1
|
McKinnon MB, Rini BI, Haake SM. Biomarker-informed care for patients with renal cell carcinoma. NATURE CANCER 2025:10.1038/s43018-025-00942-1. [PMID: 40240621 DOI: 10.1038/s43018-025-00942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/06/2025] [Indexed: 04/18/2025]
Abstract
Kidney cancer is a commonly diagnosed cancer in adults, and clear cell renal cell carcinoma (ccRCC) is the most common histological subtype. Immune checkpoint inhibitors have revolutionized care for patients with ccRCC, either as adjuvant therapy or combined with other agents in advanced disease. However, biomarkers to predict therapeutic benefits are lacking. Here, we explore biomarkers that predict therapeutic response in other tumor types and discuss the reasons for their ineffectiveness in ccRCC. We also review emerging predictive and prognostic biomarkers to prioritize in ccRCC, including gene expression signatures.
Collapse
Affiliation(s)
- Mackenzie B McKinnon
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian I Rini
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Scott M Haake
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
2
|
Su P, Yang Y, Zheng H. Review of recent molecular pathology of bladder urothelial carcinoma. Discov Oncol 2025; 16:424. [PMID: 40156709 PMCID: PMC11954783 DOI: 10.1007/s12672-025-02128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Bladder urothelial carcinoma (BUC) is a common malignant tumour with a high recurrence rate and mortality. Research on the molecular pathological basis of BUC is extensive. However, the specific pathogenesis and effective treatment of BUC remain to be further studied. Studies on mutation spectrum, DNA methylation, non-coding RNA, proliferation and apoptosis signalling pathways, cell cycle control, transcription factors, DNA damage repair, immune checkpoint and tumour microenvironment have provided therapeutic strategies for the diagnosis, treatment and prognosis evaluation of BUC. This study provided new insights into the molecular pathology of BUC, helped to improve the diagnosis, treatment and prognostic evaluation of patients and drove the use of precision medicine in the treatment of BUC.
Collapse
Affiliation(s)
- Peng Su
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, No. 149 of Dalian Road, Huichuan District, Zunyi, 563000, China
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ying Yang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, No. 149 of Dalian Road, Huichuan District, Zunyi, 563000, China
| | - Hong Zheng
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, No. 149 of Dalian Road, Huichuan District, Zunyi, 563000, China.
| |
Collapse
|
3
|
Xu Z, Wu Y, Bai Y, Chen X, Fu G, Jin B. Identification of tumor-antigen signatures and immune subtypes for mRNA vaccine selection in muscle-invasive bladder cancer. Surgery 2025; 178:108926. [PMID: 39613663 DOI: 10.1016/j.surg.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Muscle-invasive bladder cancer continues to lack reliable diagnostic and prognostic biomarkers. Recently, tumor vaccines targeting specific molecules have emerged as a promising treatment in inhibiting tumor progression, which was rekindled under the background of coronavirus disease-2019 pandemic. However, the application of mRNA vaccine targeting muscle-invasive bladder cancer-specific antigens remains limited, and there has been a lack of comprehensive studies or validations to identify suitable patient subgroups for vaccination. This study aims to explore novel muscle-invasive bladder cancer antigen signatures to identify patients most likely to benefit from vaccination. METHODS Gene expression profiles of muscle-invasive bladder cancer samples, along with corresponding clinical data, were retrieved from the Cancer Genome Atlas Program. The least absolute shrinkage and selection operator model was applied to develop signatures for stratifying muscle-invasive bladder cancer patients. Prognostic accuracy of each factor was assessed using receiver operating characteristic analysis. Tumor Immune Estimation Resource was employed to visualize the relationship between the proportion of antigen-presenting cells and the expression of selected genes. The CIBERSORT and WGCNA R packages were used to identify differences in immune infiltration levels across muscle-invasive bladder cancer subgroups. Additionally, the STRING database and Cytoscape were used to construct the protein-protein interaction network. CCK-8 and colony formation assays were employed in invitro experiments. RESULTS A total of 49 potential tumor antigens were identified. Using least absolute shrinkage and selection operator Cox regression, 14 tumor antigens were selected to develop a risk evaluation signature. The risk score signature can serve as a valuable tool for predicting the outcomes of muscle-invasive bladder cancer patients. Based on differential clinical, molecular, and immune-related gene profiles, muscle-invasive bladder cancer patients were classified into 2 subtypes: the immune "cold" subtype (immune score 1) and the immune "hot" subtype (immune score 2). The immune score signature, developed using a logistic score model, effectively distinguishes between patients more likely to belong to immune score 1 or 2. Notably, patients with a high risk score exhibited a higher proportion of immune score 2 compared to those with a low risk score. Additionally, the prognostic accuracy was significantly enhanced when the risk score and immune score were combined. Different tumor subtypes displayed distinct immune landscapes and signaling pathways. Moreover, novel tumor antigens associated with oxidative stress were identified. CONCLUSION The risk score and immune score signatures based on tumor antigens have identified potential effective neo-antigens for the development of mRNA vaccines targeting muscle-invasive bladder cancer. Patients with low risk score and immune score 1 subtype are more likely to benefit from mRNA vaccination. Additionally, this study highlights the critical role of oxidative stress in modulating the efficacy of the mRNA vaccine.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, Zhejiang, China.
| | - Yunfei Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Yanfeng Bai
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Hushmandi K, Einollahi B, Lee EHC, Sakaizawa R, Glaviano A, Reiter RJ, Saadat SH, Farani MR, Huh YS, Aref AR, Salimimoghadam S, Kumar AP. Bispecific antibodies as powerful immunotherapeutic agents for urological cancers: Recent innovations based on preclinical and clinical evidence. Int J Biol Sci 2025; 21:1410-1435. [PMID: 39990653 PMCID: PMC11844292 DOI: 10.7150/ijbs.96155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/25/2024] [Indexed: 02/25/2025] Open
Abstract
Conventional immunotherapy has emerged as a key option for cancer treatment. However, its efficacy has been limited in urological cancers, especially prostate cancer, because of the immunosuppressive tumor microenvironment (TME), difficulty in drug delivery, aberrant immune response, and damage to normal cells. Bispecific antibodies (BsAbs) are engineered proteins with two different antigen-binding domains, designed using different technologies and in various formats. BsAb-based tumor immunotherapy has yielded optimistic results in preclinical and clinical investigations of many tumor types, including urological cancers. However, a series of challenges, including tumor heterogeneity, TME, Ab immunogenicity, adverse effects, serum half-life, low response rates, and drug resistance, hamper the application of BsAbs. In this review, we provide insights into the most common BsAb platforms with different mechanisms of action, which are under preclinical and clinical research, along with ways to overcome the challenges in BsAb administration for treating urological cancer.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reo Sakaizawa
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, Texas USA
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX Inc., Boston, MA, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Tsai TF, Hwang TIS, Chen PC, Chen YC, Chou KY, Ho CY, Chen HE, Chang AC. Hyperthermia reduces cancer cell invasion and combats chemoresistance and immune evasion in human bladder cancer. Int J Oncol 2024; 65:116. [PMID: 39513598 PMCID: PMC11575926 DOI: 10.3892/ijo.2024.5704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Bladder cancer (BC) is a common malignancy and its most prevalent type is urothelial carcinoma, which accounts for ~90% of all cases of BC. The current treatment options for BC are limited, which necessitates the development of alternative treatment strategies. Hyperthermia (HT), as an adjuvant cancer therapy, is known to improve the efficacy of chemotherapy or radiotherapy. The present study aimed to investigate the anti‑tumor effects of HT on cell survival, invasiveness, chemoresistance and immune evasion in human BC cell lines (5637, T24 and UMUC3). Calcein AM staining was performed to analyze the cytotoxicity of natural killer (NK) cells against human BC cells following HT treatment. Cell migration and invasion affected by HT were analyzed using Transwell migration and invasion assays. It was found that HT inhibited the proliferation of BC cells by downregulating the phosphorylation of protein kinase B. Moreover, HT effectively enhanced the sensitivity of BC cells to the chemotherapy drug cisplatin (DDP) and reduced the chemoresistance of DDP‑resistant cells by downregulating the expression of cadherin‑11. It was further demonstrated that HT inhibited the migration and invasion of BC cells and enhanced the cytotoxic effects of NK cells. In summary, the antineoplastic effects of HT were mediated through three main mechanisms: Enhancement of the chemosensitivity of BC cells and mitigation of DDP‑induced chemoresistance, suppression of the invasive potential of BC cells and reinforcement of the anticancer response of NK cells. Thus, HT appears to be a promising adjunctive therapy for human BC.
Collapse
Affiliation(s)
- Te-Fu Tsai
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Thomas I-Sheng Hwang
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Po-Chun Chen
- Department of Life Science, National Taiwan Normal University, Taipei 106308, Taiwan, R.O.C
| | - Yen-Chen Chen
- Translational Medicine Center, Research Department, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Kuang-Yu Chou
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Chao-Yen Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Hung-En Chen
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - An-Chen Chang
- Translational Medicine Center, Research Department, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| |
Collapse
|
6
|
Zhang J, Liu S, Wu M, Shi W, Cai Y. Clinical significance and expression of SLC35F6 in bladder urothelial carcinoma. Diagn Pathol 2024; 19:150. [PMID: 39578844 PMCID: PMC11583552 DOI: 10.1186/s13000-024-01582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND SLC35F6 negatively regulates outer mitochondrial membrane permeability and positively regulates apoptotic signaling pathways and cell population proliferation. The biological function of SLC35F6 in bladder cancer (BC) remains inadequately established. This study evaluates the expression and clinical significance of SLC35F6 in BC, assesses its prognostic value and explores its relationship with key immune-related molecules in the tumor microenvironment. METHODS Combining bioinformatics tools and immunohistochemistry (IHC) analysis, the expression of SLC35F6 was analyzed through IHC in the tissues of 145 BC patients treated at the Affiliated Hospital of Nantong University from 2004 to 2009. The relationship between SLC35F6 expression levels and significant clinicopathological factors was examined using the chi-square test. Prognostic values were analyzed using the COX regression model and the Kaplan-Meier survival curve. Analysis of the receiver operating characteristic curve was conducted to assess the predictive performance of SLC35F6 in BC patients. RESULTS The expression levels of both SLC35F6 mRNA and protein were elevated in BC tissue relative to benign tissue. Kaplan-Meier analysis indicated that patients exhibiting elevated SLC35F6 protein expression had a worse prognosis. Multivariate Cox regression analysis confirmed that SLC35F6, TNM stage and grade are independent risk factors for bladder cancer. SLC35F6, when analyzed alongside clinical pathological factors, enhances the accuracy of survival predictions for Bladder Urothelial Carcinoma (BLCA) patients. CONCLUSION SLC35F6 is upregulated in BC patients compared to normal individuals and is linked to a worse prognosis. SLC35F6 analyzed alongside clinical pathological factors can enhance the accuracy of survival predictions for BLCA patients, suggesting its potential value as a prognostic and predictive biomarker.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Clinical and Translational Research Center, Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Siqi Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Meng Wu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Yihong Cai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
7
|
Hassouneh Z, Noel ODV, Ji N, Kim ME, Svatek J, Svatek RS, Risinger AL, Mukherjee N. Low-Dose Eribulin Promotes NK Cell-Mediated Therapeutic Efficacy in Bladder Cancer. Cancers (Basel) 2024; 16:3875. [PMID: 39594830 PMCID: PMC11592921 DOI: 10.3390/cancers16223875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Despite its immunogenic nature, bladder cancer (BCa) responds sub-optimally to FDA-approved immunotherapy. BACKGROUND/OBJECTIVES We have previously shown that natural killer (NK) cells are major contributors to overall patient survival in BCa. In our efforts to identify clinically approved agents that enhance NK cell activation, we identified eribulin, a microtubule destabilizer primarily used in breast cancer. Ongoing clinical trials are investigating the potential integration of eribulin into the standard of care in BCa; however, the mechanistic rationale for these trials remains unclear. METHODS Here, we explore the effects of low-dose eribulin on direct NK cell activation in vitro, including on primary patient samples, and in vivo utilizing multiple murine models. Flow cytometry and RNA sequencing were employed to identify the mechanism of NK cell activation by eribulin, which was associated with increased migration and cytotoxicity of NK cells against BCa cells. RESULTS We found that localized eribulin instillation significantly reduces bladder tumor burden and improves survival in primary BCa in an NK cell-dependent manner. Importantly, eribulin promoted the shift of patient-derived intratumoral NK cells towards an anti-tumor CD49a+ CD103+ NK subset (ieILC1-like) while diminishing the dysfunctional NR4A2-expressing CD49a- NK subset. Moreover, it decreased the overall expression of exhaustion markers on NK cells, a pattern replicated in our murine models. CONCLUSIONS These findings are paradigm-shifting given that chemotherapy is traditionally considered immunosuppressive. Our study reveals the novel effect of low-dose eribulin chemotherapy in inhibiting bladder tumor growth by enhancing anti-tumor NK cell immunity, challenging previous assumptions and opening new therapeutic approaches to improve antitumor immunity.
Collapse
Affiliation(s)
- Zaineb Hassouneh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA;
- Department of Urology, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA; (O.D.V.N.); (N.J.); (M.E.K.); (J.S.); (R.S.S.)
- Mays Cancer Center, San Antonio, TX 78229, USA;
| | - Onika D. V. Noel
- Department of Urology, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA; (O.D.V.N.); (N.J.); (M.E.K.); (J.S.); (R.S.S.)
| | - Niannian Ji
- Department of Urology, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA; (O.D.V.N.); (N.J.); (M.E.K.); (J.S.); (R.S.S.)
| | - Michelle E. Kim
- Department of Urology, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA; (O.D.V.N.); (N.J.); (M.E.K.); (J.S.); (R.S.S.)
- Long School of Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA
| | - Jordan Svatek
- Department of Urology, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA; (O.D.V.N.); (N.J.); (M.E.K.); (J.S.); (R.S.S.)
| | - Robert S. Svatek
- Department of Urology, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA; (O.D.V.N.); (N.J.); (M.E.K.); (J.S.); (R.S.S.)
| | - April L. Risinger
- Mays Cancer Center, San Antonio, TX 78229, USA;
- Department of Pharmacology, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio (UTHSA), San Antonio, TX 78229, USA; (O.D.V.N.); (N.J.); (M.E.K.); (J.S.); (R.S.S.)
| |
Collapse
|
8
|
Choi H, Jeong SH, Simó C, Bakenecker A, Liop J, Lee HS, Kim TY, Kwak C, Koh GY, Sánchez S, Hahn SK. Urease-powered nanomotor containing STING agonist for bladder cancer immunotherapy. Nat Commun 2024; 15:9934. [PMID: 39548120 PMCID: PMC11568179 DOI: 10.1038/s41467-024-54293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Most non-muscle invasive bladder cancers have been treated by transurethral resection and following intravesical injection of immunotherapeutic agents. However, the delivery efficiency of therapeutic agents into bladder wall is low due to frequent urination, which leads to the failure of treatment with side effects. Here, we report a urease-powered nanomotor containing the agonist of stimulator of interferon genes (STING) for the efficient activation of immune cells in the bladder wall. After characterization, we perform in vitro motion analysis and assess in vivo swarming behaviors of nanomotors. The intravesical instillation results in the effective penetration and retention of nanomotors in the bladder. In addition, we confirm the anti-tumor effect of nanomotor containing the STING agonist (94.2% of inhibition), with recruitment of CD8+ T cells (11.2-fold compared with PBS) and enhanced anti-tumor immune responses in bladder cancer model in female mice. Furthermore, we demonstrate the better anti-tumor effect of nanomotor containing the STING agonist than those of the gold standard Bacille Calmette-Guerin therapy and the anti-PD-1 inhibitor pembrolizumab in bladder cancer model. Taken together, the urease-powered nanomotor would provide a paradigm as a next-generation platform for bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Hyunsik Choi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- PHI BIOMED Co., Seocho-gu, Seoul, Korea
| | - Seung-Hwan Jeong
- Department of Urology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Department of Urology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Cristina Simó
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Guipúzcoa, Spain
| | - Anna Bakenecker
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jordi Liop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Guipúzcoa, Spain
| | - Hye Sun Lee
- Department of Urology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea.
- Department of Urology, Seoul National University Hospital, Jongno-gu, Seoul, Korea.
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Korea.
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.
| | - Sei Kwang Hahn
- PHI BIOMED Co., Seocho-gu, Seoul, Korea.
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea.
| |
Collapse
|
9
|
Li C, Yuan H, Chen J, Shang K, He H. The oncogenic functions of SPARCL1 in bladder cancer. J Cell Mol Med 2024; 28:e70196. [PMID: 39548034 PMCID: PMC11567778 DOI: 10.1111/jcmm.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) belongs to the SPARC family of matricellular proteins. However, underlying functions of SPARCL1 in bladder cancer (BCa) remain understudied. We performed an integrated search for the expression patterns of SPARCL1 in relation to various clinicopathological features of BCa. We then carried out Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and gene set enrichment analysis (GSEA). Furthermore, we investigated the correlations between SPARCL1 and immunological features, such as tumour mutation burden (TMB), immune activation processes, immune checkpoint expression, tumour immune dysfunction and exclusion (TIDE) scores, and chemotherapeutic sensitivity in BCa. Our analysis revealed that SPARCL1 was downregulated across multiple cancers. In BCa, elevated SPARCL1 was linked with advanced histopathologic stage, higher T and N stage, and poorer prognosis in the clinical cohort. In vitro experiments demonstrated that increased SPARCL1 expression inhibited cell proliferation, migration, and invasion. Additionally, highly expressed SPARCL1 was linked to elevated immune, stromal and ESTIMATE scores, as well as an increase in naive B cells, M2 macrophages, and resting mast cells. We observed a moderate correlation between SPARCL1 expression and CD163, VSIG4 and MS4A4A, which are markers of M2 macrophages. Furthermore, SPARCL1 expression was positively related to TMB, immune activation processes, TIDE scores, immune checkpoint expression, and chemotherapeutic sensitivity in BCa. Our study highlights the potential involvement of SPARCL1 in macrophage recruitment and polarization and suggests its utility as a biomarker for prognosis in BCa.
Collapse
Affiliation(s)
- Changjiu Li
- Department of Urology, Affiliated Hangzhou First People's HospitalWestlake University School of MedicineHangzhouChina
| | - Hui Yuan
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouChina
- Department of UrologyNinghai First HospitalNingbo
| | - Jun Chen
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouChina
| | - Kun Shang
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouChina
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People's HospitalWestlake University School of MedicineHangzhouChina
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
10
|
Song J, Sun X, Wang T, Li C, Yuan L. Circulating levels of cytokines and risk of urologic cancers: a two-sample Mendelian randomization study. BMC Cancer 2024; 24:1261. [PMID: 39390542 PMCID: PMC11465925 DOI: 10.1186/s12885-024-13016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Chronic inflammation is associated with the etiology of various cancers. However, there is a lack of systematic research in urologic cancers. This study aims to use a two-sample Mendelian randomization (MR) approach to evaluate the role of circulating cytokines in the development of urologic cancers. METHODS We obtained the summary-level data for bladder cancer (373,295 cases and 372,016 controls), prostate cancer (462,933 cases and 459,664 controls), and kidney cancer (463,010 cases and 461,896 controls) from the UK Biobank. Genetic variations linked to 41 circulating cytokines were used as instrumental variables (IVs) in meta-analyses of genome-wide association studies (GWASs) involving 8,293 individuals from Finland. We primarily used the inverse-variance weighted (IVW) method to assess the potential associations between the 41 cytokines and the risk of 3 common urologic cancers. Weighted-median method, weighted mode and simple-median method were used to assess the sensitivity. Heterogeneity and pleiotropic outlier were evaluated by Cochran's Q test and MR-Egger regression. Genetic correlation, colocalization analysis and multivariable MR analysis were used to further validate the potential pleiotropy. RESULTS After the Bonferroni correction, there was an observed association between elevated genetically predicted levels of CCL27 and a heightened risk for bladder cancer. Conversely, IL-12p70 levels were found to have a protective association against the risk of bladder cancer. Sensitivity analyses utilizing various IV sets and MR approach remained robust. Furthermore, we found potential associations of 7 cytokines with urologic cancers (4.07 × 10-4 ≤ P < 0.05). CONCLUSION Our study supported causal associations between CCL27, IL-12p70 and bladder cancer risk and potential associations of 7 cytokines with the risk of urologic cancers, helping us to further understand the pathogenesis of urologic cancers and providing clues for improving diagnostic accuracy and therapies.
Collapse
Affiliation(s)
- Jinbo Song
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China.
| | - Xiaoke Sun
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China
| | - Ting Wang
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China
| | - Chao Li
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China
| | - Leihong Yuan
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China
| |
Collapse
|
11
|
Pikul M, Gordiichuk P, Stakhovsky E. Urothelial cancer: state of art in Ukraine and improvement pathways. Ann Med Surg (Lond) 2024; 86:5137-5144. [PMID: 39238972 PMCID: PMC11374189 DOI: 10.1097/ms9.0000000000002424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
Aim This study aims to assess the effectiveness of urothelial cancer treatment in Ukraine, utilizing population-based data from the National Cancer Registry. The primary goal is to evaluate trends and approaches to therapy, with a focus on overall survival rates in patients with urothelial tumors. Materials and methods A retrospective cross-sectional analysis was conducted based on the National Cancer Registry, involving 12 698 patients (2008-2020) with urothelial tumors of the upper urinary tract (UTUC) and bladder cancer (BC) who underwent surgical treatment. Demographic indicators, surgical interventions, complications, and survival rates were analyzed. Results The average age for all patients was 70 years. The number of patients undergoing radical treatment was 1820 (15%) among BC and 573 (59%) among UTUC. The 30-day readmission rate was low for both, with a slightly higher preference for UTUC (2.3 vs. 4.6%). Whereas grade III or higher Cl-Dindo complications were seen in only 0.2% of cases. Notable findings include low frequency of neoadjuvant (7%) and adjuvant chemotherapy (28%) among patients with invasive urothelial carcinomas. Median eGFR for invasive UTUC before and after surgery was 63.2 and 51.4 ml/min, respectively (P=0.00054). The directly opposite trend was seen in BC-61.2 and 68.7 ml/min, respectively (P=0.0026).For BC, the overall survival rates by stages were: I-73%, II-49%, III-18%, and IV-11% (χ2=1807.207; P=0.000001). As for UTUC, the 5-year overall survival rates corresponded to the literature data, but there was a pronounced negative trend towards a decrease in this indicator after a 10-year period for all stages (χ2=146.298; P=0.000003). Conclusion The study emphasizes the importance of effective systemic treatments, adherence to treatment guidelines, and the need for multidisciplinary consultations among Ukrainian patients with urothelial cancer.
Collapse
Affiliation(s)
- Maksym Pikul
- Department of Plastic and Reconstructive Oncourology, National Cancer Institute of Ukraine
- Department of Oncology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Prokip Gordiichuk
- Department of Oncology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Eduard Stakhovsky
- Department of Plastic and Reconstructive Oncourology, National Cancer Institute of Ukraine
| |
Collapse
|
12
|
Li C, Ren Z, Yang G, Lei J. Mathematical Modeling of Tumor Immune Interactions: The Role of Anti-FGFR and Anti-PD-1 in the Combination Therapy. Bull Math Biol 2024; 86:116. [PMID: 39107447 DOI: 10.1007/s11538-024-01329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/13/2024] [Indexed: 08/21/2024]
Abstract
Bladder cancer poses a significant global health burden with high incidence and recurrence rates. This study addresses the therapeutic challenges in advanced bladder cancer, focusing on the competitive mechanisms of ligand or drug binding to receptors. We developed a refined mathematical model that integrates the dynamics of tumor cells and immune responses, particularly targeting fibroblast growth factor receptor 3 (FGFR3) and immune checkpoint inhibitors (ICIs). This study contributes to understanding combination therapies by elucidating the competitive binding dynamics and quantifying the synergistic effects. The findings highlight the importance of personalized immunotherapeutic strategies, considering factors such as drug dosage, dosing schedules, and patient-specific parameters. Our model further reveals that ligand-independent activated-state receptors are the most essential drivers of tumor proliferation. Moreover, we found that PD-L1 expression rate was more important than PD-1 in driving the dynamic evolution of tumor and immune cells. The proposed mathematical model provides a comprehensive framework for unraveling the complexities of combination therapies in advanced bladder cancer. As research progresses, this multidisciplinary approach contributes valuable insights toward optimizing therapeutic strategies and advancing cancer treatment paradigms.
Collapse
Affiliation(s)
- Chenghang Li
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China
| | - Zonghang Ren
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China
| | - Guiyu Yang
- School of Computer Science and Technology, Tiangong University, Tianjin, 300387, China
| | - Jinzhi Lei
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China.
- Center for Applied Mathematics, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
13
|
Bogale DE. The roles of FGFR3 and c-MYC in urothelial bladder cancer. Discov Oncol 2024; 15:295. [PMID: 39031286 PMCID: PMC11264706 DOI: 10.1007/s12672-024-01173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024] Open
Abstract
Bladder cancer is one of the most frequently occurring cancers worldwide. At diagnosis, 75% of urothelial bladder cancer cases have non-muscle invasive bladder cancer while 25% have muscle invasive or metastatic disease. Aberrantly activated fibroblast growth factor receptor (FGFR)-3 has been implicated in the pathogenesis of bladder cancer. Activating mutations of FGFR3 are observed in around 70% of NMIBC cases and ~ 15% of MIBCs. Activated FGFR3 leads to ligand-independent receptor dimerization and activation of downstream signaling pathways that promote cell proliferation and survival. FGFR3 is an important therapeutic target in bladder cancer, and clinical studies have shown the benefit of FGFR inhibitors in a subset of bladder cancer patients. c-MYC is a well-known major driver of carcinogenesis and is one of the most commonly deregulated oncogenes identified in human cancers. Studies have shown that the antitumor effects of FGFR inhibition in FGFR3 dependent bladder cancer cells and other FGFR dependent cancers may be mediated through c-MYC, a key downstream effector of activated FGFR that is involved tumorigenesis. This review will summarize the current general understanding of FGFR signaling and MYC alterations in cancer, and the role of FGFR3 and MYC dysregulation in the pathogenesis of urothelial bladder cancer with the possible therapeutic implications.
Collapse
Affiliation(s)
- Dereje E Bogale
- School of Medicine, Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
14
|
Kone AS, Ghouzlani A, Qandouci A, Issam Salah NEI, Bakoukou Y, Lakhdar A, Karkouri M, Badou A. High expression of BTN3A1 is associated with clinical and immunological characteristics and predicts a poor prognosis in advanced human gliomas. Front Immunol 2024; 15:1397486. [PMID: 38863709 PMCID: PMC11165028 DOI: 10.3389/fimmu.2024.1397486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Gliomas represent the most prevalent and aggressive tumors within the central nervous system. Despite the current standard treatments, the median survival time for glioblastoma patients remains dismal, hovering around 14 months. While attempts have been made to inhibit the PD-1/PD-L1 and CTLA-4/CD80-CD86 axes through immunotherapy, the outcomes have yet to demonstrate significant efficacy. The immune checkpoint Butyrophilin 3A1 (BTN3A1) can either be involved in advantageous or detrimental function depending on the cancer type. Methods In our study, we utilized a Moroccan cohort to delve into the role of BTN3A1 in gliomas. A transcriptomic analysis was conducted on 34 patients, which was then corroborated through a protein analysis in 27 patients and validated using the TCGA database (n = 667). Results Our results revealed an elevated expression of BTN3A1 in glioblastoma (grade 4), as evidenced in both the TCGA database and our cohort of Moroccan glioma patients. Within the TCGA cohort, BTN3A1 expression was notably higher in patients with wild-type IDH. We observed a positive correlation between BTN3A1 expression and immune infiltration of B cells, CD8+ T cells, naive CD4+ T cells, and M2 macrophages. Patients exhibiting increased BTN3A1 expression also presented elevated levels of TGF-β, IL-10, and TIM-3 compared to those with reduced BTN3A1 expression. Notably, patients with high BTN3A1 expression were associated with a poorer prognosis than their counterparts with lower expression. Conclussion Our findings suggest that BTN3A1 might promote the establishment of an immunosuppressive microenvironment. Consequently, targeting BTN3A1 could offer novel therapeutic avenues for the management of advanced gliomas.
Collapse
Affiliation(s)
- Abdou-samad Kone
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ahmed Qandouci
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Nour el Imane Issam Salah
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Yann Bakoukou
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Department of Neurosurgery, University Hospital Center (UHC) Ibn Rochd, Casablanca, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
15
|
Stojnev S, Conic I, Ristic Petrovic A, Petkovic I, Radic M, Krstic M, Jankovic Velickovic L. The Association of Death Receptors and TGF-β1 Expression in Urothelial Bladder Cancer and Their Prognostic Significance. Biomedicines 2024; 12:1123. [PMID: 38791085 PMCID: PMC11117556 DOI: 10.3390/biomedicines12051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Death receptor signalization that triggers the extrinsic apoptotic pathway and TGF-β1 have important roles in urothelial carcinogenesis, with a complex interplay between them. The aim of this research was to assess the association of death receptors DR4, DR5, and FAS as well as TGF-β1 immunohistochemical expression with the clinicopathological characteristics of urothelial bladder cancer (UBC) and to evaluate their prognostic significance. The decrease or loss of death receptors' expression was significantly associated with muscle-invasive tumors, while non-invasive UBC often retains the expression of death receptors, which are mutually strongly linked. High DR4 expression is a marker of low-grade tumors and UBC associated with exposition to known carcinogens. Conversely, TGF-β1 was significantly associated with high tumor grade and advanced stage. High expression of DR4 and FAS indicates longer overall survival. High TGF-β1 signifies an inferior outcome and is an independent predictor of adverse prognosis in UBC patients. This study reveals the expression profile of death receptors in UBC and their possible interconnection with TGF-β1 and indicates independent prognostic significance of high FAS and TGF-β1 expression in UBC, which may contribute to deciphering the enigma of UBC heterogeneity in light of the rapid development of novel and effective therapeutic approaches, including targeting of the TRAIL-induced apoptotic pathway.
Collapse
Affiliation(s)
- Slavica Stojnev
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Irena Conic
- Clinic of Oncology, University Clinical Center Nis, 18000 Nis, Serbia; (I.C.)
- Department of Oncology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Ana Ristic Petrovic
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Ivan Petkovic
- Clinic of Oncology, University Clinical Center Nis, 18000 Nis, Serbia; (I.C.)
- Department of Oncology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Milica Radic
- Clinic of Oncology, University Clinical Center Nis, 18000 Nis, Serbia; (I.C.)
- Department of Oncology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miljan Krstic
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Ljubinka Jankovic Velickovic
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
16
|
Tuo Z, Lin Y, Zhang Y, Gao L, Yu D, Wang J, Sun C, Sun X, Wang J, Prasad A, Bheesham N, Meng M, Lv Z, Chen X. Prognostic significance and immune landscape of a cell cycle progression-related risk model in bladder cancer. Discov Oncol 2024; 15:160. [PMID: 38735911 PMCID: PMC11089032 DOI: 10.1007/s12672-024-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND A greater emphasis has been placed on the part of cell cycle progression (CCP) in cancer in recent years. Nevertheless, the precise connection between CCP-related genes and bladder cancer (BCa) has remained elusive. This study endeavors to establish and validate a reliable risk model incorporating CCP-related factors, aiming to predict both the prognosis and immune landscape of BCa. METHODS Clinical information and RNA sequencing data were collected from the GEO and TCGA databases. Univariate and multivariate Cox regression analyses were conducted to construct a risk model associated with CCP. The performance of the model was assessed using ROC and Kaplan-Meier survival analyses. Functional enrichment analysis was employed to investigate potential cellular functions and signaling pathways. The immune landscape was characterized using CIBERSORT algorithms. Integration of the risk model with various clinical variables led to the development of a nomogram. RESULTS To build the risk model, three CCP-related genes (RAD54B, KPNA2, and TPM1) were carefully chosen. ROC and Kaplan-Meier survival analysis confirm that our model has good performance. About immunological infiltration, the high-risk group showed decreased levels of regulatory T cells and dendritic cells coupled with increased levels of activated CD4 + memory T cells, M2 macrophages, and neutrophils. Furthermore, the nomogram showed impressive predictive power for OS at 1, 3, and 5 years. CONCLUSION This study provides new insights into the association between the CCP-related risk model and the prognosis of BCa, as well as its impact on the immune landscape.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiani Wang
- Institute for Social Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin; Berlin Institute of Health, Epidemiology and Health Economics, Berlin, Germany
| | - Chenyu Sun
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianchao Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinyou Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Apurwa Prasad
- Parkview Regional Medical Center, 11109 Parkview Plaza Dr, Fort Wayne, IN, 46845, USA
| | - Nimarta Bheesham
- Internal Medicine, University of Illinois College of Medicine, One Illini Drive, Peoria, IL, 61605, USA
| | - Muzi Meng
- UK Program Site, American University of the Caribbean School of Medicine, Vernon Building Room 64, Sizer St, Preston, PR1 1JQ, UK
- Bronxcare Health System, 1650 Grand Concourse, The Bronx, NY, 10457, USA
| | - Zhengmei Lv
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui, China.
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
17
|
Russo AE, Memon A, Ahmed S. Bladder Cancer and the Urinary Microbiome-New Insights and Future Directions: A Review. Clin Genitourin Cancer 2024; 22:434-444. [PMID: 38220540 DOI: 10.1016/j.clgc.2023.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
The presence of a microbiome in the urinary system has been established through recent advancements in technology and investigation of microbial communities in the human body. The study of the taxonomic and genomic ecology of microbial communities has been greatly improved by the use of metagenomics. The research in this area has expanded our understanding of microbial ecosystems and shows that the urinary tract contains over 100 species from over 50 genera, with Lactobacillus, Gardnerella, and Streptococcus being the most common. Previous studies have suggested that the microbiota in the urinary tract may play a role in carcinogenesis by causing chronic inflammation and genotoxicity, but more research is needed to reach a definite conclusion. This is a narrative review. We conducted a search for relevant publications by using the databases Medline/PubMed and Google Scholar. The search was based on keywords such as "urinary microbiome," "bladder cancer," "carcinogenesis," "urothelial carcinoma," and "next-generation sequencing." The retrieved publications were then reviewed to study the contribution of the urinary microbiome in the development of bladder cancer. The results have been categorized into four sections to enhance understanding of the urinary microbiome and to highlight its role in the emergence of bladder cancer through alterations in the immune response that involve T-cells and antibodies. The immune system and microbiome play crucial roles in maintaining health and preventing disease. Manipulating the immune system is a key aspect of various cancer treatments, and certain gut bacteria have been linked to positive responses to immunotherapies. However, the impact of these treatments on the urinary microbiome, and how diet and lifestyle affect it, are not well understood. Research in this area could have significant implications for improving bladder cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Angela E Russo
- Larner College of Medicine, University of Vermont, Burlington, VT.
| | - Areeba Memon
- Medical College, Aga Khan University, Karachi, Sindh, Pakistan
| | - Shahid Ahmed
- Department of Hematology and Oncology, University of Vermont, Burlington, VT
| |
Collapse
|
18
|
Maroof H, Paramore L, Ali A. Theories behind Bacillus Calmette-Guérin failure in high-risk non-muscle-invasive bladder cancer and update on current management. CANCER PATHOGENESIS AND THERAPY 2024; 2:74-80. [PMID: 38601486 PMCID: PMC11002745 DOI: 10.1016/j.cpt.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 04/12/2024]
Abstract
Bladder cancer encapsulates a wide spectrum of disease severities, with non-muscle invasive bladder cancer (NMIBC) representing an entirely different entity from muscle-invasive disease. Bacillus Calmette-Guérin (BCG) is one of the most successful intravesical treatment methods for patients diagnosed. However, a considerable proportion of patients fail to respond to BCG treatment. Given the propensity for recurrence in patients with high-risk bladder cancer, these patients present with surgical dilemmas. There is currently no gold standard for salvage treatment post-BCG failure or unified definition as to what that means. In this review, we discuss the mechanisms of action and pathophysiology of BCG, potential theories behind BCG failure, and the scope of novel treatments for this surgical conundrum.
Collapse
Affiliation(s)
- Hanna Maroof
- Department of Urology, Frimley Park Hospital, Portsmouth Rd, Frimley, Camberley GU16 7UJ, United Kingdom
| | - Louise Paramore
- Department of Urology, Frimley Park Hospital, Portsmouth Rd, Frimley, Camberley GU16 7UJ, United Kingdom
| | - Ahmed Ali
- Department of Urology, Frimley Park Hospital, Portsmouth Rd, Frimley, Camberley GU16 7UJ, United Kingdom
| |
Collapse
|
19
|
Sonam Dongsar T, Tsering Dongsar T, Gupta G, Alsayari A, Wahab S, Kesharwani P. PLGA nanomedical consignation: A novel approach for the management of prostate cancer. Int J Pharm 2024; 652:123808. [PMID: 38224758 DOI: 10.1016/j.ijpharm.2024.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The malignancy of the prostate is a complicated ailment which impacts millions of male populations around the globe. Despite the multitude of endeavour accomplished within this domain, modalities that are involved in the ameliorative management of predisposed infirmity are still relent upon non-specific and invasive procedures, thus imposing a detrimental mark on the living standard of the individual. Also, the orchestrated therapeutic interventions are still incompetent in substantiating a robust and unabridged therapeutic end point owing to their inadequate solubility, low bioavailability, limited cell assimilation, and swift deterioration, thereby muffling the clinical application of these existing treatment modalities. Nanotechnology has been employed in an array of modalities for the medical management of malignancies. Among the assortment of available nano-scaffolds, nanocarriers composed of a bio-decomposable and hybrid polymeric material like PLGA hold an opportunity to advance as standard chemotherapeutic modalities. PLGA-based nanocarriers have the prospect to address the drawbacks associated with conventional cancer interventions, owing to their versatility, durability, nontoxic nature, and their ability to facilitate prolonged drug release. This review intends to describe the plethora of evidence-based studies performed to validate the applicability of PLGA nanosystem in the amelioration of prostate malignancies, in conjunction with PLGA focused nano-scaffold in the clinical management of prostate carcinoma. This review seeks to explore numerous evidence-based studies confirming the applicability of PLGA nanosystems in ameliorating prostate malignancies. It also delves into the role of PLGA-focused nano-scaffolds in the clinical management of prostate carcinoma, aiming to provide a comprehensive perspective on these advancements.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
20
|
Mankan AK, Mankan N, de Las Heras B, Ramkissoon SH, Bodriagova O, Vidal L, Grande E, Saini KS. Bladder Cancer, Loss of Y Chromosome, and New Opportunities for Immunotherapy. Adv Ther 2024; 41:885-890. [PMID: 38198042 DOI: 10.1007/s12325-023-02758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Immune checkpoint inhibitors (ICI) have emerged as an important therapeutic approach for patients with cancers including bladder cancer (BC). This commentary describes a recent study that demonstrated that the loss of Y chromosome (LOY) and/or loss of specific genes on Y chromosome confers an aggressive phenotype to BC because of T cell dysfunction resulting in CD8+T cell exhaustion. Loss of expression of Y chromosome genes KDM5D and UTY was similarly associated with an unfavorable prognosis in patients with BC as these genes were partially responsible for the impaired anti-tumor immunity in LOY tumors. From a clinical perspective, the study showed that tumors with LOY may be susceptible to treatment with ICIs.
Collapse
Affiliation(s)
- Arun K Mankan
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA.
| | | | | | - Shakti H Ramkissoon
- Labcorp Oncology, Durham, NC, USA
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Laura Vidal
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA
| | | | - Kamal S Saini
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA.
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
21
|
Saito T, Kanao K, Matsumoto K, Fukumoto K, Igarashi D, Takahashi T, Kaneko G, Shirotake S, Nishimoto K, Mizuno R, Ishida M, Hara S, Oya M, Oyama M. New risk stratification for adjuvant nivolumab for high-risk muscle-invasive urothelial carcinoma. BJUI COMPASS 2024; 5:281-288. [PMID: 38371203 PMCID: PMC10869665 DOI: 10.1002/bco2.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 02/20/2024] Open
Abstract
Objectives We aim to evaluate the risk of recurrence after neoadjuvant chemotherapy followed by radical cystectomy, particularly in ypT2 disease in patients with urothelial carcinoma, because it is not clear if all eligible patients with high-risk muscle-invasive urothelial carcinoma should be treated with adjuvant nivolumab. Materials and Methods We analysed the radiological and clinicopathological features, including cT and ypT stages, of 197 patients who had undergone two to four cycles of cisplatin-based neoadjuvant chemotherapy and radical cystectomy without adjuvant chemotherapy. We stratified the risk of postoperative recurrence by these factors. Results The median observation period was 29.6 (interquartile range, 11.4-71.7) months, and disease recurrence was observed in 58 patients. Multivariate analysis revealed that ypT stage (P = 0.019) and lymphovascular invasion (P = 0.015) were independent risk factors for postoperative recurrence. The ypT2 group (n = 38) had significantly better recurrence-free survival than the ypT3 group (n = 41) (median recurrence-free survival: not reached vs. 13.4 months, respectively, P = 0.005). In ypT2 disease, the cT2 and ypT2 group (n = 15), which was diagnosed as cT2 preoperatively and then diagnosed as ypT2 postoperatively, had significantly better recurrence-free survival than the cT3/4 and ypT2 group (n = 23) (median recurrence-free survival: not reached vs. 63.1 months, respectively, P = 0.034). There was no significant difference in recurrence-free survival between the ypT ≤ 1 (n = 106) and the cT2 and ypT2 groups (median recurrence-free survival: not reached in both, P = 0.962). Conclusion Patients with cT2 and ypT2 stage have a relatively low risk of recurrence and thus have a lower need for adjuvant nivolumab, particularly those with ypT2.
Collapse
Affiliation(s)
- Takafumi Saito
- Department of Uro‐OncologySaitama Medical University International Medicine CenterSaitamaJapan
- Department of UrologyKeio University School of MedicineTokyoJapan
- Department of UrologySaiseikai Yokohamashi Tobu HospitalTokyoJapan
| | - Kent Kanao
- Department of Uro‐OncologySaitama Medical University International Medicine CenterSaitamaJapan
| | | | | | - Daisuke Igarashi
- Department of Uro‐OncologySaitama Medical University International Medicine CenterSaitamaJapan
| | - Takayuki Takahashi
- Department of Uro‐OncologySaitama Medical University International Medicine CenterSaitamaJapan
| | - Go Kaneko
- Department of Uro‐OncologySaitama Medical University International Medicine CenterSaitamaJapan
| | - Suguru Shirotake
- Department of Uro‐OncologySaitama Medical University International Medicine CenterSaitamaJapan
| | - Koshiro Nishimoto
- Department of Uro‐OncologySaitama Medical University International Medicine CenterSaitamaJapan
| | - Ryuichi Mizuno
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Masaru Ishida
- Department of UrologySaiseikai Yokohamashi Tobu HospitalTokyoJapan
| | - Satoshi Hara
- Department of UrologyKawasaki Municipal HospitalKawasakiJapan
| | - Mototsugu Oya
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Masafumi Oyama
- Department of Uro‐OncologySaitama Medical University International Medicine CenterSaitamaJapan
| |
Collapse
|
22
|
Pan G, Xie H, Xia Y. Disulfidptosis characterizes the tumor microenvironment and predicts immunotherapy sensitivity and prognosis in bladder cancer. Heliyon 2024; 10:e25573. [PMID: 38356551 PMCID: PMC10864973 DOI: 10.1016/j.heliyon.2024.e25573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is prone to metastasis and has poor prognosis with unsatisfactory treatment responsiveness. Disulfidptosis is a recently discovered, novel mode of cell death that is closely associated with human cancers. However, a comprehensive analysis of the relationship between disulfidptosis and BLCA is lacking. Therefore, this study aimed to explore the potential effect of disulfidptosis on BLCA and identify a biomarker for evaluating the prognosis and immunotherapy of patients with BLCA. MATERIAL AND METHODS We acquired BLCA RNA sequencing data from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) cohort (containing 19 normal samples and 409 tumor samples) and the GES39281 cohort (containing 94 tumor samples) which were used for external validation of the signature. Initially, we performed unsupervised consensus clustering to explore disulfidptosis-related subgroups. We then conducted functional enrichment analysis on these subgroups to gain insights into their biological significance and evaluate their immunotherapy response and chemotherapy sensitivity. Next, we conducted Least Absolute Shrinkage and Selection Operator (LASSO) regression and multivariate Cox regression to construct a prognostic signature in the TCGA training set for prognosis-related differentially expressed genes (DEGs) in the disulfidptosis-related subgroups. Subsequently, we used a receiver operating characteristic (ROC) curve and independent prognostic analysis to validate the predictive performance of the signature in the TCGA testing and the GES39281 cohorts. Finally, we explored the therapeutic value of this signature in patients with BLCA, in terms of immunotherapy and chemotherapy. RESULT In this study, we obtained two subgroups: DRG-high (238 samples) and DRG-low (160 samples). The DRG-high group exhibited a poor survival rate compared to the DRG-low group and had a significant association with tumor grade, stage, and metastasis. Additionally, several pathways related to cancer and the immune system were enriched in the high-DRG group. Moreover, the DRG-high group exhibited higher expression of PD1 and CTLA4 and had a better response to immunotherapy in patients with both PD1 and CTLA4 positivity. Conversely, the DRG-high group was more sensitive to common chemotherapeutic agents. A prognostic signature was created, consisting of COL5A1, DIRAS3, NKG7, and POLR3G and validated as having a robust predictive capability. Patients in the low-risk-score group had more immune cells associated with tumor suppression and better immunotherapy outcomes. CONCLUSION This study contributes to our understanding of the characteristics of disulfidptosis-related subgroups in BLCA. Disulfidptosis-related signatures can be used to assess the prognosis and immunotherapy of patients with BLCA.
Collapse
Affiliation(s)
- Guizhen Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huan Xie
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yeye Xia
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Chengdu Fifth People's Hospital, Sichuan, China
| |
Collapse
|
23
|
Xiaoqin Z, Zhouqi L, Huan P, Xinyi F, Bin S, Jiming W, Shihui L, Bangwei Z, Jing J, Yi H, Jinlai G. Development of a prognostic signature for immune-associated genes in bladder cancer and exploring potential drug findings. Int Urol Nephrol 2024; 56:483-497. [PMID: 37740848 DOI: 10.1007/s11255-023-03796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Bladder cancer, predominantly affecting men, is a prevalent malignancy of the urinary system. Although platinum-based chemotherapy has demonstrated certain enhancements in overall survival when compared to surgery alone, the efficacy of treatments is impeded by the unfavorable side effects of conventional chemotherapy medications. Nonetheless, immunotherapy exhibits potential in the treatment of bladder cancer. METHODS To create an immune-associated prognostic signature for bladder cancer, bioinformatics analyses were performed utilizing The Cancer Genome Atlas (TCGA) database in this study. By identifying differential gene expressions between the high-risk and low-risk groups, a potential therapeutic drug was predicted using the Connectivity Map database. Subsequently, the impact of this drug on the growth of T24 cells was validated through MTT assay and 3D cell culture techniques. RESULTS The signature included 1 immune-associated LncRNA (NR2F1-AS1) and 16 immune-associated mRNAs (DEFB133, RBP7, PDGFRA, CGB3, PDGFD, SCG2, ADCYAP1R1, OPRL1, PGR, PSMD1, TANK, PRDX1, ADIPOR2, S100A8, AHNAK, EGFR). Based on the assessment of risk scores, the patients were classified into cohorts of low-risk and high-risk individuals. The cohort with low risk demonstrated a considerably higher likelihood of survival in comparison to the group with high risk. Furthermore, variations in immune infiltration were noted among the two categories. Cephaeline, a possible medication, was discovered by analyzing variations in gene expression. It exhibited promise in suppressing the viability and growth of T24 bladder cancer cells. CONCLUSION The novel predictive pattern allows for efficient categorization of patients with bladder cancer, enabling focused and rigorous treatment for those expected to have a worse prognosis. The discovery of a possible curative medication establishes a basis for forthcoming immunotherapy trials in bladder cancer.
Collapse
Affiliation(s)
- Zhang Xiaoqin
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Lu Zhouqi
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Pan Huan
- Departments of Central Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Feng Xinyi
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Shen Bin
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Wu Jiming
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Liu Shihui
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Zhou Bangwei
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Jin Jing
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - He Yi
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Gao Jinlai
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China.
| |
Collapse
|
24
|
Xu H, Sun D, Zhou D, Sun S. Immune Cell Infiltration Types as Biomarkers for the Recurrence Diagnosis and Prognosis of Bladder Cancer. Cancer Invest 2024; 42:186-198. [PMID: 38390837 DOI: 10.1080/07357907.2024.2308161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
This study aimed to investigate the role of infiltrating immune cell types in diagnosing and predicting bladder cancer recurrence. This study mainly applied some algorithms, including Estimate the Proportion of Immune and Cancer Cells (EPIC), support vector machine-recursive feature elimination (SVM-RFE), random forest out-of-bag (RF-OOB) and least absolute shrinkage and selection operator (LASSO)-Cox regression analysis. We found six immune infiltrating cell types significantly associated with recurrence prognosis and two independent clinical prognostic factors. Infiltrating immune cell types (IICTs) based on the prognostic immune risk score (pIRS) models may provide significant biomarkers for the diagnosis and prognostic prediction of bladder cancer recurrence.
Collapse
Affiliation(s)
- Hongwei Xu
- Urology Department, Heilongjiang Provincial Hospital, Harbin City, Heilongjiang Province, China
| | - Dapeng Sun
- Urology Department, Heilongjiang Provincial Hospital, Harbin City, Heilongjiang Province, China
| | - Dahong Zhou
- Urology Department, Heilongjiang Provincial Hospital, Harbin City, Heilongjiang Province, China
| | - Shiheng Sun
- Urology Department, Heilongjiang Provincial Hospital, Harbin City, Heilongjiang Province, China
| |
Collapse
|
25
|
Jiang D, Zhang H, Yin B, He M, Lu X, He C. The Prognostic Hub Gene POLE2 Promotes BLCA Cell Growth via the PI3K/AKT Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:1984-1998. [PMID: 38963027 DOI: 10.2174/0113862073273633231113060429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 07/05/2024]
Abstract
BACKGROUND BLCA is a common urothelial malignancy characterized by a high recurrence rate. Despite its prevalence, the molecular mechanisms underlying its development remain unclear. AIMS This study aimed to explore new prognostic biomarkers and investigate the underlying mechanism of bladder cancer (BLCA). OBJECTIVE The objective of this study is to identify key prognostic biomarkers for BLCA and to elucidate their roles in the disease. METHODS We first collected the overlapping DEGs from GSE42089 and TCGA-BLCA samples for the subsequent weighted gene co-expression network analysis (WGCNA) to find a key module. Then, key module genes were analyzed by the MCODE algorithm, prognostic risk model, expression and immunohistochemical staining to identify the prognostic hub gene. Finally, the hub gene was subjected to clinical feature analysis, as well as cellular function assays. RESULTS In WGCNA on 1037 overlapping genes, the blue module was the key module. After a series of bioinformatics analyses, POLE2 was identified as a prognostic hub gene in BLCA from potential genes (TROAP, POLE2, ANLN, and E2F8). POLE2 level was increased in BLCA and related to different clinical features of BLCA patients. Cellular assays showed that si-POLE2 inhibited BLCA proliferation, and si-POLE2+ 740Y-P in BLCA cells up-regulated the PI3K and AKT protein levels. CONCLUSION In conclusion, POLE2 was identified to be a promising prognostic biomarker as an oncogene in BLCA. It was also found that POLE2 exerts a promoting function by the PI3K/AKT signaling pathway in BLCA.
Collapse
Affiliation(s)
- Dongzhen Jiang
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Huawei Zhang
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Bingde Yin
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Minke He
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Xuwei Lu
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Chang He
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| |
Collapse
|
26
|
Hassouneh Z, Huang G, Zhang N, Rao M, Mukherjee N. Commentary: On the Emerging Role of Innate Lymphoid Cells in Bladder Cancer. JOURNAL OF CANCER IMMUNOLOGY 2024; 6:125-134. [PMID: 39574565 PMCID: PMC11580033 DOI: 10.33696/cancerimmunol.6.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Affiliation(s)
- Zaineb Hassouneh
- Department of Urology, University of Texas Health San Antonio (UTHSA), USA
- Department of Microbiology, Immunology & Molecular Genetics, UTHSA, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, UTHSA, USA
| | - Nu Zhang
- Department of Microbiology, Immunology & Molecular Genetics, UTHSA, USA
| | - Manjeet Rao
- Department of Cell Systems and Anatomy, UTHSA, USA
- Greehey Children’s Cancer Research Institute, UTHSA, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio (UTHSA), USA
| |
Collapse
|
27
|
Lv Z, Hou J, Wang Y, Wang X, Wang Y, Wang K. Knowledge-map analysis of bladder cancer immunotherapy. Hum Vaccin Immunother 2023; 19:2267301. [PMID: 37903500 PMCID: PMC10760393 DOI: 10.1080/21645515.2023.2267301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
This study aimed to conduct a bibliometric analysis in the field of bladder cancer (BC) immunotherapy, and explore the research trends, hotspots and frontiers from 2000 to 2022. VOSviewer software was used to analyze the collaborative relationships between authors, institutions, countries/regions, and journals through citation, co-authorship, and co-citation analysis, to identify research hotspots and frontiers in this field. Researchers based in the United States of America have published a total of 627 papers with 27,308 citations. Indeed, the USA ranked first among the top 10 most active countries and showed the most extensive collaboration with other countries. The University of Texas MD Anderson CANC CTR has published 58 articles, making it the top most institution in terms of published articles and active collaborative research. Kamat AM and Lamm DL were the most active and co-cited authors with 28 papers and 980 co-citations, respectively. Chang Yuan and Xu le were the most active collaborative authors with a total link strength of 195. The J UROLOGY was the most active and frequently co-cited journal, with 100 papers and 6,668 co-citations. Studies of BC immunotherapy can be broadly classified into three categories: "basic research", "clinical trial", and "prognosis". Our findings provide an overview of the research priorities and future directions of BC immunotherapy. Tumor microenvironment and immune checkpoint inhibitors (ICIs) of BC, as well as the combination of ICIs with other drugs, may become the main direction of future research.
Collapse
Affiliation(s)
- Zongwei Lv
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Junhui Hou
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yibing Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
28
|
Jiang Y, Sun X, Song X, Li Z, Zhang P, Zhang W, Tang D. Patient-derived bladder cancer organoid model to predict sensitivity and feasibility of tailored precision therapy. Curr Urol 2023; 17:221-228. [PMID: 37994334 PMCID: PMC10662868 DOI: 10.1097/cu9.0000000000000219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/12/2023] [Indexed: 11/24/2023] Open
Abstract
Background Bladder cancer is a common and highly heterogeneous malignant tumor with a relatively poor prognosis. Thus, personalized treatment strategies for bladder cancer are essential for improving patient outcomes. Materials and methods We developed an efficient 3-dimensional in vitro organoid culture system for bladder cancer organoids (BCOs), which maintains the homology with the original patient tumors and the heterogeneity between different individuals. In addition, we constructed chimeric antigen receptor (CAR)-T cells targeting B7H3 and evaluated the antitumor function of CAR-T cells by coculturing them with BCOs. Results The BCOs closely resembled the characteristics of human tumors and were used to test individual sensitivity to platinum-based drugs and olaparib therapy. Coculture with CAR-T cells demonstrated specific antigen recognition and immune activation, indicating their potential in immunotherapy. Conclusions Our study highlights the potential of BCOs to facilitate the development of personalized medicine for bladder cancer and improve the efficiency of drug discovery for bladder cancer therapy.
Collapse
Affiliation(s)
- Ying Jiang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Xun Sun
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaoyun Song
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Zhen Li
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Ping Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Wen Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| |
Collapse
|
29
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
30
|
Zhong J, Xu A, Xu P, Su M, Wang P, Liu Z, Li B, Liu C, Jiang N. Circ_0000235 targets MCT4 to promote glycolysis and progression of bladder cancer by sponging miR-330-5p. Cell Death Discov 2023; 9:283. [PMID: 37532687 PMCID: PMC10397263 DOI: 10.1038/s41420-023-01582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Warburg effect plays a crucial role in bladder cancer (Bca) development. However, the mechanism by which glycolysis is involved in Bca remains poorly understood. CircRNAs commonly play a regulatory role in tumor progression. Our study discovered and identified a novel circRNA, hsa_circ_0000235 (circ235), and investigated its role in the glycolytic process, which further results in the progression of Bca. We applied qRT-PCR to assess its clinicopathological relevance and evaluated its proliferation, migration, and glycolytic capacity. We investigated its mechanism using RNA immunoprecipitation, dual-luciferase reporters, and fluorescence in situ hybridization. The findings demonstrated that circ235 was dramatically increased in Bca tissues and was related to a worse prognosis. In vitro studies revealed that circ235 accelerated the rate of extracellular acidification and promoted glucose uptake and lactate manufacture in Bca cells. Additionally, it strengthened the proliferative and migratory capacities. Experiments on animals revealed that downregulating circ235 dramatically reduced carcinogenesis and tumor growth. Circ235 activates monocarboxylate transporter 4 (MCT4) by sponging miR-330-5p, which promotes glycolysis and tumor growth. In conclusion, these findings suggest that circ235 may be a viable molecular marker and therapeutic target for Bca.
Collapse
Affiliation(s)
- Jianye Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Laboratory of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minhong Su
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Boping Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ning Jiang
- Laboratory of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Wang M, Zhang Z, Li Z, Zhu Y, Xu C. E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and implications for immunotherapies. Front Immunol 2023; 14:1226057. [PMID: 37497216 PMCID: PMC10366618 DOI: 10.3389/fimmu.2023.1226057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
With the rapidly increasing incidence of bladder cancer in China and worldwide, great efforts have been made to understand the detailed mechanism of bladder cancer tumorigenesis. Recently, the introduction of immune checkpoint inhibitor-based immunotherapy has changed the treatment strategy for bladder cancer, especially for advanced bladder cancer, and has improved the survival of patients. The ubiquitin-proteasome system, which affects many biological processes, plays an important role in bladder cancer. Several E3 ubiquitin ligases and deubiquitinases target immune checkpoints, either directly or indirectly. In this review, we summarize the recent progress in E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and further highlight the implications for bladder cancer immunotherapies.
Collapse
Affiliation(s)
- Maoyu Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhizhou Li
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
32
|
Cheng FT, Geng YD, Liu YX, Nie X, Zhang XG, Chen ZL, Tang LQ, Wang LH, You YZ, Zhang L. Co-delivery of a tumor microenvironment-responsive disulfiram prodrug and CuO 2 nanoparticles for efficient cancer treatment. NANOSCALE ADVANCES 2023; 5:3336-3347. [PMID: 37325521 PMCID: PMC10262962 DOI: 10.1039/d3na00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Disulfiram (DSF) has been used as a hangover drug for more than seven decades and was found to have potential in cancer treatment, especially mediated by copper. However, the uncoordinated delivery of disulfiram with copper and the instability of disulfiram limit its further applications. Herein, we synthesize a DSF prodrug using a simple strategy that could be activated in a specific tumor microenvironment. Poly amino acids are used as a platform to bind the DSF prodrug through the B-N interaction and encapsulate CuO2 nanoparticles (NPs), obtaining a functional nanoplatform Cu@P-B. In the acidic tumor microenvironment, the loaded CuO2 NPs will produce Cu2+ and cause oxidative stress in cells. At the same time, the increased reactive oxygen species (ROS) will accelerate the release and activation of the DSF prodrug and further chelate the released Cu2+ to produce the noxious copper diethyldithiocarbamate complex, which causes cell apoptosis effectively. Cytotoxicity tests show that the DSF prodrug could effectively kill cancer cells with only a small amount of Cu2+ (0.18 μg mL-1), inhibiting the migration and invasion of tumor cells. In vitro and in vivo experiments have demonstrated that this functional nanoplatform could kill tumor cells effectively with limited toxic side effects, showing a new perspective in DSF prodrug design and cancer treatment.
Collapse
Affiliation(s)
- Fen-Ting Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Ya-Di Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Yun-Xiao Liu
- Institute of Clinical Pharmacology, Anhui Medical University Hefei Anhui 230032 China
| | - Xuan Nie
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xin-Ge Zhang
- Institute of Clinical Pharmacology, Anhui Medical University Hefei Anhui 230032 China
| | - Zhao-Lin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Li-Qin Tang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Long-Hai Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ye-Zi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
- Institute of Clinical Pharmacology, Anhui Medical University Hefei Anhui 230032 China
| |
Collapse
|
33
|
Sun A, Luo Y, Xiao W, Zhu Z, Yan H, Miao C, Zhang W, Bai P, Liu C, Yang D, Shao Z, Song J, Wu Z, Chen B, Xing J, Wang T. Androgen receptor transcriptionally inhibits programmed death ligand-1 (PD-L1) expression and influences immune escape in bladder cancer. J Transl Med 2023; 103:100148. [PMID: 37059268 DOI: 10.1016/j.labinv.2023.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023] Open
Abstract
In multiple clinical trials, immune checkpoint blockade-based immunotherapy has shown significant therapeutic efficacy in bladder cancer (BCa). Sex is closely related to the incidence rate and prognosis of BCa. As one of the sex hormone receptors, the androgen receptor (AR) is a well-known key regulator that promotes the progression of BCa. However, the regulatory mechanism of AR in the immune response of BCa is still unclear. In this study, the expression of AR and programmed cell death-ligand 1 (PD-L1) was negatively correlated in BCa cells, clinical tissues, and tumor data extracted from The Cancer Genome Atlas Bladder Urothelial Carcinoma (TCGA-BLCA) cohort. A human BCa cell line was transfected to alter expression of AR. The results show that AR negatively regulated PD-L1 expression by directly binding to AR response elements (AREs) on the PD-L1 promoter region. In addition, AR overexpression in BCa cells significantly enhanced the antitumor activity of co-cultured CD8+ T cells. Injection of anti-PD-L1 monoclonal antibodies into C3H/HeN mice significantly suppressed tumor growth, and stable expression of AR dramatically enhanced the antitumor activity in vivo. In conclusion, this study describes a novel role of AR in regulating the immune response to BCa by targeting PD-L1, thus providing potential therapeutic strategies for immunotherapy in BCa.
Collapse
Affiliation(s)
- Anran Sun
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China; Oncology Research Center, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, Guangdong, China
| | - Yu Luo
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Zhu
- School of Medicine, Xiamen University, Xiang'an, Xiamen, China
| | - Hongyu Yan
- School of Medicine, Xiamen University, Xiang'an, Xiamen, China
| | - Chaohao Miao
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wenzhao Zhang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Peide Bai
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Chenfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China
| | - Zhiqiang Shao
- Xiamen University Laboratory Animal Center, Xiamen University, Xiang'an, Xiamen, China
| | - Jing Song
- Xiamen University Laboratory Animal Center, Xiamen University, Xiang'an, Xiamen, China
| | - Zhun Wu
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Chen
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| | - Jinchun Xing
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| | - Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
34
|
Castaneda PR, Theodorescu D, Rosser CJ, Ahdoot M. Identifying novel biomarkers associated with bladder cancer treatment outcomes. Front Oncol 2023; 13:1114203. [PMID: 37064102 PMCID: PMC10090444 DOI: 10.3389/fonc.2023.1114203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Abstract
Bladder cancer is a complex disease with variable prognosis. Recent investigations into the molecular landscape of bladder cancer have revealed frequent genetic alterations and molecular subtypes with therapeutic implications. Consequently, a shift toward personalized treatment of bladder cancer is underway. To this end, several biomarkers have been developed and tested in their ability to predict response to treatment in patients with bladder cancer and potentially help direct therapy. We performed a search of recently published PubMed articles using terms "biomarker," "bladder cancer," and the respective treatment discussed (i.e., "neoadjuvant" or "BCG"). In this review, we summarize the latest studies on novel biomarkers in bladder cancer with a focus on those intended to improve risk stratification and treatment selection.
Collapse
Affiliation(s)
- Peris R. Castaneda
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dan Theodorescu
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, United States
| | - Charles J. Rosser
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, United States
| | - Michael Ahdoot
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
35
|
Afonso J, Gonçalves C, Costa M, Ferreira D, Santos L, Longatto-Filho A, Baltazar F. Glucose Metabolism Reprogramming in Bladder Cancer: Hexokinase 2 (HK2) as Prognostic Biomarker and Target for Bladder Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030982. [PMID: 36765947 PMCID: PMC9913750 DOI: 10.3390/cancers15030982] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Proliferating cancer cells are able to reprogram their energy metabolism, favouring glycolysis even in the presence of oxygen and fully functioning mitochondria. Research is needed to validate the glycolysis-related proteins as prognostic/predictive biomarkers in urothelial bladder carcinoma (UBC), a malignancy tagged by high recurrence rates and poor response to chemotherapy. Here, we assessed GLUT1, HK2, PFKL, PKM2, phospho-PDH, and LDHA immunoexpression in 76 UBC samples, differentiating among urothelial, fibroblast, and endothelial cells and among normoxic versus hypoxic areas. We additionally studied the functional effects of the HK2 inhibitor 2-deoxy-D-glucose (2DG) in "in vitro" and "in vivo" preclinical UBC models. We showed that the expression of the glycolysis-related proteins is associated with UBC aggressiveness and poor prognosis. HK2 remained as an independent prognostic factor for disease-free and overall survival. 2DG decreased the UBC cell's viability, proliferation, migration, and invasion; the inhibition of cell cycle progression and apoptosis occurrence was also verified. A significant reduction in tumour growth and blood vessel formation upon 2DG treatment was observed in the chick chorioallantoic membrane assay. 2DG potentiated the cisplatin-induced inhibition of cell viability in a cisplatin-resistant subline. This study highlights HK2 as a prognostic biomarker for UBC patients and demonstrates the potential benefits of using 2DG as a glycolysis inhibitor. Future studies should focus on integrating 2DG into chemotherapy design, as an attempt to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Céline Gonçalves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of the Portuguese Institute of Oncology (CI-IPOP), 4200-072 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo 14784-400, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-60-48-28
| |
Collapse
|
36
|
Martins-Lima C, Chianese U, Benedetti R, Altucci L, Jerónimo C, Correia MP. Tumor microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game? Front Mol Biosci 2023; 9:1070383. [PMID: 36699696 PMCID: PMC9868260 DOI: 10.3389/fmolb.2022.1070383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-Guérin (BCG) is the standard treatment for non-muscle invasive bladder cancer (NMIBC) patients and, recently, second-line immunotherapies have arisen to treat metastatic BlCa patients. Understanding the interactions between tumor cells, immune cells and soluble factors in bladder tumor microenvironment (TME) is crucial. Cytokines and chemokines released in the TME have a dual role, since they can exhibit both a pro-inflammatory and anti-inflammatory potential, driving infiltration and inflammation, and also promoting evasion of immune system and pro-tumoral effects. In BlCa disease, 70-80% are non-muscle invasive bladder cancer, while 20-30% are muscle-invasive bladder cancer (MIBC) at the time of diagnosis. However, during the follow up, about half of treated NMIBC patients recur once or more, with 5-25% progressing to muscle-invasive bladder cancer, which represents a significant concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological process associated with tumor progression. Specific cytokines present in bladder TME have been related with signaling pathways activation and EMT-related molecules regulation. In this review, we summarized the immune landscape in BlCa TME, along with the most relevant cytokines and their putative role in driving EMT processes, tumor progression, invasion, migration and metastasis formation.
Collapse
Affiliation(s)
- Cláudia Martins-Lima
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy,BIOGEM, Molecular Biology and Genetics Research Institute, Avellino, Italy,IEOS, Institute of Endocrinology and Oncology, Naples, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| |
Collapse
|
37
|
Song FX, Xu X, Ding H, Yu L, Huang H, Hao J, Wu C, Liang R, Zhang S. Recent Progress in Nanomaterial-Based Biosensors and Theranostic Nanomedicine for Bladder Cancer. BIOSENSORS 2023; 13:106. [PMID: 36671940 PMCID: PMC9855444 DOI: 10.3390/bios13010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BCa) is one of the most expensive and common malignancies in the urinary system due to its high progression and recurrence rate. Although there are various methods, including cystoscopy, biopsy, and cytology, that have become the standard diagnosis methods for BCa, their intrinsic invasive and inaccurate properties need to be overcome. The novel urine cancer biomarkers are assisted by nanomaterials-based biosensors, such as field-effect transistors (FETs) with high sensitivity and specificity, which may provide solutions to these problems. In addition, nanomaterials can be applied for the advancement of next-generation optical imaging techniques and the contrast agents of conventional techniques; for example, magnetic resonance imaging (MRI) for the diagnosis of BCa. Regarding BCa therapy, nanocarriers, including mucoadhesive nanoparticles and other polymeric nanoparticles, successfully overcome the disadvantages of conventional intravesical instillation and improve the efficacy and safety of intravesical chemotherapy for BCa. Aside from chemotherapy, nanomedicine-based novel therapies, including photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), and combination therapy, have afforded us new ways to provide BC therapy and hope, which can be translated into the clinic. In addition, nanomotors and the nanomaterials-based solid tumor disassociation strategy provide new ideas for future research. Here, the advances in BCa diagnosis and therapy mentioned above are reviewed in this paper.
Collapse
Affiliation(s)
- Fan-Xin Song
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Xiaojian Xu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hengze Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Le Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Haochen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Jinting Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Chenghao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Rui Liang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
38
|
Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10353. [PMID: 36684065 PMCID: PMC9842064 DOI: 10.1002/btm2.10353] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023] Open
Abstract
Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Orta MahalleIstanbulTurkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Arul Goel
- La Canada High SchoolLa Cañada FlintridgeCaliforniaUSA
| | - Lingzhi Wang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jun Ren
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Shanghai Institute of Cardiovascular Diseases, Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNew South Wales2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673South Korea
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
39
|
Smith V, Mukherjee D, Tsakiroglou AM, Baker A, Mistry H, Choudhury A, Hoskin P, Illidge T, West CML. Low CD8 T Cell Counts Predict Benefit from Hypoxia-Modifying Therapy in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2022; 15:41. [PMID: 36612036 PMCID: PMC9817934 DOI: 10.3390/cancers15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As hypoxia can drive an immunosuppressive tumour microenvironment and inhibit CD8+ T cells, we investigated if patients with low tumour CD8+ T cells benefitted from hypoxia-modifying therapy. METHODS BCON was a phase III trial that randomised patients with muscle-invasive bladder cancer (MIBC) to radiotherapy alone or with hypoxia-modifying carbogen plus nicotinamide (CON). Tissue microarrays of diagnostic biopsies from 116 BCON patients were stained using multiplex immunohistochemistry (IHC) with the markers CD8, CD4, FOXP3, CD68 and PD-L1, plus DAPI. Hypoxia was assessed using CA9 IHC (n = 111). Linked transcriptomic data (n = 80) identified molecular subtype. Relationships with overall survival (OS) were investigated using Cox proportional hazard models. RESULTS High (upper quartile) vs. low CD8 T cell counts associated with a better OS across the whole cohort at 16 years (n = 116; HR 0.47, 95% CI 0.28-0.78, p = 0.003) and also in the radiotherapy alone group (n = 61; HR 0.39, 95% CI 0.19-0.76, p = 0.005). Patients with low CD8+ T cells benefited from CON (n = 87; HR 0.63, 95% CI 0.4-1.0, p = 0.05), but those with high CD8 T cells did not (n = 27; p = 0.95). CA9 positive tumours had fewer CD8+ T cells (p = 0.03). Prognostic significance of low CD8+ T cells in the whole cohort remained after adjusting for clinicopathologic variables. Basal vs. luminal subtype had more CD8+ cells (p = 0.02) but was not prognostic (n = 80; p = 0.26). Exploratory analyses with other immune markers did not improve on findings obtained with CD8 counts. CONCLUSIONS MIBC with low CD8+ T cell counts may benefit from hypoxia-modifying treatment.
Collapse
Affiliation(s)
- Vicky Smith
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Debayan Mukherjee
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | - Alexander Baker
- Cancer Research UK Manchester Institute, Manchester M20 4BX, UK
| | - Hitesh Mistry
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PL, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
- Manchester Academic Health Science Centre, Manchester M13 9NQ, UK
- Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
- Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK
- Mount Vernon Cancer Centre, Northwood HA6 2RK, UK
| | - Timothy Illidge
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
- Manchester Academic Health Science Centre, Manchester M13 9NQ, UK
- Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK
| | | |
Collapse
|
40
|
Gong S, Liang X, Zhang M, Li L, He T, Yuan Y, Li X, Liu F, Yang X, Shen M, Wu Q, Gong C. Tumor Microenvironment-Activated Hydrogel Platform with Programmed Release Property Evokes a Cascade-Amplified Immune Response against Tumor Growth, Metastasis and Recurrence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107061. [PMID: 36323618 DOI: 10.1002/smll.202107061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/16/2023]
Abstract
In situ tumor vaccines (ITV) have been recognized as a promising antitumor strategy since they contain the entire tumor-specific antigens, avoiding tumor cells from evading immune surveillance due to antigen loss. However, the therapeutic benefits of ITV are limited by obstacles such as insufficient antigen loading, inadequate immune system activation, and immunosuppressive tumor microenvironments (TME). Herein, a tumor microenvironment-activated hydrogel platform (TED-Gel) with programmed drug release property is constructed for cascaded amplification of the anti-tumor immune response elicited by ITV. Both doxorubicin (Dox) and cytosine-phosphate-guanosine oligodeoxynucleotides (CpG) are released first, in which Dox induces immunogenic tumor cell death causing additional tumor antigen release and leading the dying primary tumor cells into autologous tumor vaccine, and the released CpG promotes antigen presenting cell activation. Subsequently, the decomposed scaffold materials in conjunction with CpG, turn the anti-inflammatory M2-like macrophages into the M1 type, reversing the immunosuppressive TME. With decomposition of the TED-Gel, large amounts of macromolecule anti-PD-L1 antibodies are liberated, reinvigorating the exhausted effector T cells. In vivo studies demonstrate that TED-Gel significantly inhibits the primary, distant and rechallenged tumor growth. Overall, the simple and powerful TED-Gel provides an alternative strategy for the future development of tumor vaccines with broad application.
Collapse
Affiliation(s)
- Songlin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiuqi Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Miaomiao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuan Yuan
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xinchao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Furong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
41
|
Xiao Y, Yang J, Yang M, Len J, Yu Y. The prognosis of bladder cancer is affected by fatty acid metabolism, inflammation, and hypoxia. Front Oncol 2022; 12:916850. [DOI: 10.3389/fonc.2022.916850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
BackgroundThe prognosis of bladder cancer (BC) is poor, and there is no effective personalized management method for BC patients at present. Developing an accurate model is helpful to make treatment plan and prognosis analysis for BC patients. Endogenous fatty acid metabolism causes cancer cells to become hypoxic, and the coexistence of hypoxia and inflammation is often characteristic of cancer. All three together influence the tumor immune microenvironment, treatment, and prognosis of BC.MethodsWe used The Cancer Genome Atlas-Bladder Urothelial Carcinoma (TCGA-BLAC) cohorts as a train group to build a risk model based on fatty acid metabolism, hypoxia and inflammation-related gene signatures and performed external validation with GSE13507, GSE31684, and GSE39281 cohorts. We validated the model to correlate with the clinicopathological characteristics of patients, created an accuracy nomogram, and explored the differences in immune microenvironment and enrichment pathways.ResultsWe found significant differences in overall survival and progression-free survival between high- and low-risk groups, and patients in the low-risk group had a better prognosis than those in the high-risk group. In the train group, the AUCs for predicting overall survival at 1, 3, and 5 years were 0.745, 0.712, and 0.729, respectively. The 1-, 3-, and 5-year overall survival AUCs were 0.589, 0.672, and 0.666 in the external validation group, respectively. The risk score independently predicted the prognosis of BC patients with AUCs of 0.729. In addition, there was a significant correlation between risk scores and BC clinicopathological features and, in the GSE13507 cohort, we observed that BC progression and deeper invasion were associated with higher risk scores. Risk scores were highly correlated with coproptosis, pyroptosis, m7G, immune checkpoint-related genes, and immune microenvironment. In addition, we found that patients in the low-risk group responded better to immunotherapy, whereas patients in the high-risk group were more sensitive to commonly used chemotherapy drugs.ConclusionOur findings provide new treatment decisions for BC, and can effectively predict the prognosis of BC patients, which is helpful for the management of BC patients.
Collapse
|
42
|
Prognostic Signature Development on the Basis of Macrophage Phagocytosis-Mediated Oxidative Phosphorylation in Bladder Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4754935. [PMID: 36211821 PMCID: PMC9537622 DOI: 10.1155/2022/4754935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Background Macrophages are correlated with the occurrence and progression of bladder cancer (BCa). However, few research has focused on the predictive relevance of macrophage phagocytosis-mediated oxidative phosphorylation (MPOP) with BCa overall survival. Herein, we aimed to propose the targeted macrophage control based on MPOP as a treatment method for BCa immunotherapy. Methods The mRNA expression data sets and clinical data of bladder cancer originated from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data set. A systematic study of several GEO data sets found differentially expressed macrophage phagocytosis regulators (DE-MPR) between BCa and normal tissues. To discover overall survival-associated DE-MPR and develop prognostic gene signature with performance validated based on receiver operating curves and Kaplan-Meier curves, researchers used univariate and Lasso Cox regression analysis (ROC). External validation was done with GSE13057 and GSE69795. To clarify its molecular mechanism and immune relevance, GO/KEGG enrichment analysis and tumor immune analysis were used. To find independent bladder cancer prognostic variables, researchers employed multivariate Cox regression analysis. Finally, using TCGA data set, a predictive nomogram was built. Results In BCa, a four-gene signature of oxidative phosphorylation composed of PTPN6, IKZF3, HDLBP, and EMC1 was found to predict overall survival. With the MPOP feature, the ROC curve showed that TCGA data set and the external validation data set performed better in predicting overall survival than the traditional AJCC stage. The four-gene signature can identify cancers from normal tissue and separate patients into the high-risk and low-risk groups with different overall survival rates. The four MPOP-gene signature was an independent predictive factor for BCa. In predicting overall survival, a nomogram integrating genetic and clinical prognostic variables outperformed AJCC staging. Multiple oncological features and invasion-associated pathways were identified in the high-risk group, which were also correlated with significantly lower levels of immune cell infiltration. Conclusion This paper found the MPOP-feature gene and developed a predictive nomogram capable of accurately predicting bladder cancer overall survival. The above discoveries can contribute to the development of personalized treatments and medical decisions.
Collapse
|
43
|
Wang Y, Lai X, Wang J, Xu Y, Zhang X, Zhu X, Liu Y, Shao Y, Zhang L, Fang W. TMBcat: A multi-endpoint p-value criterion on different discrepancy metrics for superiorly inferring tumor mutation burden thresholds. Front Immunol 2022; 13:995180. [PMID: 36189291 PMCID: PMC9523486 DOI: 10.3389/fimmu.2022.995180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor mutation burden (TMB) is a widely recognized stratification biomarker for predicting the efficacy of immunotherapy; however, the number and universal definition of the categorizing thresholds remain debatable due to the multifaceted nature of efficacy and the imprecision of TMB measurements. We proposed a minimal joint p-value criterion from the perspective of differentiating the comprehensive therapeutic advantages, termed TMBcat, optimized TMB categorization across distinct cancer cohorts and surpassed known benchmarks. The statistical framework applies to multidimensional endpoints and is fault-tolerant to TMB measurement errors. To explore the association between TMB and various immunotherapy outcomes, we performed a retrospective analysis on 78 patients with non-small cell lung cancer and 64 patients with nasopharyngeal carcinomas who underwent anti-PD-(L)1 therapy. The stratification results of TMBcat confirmed that the relationship between TMB and immunotherapy is non-linear, i.e., treatment gains do not inherently increase with higher TMB, and the pattern varies across carcinomas. Thus, multiple TMB classification thresholds could distinguish patient prognosis flexibly. These findings were further validated in an assembled cohort of 943 patients obtained from 11 published studies. In conclusion, our work presents a general criterion and an accessible software package; together, they enable optimal TMB subgrouping. Our study has the potential to yield innovative insights into therapeutic selection and treatment strategies for patients.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xin Lai
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jiayin Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- School of Management, Hefei University of Technology, Hefei, China
- The Ministry of Education Key Laboratory of Process Optimization and Intelligent Decision-Making, Hefei University of Technology, Hefei, China
- *Correspondence: Jiayin Wang, ; Wenfeng Fang,
| | - Ying Xu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xuanping Zhang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Zhu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yuqian Liu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yang Shao
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jiayin Wang, ; Wenfeng Fang,
| |
Collapse
|
44
|
Zeng S, Feng X, Xing S, Xu Z, Miao Z, Liu Q. Advanced Peptide Nanomedicines for Bladder Cancer Theranostics. Front Chem 2022; 10:946865. [PMID: 35991612 PMCID: PMC9389364 DOI: 10.3389/fchem.2022.946865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is still a global public health problem. Although remarkable success has been achieved in cancer diagnosis and treatment, the high recurrence and mortality rates remain severely threatening to human lives and health. In recent years, peptide nanomedicines with precise selectivity and high biocompatibility have attracted intense attention in biomedical applications. In particular, there has been a significant increase in the exploration of peptides and their derivatives for malignant tumor therapy and diagnosis. Herein, we review the applications of peptides and their derivatives in the diagnosis and treatment of bladder cancer, providing new insights for the design and development of novel peptide nanomedicines for the treatment of bladder cancer in the future.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Xiaodi Feng
- Department of Urology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), ShanDong, China
| | - Shaoqiang Xing
- Department of Urology, Weihai Central Hospital, ShanDong, China
| | - Zhaoliang Xu
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Zhizhao Miao
- School of Medicine, Nankai University, Tianjin, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Qian Liu,
| |
Collapse
|
45
|
Wang Y, Lai X, Wang J, Xu Y, Zhang X, Zhu X, Liu Y, Shao Y, Zhang L, Fang W. A Joint Model Considering Measurement Errors for Optimally Identifying Tumor Mutation Burden Threshold. Front Genet 2022; 13:915839. [PMID: 35991549 PMCID: PMC9386083 DOI: 10.3389/fgene.2022.915839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor mutation burden (TMB) is a recognized stratification biomarker for immunotherapy. Nevertheless, the general TMB-high threshold is unstandardized due to severe clinical controversies, with the underlying cause being inconsistency between multiple assessment criteria and imprecision of the TMB value. The existing methods for determining TMB thresholds all consider only a single dimension of clinical benefit and ignore the interference of the TMB error. Our research aims to determine the TMB threshold optimally based on multifaceted clinical efficacies accounting for measurement errors. We report a multi-endpoint joint model as a generalized method for inferring the TMB thresholds, facilitating consistent statistical inference using an iterative numerical estimation procedure considering mis-specified covariates. The model optimizes the division by combining objective response rate and time-to-event outcomes, which may be interrelated due to some shared traits. We augment previous works by enabling subject-specific random effects to govern the communication among distinct endpoints. Our simulations show that the proposed model has advantages over the standard model in terms of precision and stability in parameter estimation and threshold determination. To validate the feasibility of the proposed thresholds, we pool a cohort of 73 patients with non-small-cell lung cancer and 64 patients with nasopharyngeal carcinoma who underwent anti-PD-(L)1 treatment, as well as validation cohorts of 943 patients. Analyses revealed that our approach could grant clinicians a holistic efficacy assessment, culminating in a robust determination of the TMB screening threshold for superior patients. Our methodology has the potential to yield innovative insights into therapeutic selection and support precision immuno-oncology.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Computer Science and Technology, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xin Lai
- School of Computer Science and Technology, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Jiayin Wang
- School of Computer Science and Technology, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- School of Management, Hefei University of Technology, Hefei, China
- The Ministry of Education Key Laboratory of Process Optimization and Intelligent Decision-Making, Hefei University of Technology, Hefei, China
- *Correspondence: Jiayin Wang, ; Wenfeng Fang,
| | - Ying Xu
- School of Computer Science and Technology, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xuanping Zhang
- School of Computer Science and Technology, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Zhu
- School of Computer Science and Technology, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yuqian Liu
- School of Computer Science and Technology, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Jiayin Wang, ; Wenfeng Fang,
| |
Collapse
|
46
|
Cheng X, Wang Y, Li Y, Liu W. Quantification of ferroptosis pattern in bladder carcinoma and its significance on immunotherapy. Sci Rep 2022; 12:9066. [PMID: 35641509 PMCID: PMC9156752 DOI: 10.1038/s41598-022-12712-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
The role of ferroptosis in tumor development and therapy has been previously proved. Nonetheless, its potential role in tumor microenvironment (TME) and immunotherapy for bladder carcinoma remains unclear. Based on 38 ferroptosis-related genes, the characteristic of ferroptosis patterns and interactions with immune cell-infiltrating features in 2043 bladder cancer samples were systematically investigated. We further proposed the FerrScore to quantify the ferroptosis patterns for each patient. As results, three diverse ferroptosis patterns with distinct tumor-infiltrating immune cell features were established. By determination of ferroptosis patterns of each patient, we found that high FerrScore was related to lower proportion of luminal-papillary molecular subtype, more frequent TP53 mutations, activation of immunity and stroma, and lower 5-year survival. High FerrScore also seemed to be associated with decreased neoantigen load, tumor mutational burden and poorer response to anti-PD-L1/1 therapy. External verification in two immunotherapy cohorts showed FerrScore was an independent and effective prognostic factor for therapeutic effect and survival outcome. Overall, the present study indicated the ferroptosis strongly is closely correlated with TME diversity. Evaluation of the ferroptosis patterns may strengthen the cognition of TME immune cell infiltrations and guide more individualized immunotherapeutic strategies in bladder carcinoma.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Urology, The Second Xiangya Hospital, Central South University, Renmin Middle Road 139, Changsha, 410011, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Renmin Middle Road 139, Changsha, 410011, China
| | - Yijian Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Renmin Middle Road 139, Changsha, 410011, China
| | - Wentao Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Renmin Middle Road 139, Changsha, 410011, China.
| |
Collapse
|
47
|
Feng F, Yang J, Chen A, Cui M, Li L. Long non-coding RNA long intergenic non-protein coding RNA 1232 promotes cell proliferation, migration and invasion in bladder cancer via modulating miR-370-5p/PIM3 axis. J Tissue Eng Regen Med 2022; 16:575-585. [PMID: 35338769 DOI: 10.1002/term.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 11/08/2022]
Abstract
Increasing evidences have suggested that long non-coding RNAs are critical regulators in the progression of tumor growth. Long intergenic non-protein coding RNA 1232 (LINC01232) was verified as an oncogene in multiple cancers. Nevertheless, its function in bladder cancer (BC) remains to be uncovered. In the current study, we detected LINC01232 expression utilizing quantitative real-time polymerase chain reaction (RT-qPCR) and discovered that LINC01232 was overexpressed in BC cell lines versus normal cell line. Besides, the effect of LINC01232 on BC cell behaviors was measured by colony formation, Cell Counting Kit-8 (CCK-8), transwell, TdT-mediated dUTP Nick-End Labeling and caspase-3/8 activity assays. Functionally, LINC01232 deficiency suppressed cell proliferation, migration and invasion. Next, miR-370-5p was proved to bind with LINC01232 by RNA pull down, RNA-binding protein immunoprecipitation (RIP) and luciferase reporter assays. Furthermore, PIM3 expression was negatively modulated by miR-370-5p and markedly increased in BC cell lines. Moreover, PIM3 silence repressed proliferation, migration and invasion but triggered apoptosis of BC cells. The rescue assays validated that upregulation of PIM3 recovered the effects of LINC01232 silence on the growth of BC cells. To summarize, our study manifested that LINC01232 accelerates BC progression by targeting miR-370-5p/PIM3 axis. Targeting LINC01232 might offer novel insight into BC treatment.
Collapse
Affiliation(s)
- Feng Feng
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jing Yang
- Department of Central Sterile Supply, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Aiping Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liao Cheng, Shandong, China
| | - Meng Cui
- Department of Gynecology, Shandong Provincial Maternity and Childcare Hospital, Jinan, Shandong, China
| | - Lianjun Li
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
48
|
Bhattacharjee S, Sullivan MJ, Wynn RR, Demagall A, Hendrix AS, Sindhwani P, Petros FG, Nadiminty N. PARP inhibitors chemopotentiate and synergize with cisplatin to inhibit bladder cancer cell survival and tumor growth. BMC Cancer 2022; 22:312. [PMID: 35321693 PMCID: PMC8944004 DOI: 10.1186/s12885-022-09376-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Management of bladder cancer (BLCA) has not changed significantly in the past few decades, with platinum agent chemotherapy being used in most cases. Chemotherapy reduces tumor recurrence after resection, but debilitating toxicities render a large percentage of patients ineligible. Recently approved immunotherapy can improve outcomes in only a third of metastatic BLCA patients. Therefore, more options for therapy are needed. In this study, we explored the efficacy of PARP inhibitors (PARPi) as single agents or as combinations with platinum therapy. Methods We treated BLCA cells with PARPi (olaparib, niraparib, rucaparib, veliparib, or talazoparib) alone or as the combination of cisplatin with PARPi. We then measured their survival, proliferation, apoptosis, as well as their ability to form colonies. BLCA xenografts in male SCID mice were treated similarly, followed by the assessment of their growth, proliferation, and apoptosis. Results PARPi niraparib and talazoparib were effective in reducing BLCA cell survival as single agents. Combinations of Cisplatin with talazoparib and niraparib effectively reduced the survival of BLCA cells, while veliparib was not effective even at high concentrations. In vivo, the combinations of cisplatin with niraparib, rucaparib, or talazoparib reduced BLCA xenograft growth significantly. Conclusions We provide evidence that PARPi can be effective against BLCA as single agents or as combinatorial therapy with cisplatin. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09376-9.
Collapse
Affiliation(s)
- Sayani Bhattacharjee
- Department of Urology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA.,Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA
| | - Matthew J Sullivan
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA
| | - Rebecca R Wynn
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA.,Graduate Program in Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA
| | - Alex Demagall
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA.,Graduate Program in Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA
| | - Andrew S Hendrix
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA
| | - Puneet Sindhwani
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA.,Graduate Program in Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA
| | - Firas G Petros
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA.,Graduate Program in Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA
| | - Nagalakshmi Nadiminty
- Department of Urology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA. .,Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA. .,Graduate Program in Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, USA. .,College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
49
|
Deng H, Tang F, Zhou M, Shan D, Chen X, Cao K. Identification and Validation of N6-Methyladenosine-Related Biomarkers for Bladder Cancer: Implications for Immunotherapy. Front Oncol 2022; 12:820242. [PMID: 35311150 PMCID: PMC8924666 DOI: 10.3389/fonc.2022.820242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) has emerged as one of the most important modifications of RNA. Based on the expression of 23 different modes of m6A regulatory factors, we identified three different m6A modification patterns in bladder cancer. The effects of the three different modes of m6A modification on clinicopathological characteristics, immune cell infiltration levels and expression levels of immune checkpoint genes were comprehensively analyzed. In addition, the effects of different modes of m6A modification on the therapeutic efficacy of anti-PD-L1 immunotherapy (atezolizumab) are also discussed. Our results confirm that m6A methylation plays an important role in immune cell recruitment in the tumor microenvironment of bladder cancer, which influences the efficacy of anti-PD-L1 therapy for bladder cancer. We further confirmed the important role of FTO protein in the biological function of bladder cancer cells by performing in vitro experiments. FTO functions as an oncogene in bladder cancer cells, and upon FTO knockdown, the level of m6A enzyme activity in bladder cancer cells was significantly increased, apoptosis was increased, and cell proliferation and cell invasion were reduced. In addition, our study also confirmed that K216H and K216E are probably important targets for regulating FTO. We provide new insights into the regulatory pathways of the immune microenvironment and the methylation function of m6A in bladder cancer, which will help in designing novel diagnostic methods, prognostic tools, and therapeutic targets.
Collapse
Affiliation(s)
- Hongyu Deng
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongyong Shan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Kaur P, Mohamed NE, Archer M, Figueiro MG, Kyprianou N. Impact of Circadian Rhythms on the Development and Clinical Management of Genitourinary Cancers. Front Oncol 2022; 12:759153. [PMID: 35356228 PMCID: PMC8959649 DOI: 10.3389/fonc.2022.759153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
The circadian system is an innate clock mechanism that governs biological processes on a near 24-hour cycle. Circadian rhythm disruption (i.e., misalignment of circadian rhythms), which results from the lack of synchrony between the master circadian clock located in the suprachiasmatic nuclei (SCN) and the environment (i.e., exposure to day light) or the master clock and the peripheral clocks, has been associated with increased risk of and unfavorable cancer outcomes. Growing evidence supports the link between circadian disruption and increased prevalence and mortality of genitourinary cancers (GU) including prostate, bladder, and renal cancer. The circadian system also plays an essential role on the timely implementation of chronopharmacological treatments, such as melatonin and chronotherapy, to reduce tumor progression, improve therapeutic response and reduce negative therapy side effects. The potential benefits of the manipulating circadian rhythms in the clinical setting of GU cancer detection and treatment remain to be exploited. In this review, we discuss the current evidence on the influence of circadian rhythms on (disease) cancer development and hope to elucidate the unmet clinical need of defining the extensive involvement of the circadian system in predicting risk for GU cancer development and alleviating the burden of implementing anti-cancer therapies.
Collapse
Affiliation(s)
- Priya Kaur
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nihal E. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mariana G. Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Tisch Cancer Institute, Mount Sinai Health, New York, NY, United States,*Correspondence: Natasha Kyprianou, ; Mariana G. Figueiro,
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Tisch Cancer Institute, Mount Sinai Health, New York, NY, United States,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Natasha Kyprianou, ; Mariana G. Figueiro,
| |
Collapse
|