages can significantly impede tumor cell development and progression, and the effect is more potent than that of PAL directly targeting tumor cells. Furthermore, we have proposed the hypothesis that PAL promotes the differentiation of macrophages into the M1 type through the ROS/JAK2/STAT1 pathway. To test the hypothesis, we employed catalase and fludarabine to block different sites of the pathway. The results were then validated through Western Blot, qPCR and ELISA. This study illustrates that PAL therapy is an effective tumor immunotherapy and expands the scope of tumor immunotherapy. Furthermore, these findings establish a theoretical foundation for potential clinical applications of PAL.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Shiyun Zhou
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Xingyu Yang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Miaomiao Ren
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Yongshuang Qi
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Yiwen Mao
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Chunjun Yang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China.
| |
Collapse
|
10
|
Wang Y, Qi H, Wang T, Zhang W, Shi X, Zhan Q, Li Q, Zhong M. STAT3 and STAT6 polymorphisms predict the severity of adverse reactions in Chinese NSCLC patients receiving EGFR-TKIs therapy. J Chemother 2024; 36:61-71. [PMID: 37151185 DOI: 10.1080/1120009x.2023.2203610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/12/2023] [Indexed: 05/09/2023]
Abstract
A total of 162 non-small cell lung cancer (NSCLC) patients were divided into discovery (N = 68) and validation (N = 94) groups. Nine Janus kinase/Signal transducer and activator of transcription (JAK/STAT) pathway-related single nucleotide polymorphisms were selected to explore the potential associations between genetic polymorphisms and adverse drug reactions (ADRs). The TT genotype of STAT6 rs324011 was significantly associated with severe ADRs in the recessive genetic model (TT vs. CC + CT, OR = 13.5, 95% CI = 2.12-86.09, p = 0.006 in the discovery group; OR = 8.41, 95% CI = 1.95-36.19, p = 0.004 in the validation group). The T allele was associated with a higher incidence of severe ADRs than was the C allele of rs324011 (OR = 3.67, 95% CI = 1.46-9.19, p = 0.006 in the discovery group; OR = 3.17, 95% CI = 1.44-6.99, p = 0.004 in the validation group). Patients with the CC genotype in STAT3 rs1053023 (and rs1053005) or the TT genotype of STAT6 rs324011 were likely to experience severe epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) related ADRs.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Zhan
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Chen XJ, Guo CH, Wang ZC, Yang Y, Pan YH, Liang JY, Sun MG, Fan LS, Liang L, Wang W. Hypoxia-induced ZEB1 promotes cervical cancer immune evasion by strengthening the CD47-SIRPα axis. Cell Commun Signal 2024; 22:15. [PMID: 38183060 PMCID: PMC10768116 DOI: 10.1186/s12964-023-01450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The dynamic interaction between cancer cells and tumour-associated macrophages (TAMs) in the hypoxic tumour microenvironment (TME) is an active barrier to the effector arm of the antitumour immune response. Cancer-secreted exosomes are emerging mediators of this cancer-stromal cross-talk in the TME; however, the mechanisms underlying this interaction remain unclear. METHODS Exosomes were isolated with ExoQuick exosome precipitation solution. The polarizing effect of TAMs was evaluated by flow cytometry, western blot analysis, immunofluorescence staining and in vitro phagocytosis assays. Clinical cervical cancer specimens and an in vivo xenograft model were also employed. RESULTS Our previous study showed that hypoxia increased the expression of ZEB1 in cervical squamous cell carcinoma (CSCC) cells, which resulted in increased infiltration of TAMs. Here, we found that hypoxia-induced ZEB1 expression is closely correlated with CD47-SIRPα axis activity in CSCC, which enables cancer cells to evade phagocytosis by macrophages and promotes tumour progression. ZEB1 was found to directly activate the transcription of the CD47 gene in hypoxic CSCC cells. We further showed that endogenous ZEB1 was characteristically enriched in hypoxic CSCC cell-derived exosomes and transferred into macrophages via these exosomes to promote SIRPα+ TAM polarization. Intriguingly, exosomal ZEB1 retained transcriptional activity and reprogrammed SIRPα+ TAMs via activation of the STAT3 signalling pathway in vitro and in vivo. STAT3 inhibition reduced the polarizing effect induced by exosomal ZEB1. Knockdown of ZEB1 increased the phagocytosis of CSCC cells by macrophages via decreasing CD47 and SIRPα expression. CONCLUSIONS Our results suggest that hypoxia-induced ZEB1 promotes immune evasion in CSCC by strengthening the CD47-SIRPα axis. ZEB1-targeted therapy in combination with CD47-SIRPα checkpoint immunotherapy may improve the outcomes of CSCC patients in part by disinhibiting innate immunity.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Chu-Hong Guo
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Zi-Ci Wang
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yang Yang
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yu-Hua Pan
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Jie-Ying Liang
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Mei-Ge Sun
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Liang-Sheng Fan
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, People's Republic of China.
| | - Wei Wang
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
12
|
Tan SX, Chong S, Rowe C, Claeson M, Dight J, Zhou C, Rodero MP, Malt M, Smithers BM, Green AC, Khosrotehrani K. pSTAT5 is associated with improved survival in patients with thick or ulcerated primary cutaneous melanoma. Melanoma Res 2023; 33:506-513. [PMID: 37890182 DOI: 10.1097/cmr.0000000000000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Identifying prognostic biomarkers to predict clinical outcomes in stage I and II cutaneous melanomas could guide the clinical application of adjuvant and neoadjuvant therapies. We aimed to investigate the prognostic value of phosphorylated signal transducer and activator of transcription 5 (pSTAT5) as a biomarker in early-stage melanoma. This study evaluated all initially staged Ib and II melanoma patients undergoing sentinel node biopsy at a tertiary centre in Brisbane, Australia between 1994 and 2007, with survival data collected from the Queensland Cancer Registry. Primary melanoma tissue from 189 patients was analysed for pSTAT5 level through immunohistochemistry. Cox regression modelling, with adjustment for sex, age, ulceration, anatomical location, and Breslow depth, was applied to determine the association between pSTAT5 detection and melanoma-specific survival. Median duration of follow-up was 7.4 years. High pSTAT5 detection was associated with ulceration and increased tumour thickness. However, multivariate analysis indicated that high pSTAT5 detection was associated with improved melanoma-specific survival (hazard ratio: 0.15, 95% confidence interval: 0.03-0.67) as compared to low pSTAT5 detection. This association persisted when pSTAT5 detection was limited to immune infiltrate or the vasculature, as well as when sentinel node positivity was accounted for. In this cohort, staining for high-pSTAT5 tumours identified a subset of melanoma patients with increased survival outcomes as compared to low-pSTAT5 tumours, despite the former having higher-risk clinicopathological characteristics at diagnosis. pSTAT5 is likely an indicator of local immune activation, and its detection could represent a useful tool to stratify the risk of melanoma progression.
Collapse
Affiliation(s)
- Samuel X Tan
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Sharene Chong
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Casey Rowe
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Magdalena Claeson
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Population Health, QIMR Berghofer Medical Research Institute
| | - James Dight
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Chenhao Zhou
- Frazer Institute, University of Queensland, Brisbane, Australia
| | | | - Maryrose Malt
- Department of Population Health, QIMR Berghofer Medical Research Institute
| | - B Mark Smithers
- Queensland Melanoma Project, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Adele C Green
- Department of Population Health, QIMR Berghofer Medical Research Institute
- Cancer Research UK Manchester Institute and University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Kiarash Khosrotehrani
- Frazer Institute, University of Queensland, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Liu Z, Zhao L, Feng Y, Wang Q, Dong N, Zhang Y, Yin T, He H, Tang X, Gou J, Yang L. Dual-responsive PEG-lipid polyester nanoparticles for siRNA and vaccine delivery elicit anti-cancer immune responses by modulating tumor microenvironment. Biomater Sci 2023; 11:6619-6634. [PMID: 37608695 DOI: 10.1039/d3bm01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cancer vaccine-based immunotherapy has great potential; however, the vaccines have been hindered by the immunosuppressive tumor microenvironment (TME). In this study, dual-responsive PEG-lipid polyester nanoparticles (PEG BR647-NPs) for tumor-targeted delivery were proposed. PEG BR647-NPs containing the model tumor-associated antigen (TAA) OVA and the signal transduction and activator of transcription 3 (STAT3) siRNA were delivered to the tumor. The PEG BR647-NPs were internalized by tumor-associated dendritic cells (TADCs), where the TAA and siRNA were released into the cytoplasm via the endo/lysosome escape effect. The released OVA was presented by the major histocompatibility complex class I to activate T cells, and the released STAT3 siRNA acted to relieve TADC dysfunction, promote TADC maturation, improve antigen-presenting ability, and enhance anticancer T cell immunity. Meanwhile, the PEG BR647-NPs were ingested by tumor cells, killing them by the pro-apoptosis effect of STAT3 siRNA. Moreover, PEG BR647-NPs could reduce the proportion of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in tumors and abrogate immunosuppression. The integration of relieved TADC dysfunction, promoted TADC maturation, enhanced antigen cross-presentation, abrogated immunosuppression, and improved pro-apoptosis effect boosted the vaccination for tumor immunotherapy. Thus, PEG BR647-NPs efficiently delivered the vaccine and STAT3 siRNA to the tumor and modulated immunosuppressive TME, thus providing better antitumor effects.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Yupeng Feng
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Qingqing Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Nan Dong
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Li Yang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| |
Collapse
|
14
|
Razzuoli E, Chirullo B, De Ciucis CG, Mecocci S, Martini I, Zoccola R, Campanella C, Varello K, Petrucci P, Di Meo A, Bozzetta E, Tarantino M, Goria M, Modesto P. Animal models of Soft Tissue Sarcoma for alternative anticancer therapy studies: characterization of the A-72 Canine Cell Line. Vet Res Commun 2023; 47:1615-1627. [PMID: 37038001 PMCID: PMC10484808 DOI: 10.1007/s11259-023-10115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Canine Soft Tissue Sarcoma (STS) cell line A-72 has been largely employed for antiviral and antiproliferative studies. However, there are few information on their characteristics. Our aim was to evaluate A-72 expression level of genes and proteins involved in the innate immune response and cell cycle, their ability to respond to infective stressors and their possible use as a cellular model for anti-cancer studies in human and animal medicine. For this purpose, we evaluated the basal expression of immune-related, cell cycle and DNA repair genes on this cell line and tumoral tissues. A-72 ability to respond to a wild-type strain of Salmonella typhimurium was assessed. S. typhimurium showed ability to penetrate A-72 causing pro-inflammatory response accompanied by a decrease of cell viability. IL10 and IL18 genes were not expressed in A-72 while CXCL8, NOS2, CXCR4 and PTEN were highly expressed in all samples and TP53 was slightly expressed, as shown in human STS. Our results outline the ability of A-72 to respond to a bacterial agent by modifying the expression of important genes involved in innate immune response and provide a useful model for in vitro evaluation of new therapeutic approaches that could be translated into the human oncology.
Collapse
Affiliation(s)
- Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy
| | - Barbara Chirullo
- Unit of Emerging Zoonoses Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Isabella Martini
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy
| | - Roberto Zoccola
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy
| | - Chiara Campanella
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy
| | - Katia Varello
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy
| | - Paola Petrucci
- Unit of Emerging Zoonoses Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonio Di Meo
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Elena Bozzetta
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy
| | - Michela Tarantino
- Unit of Emerging Zoonoses Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Goria
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy
| | - Paola Modesto
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy
| |
Collapse
|
15
|
Matos I, Barvalia M, Chehal MK, Robertson AG, Kulic I, Silva JAFD, Ranganathan A, Short A, Huang YH, Long E, Priatel JJ, Dhanji S, Nelson BH, Krebs DL, Harder KW. Tumor-derived GCSF Alters Tumor and Systemic Immune System Cell Subset Composition and Signaling. CANCER RESEARCH COMMUNICATIONS 2023; 3:404-419. [PMID: 36911097 PMCID: PMC9997410 DOI: 10.1158/2767-9764.crc-22-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity. Using Cytometry by Time-of-Flight, we found that tumor-derived GCSF altered myeloid cell distribution both locally and systemically. We distinguished a large number of GCSF-induced immune cell subset and signal transduction pathway perturbations in tumor-bearing mice, including a prominent increase in immature neutrophil/myeloid-derived suppressor cell (Neut/MDSC) subsets and tumor-resident PD-L1+ Neut/MDSCs. GCSF expression was also linked to distinct tumor-associated MF populations, decreased conventional DCs, and splenomegaly characterized by increased splenic progenitors with diminished DC differentiation potential. GCSF-dependent dysregulation of DC development was recapitulated in bone marrow cultures in vitro, using medium derived from GCSF-expressing tumor cell cultures. Importantly, tumor-derived GCSF impaired T-cell adoptive cell therapy effectiveness and was associated with increased tumor volume and diminished survival of mice with mammary cancer. Treatment with neutralizing anti-GCSF antibodies reduced colonic and circulatory Neut/MDSCs, normalized colonic immune cell composition and diminished tumor burden in a spontaneous model of mouse colon cancer. Analysis of human colorectal cancer patient gene expression data revealed a significant correlation between survival and low GCSF and Neut/MDSC gene expression. Our data suggest that normalizing GCSF bioactivity may improve immunotherapy in cancers associated with GCSF overexpression. Significance Tumor-derived GCSF leads to systemic immune population changes. GCSF blockade restores immune populations, improves immunotherapy, and reduces tumor size, paralleling human colorectal cancer data. GCSF inhibition may synergize with current immunotherapies to treat GCSF-secreting tumors.
Collapse
Affiliation(s)
- Israel Matos
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Maunish Barvalia
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Manreet K Chehal
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency. Vancouver, British Columbia, Canada
| | - Iva Kulic
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Jessica A F D Silva
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Abhinandan Ranganathan
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Amy Short
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Erin Long
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - John J Priatel
- ME Therapeutics Inc. Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Salim Dhanji
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Danielle L Krebs
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.,ME Therapeutics Inc. Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Wang J, Liu T, Huang T, Shang M, Wang X. The mechanisms on evasion of anti-tumor immune responses in gastric cancer. Front Oncol 2022; 12:943806. [PMID: 36439472 PMCID: PMC9686275 DOI: 10.3389/fonc.2022.943806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 10/22/2023] Open
Abstract
The immune system and the tumor have been at each other's throats for so long that the neoplasm has learned to avoid detection and avoid being attacked, which is called immune evasion. Malignant tumors, such as gastric cancer (GC), share the ability to evade the body's immune system as a defining feature. Immune evasion includes alterations to tumor-associated antigens (TAAs), antigen presentation mechanisms (APMs), and the tumor microenvironment (TME). While TAA and APM are simpler in nature, they both involve mutations or epigenetic regulation of genes. The TME is comprised of numerous cell types, cytokines, chemokines and extracellular matrix, any one of which might be altered to have an effect on the surrounding ecosystem. The NF-kB, MAPK, PI3K/AKT, JAK/STAT, Wnt/β-catenin, Notch, Hippo and TGF-β/Smad signaling pathways are all associated with gastric cancer tumor immune evasion. In this review, we will delineate the functions of these pathways in immune evasion.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Chousakos E, Katsoulas N, Kavantzas N, Stratigos A, Lazaris AC. The role of dual-specificity phosphatase 3 in melanocytic oncogenesis. Exp Dermatol 2022; 31:1466-1476. [PMID: 35899430 DOI: 10.1111/exd.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Abstract
Dual-specificity phosphatase 3 (DUSP3), also known as Vaccinia H1-related phosphatase, is a protein tyrosine phosphatase that typically performs its major role in the regulation of multiple cellular functions through the dephosphorylation of its diverse and constantly expanding range of substrates. Many of the substrates described so far as well as alterations in the expression or the activity of DUSP3 itself are associated with the development and progression of various types of neoplasms, indicating that DUSP3 may be an important player in oncogenesis and a promising therapeutic target. This review focuses exclusively on DUSP3's contribution to either benign or malignant melanocytic oncogenesis, as many of the established culprit pathways and mechanisms constitute DUSP3's regulatory targets, attempting to synthesize the current knowledge on the matter. The spectrum of the DUSP3 interactions analyzed in this review covers substrates implicated in cellular growth, cell cycle, proliferation, survival, apoptosis, genomic stability/repair, adhesion and migration of tumor melanocytes. Furthermore, the speculations raised, based on the evidence to date, may be considered a fundament for potential research regarding the oncogenesis, evolution, management and therapeutics of melanocytic tumors.
Collapse
Affiliation(s)
- Emmanouil Chousakos
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| | - Nikolaos Katsoulas
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| | - Nikolaos Kavantzas
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| | - Alexandros Stratigos
- 1st Department of Dermatology-Venereology, "Andreas Syggros" Hospital, Medical School, National and Kapodistrian University of Athens
| | - Andreas C Lazaris
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| |
Collapse
|
18
|
Torres GM, Yang H, Park C, Spezza PA, Khatwani N, Bhandari R, Liby KT, Pioli PA. T Cells and CDDO-Me Attenuate Immunosuppressive Activation of Human Melanoma-Conditioned Macrophages. Front Immunol 2022; 13:768753. [PMID: 35265066 PMCID: PMC8898828 DOI: 10.3389/fimmu.2022.768753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Melanoma tumors are highly immunogenic, making them an attractive target for immunotherapy. However, many patients do not mount robust clinical responses to targeted therapies, which is attributable, at least in part, to suppression of immune responses by tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Using a human in vitro tri-culture system of macrophages with activated autologous T cells and BRAFV600E mutant melanoma cells, we now show that activated T cells and the synthetic triterpenoid the methyl ester of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me) attenuate immune suppression. Surface expression of CD206, CD16 and CD163 on melanoma-conditioned macrophages was inhibited by the addition of T cells, suggesting relief of immuno-suppressive macrophage activation. We also demonstrated that addition of CDDO-Me to tri-cultures enhanced T cell-mediated reductions in CCL2, VEGF and IL-6 production in a contact-independent manner. Because these results suggest CDDO-Me alters melanoma-conditioned macrophage activation, we interrogated CDDO-Me-mediated changes in macrophage signaling pathway activation. Our results indicated that CDDO-Me inhibited phosphorylation of STAT3, a known inducer of TAM activation. Collectively, our studies suggest that activated T cells and CDDO-Me synergistically relieve immune suppression in melanoma cultures and implicate the potential utility of CDDO-Me in the treatment of melanoma.
Collapse
Affiliation(s)
- Gretel M Torres
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Heetaek Yang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Chanhyuk Park
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Paul A Spezza
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Nikhil Khatwani
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rajan Bhandari
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Patricia A Pioli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
19
|
Zhu D, Lu Y, Gui L, Wang W, Hu X, Chen S, Wang Y, Wang Y. Self-assembling, pH-responsive nanoflowers for inhibiting PAD4 and neutrophil extracellular trap formation and improving the tumor immune microenvironment. Acta Pharm Sin B 2022; 12:2592-2608. [PMID: 35646534 PMCID: PMC9136569 DOI: 10.1016/j.apsb.2021.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 10/10/2021] [Indexed: 12/25/2022] Open
Abstract
Self-assembling carrier-free nanodrugs are attractive agents because they accumulate at tumor by an enhanced permeability and retention (EPR) effect without introduction of inactive substances, and some nanodrugs can alter the immune environment. We synthesized a peptidyl arginine deiminase 4 (PAD4) molecular inhibitor, ZD-E-1M. It could self-assembled into nanodrug ZD-E-1. Using confocal laser scanning microscopy, we observed its cellular colocalization, PAD4 activity and neutrophil extracellular traps (NETs) formation. The populations of immune cells and expression of immune-related proteins were determined by single-cell mass cytometry. ZD-E-1 formed nanoflowers in an acidic environment, whereas it formed nanospheres at pH 7.4. Accumulation of ZD-E-1 at tumor was pH-responsive because of its pH-dependent differences in the size and shape. It could enter the nucleus and bind to PAD4 to prolong the intracellular retention time. In mice, ZD-E-1 inhibited tumor growth and metastasis by inhibiting PAD4 activity and NETs formation. Besides, ZD-E-1 could regulate the ratio of immune cells in LLC tumor-bearing mice. Immunosuppressive proteins like LAG3 were suppressed, while IFN-γ and TNF-α as stimulators of tumor immune response were upregulated. Overall, ZD-E-1 is a self-assembling carrier-free nanodrug that responds to pH, inhibits PAD4 activity, blocks neutrophil extracellular traps formation, and improves the tumor immune microenvironment.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Lin Gui
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xi Hu
- Quantum Design China Ltd., Universal Business Park, Beijing 100015, China
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
20
|
Zhang H, Zhao B, Wei H, Zeng H, Sheng D, Zhang Y. Cucurbitacin B controls M2 macrophage polarization to suppresses metastasis via targeting JAK-2/STAT3 signalling pathway in colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114915. [PMID: 34954267 DOI: 10.1016/j.jep.2021.114915] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cucurbitacin B (CuB), extracted from muskmelon pedicel, is a widely available triterpenoid molecule that exerts influence on various biological activities. Modern pharmacological studies have found that cucurbitacin B has many kinds of pharmacological anti-tumor and anti-metastasis functions. AIM OF THE STUDY To explore the mechanism of anti-tumor and anti-metastasis effect of cucurbitacin B. MATERIALS AND METHODS The effect of cucurbitacin B on the growth of HCT116 and CT-26 was detected by CCK8; apoptosis was determined by flow cytometry and colony formation; the expression of apoptosis-related protein Bax, Bcl-2 and Cleaved-caspase-3 were examined by western Blot. To explore the underlying mechanism of cucurbitacin B against tumor, the Western blot, Immunofluorescence staining, Microscale Thermophoresis assays were used. Multiple molecular biology experiments were applied to validate the effect of polarization of cucurbitacin B-induced macrophages. The supernatant of Cucurbitacin B-induced macrophages and colon cells were co-cultured in vitro, and then transwell and wound healing assay were employed to the related phenotypes. C57BL/6 and BALB/c murine colon cancer model were also used to study the drug effects in vivo. RESULTS Cucurbitacin B distinctly induced the apoptosis of CRC cells. It was observed that cucurbitacin B not only inhibited the phosphorylation of JAK2 and STAT3, but also the translocation from the cytosol to the nucleus. Meanwhile, we observed that cucurbitacin B is bound to STAT3. Further experimentation demonstrated that cucurbitacin B reduced the polarization of M2 macrophage by down-regulating JAK2/STAT3 signaling pathway. Cucurbitacin B-induced M2-like macrophages were found to diminish the migration of CRC cells. In vitro study suggested that cucurbitacin inhibited the CRC cells proliferation via JAK2/STAT3 and suppressed the cell migration by suppressing M2-like macrophages polarization. Consistent with in vitro results, the cucurbitacin B therapy significantly inhibited tumor growth and metastasis in mice. Moreover, in vivo the treatment with cucurbitacin B enhanced anti-tumor immunity by regulating M2-like macrophages and promoted the expression of CD4 and CD8 in tumor microenvironment. CONCLUSION Our results proved that cucurbitacin B might be a potential candidate agent for adjuvant therapy in the process of CRC growth and metastasis.
Collapse
Affiliation(s)
- Haoyue Zhang
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210000, China
| | - Bei Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - HuiZhen Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hairong Zeng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongya Sheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Yang Zhang
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
21
|
Zhou XY, Dai HY, Zhang H, Zhu JL, Hu H. Signal transducer and activator of transcription family is a prognostic marker associated with immune infiltration in endometrial cancer. J Clin Lab Anal 2022; 36:e24315. [PMID: 35244291 PMCID: PMC8993664 DOI: 10.1002/jcla.24315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) is a unique protein family that binds to DNA and plays a vital role in regulating major physiological cellular processes. Seven STAT genes have been identified in the human genome. Several studies suggest STAT family members to be involved in cancer development, progression, and metastasis. However, the predictive relationship between STAT family expression and immune cell infiltration in endometrial cancer remains unknown. METHODS We explored STAT family expression and prognosis in endometrial cancer using various databases. The STRING, GeneMANIA, and DAVID databases, along with GO and KEGG analyses, were used to construct a protein interaction network of related genes. Finally, the TIMER database and ssGSEA immune infiltration algorithm were used to investigate the correlation of STAT family expression with the immune infiltration level in uterine corpus endometrial carcinoma (UCEC). RESULTS Our study showed that different STAT family members are differentially expressed in UCEC. STAT1 and STAT2 expression increased at various stages of UCEC, and STAT5A, STAT5B, and STAT6 levels were decreased. STAT3 and STAT4 expression was not significantly different between UCEC and normal tissues. High STAT1 expression may be a prognostic disadvantage of UCEC, and high STAT6 expression may improve UCEC patient prognosis. The STAT family-associated genes were significantly enriched in signal transduction, protein binding, DNA binding, and ATP binding upon GO analysis. Related genes in the KEGG analysis were mainly enriched in pathways in cancer, viral carcinogenesis, chemokine signaling pathway, JAK/STAT signaling pathway, and regulation of the actin cytoskeleton. In terms of immune infiltration, STAT1 and STAT2 were positively correlated with B, CD8+ T, CD4+ T, and dendritic cells, and neutrophils (p < 0.05). All STAT family members were positively correlated with neutrophils and dendritic cells (p < 0.05). STAT1 and STAT2 showed similar correlations with all immune cell types, whereas STAT1 and STAT6 showed opposite correlations. CONCLUSION These findings suggest that the STAT family is a prognostic marker, and the immune infiltration level, a therapeutic target, for endometrial cancer.
Collapse
Affiliation(s)
- Xin-Ying Zhou
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hai-Yan Dai
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hu Zhang
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Jian-Long Zhu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| |
Collapse
|
22
|
Irie T, Yoshii D, Komohara Y, Fujiwara Y, Kadohisa M, Honda M, Suzu S, Matsuura T, Kohashi K, Oda Y, Hibi T. IL-34 in hepatoblastoma cells potentially promote tumor progression via autocrine and paracrine mechanisms. Cancer Med 2022; 11:1441-1453. [PMID: 35132816 PMCID: PMC8921897 DOI: 10.1002/cam4.4537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatoblastoma is the most common pediatric liver tumor, but little research has been done on the role of macrophages in hepatoblastoma. The purpose of this study was to gain insight into potential roles for macrophages in hepatoblastoma. Paraffin‐embedded specimens from 56 patients who underwent surgical resection were examined with immunohistochemical staining for the macrophage‐specific markers, Iba1 and CD163. Significant differences were seen among histological subtypes. Significantly increased numbers of macrophages were detected in embryonal components compared to fetal components in the mixed epithelial type. In vitro studies using human monocyte‐derived macrophages and two hepatoblastoma cell lines (HepG2 and Huh6) were performed. Conditioned medium from these cell lines induced increased CD163 expression in macrophages. Direct co‐culture with macrophages induced tumor cell proliferation via induction of protumor cytokine secretion from macrophages. Direct co‐culture with macrophages also induced interleukin (IL)‐34 overexpression by Huh6 cells via Brd4 signaling. IL‐34 overexpression promoted tumor cell proliferation and chemoresistance. High IL‐34 and Brd4 expression was detected in embryonal components, which have potentially higher proliferation activity than fetal components. In conclusion, IL‐34 expression in embryonal components may induce macrophage chemotaxis in a paracrine manner, and tumor cell proliferation and chemoresistance in an autocrine manner. IL‐34 is a potential therapeutic target for hepatoblastoma.
Collapse
Affiliation(s)
- Tomoaki Irie
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daiki Yoshii
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Kadohisa
- Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Honda
- Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
23
|
Wang H, Yin J, Hong Y, Ren A, Wang H, Li M, Zhao Q, Jiang C, Liu L. SCG2 is a Prognostic Biomarker Associated With Immune Infiltration and Macrophage Polarization in Colorectal Cancer. Front Cell Dev Biol 2022; 9:795133. [PMID: 35047505 PMCID: PMC8763391 DOI: 10.3389/fcell.2021.795133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the second most lethal malignancy around the world. Limited efficacy of immunotherapy creates an urgent need for development of novel treatment targets. Secretogranin II (SCG2) is a member of the chromogranin family of acidic secretory proteins, has a role in tumor microenvironment (TME) of lung adenocarcinoma and bladder cancer. Besides, SCG2 is a stroma-related gene in CRC, its potential function in regulating tumor immune infiltration of CRC needs to be fully elucidated. In this study, we used western blot, real-time PCR, immunofluorescence and public databases to evaluate SCG2 expression levels and distribution. Survival analysis and functional enrichment analysis were performed. We examined TME and tumor infiltrating immune cells using ESTIMATE and CIBERSORT algorithm. The results showed that SCG2 expression was significantly decreased in CRC tumor tissues, and differentially distributed between tumor and adjacent normal tissues. SCG2 was an independent prognostic predictor in CRC. High expression of SCG2 correlated with poor survival and advanced clinical stage in CRC patients. SCG2 might regulate multiple tumor- and immune-related pathways in CRC, influence tumor immunity by regulating infiltration of immune cells and macrophage polarization in CRC.
Collapse
Affiliation(s)
- Hao Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jinwen Yin
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.,Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuntian Hong
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.,Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anli Ren
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.,Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haizhou Wang
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.,Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengting Li
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.,Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhao
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.,Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Congqing Jiang
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.,Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Liu
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.,Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Lu Y, Li K, Hu Y, Wang X. Expression of Immune Related Genes and Possible Regulatory Mechanisms in Alzheimer's Disease. Front Immunol 2021; 12:768966. [PMID: 34804058 PMCID: PMC8602845 DOI: 10.3389/fimmu.2021.768966] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Immune infiltration of peripheral natural killer (NK) cells in the brain has been observed in Alzheimer's disease (AD). Immunity-related genes (IRGs) play an essential role in immune infiltration; however, the expression of IRGs and possible regulatory mechanisms involved in AD remain unclear. The peripheral blood mononuclear cells (PBMCs) single-cell RNA (scRNA) sequencing data from patients with AD were analyzed and PBMCs obtained from the ImmPort database were screened for cluster marker genes. IRG activity was calculated using the AUCell package. A bulk sequencing dataset of AD brain tissues was analyzed to explore common IRGs between PBMCs and the brain. Relevant regulatory transcription factors (TFs) were identified from the Human TFDB database. The protein-protein interaction network of key TFs were generated using the STRING database. Eight clusters were identified, including memory CD4 T, NKT, NK, B, DC, CD8 T cells, and platelets. NK cells were significantly decreased in patients with AD, while CD4 T cells were increased. NK and DC cells exhibited the highest IRG activity. GO and KEGG analyses of the scRNA and bulk sequencing data showed that the DEGs focused on the immune response. Seventy common IRGs were found in both peripheral NK cells and the brain. Seventeen TFs were associated with IRG expression, and the PPI network indicated that STAT3, IRF1, and REL were the hub TFs. In conclusion, we propose that peripheral NK cells may infiltrate the brain and contribute to neuroinflammatory changes in AD through bioinformatic analysis of scRNA and bulk sequencing data. Moreover, STAT3 may be involved in the transcriptional regulation of IRGs in NK cells.
Collapse
Affiliation(s)
- Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021; 13:1670. [PMID: 34683963 PMCID: PMC8540805 DOI: 10.3390/pharmaceutics13101670] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in regulating antitumor immune responses. As an important part of the TME, alternatively activated type 2 (M2) macrophages drive the development of primary and secondary tumors by promoting tumor cell proliferation, tumor angiogenesis, extracellular matrix remodeling and overall immunosuppression. Immunotherapy approaches targeting tumor-associated macrophages (TAMs) in order to reduce the immunosuppressive state in the TME have received great attention. Although these methods hold great potential for the treatment of several cancers, they also face some limitations, such as the fast degradation rate of drugs and drug-induced cytotoxicity of organs and tissues. Nanomedicine formulations that prevent TAM signaling and recruitment to the TME or deplete M2 TAMs to reduce tumor growth and metastasis represent encouraging novel strategies in cancer therapy. They allow the specific delivery of antitumor drugs to the tumor area, thereby reducing side effects associated with systemic application. In this review, we give an overview of TAM biology and the current state of nanomedicines that target M2 macrophages in the course of cancer immunotherapy, with a specific focus on nanoparticles (NPs). We summarize how different types of NPs target M2 TAMs, and how the physicochemical properties of NPs (size, shape, charge and targeting ligands) influence NP uptake by TAMs in vitro and in vivo in the TME. Furthermore, we provide a comparative analysis of passive and active NP-based TAM-targeting strategies and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Júnior
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| |
Collapse
|
26
|
Xu S, Wang Z, Ye J, Mei S, Zhang J. Identification of Iron Metabolism-Related Genes as Prognostic Indicators for Lower-Grade Glioma. Front Oncol 2021; 11:729103. [PMID: 34568059 PMCID: PMC8458946 DOI: 10.3389/fonc.2021.729103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Lower-grade glioma (LGG) is characterized by genetic and transcriptional heterogeneity, and a dismal prognosis. Iron metabolism is considered central for glioma tumorigenesis, tumor progression and tumor microenvironment, although key iron metabolism-related genes are unclear. Here we developed and validated an iron metabolism-related gene signature LGG prognosis. RNA-sequence and clinicopathological data from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) were downloaded. Prognostic iron metabolism-related genes were screened and used to construct a risk-score model via differential gene expression analysis, univariate Cox analysis, and the Least Absolute Shrinkage and Selection Operator (LASSO)-regression algorithm. All LGG patients were stratified into high- and low-risk groups, based on the risk score. The prognostic significance of the risk-score model in the TCGA and CGGA cohorts was evaluated with Kaplan-Meier (KM) survival and receiver operating characteristic (ROC) curve analysis. Risk- score distributions in subgroups were stratified by age, gender, the World Health Organization (WHO) grade, isocitrate dehydrogenase 1 (IDH1) mutation status, the O6-methylguanine-DNA methyl-transferase (MGMT) promoter-methylation status, and the 1p/19q co-deletion status. Furthermore, a nomogram model with a risk score was developed, and its predictive performance was validated with the TCGA and CGGA cohorts. Additionally, the gene set enrichment analysis (GSEA) identified signaling pathways and pathological processes enriched in the high-risk group. Finally, immune infiltration and immune checkpoint analysis were utilized to investigate the tumor microenvironment characteristics related to the risk score. We identified a prognostic 15-gene iron metabolism-related signature and constructed a risk-score model. High risk scores were associated with an age of > 40, wild-type IDH1, a WHO grade of III, an unmethylated MGMT promoter, and 1p/19q non-codeletion. ROC analysis indicated that the risk-score model accurately predicted 1-, 3-, and 5-year overall survival rates of LGG patients in the both TCGA and CGGA cohorts. KM analysis showed that the high-risk group had a much lower overall survival than the low-risk group (P < 0.0001). The nomogram model showed a strong ability to predict the overall survival of LGG patients in the TCGA and CGGA cohorts. GSEA analysis indicated that inflammatory responses, tumor-associated pathways, and pathological processes were enriched in high-risk group. Moreover, a high risk score correlated with the infiltration immune cells (dendritic cells, macrophages, CD4+ T cells, and B cells) and expression of immune checkpoint (PD1, PDL1, TIM3, and CD48). Our prognostic model was based on iron metabolism-related genes in LGG, can potentially aid in LGG prognosis, and provides potential targets against gliomas.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Gastroenterology Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zefeng Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Ye
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shuhao Mei
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Reschke R, Gussek P, Boldt A, Sack U, Köhl U, Lordick F, Gora T, Kreuz M, Reiche K, Simon JC, Ziemer M, Kunz M. Distinct Immune Signatures Indicative of Treatment Response and Immune-Related Adverse Events in Melanoma Patients under Immune Checkpoint Inhibitor Therapy. Int J Mol Sci 2021; 22:8017. [PMID: 34360781 PMCID: PMC8348898 DOI: 10.3390/ijms22158017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
To identify potential early biomarkers of treatment response and immune-related adverse events (irAE), a pilot immune monitoring study was performed in stage IV melanoma patients by flow cytometric analysis of peripheral blood mononuclear cells (PBMC). Overall, 17 patients were treated with either nivolumab or pembrolizumab alone, or with a combination of nivolumab and ipilimumab every three weeks. Of 15 patients for which complete response assessment was available, treatment responders (n = 10) as compared to non-responders (n = 5) were characterized by enhanced PD-1 expression on CD8+ T cells immediately before treatment (median ± median absolute deviation/MAD 26.7 ± 10.4% vs. 17.2 ± 5.3%). Responders showed a higher T cell responsiveness after T cell receptor ex vivo stimulation as determined by measurement of programmed cell death 1 (PD-1) expression on CD3+ T cells before the second cycle of treatment. The percentage of CD8+ effector memory (CD8+CD45RA-CD45RO+CCR7-) T cells was higher in responders compared to non-responders before and immediately after the first cycle of treatment (median ± MAD 39.2 ± 7.3% vs. 30.5 ± 4.1% and 37.7 ± 4.6 vs. 24.0 ± 6.4). Immune-related adverse events (irAE) were accompanied by a higher percentage of activated CD4+ (CD4+CD38+HLADR+) T cells before the second treatment cycle (median ± MAD 14.9 ± 3.9% vs. 5.3 ± 0.4%). In summary, PBMC immune monitoring of immune-checkpoint inhibition (ICI) treatment in melanoma appears to be a promising approach to identify early markers of treatment response and irAEs.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany; (R.R.); (P.G.); (T.G.); (J.-C.S.); (M.Z.)
| | - Philipp Gussek
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany; (R.R.); (P.G.); (T.G.); (J.-C.S.); (M.Z.)
| | - Andreas Boldt
- Institute of Clinical Immunology, University Medical Center Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (A.B.); (U.S.); (U.K.); (K.R.)
| | - Ulrich Sack
- Institute of Clinical Immunology, University Medical Center Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (A.B.); (U.S.); (U.K.); (K.R.)
| | - Ulrike Köhl
- Institute of Clinical Immunology, University Medical Center Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (A.B.); (U.S.); (U.K.); (K.R.)
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103 Leipzig, Germany;
| | - Florian Lordick
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, University Medical Center Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany;
- University Cancer Center Leipzig (UCCL), University Medical Center Leipzig, Liebigstrasse 22, 04103 Leipzig, Germany
| | - Thomas Gora
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany; (R.R.); (P.G.); (T.G.); (J.-C.S.); (M.Z.)
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103 Leipzig, Germany;
| | - Kristin Reiche
- Institute of Clinical Immunology, University Medical Center Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (A.B.); (U.S.); (U.K.); (K.R.)
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103 Leipzig, Germany;
| | - Jan-Christoph Simon
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany; (R.R.); (P.G.); (T.G.); (J.-C.S.); (M.Z.)
| | - Mirjana Ziemer
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany; (R.R.); (P.G.); (T.G.); (J.-C.S.); (M.Z.)
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany; (R.R.); (P.G.); (T.G.); (J.-C.S.); (M.Z.)
| |
Collapse
|
28
|
Han QJ, Mu YL, Zhao HJ, Zhao RR, Guo QJ, Su YH, Zhang J. Fasudil prevents liver fibrosis via activating natural killer cells and suppressing hepatic stellate cells. World J Gastroenterol 2021; 27:3581-3594. [PMID: 34239271 PMCID: PMC8240055 DOI: 10.3748/wjg.v27.i24.3581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fasudil, as a Ras homology family member A (RhoA) kinase inhibitor, is used to improve brain microcirculation and promote nerve regeneration clinically. Increasing evidence shows that Rho-kinase inhibition could improve liver fibrosis.
AIM To evaluate the anti-fibrotic effects of Fasudil in a mouse model of liver fibrosis induced by thioacetamide (TAA).
METHODS C57BL/6 mice were administered TAA once every 3 d for 12 times. At 1 wk after induction with TAA, Fasudil was intraperitoneally injected once a day for 3 wk, followed by hematoxylin and eosin staining, sirius red staining, western blotting, and quantitative polymerase chain reaction (qPCR), and immune cell activation was assayed by fluorescence-activated cell sorting. Furthermore, the effects of Fasudil on hepatic stellate cells and natural killer (NK) cells were assayed in vitro.
RESULTS First, we found that TAA-induced liver injury was protected, and the positive area of sirius red staining and type I collagen deposition were significantly decreased by Fasudil treatment. Furthermore, western blot and qPCR assays showed that the levels of alpha smooth muscle actin (α-SMA), matrix metalloproteinase 2 (MMP-2), MMP-9, and transforming growth factor beta 1 (TGF-β1) were inhibited by Fasudil. Moreover, flow cytometry analysis revealed that NK cells were activated by Fasudil treatment in vivo and in vitro. Furthermore, Fasudil directly promoted the apoptosis and inhibited the proliferation of hepatic stellate cells by decreasing α-SMA and TGF-β1.
CONCLUSION Fasudil inhibits liver fibrosis by activating NK cells and blocking hepatic stellate cell activation, thereby providing a feasible solution for the clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yong-Liang Mu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Hua-Jun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Rong-Rong Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Quan-Juan Guo
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-Hang Su
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
29
|
He Y, Liu X, Wang H, Wu L, Jiang M, Guo H, Zhu J, Wu S, Sun H, Chen S, Zhu Y, Zhou C, Yang Y. Mechanisms of Progression and Heterogeneity in Multiple Nodules of Lung Adenocarcinoma. SMALL METHODS 2021; 5:e2100082. [PMID: 34927899 DOI: 10.1002/smtd.202100082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/27/2021] [Indexed: 06/14/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. Lung adenocarcinoma (LUAD) is thought to be caused by precursor lesions of atypical adenoma-like hyperplasia and may have extensive in situ growth before infiltration. To explore the relevant factors in heterogeneity and evolution of lung adenocarcinoma subtypes, the authors perform single-cell RNA sequencing (scRNA-seq) on tumor and normal tissue from five multiple nodules' LUAD patients and conduct a thorough gene expression profiling of cancer cells and cells in their microenvironment at single-cell level. This study gives a deep understanding of heterogeneity and evolution in early glandular neoplasia of the lung. This dataset leads to discovery of the changes in the immune microenvironment during the development of LUAD, and the development process from adenocarcinoma in situ (AIS) to invasive adenocarcinoma (IAC). This work sheds light on the direction of early tumor development and whether they are homologous.
Collapse
Affiliation(s)
- Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Xiaogang Liu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Liang Wu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Hui Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Shanhao Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Yuming Zhu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Yang Yang
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
30
|
Xu R, Zeng M, Wu Y, Wang S, Zhang B, Zhang J, Kan Y, Li B, Cao B, Zheng X, Feng W. Acetone Extract of Cornus officinalis Leaves Exerts Anti-Melanoma Effects via Inhibiting STAT3 Signaling. Onco Targets Ther 2021; 14:3487-3501. [PMID: 34093025 PMCID: PMC8169088 DOI: 10.2147/ott.s308371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This research aims to investigate the intervention and mechanism of 50% acetone extract of C. officinalis leaves (SZYY) on melanoma xenografts. Patients and Methods Tumor size and cardiac function were measured via ultrasound. The accumulation of 2-deoxy-D-glucose (2-DG) in tumor tissue was examined with near-infrared in vivo imaging. Flow cytometry was performed to assess apoptosis and reactive oxygen species (ROS) levels in tumor and immune cells in spleen. The levels of inflammatory cytokines in serum were detected by cytometric bead array. The expression of proliferation-, apoptosis-, and angiogenesis-related proteins in tumor cells was measured to evaluate the underlying mechanisms. Subsequently, the effects of four compounds separated from SZYY on the proliferation and migration of A375 cells and STAT3 signaling were examined. The peak identification and contents of the four components were performed via high-performance liquid chromatography (HPLC). Finally, we evaluated the inhibitory effects of STAT3 overexpression on the cytotoxic activity of four constituents in A375 cells. Results SZYY inhibited the growth and glycolysis of melanoma xenograft in mice, improved cardiac function, increased the percentages of macrophages, neutrophils, and lymphocytes in spleen, reduced the levels of IL-6, IL-17A, TNF-α, and IFN-γ in serum, promoted apoptosis and oxidative stress in tumor tissues, and inhibited STAT3 phosphorylation and expression of angiogenic factors. Chemical analysis showed that SZYY is rich in loganin, rutin, triohimas C, and triohimas D, which all could restrain the proliferation and migration of A375 cells and inhibit the phosphorylation and nuclear translocation of STAT3. Moreover, STAT3 overexpression could diminish the cytotoxic activity of four compounds on A375 cells. Conclusion SZYY could exert anti-melanoma effects via inhibiting STAT3 signaling to induce apoptosis and inhibit tumor angiogenesis. Its active ingredients might be loganin, rutin, triohimas C, and triohimas D.
Collapse
Affiliation(s)
- Ruiqi Xu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Yuanyuan Wu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Shengchao Wang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Beibei Zhang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Jingke Zhang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Yuxuan Kan
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Benke Li
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Bing Cao
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| |
Collapse
|
31
|
Rossetti RAM, da Silva-Junior IA, Rodríguez GR, Alvarez KLF, Stone SC, Cipelli M, Silveira CRF, Beldi MC, Mota GR, Margarido PFR, Baracat EC, Uno M, Villa LL, Carvalho JP, Yokochi K, Rosa MBSF, Lorenzi NP, Lepique AP. Local and Systemic STAT3 and p65 NF-KappaB Expression as Progression Markers and Functional Targets for Patients With Cervical Cancer. Front Oncol 2020; 10:587132. [PMID: 33330068 PMCID: PMC7710991 DOI: 10.3389/fonc.2020.587132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer, which main etiologic factor is Human Papillomavirus (HPV) infection, continues to be a burden for public health systems in developing countries. Our laboratory has been working with the hypothesis that signals generated in the tumor microenvironment can modulate local and systemic immune responses. In this context, it would be reasonable to think that tumors create pro-tumoral bias in immune cells, even before they are recruited to the tumor microenvironment. To understand if and how signaling started in the tumor microenvironment can influence cells within the tumor and systemically, we investigated the expression of key proteins in signaling pathways important for cell proliferation, viability, immune responses and tolerance. Besides, we used detection of specific phosphorylated residues, which are indicative of activation for Akt, CREB, p65 NFκB, and STAT3. Our findings included the observation of a significant STAT3 expression increase and p65 NFκB decrease in circulating leukocytes in correlation with lesion grade. In light of those observations, we started investigating the result of the inhibition of STAT3 in a tumor experimental model. STAT3 inhibition impaired tumor growth, increased anti-tumor T cell responses and decreased the accumulation of myeloid cells in the spleen. The concomitant inhibition of NFκB partially reversed these effects. This study indicates that STAT3 and NFκB are involved in immunomodulatory tumor effects and STAT3 inhibition could be considered as therapy for patients with cervical cancer.
Collapse
Affiliation(s)
- Renata A. M. Rossetti
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | - Gretel R. Rodríguez
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Karla L. F. Alvarez
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Simone C. Stone
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Marcella Cipelli
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Caio R. F. Silveira
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Mariana Carmezim Beldi
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Giana R. Mota
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | | | - Miyuki Uno
- Biobanco da Rede Acadêmica de Pesquisa do Câncer da Universidade de Sao Paulo, São Paulo, Brazil
| | - Luisa L. Villa
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Jesus P. Carvalho
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Kaori Yokochi
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Maria Beatriz S. F. Rosa
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Noely P. Lorenzi
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Lu X, Xu C, Dong J, Zuo S, Zhang H, Jiang C, Wu J, Wei J. Liraglutide activates nature killer cell-mediated antitumor responses by inhibiting IL-6/STAT3 signaling in hepatocellular carcinoma. Transl Oncol 2020; 14:100872. [PMID: 32979685 PMCID: PMC7516274 DOI: 10.1016/j.tranon.2020.100872] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Inflammatory IL-6/STAT3 signaling is constitutively activated in diverse cancers and is associated with malignant cell proliferation, invasion and escape of antitumor immunosurveillance. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is commonly used to treat insulin-resistant diabetes. In this study, for the first time, we showed that liraglutide remarkably improved the antitumor immune responses in hepatocellular carcinoma (HCC). Furthermore, we showed that the antitumor activity was mediated by nature killer cells (NKs) but not CD8+ T cells. Finally, we showed that liraglutide enhanced NK-mediated cytotoxicity by suppressing the IL-6/STAT3 signaling pathway in HCC cells. Our findings unveil a novel therapeutic role of liraglutide by manipulating the innate immunity in cancer therapy.
Collapse
Affiliation(s)
- Xian Lu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou 215300, China
| | - Chun Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Department of Pathology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jie Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Shuguang Zuo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Hailin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; The Affiliated Drum Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
33
|
Li R, Liu X, Zhou XJ, Chen X, Li JP, Yin YH, Qu YQ. Identification of a Prognostic Model Based on Immune-Related Genes of Lung Squamous Cell Carcinoma. Front Oncol 2020; 10:1588. [PMID: 33014809 PMCID: PMC7493716 DOI: 10.3389/fonc.2020.01588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Immune-related genes (IRGs) play considerable roles in tumor immune microenvironment (IME). This research aimed to discover the differentially expressed immune-related genes (DEIRGs) based on the Cox predictive model to predict survival for lung squamous cell carcinoma (LUSC) through bioinformatics analysis. First of all, the differentially expressed genes (DEGs) were acquired based on The Cancer Genome Atlas (TCGA) using the limma R package, the DEIRGs were obtained from the ImmPort database, whereas the differentially expressed transcription factors (DETFs) were acquired from the Cistrome database. Thereafter, a TFs-mediated IRGs network was constructed to identify the candidate mechanisms for those DEIRGs in LUSC at molecular level. Moreover, Gene Ontology (GO), together with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, was conducted for exploring those functional enrichments for DEIRGs. Besides, univariate as well as multivariate Cox regression analysis was conducted for establishing a prediction model for DEIRGs biomarkers. In addition, the relationship between the prognostic model and immunocytes was further explored through immunocyte correlation analysis. In total, 3,599 DEGs, 223 DEIRGs, and 46 DETFs were obtained from LUSC tissues and adjacent non-carcinoma tissues. According to multivariate Cox regression analysis, 10 DEIRGs (including CALCB, GCGR, HTR3A, AMH, VGF, SEMA3B, NRTN, ENG, ACVRL1, and NR4A1) were retrieved to establish a prognostic model for LUSC. Immunocyte infiltration analysis showed that dendritic cells and neutrophils were positively correlated with IRGs, which possibly exerted an important part within the IME of LUSC. Our study identifies a prognostic model based on IRGs, which is then used to predict LUSC prognosis and analyze immunocyte infiltration. This may provide a novel insight for exploring the potential IRGs in the IME of LUSC.
Collapse
Affiliation(s)
- Rui Li
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Chen
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.,Department of Respiratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Jian-Ping Li
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Yun-Hong Yin
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
34
|
Involvement of STAT5 in Oncogenesis. Biomedicines 2020; 8:biomedicines8090316. [PMID: 32872372 PMCID: PMC7555335 DOI: 10.3390/biomedicines8090316] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins, and in particular STAT3, have been established as heavily implicated in cancer. Recently, the involvement of STAT5 signalling in the pathology of cancer has been shown to be of increasing importance. STAT5 plays a crucial role in the development of the mammary gland and the homeostasis of the immune system. However, in various cancers, aberrant STAT5 signalling promotes the expression of target genes, such as cyclin D, Bcl-2 and MMP-2, that result in increased cell proliferation, survival and metastasis. To target constitutive STAT5 signalling in cancers, there are several STAT5 inhibitors that can prevent STAT5 phosphorylation, dimerisation, or its transcriptional activity. Tyrosine kinase inhibitors (TKIs) that target molecules upstream of STAT5 could also be utilised. Consequently, since STAT5 contributes to tumour aggressiveness and cancer progression, inhibiting STAT5 constitutive activation in cancers that rely on its signalling makes for a promising targeted treatment option.
Collapse
|
35
|
de Araujo ED, Keserű GM, Gunning PT, Moriggl R. Targeting STAT3 and STAT5 in Cancer. Cancers (Basel) 2020; 12:E2002. [PMID: 32707820 PMCID: PMC7465272 DOI: 10.3390/cancers12082002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Insights into the mutational landscape of the human cancer genome coding regions defined about 140 distinct cancer driver genes in 2013, which approximately doubled to 300 in 2018 following advances in systems cancer biology studies [...].
Collapse
Affiliation(s)
- Elvin D. de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - György M. Keserű
- Medicinal Chemistry, Research Center for Natural Sciences, 1117 Budapest, Hungary;
| | - Patrick T. Gunning
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria
| |
Collapse
|
36
|
Hu R, Han Q, Zhang J. STAT3: A key signaling molecule for converting cold to hot tumors. Cancer Lett 2020; 489:29-40. [PMID: 32522692 DOI: 10.1016/j.canlet.2020.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 12/26/2022]
Abstract
Tumors can be classified as cold or hot according to the degree of immune cell infiltration into tumor tissues; cold tumors are insensitive to either chemotherapy or immunotherapy and are associated with poor prognosis. Recent studies have shown that STAT3 signaling molecules hinder the conversion of cold to hot tumors by regulating immunosuppressive molecule secretion and immunosuppressive cell functions. This review aims to present the most recent studies on how STAT3 regulates cold tumor formation and discuss its research status in cancer therapy. We also present insight for designing new therapeutic strategies to "heat" tumors and provide a reference for tumor immunotherapy.
Collapse
Affiliation(s)
- Rui Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
37
|
Wang X, Chai Z, Li Y, Long F, Hao Y, Pan G, Liu M, Li B. Identification of Potential Biomarkers for Anti-PD-1 Therapy in Melanoma by Weighted Correlation Network Analysis. Genes (Basel) 2020; 11:genes11040435. [PMID: 32316408 PMCID: PMC7230292 DOI: 10.3390/genes11040435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the most malignant form of skin cancer, which seriously threatens human life and health. Anti-PD-1 immunotherapy has shown clinical benefits in improving patients' overall survival, but some melanoma patients failed to respond. Effective therapeutic biomarkers are vital to evaluate and optimize benefits from anti-PD-1 treatment. Although the establishment of immunotherapy biomarkers is well underway, studies that identify predictors by gene network-based approaches are lacking. Here, we retrieved the existing datasets (GSE91061, GSE78220 and GSE93157, 79 samples in total) on anti-PD-1 therapy to explore potential therapeutic biomarkers in melanoma using weighted correlation network analysis (WGCNA), function validation and clinical corroboration. As a result, 13 hub genes as critical nodes were traced from the key module associated with clinical features. After receiver operating characteristic (ROC) curve validation by an independent dataset (GSE78220), six hub genes with diagnostic significance were further recovered. Moreover, these six genes were revealed to be closely associated not only with the immune system regulation, immune infiltration, and validated immunotherapy biomarkers, but also with excellent prognostic value and significant expression level in melanoma. The random forest prediction model constructed using these six genes presented a great diagnostic ability for anti-PD-1 immunotherapy response. Taken together, IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL may serve as predictive therapeutic biomarkers for melanoma and could facilitate future anti-PD-1 therapy.
Collapse
Affiliation(s)
- Xuanyi Wang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
| | - Zixuan Chai
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
| | - Yinghong Li
- School of Biological Information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
| | - Fei Long
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| | - Guizhi Pan
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
| | - Mingwei Liu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
- Correspondence: (M.L.); (B.L.)
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
- Correspondence: (M.L.); (B.L.)
| |
Collapse
|
38
|
Juengpanich S, Topatana W, Lu C, Staiculescu D, Li S, Cao J, Lin J, Hu J, Chen M, Chen J, Cai X. Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era. Int J Cancer 2020; 147:1778-1792. [PMID: 32162677 DOI: 10.1002/ijc.32970] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as one of the major causes of cancer-related mortality, despite the recent development of new therapeutic options. Regorafenib, an oral multikinase inhibitor, is the first systemic therapy that has a survival benefit for patients with advanced HCC that have a poor response to sorafenib. Even though regorafenib has been approved by the FDA, the clinical trial for regorafenib treatment does not show significant improvement in overall survival. The impaired efficacy of regorafenib caused by various resistance mechanisms, including epithelial-mesenchymal transitions, inflammation, angiogenesis, hypoxia, oxidative stress, fibrosis and autophagy, still needs to be resolved. In this review, we provide insight on regorafenib microenvironmental, molecular and cellular mechanisms and interactions in HCC treatment. The aim of this review is to help physicians select patients that would obtain the maximal benefits from regorafenib in HCC therapy.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiacheng Lin
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|