1
|
Feng Y, Qian R, Cui D, Luan J, Xu M, Wang L, Li R, Wu X, Chang C. Mutant TP53 promotes invasion of lung cancer cells by regulating desmoglein 3. J Cancer Res Clin Oncol 2024; 150:312. [PMID: 38900156 PMCID: PMC11189974 DOI: 10.1007/s00432-024-05778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Targeted therapies have markedly improved the prognosis of lung cancer patients; nevertheless, challenges persist, including limited beneficiary populations and the emergence of drug resistance. This study investigates the molecular mechanisms of mutant TP53 in lung cancer, aiming to contribute to novel strategies for targeted therapy. METHODS The TCGA database was employed to delineate the mutational landscape of TP53 in lung cancer patients. Differential gene expression between TP53-mutant and wild-type patients was analyzed, followed by functional enrichment. DSG3 protein expression in lung cancer patients was assessed using IHC, and its impact on prognosis was analyzed in the TCGA database. The influence of TP53 on the downstream gene DSG3 was investigated using qPCR, ChIP-qPCR, and luciferase reporter gene assays. Protein enrichment in the DSG3 promoter region was examined through IP-MS, and the regulatory role of the HIF1-α/TP53 complex on DSG3 was explored using Co-IP, luciferase assays, and ChIP-qPCR. Molecular interactions between TP53 (R273H) and HIF1-α were detected through immunoprecipitation and molecular docking. The effects and mechanisms of DSG3 on lung cancer phenotypes were assessed through WB, transwell, and wound healing assays. RESULTS TP53 mutations were present in 47.44% of patients, predominantly as missense mutations. DSG3 exhibited high expression in TP53-mutant lung cancer patients, and this elevated expression correlated with a poorer prognosis. TP53 interference led to a reduction in DSG3 mRNA expression, with TP53 mutant P53 enriching at the P2 site of the DSG3 promoter region, a recruitment facilitated by HIF1-α. The DBD region of TP53 (R273H) demonstrated interaction with HIF1-α. DSG3, activated through Ezrin phosphorylation, played a role in promoting invasion and metastasis. CONCLUSIONS Mutant TP53 facilitates lung cancer cell invasion by modulating desmoglein 3.
Collapse
Affiliation(s)
- Yu Feng
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Rulin Qian
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Dong Cui
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China.
| | - Jiaqiang Luan
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Mingxing Xu
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Ling Wang
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Ruijie Li
- Department of Medical Oncology, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Xiao Wu
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Chaoying Chang
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| |
Collapse
|
2
|
Wan H, Teh MT, Mastroianni G, Ahmad US. Comparative Transcriptome Analysis Identifies Desmoglein-3 as a Potential Oncogene in Oral Cancer Cells. Cells 2023; 12:2710. [PMID: 38067138 PMCID: PMC10705960 DOI: 10.3390/cells12232710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The role of desmoglein-3 (DSG3) in oncogenesis is unclear. This study aimed to uncover molecular mechanisms through comparative transcriptome analysis in oral cancer cells, defining potential key genes and associated biological processes related to DSG3 expression. Four mRNA libraries of oral squamous carcinoma H413 cell lines were sequenced, and 599 candidate genes exhibited differential expression between DSG3-overexpressing and matched control lines, with 12 genes highly significantly differentially expressed, including 9 upregulated and 3 downregulated. Genes with known implications in cancer, such as MMP-13, KRT84, OLFM4, GJA1, AMOT and ADAMTS1, were strongly linked to DSG3 overexpression. Gene ontology analysis indicated that the DSG3-associated candidate gene products participate in crucial cellular processes such as junction assembly, focal adhesion, extracellular matrix formation, intermediate filament organisation and keratinocyte differentiation. Validation of RNA-Seq was performed through RT-qPCR, Western blotting and immunofluorescence analyses. Furthermore, using transmission electron microscopy, we meticulously examined desmosome morphology and revealed a slightly immature desmosome structure in DSG3-overexpressing cells compared to controls. No changes in desmosome frequency and diameter were observed between the two conditions. This study underscores intricate and multifaceted alterations associated with DSG3 in oral squamous carcinoma cells, implying a potential oncogenic role of this gene in biological processes that enable cell communication, motility and survival.
Collapse
Affiliation(s)
- Hong Wan
- Center for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Muy-Teck Teh
- Center for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Usama Sharif Ahmad
- Center for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
3
|
Sun C, Wen K, Zhang B, Dong Y, Chen C, Neo SY, Leng B, Gao TT, Wu J. DSC2 suppresses the growth of gastric cancer through the inhibition of nuclear translocation of γ-catenin and PTEN/PI3K/AKT signaling pathway. Aging (Albany NY) 2023; 15:6380-6399. [PMID: 37421607 PMCID: PMC10373986 DOI: 10.18632/aging.204858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Globally, gastric cancer (GC) is still a major leading cause of cancer-associated deaths. Downregulated desmocollin2 (DSC2) is considered to be closely related to tumor progression. However, the underlying mechanisms of DSC2 in GC progression require further exploration. METHOD We initially constructed different GC cells based on DSC2 contents, established the mouse tumor xenografts, and subsequently performed clonal formation, MTT, Caspase-3 activity, and sperm DNA fragmentation assays to detect the functions of DSC2 in GC growth. Subsequently, we performed western blot, Co-IP, and immunofluorescence assays to investigate the underlying mechanisms through pretreatment with PI3K inhibitor, LY294002, and its activator, recombinant human insulin-like growth factor I (IGF1). RESULT DSC2 could significantly inhibit the viability of GC cells at both in vitro and in vivo levels. The underlying mechanism may be that DSC2 binds the γ-catenin to decrease its nuclear level, thereby downregulating the anti-apoptotic factor BCL-2 expression and upregulating the pro-apoptotic factor P53 expression, which adjusts the PTEN/PI3K/AKT signaling pathway to promote the cancer cell apoptosis. CONCLUSIONS Our finding suggests that DSC2 might be a potential therapeutic target for the treatment of cancers, most especially GC.
Collapse
Affiliation(s)
- Chao Sun
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan 250033, China
| | - Kun Wen
- Department of Critical Care Medicine, The Second Hospital of Shandong University, Jinan 250033, China
| | - Bin Zhang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yan Dong
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan 250033, China
| | - Chen Chen
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan 250033, China
| | - Shi-Yong Neo
- Singapore Immunology Network, Singapore 138648, Singapore
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Tian-Tian Gao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| |
Collapse
|
4
|
Xu H, Chai CP, Miao X, Tang H, Hu JJ, Zhang H, Zhou WC. Establishment and characterization of a new human ampullary carcinoma cell line, DPC-X1. World J Gastroenterol 2023; 29:2642-2656. [PMID: 37213400 PMCID: PMC10198051 DOI: 10.3748/wjg.v29.i17.2642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND An in-depth study of the pathogenesis and biological characteristics of ampullary carcinoma is necessary to identify appropriate treatment strategies. To date, only eight ampullary cancer cell lines have been reported, and a mixed-type ampullary carcinoma cell line has not yet been reported.
AIM To establish a stable mixed-type ampullary carcinoma cell line originating from Chinese.
METHODS Fresh ampullary cancer tissue samples were used for primary culture and subculture. The cell line was evaluated by cell proliferation assays, clonal formation assays, karyotype analysis, short tandem repeat (STR) analysis and transmission electron microscopy. Drug resistances against oxaliplatin, paclitaxel, gemcitabine and 5-FU were evaluated by cell counting kit-8 assay. Subcutaneous injection 1 × 106 cells to three BALB/c nude mice for xenograft studies. The hematoxylin-eosin staining was used to detect the pathological status of the cell line. The expression of biomarkers cytokeratin 7 (CK7), cytokeratin 20 (CK20), cytokeratin low molecular weight (CKL), Ki67 and carcinoembryonic antigen (CEA) were determined by immunocytochemistry assay.
RESULTS DPC-X1 was continuously cultivated for over a year and stably passaged for more than 80 generations; its population doubling time was 48 h. STR analysis demonstrated that the characteristics of DPC-X1 were highly consistent with those of the patient’s primary tumor. Furthermore, karyotype analysis revealed its abnormal sub-tetraploid karyotype. DPC-X1 could efficiently form organoids in suspension culture. Under the transmission electron microscope, microvilli and pseudopods were observed on the cell surface, and desmosomes were visible between the cells. DPC-X1 cells inoculated into BALB/C nude mice quickly formed transplanted tumors, with a tumor formation rate of 100%. Their pathological characteristics were similar to those of the primary tumor. Moreover, DPC-X1 was sensitive to oxaliplatin and paclitaxel and resistant to gemcitabine and 5-FU. Immunohistochemistry showed that the DPC-X1 cells were strongly positive for CK7, CK20, and CKL; the Ki67 was 50%, and CEA was focally expressed.
CONCLUSION Here, we have constructed a mixed-type ampullary carcinoma cell line that can be used as an effective model for studying the pathogenesis of ampullary carcinoma and drug development.
Collapse
Affiliation(s)
- Hao Xu
- The Forth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Chang-Peng Chai
- The Forth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xin Miao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu Province, China
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jin-Jing Hu
- The Forth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Hui Zhang
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wen-Ce Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
5
|
Zhang X, Yang L, Zhang D, Wang X, Bu X, Zhang X, Cui L. Prognostic assessment capability of a five-gene signature in pancreatic cancer: a machine learning based-study. BMC Gastroenterol 2023; 23:68. [PMID: 36906533 PMCID: PMC10007739 DOI: 10.1186/s12876-023-02700-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND A prognostic assessment method with good sensitivity and specificity plays an important role in the treatment of pancreatic cancer patients. Finding a way to evaluate the prognosis of pancreatic cancer is of great significance for the treatment of pancreatic cancer. METHODS In this study, GTEx dataset and TCGA dataset were merged together for differential gene expression analysis. Univariate Cox regression and Lasso regression were used to screen variables in the TCGA dataset. Screening the optimal prognostic assessment model is then performed by gaussian finite mixture model. Receiver operating characteristic (ROC) curves were used as an indicator to assess the predictive ability of the prognostic model, the validation process was performed on the GEO datasets. RESULTS Gaussian finite mixture model was then used to build 5-gene signature (ANKRD22, ARNTL2, DSG3, KRT7, PRSS3). Receiver operating characteristic (ROC) curves suggested the 5-gene signature performed well on both the training and validation datasets. CONCLUSIONS This 5-gene signature performed well on both our chosen training dataset and validation dataset and provided a new way to predict the prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Xuanfeng Zhang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China.,Center of Hepatobiliary Pancreatic Disease, The Affiliated Xuzhou Hospital of Medical School of Southeast University, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China
| | - Lulu Yang
- Department of Radiology, XuZhou Central Hospital, Jiangsu, People's Republic of China.,Department of Radiology, The Affiliated Xuzhou Hospital of Medical School of Southeast University, Jiangsu, People's Republic of China
| | - Dong Zhang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China.,Bengbu Medical College, Anhui, People's Republic of China
| | - Xiaochuan Wang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China.,Center of Hepatobiliary Pancreatic Disease, The Affiliated Xuzhou Hospital of Medical School of Southeast University, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xinhui Zhang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China. .,Center of Hepatobiliary Pancreatic Disease, The Affiliated Xuzhou Hospital of Medical School of Southeast University, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China.
| | - Long Cui
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China. .,Center of Hepatobiliary Pancreatic Disease, The Affiliated Xuzhou Hospital of Medical School of Southeast University, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Ahmad US, Uttagomol J, Wan H. The Regulation of the Hippo Pathway by Intercellular Junction Proteins. Life (Basel) 2022; 12:1792. [PMID: 36362947 PMCID: PMC9696951 DOI: 10.3390/life12111792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway that serves to promote cell death and differentiation while inhibiting cellular proliferation across species. The downstream effectors of this pathway, yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are considered vital in promoting the output of the Hippo pathway, with activation of upstream kinases negatively regulating YAP/TAZ activity. The upstream regulation of the Hippo pathway is not entirely understood on a molecular level. However, several studies have shown that numerous cellular and non-cellular mechanisms such as cell polarity, contact inhibition, soluble factors, mechanical forces, and metabolism can convey external stimuli to the intracellular kinase cascade, promoting the activation of key components of the Hippo pathway and therefore regulating the subcellular localisation and protein activity of YAP/TAZ. This review will summarise what we have learnt about the role of intercellular junction-associated proteins in the activation of this pathway, including adherens junctions and tight junctions, and in particular our latest findings about the desmosomal components, including desmoglein-3 (DSG3), in the regulation of YAP signalling, phosphorylation, and subcellular translocation.
Collapse
Affiliation(s)
- Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jutamas Uttagomol
- Oral Diagnosis Department, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
7
|
Viehweger F, Azem A, Gorbokon N, Uhlig R, Lennartz M, Rico SD, Kind S, Reiswich V, Kluth M, Hube-Magg C, Bernreuther C, Büscheck F, Clauditz TS, Fraune C, Jacobsen F, Krech T, Lebok P, Steurer S, Burandt E, Minner S, Marx AH, Simon R, Sauter G, Menz A, Hinsch A. Desmoglein 3 (Dsg3) Expression in Cancer: A Tissue Microarray Study on 15,869 Tumors. Pathol Res Pract 2022; 240:154200. [DOI: 10.1016/j.prp.2022.154200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
|
8
|
Urs AB, Augustine J, Khurana N, Uniyal A, Passey JC, Meher R. Preoperative platelet-lymphocyte ratio and neutrophil-lymphocyte ratio as predictors of occult lymph node metastasis detected using Desmoglein 3 and Cytokeratin in Indian population. J Oral Maxillofac Pathol 2022; 26:596. [PMID: 37082044 PMCID: PMC10112119 DOI: 10.4103/jomfp.jomfp_49_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 04/22/2023] Open
Abstract
Aim This study aims to assess whether preoperative platelet-lymphocyte ratio (PLR) and neutrophil-lymphocyte ratio (NLR) can predict occult metastasis in oral squamous cell carcinoma (OSCC). Materials and Methods Thirty-five OSCC cases were analyzed for clinicopathological and hematological data. Cases without metastasis (pN0) were checked for micrometastasis immunohistochemically using Desmoglein 3 (DSG3) and Cytokeratin (CK). Mean PLR and NLR were compared and analyzed between the study groups. Results Metastatic deposits were detected in 9 out of 26 pN0 cases (34.6%) accounting for 11 out of 62 (17%) lymph nodes subjected to immunohistochemistry. The mean PLR was higher in OSCC cases with or without occult metastasis in comparison to controls (P < 0.001). No significant difference was found in the mean PLR and NLR between OSCC cases with and without occult metastasis. Furthermore, we found DSG3+ sinus histiocytes within the lymph nodes in majority of cases which is least reported in literature. Conclusion A significant percentage of cases showed occult metastasis in this study which led to upstaging of tumor. Although PLR was elevated in OSCC cases, it did not have a positive correlation with the presence of occult metastasis but was able to successfully distinguish OSCC patients from healthy individuals.
Collapse
Affiliation(s)
- Aadithya B Urs
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Jeyaseelan Augustine
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Nita Khurana
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Akanksha Uniyal
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - J C Passey
- Department of ENT, Lok Nayak Hospital, New Delhi, India
| | - Ravi Meher
- Department of ENT, Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
9
|
Green KJ, Niessen CM, Rübsam M, Perez White BE, Broussard JA. The Desmosome-Keratin Scaffold Integrates ErbB Family and Mechanical Signaling to Polarize Epidermal Structure and Function. Front Cell Dev Biol 2022; 10:903696. [PMID: 35686051 PMCID: PMC9171019 DOI: 10.3389/fcell.2022.903696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
While classic cadherin-actin connections in adherens junctions (AJs) have ancient origins, intermediate filament (IF) linkages with desmosomal cadherins arose in vertebrate organisms. In this mini-review, we discuss how overlaying the IF-desmosome network onto the existing cadherin-actin network provided new opportunities to coordinate tissue mechanics with the positioning and function of chemical signaling mediators in the ErbB family of receptor tyrosine kinases. We focus in particular on the complex multi-layered outer covering of the skin, the epidermis, which serves essential barrier and stress sensing/responding functions in terrestrial vertebrates. We will review emerging data showing that desmosome-IF connections, AJ-actin interactions, ErbB family members, and membrane tension are all polarized across the multiple layers of the regenerating epidermis. Importantly, their integration generates differentiation-specific roles in each layer of the epidermis that dictate the form and function of the tissue. In the basal layer, the onset of the differentiation-specific desmosomal cadherin desmoglein 1 (Dsg1) dials down EGFR signaling while working with classic cadherins to remodel cortical actin cytoskeleton and decrease membrane tension to promote cell delamination. In the upper layers, Dsg1 and E-cadherin cooperate to maintain high tension and tune EGFR and ErbB2 activity to create the essential tight junction barrier. Our final outlook discusses the emerging appreciation that the desmosome-IF scaffold not only creates the architecture required for skin's physical barrier but also creates an immune barrier that keeps inflammation in check.
Collapse
Affiliation(s)
- Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Carien M. Niessen
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Matthias Rübsam
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Bethany E. Perez White
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Characterization of Desmoglein 3 (DSG3) as a Sensitive and Specific Marker for Esophageal Squamous Cell Carcinoma. Gastroenterol Res Pract 2022; 2022:2220940. [PMID: 35251162 PMCID: PMC8894070 DOI: 10.1155/2022/2220940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Although P40 and P63 are both sensitive and specific for routine esophageal squamous cell carcinoma (SCC) diagnosis, we recently showed that P40 and P63 immunoreactivities were significantly lower in well-differentiated SCC than those in higher grade tumors. Therefore, a novel esophageal SCC marker, ideally performing better in well-differentiated SCC, is still needed. We characterized desmoglein 3 (DSG3) immunohistochemistry in esophageal SCC, esophageal adenocarcinoma, small-cell lung carcinoma, and large B-cell lymphoma, alongside P40 and CK5/6. The World Health Organization classification was used to grade tumors as well-differentiated (WD), moderately differentiated (MD), or poorly differentiated (PD). There were 20 WD, 26 MD, and 17 PD components among 39 esophageal SCC cases. All esophageal SCC components showed significant DSG3 immunoreactivity (mean, 80%; range, 30%–100%), and the proportions of DSG3 immunoreactive cells were higher in the WD and MD components than in the PD components. No esophageal adenocarcinoma cases showed more than 10% DSG3 immunoreactivity with only weak cytoplasmic staining. With a 5% immunoreactivity cutoff, DSG3 positivity was 100% in all 63 SCC components, 18% in adenocarcinoma cases, and 0% in small-cell lung carcinoma or large B-cell lymphoma cases. The overall DSG3 specificity was 94%. To the best of our knowledge, this is the first study to characterize DSG3 as a sensitive and specific marker for esophageal SCC.
Collapse
|
11
|
Jia CL, Yang F, Li RN. Identification of Potential Core Genes Between Primary and Metastatic Malignant Melanoma and Analysis of Their Immune Correlation. Int J Gen Med 2022; 15:379-391. [PMID: 35046701 PMCID: PMC8761914 DOI: 10.2147/ijgm.s338890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To identify the potential differential genes between primary and metastatic melanoma, screen out immune-related genes in core genes and analyze their immune correlation, thus searching for the early diagnostic biomarkers of cutaneous malignant melanoma (CMM) and the targets of curbing metastasis. Materials and Methods We analyzed two microarray datasets (GSE8401 and GSE46517) derived from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between primary and metastatic melanoma were screened out using the GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to identify the functions and pathways of DEGs. We analyzed protein–protein interaction of these DEGs based on the Search Tool for the Retrieval of Interacting Genes database and showed by Cytoscape software. In addition, the online Gene Expression Profiling Interactive Analysis tool (GEPIA) was used to analyze the prognostic value of hub genes expressed in metastatic melanoma patients. Immune-related genes in hub genes were screened and further analyzed. Results A total of 178 upregulated DEGs and 4 downregulated DEGs were identified. 23 terms and 4 pathways were confirmed related to metastatic melanoma. Ten hub genes with a high degree of connectivity were found. Overexpression of three hub genes (DSG1, FLG, PKP1) (P<0.01) was associated with metastasis and poor prognosis of CMM. Among them, the patients with overexpression of PKP1 suffered shorter survival. In addition, 2 immune-related genes (EGFR and CDH1) in hub genes were screened out and both of them were related to anti-tumor immunity, although their expression level did not affect the overall survival of CMM patients significantly. Conclusion Our study suggests that DSG1, FLG and PKP1 were overexpressed in metastatic melanoma compared with primary melanoma, and overexpression of these three genes was an unfavorable prognostic factor ifor CMM patients, which may indicate that they are associated with promoting metastasis of malignant melanoma. EGFR and CDH1 play a crucial role in anti-tumor immunity for CMM. Further research is needed to explore the value of these genes in the inhibition of metastasis and treatment of CMM.
Collapse
Affiliation(s)
- Cong-Li Jia
- Weifang Medical College, Weifang, Shandong, People's Republic of China
| | - Fu Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Rui-Ning Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
12
|
Ahmad US, Parkinson EK, Wan H. Desmoglein-3 induces YAP phosphorylation and inactivation during collective migration of oral carcinoma cells. Mol Oncol 2022; 16:1625-1649. [PMID: 35000271 PMCID: PMC9019900 DOI: 10.1002/1878-0261.13177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 11/07/2022] Open
Abstract
Alterations of the Hippo-YAP pathway are potential targets for oral squamous cell carcinoma (OSCC) therapy, but heterogeneity in this pathway could be responsible for therapeutic resistance. We analysed the Hippo-YAP signatures in a cohort of characterised keratinocyte cell lines derived from the mouth floor and buccal mucosa from different stages of OSCC tumour progression and focused on the specific role of YAP on invasive and metastatic potential. We confirmed heterogeneity in the Hippo-YAP pathway in OSCC lines, including overexpression of YAP1, WWTR1 (often referred to as TAZ) and the major Hippo signalling components, as well as the variations in the genes encoding the intercellular anchoring junctional proteins, which could potentially regulate the Hippo pathway. Specifically, desmoglein-3 (DSG3) exhibits a unique and mutually exclusive regulation of YAP via YAP phosphorylation during the collective migration of OSCC cells. Mechanistically, such regulation is associated with inhibition of phosphorylation of epidermal growth factor receptor (EGFR) (S695/Y1086) and its downstream effectors heat shock protein beta-1 (Hsp27) (S78/S82) and transcription factor AP-1 (c-Jun) (S63), leading to YAP phosphorylation coupled with its cytoplasmic translocation and inactivation. Additionally, OSCC lines display distinct phenotypes of YAP dependency or a mixed YAP and TAZ dependency for cell migration, and present distinct patterns in YAP abundance and activity, with the latter being associated with YAP nuclear localisation. In conclusion, this study has provided evidence for a newly identified paradigm in the Hippo-YAP pathway and suggests a new regulation mechanism involved in the control of collective migration in OSCC cells.
Collapse
Affiliation(s)
- Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, School of Medicine and Dentistry, Barts and The London, London, UK
| | - Eric Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, School of Medicine and Dentistry, Barts and The London, London, UK
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, School of Medicine and Dentistry, Barts and The London, London, UK
| |
Collapse
|
13
|
Troeltzsch M, Künzel V, Haidari S, Troeltzsch M, Otto S, Ehrenfeld M, Probst F, Knösel T. Desmoglein-3 overexpression in oral squamous cell carcinoma is associated with metastasis formation and early recurrence: An immunohistochemical study. J Craniomaxillofac Surg 2021; 50:281-288. [PMID: 34887169 DOI: 10.1016/j.jcms.2021.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to determine the expression patterns of specific desmosomal cadherins (desmogleins [DSG] 1/2/3) in oral squamous cell carcinoma (OSCC), and to examine possible associations with clinicopathological parameters and recurrence rates. Changes in desmosomal cadherin assembly may promote tumor metastasis formation. Patients with surgically treated OSCC with 36-60 months of follow-up (median 46 months) qualified for inclusion in this retrospective cohort study. Demographic, clinical and pathohistological data were collected. DSG-1/2/3 expression patterns were determined by an immunohistochemical approach on tissue microarrays. Descriptive and inferential statistics and survival analyses were computed (p ≤ 0.05). The study sample consisted of 88 patients (female: 38; male: 50; average age: 63.02 ± 17.5 years). DSG-3 overexpression was detected in 45 of 88 specimens. The expression rates for DSG-1 (28/88) and DSG-2 (14/88) were low and inconspicuous. DSG-3 overexpression was significantly associated with poor histologic differentiation (G3, p = 0.001), the presence of cervical node metastasis at primary diagnosis (N+ status, p = 0.001) and early recurrence (p = 0.001). Due to its possible relevance for lymph node metastasis formation and early OSCC recurrence, determination of DSG-3 expression in OSCC specimens may be a valuable tool for treatment planning and post-therapeutic risk assessment.
Collapse
Affiliation(s)
- Matthias Troeltzsch
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany; Center of Oral, Maxillofacial and Facial Reconstructive Surgery, Ansbach, Germany.
| | - Verena Künzel
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany
| | - Selgai Haidari
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany
| | - Markus Troeltzsch
- Center of Oral, Maxillofacial and Facial Reconstructive Surgery, Ansbach, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery, Martin-Luther University Halle, Germany
| | - Michael Ehrenfeld
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany
| | - Florian Probst
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany
| | - Thomas Knösel
- Department of Pathology, University Hospital, LMU Munich, Germany
| |
Collapse
|
14
|
Rehman A, Huang Y, Wan H. Evolving Mechanisms in the Pathophysiology of Pemphigus Vulgaris: A Review Emphasizing the Role of Desmoglein 3 in Regulating p53 and the Yes-Associated Protein. Life (Basel) 2021; 11:life11070621. [PMID: 34206820 PMCID: PMC8303937 DOI: 10.3390/life11070621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/28/2023] Open
Abstract
The immunobullous condition Pemphigus Vulgaris (PV) is caused by autoantibodies targeting the adhesion proteins of desmosomes, leading to blistering in the skin and mucosal membrane. There is still no cure to the disease apart from the use of corticosteroids and immunosuppressive agents. Despite numerous investigations, the pathological mechanisms of PV are still incompletely understood, though the etiology is thought to be multifactorial. Thus, further understanding of the molecular basis underlying this disease process is vital to develop targeted therapies. Ample studies have highlighted the role of Desmoglein-3 (DSG3) in the initiation of disease as DSG3 serves as a primary target of PV autoantibodies. DSG3 is a pivotal player in mediating outside-in signaling involved in cell junction remodeling, cell proliferation, differentiation, migration or apoptosis, thus validating its biological function in tissue integrity and homeostasis beyond desmosome adhesion. Recent studies have uncovered new activities of DSG3 in regulating p53 and the yes-associated protein (YAP), with the evidence of dysregulation of these pathways demonstrated in PV. The purpose of this review is to summarize the earlier and recent advances highlighting our recent findings related to PV pathogenesis that may pave the way for future research to develop novel specific therapies in curing this disease.
Collapse
Affiliation(s)
- Ambreen Rehman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.R.); (Y.H.)
- Department of Oral Diagnosis and Medicine, Dr Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Yunying Huang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.R.); (Y.H.)
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.R.); (Y.H.)
- Correspondence:
| |
Collapse
|
15
|
Abula Y, Su Y, Tuniyazi D, Yi C. Desmoglein 3 contributes to tumorigenicity of pancreatic ductal adenocarcinoma through activating Src-FAK signaling. Anim Cells Syst (Seoul) 2021; 25:195-202. [PMID: 34262662 PMCID: PMC8253207 DOI: 10.1080/19768354.2021.1943707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/31/2021] [Accepted: 06/12/2021] [Indexed: 01/01/2023] Open
Abstract
Desmogleins (DSGs), with the ability to link adjacent cells, have been shown to participate in the development of malignancy. DSG3 was up-regulated in various cancers, including lung, head and neck, and esophagus squamous cell carcinoma, which contributed to the tumor progression. The role of DSG3 in pancreatic ductal adenocarcinoma (PDAC) still remains elusive. Here, the expression of DSG3 was found to be enhanced in pancreatic cancer cell lines in vitro. Functional assays showed that shRNA-mediated knockdown of DSG3 decreased cell viability of pancreatic cancer cells and retarded the cell proliferation, migration and invasion. However, pcDNA-mediated over-expression of DSG3 exhibited reversed effect on pancreatic cancer cell progression. In addition, the in vivo assay demonstrated that transfection of shDSG3 lentiviruses into pancreatic cancer cells repressed the tumorigenicity of PDAC after the cancer cells were transplanted into mice subcutaneously. Elevated DSG3 expression promoted the phosphorylation of Src (p-Src), focal adhesion kinase (p-FAK) and AKT (p-AKT) in vitro, while silence of DSG3 reduced the expression of p-Src, p-FAK and p-AKT both in vitro and in vivo. In conclusion, DSG3, as an oncogene, contributed to the tumorigenicity of PDAC through activating Src-FAK signaling.
Collapse
Affiliation(s)
- Yimamumaimaitijiang Abula
- Department of Hepatological Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Yating Su
- Department of Medical, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Dilixiati Tuniyazi
- Department of Hepatological Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Chao Yi
- Department of Hepatological Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
16
|
Luo L, Li Y, Huang C, Lin Y, Su Y, Cen H, Chen Y, Peng S, Ren T, Xie R, Zeng L. A new 7-gene survival score assay for pancreatic cancer patient prognosis prediction. Am J Cancer Res 2021; 11:495-512. [PMID: 33575083 PMCID: PMC7868749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023] Open
Abstract
Gene expression features that are valuable for pancreatic ductal adenocarcinoma (PDAC) prognosis are still largely unknown. We aimed to explore pivotal molecular signatures for PDAC progression and establish an efficient survival score to predict PDAC prognosis. Overall, 163 overlapping genes were identified from three statistical methods, including differentially expressed genes (DEGs), coexpression network analysis (WGCNA), and target genes for miRNAs that were significantly related to PDAC patients' overall survival (OS). Then, according to the optimal value of the cross-validation curve (lambda = 0.031), 7 non-zero coefficients (ARNTL2, DSG3, PTPRR, ANLN, S100A14, ANKRD22, and TSPAN7) were selected to establish a prognostic prediction model of PDAC patients. We further confirmed the expression level of 7 genes using RT-PCR, western blot, and immunohistochemistry staining in PDAC patients' tissues. Our results showed that the ROC curve of the 7-mRNA model indicated good predictive ability for 1- and 2-year OS in three datasets (TCGA: 0.71, 0.69; ICGC: 0.8, 0.74; GEO batch: 0.61, 0.7, respectively). The hazard ratio (HR) of the low-risk group had a similar significant result (TCGA: HR = 0.3723; ICGC: HR = 0.2813; GEO batch: HR = 0.4999; all P < 0.001). Furthermore, Log-rank test results in three cohorts showed that the 7-mRNA assay excellently predicted the prognosis and metastasis, especially in TNM stage I&II subgroups of PDAC. In conclusion, the strong validation of our 7-mRNA signature indicates the promising effectiveness of its clinical application, especially in patients with TNM stages I&II.
Collapse
Affiliation(s)
- Lisi Luo
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Yufang Li
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Chumei Huang
- Department of Gastroenterology, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen 518107, China
| | - Yujing Lin
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai, China
| | - Yonghui Su
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Hong Cen
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Yutong Chen
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Siqi Peng
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Tianyi Ren
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Rongzhi Xie
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Linjuan Zeng
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| |
Collapse
|
17
|
Sheng Z, Han W, Huang B, Shen G. Screening and identification of potential prognostic biomarkers in metastatic skin cutaneous melanoma by bioinformatics analysis. J Cell Mol Med 2020; 24:11613-11618. [PMID: 32869947 PMCID: PMC7576265 DOI: 10.1111/jcmm.15822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 01/16/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) is a multifactorial disease that presents a poor prognosis due to its rapid progression towards metastasis. This study focused on the identification of prognostic differentially expressed genes (DEGs) between primary and metastatic SKCM. DEGs were obtained using three chip data sets from the Gene Expression Omnibus database. The protein‐protein interaction network was described by STRING and Cytoscape. Kaplan‐Meier curves were implemented to evaluate survival benefits within distinct groups. A total of 258 DEGs were distinguished as possible candidate biomarkers. Besides, survival curves indicated that DSG3, DSC3, PKP1, EVPL, IVL, FLG, SPRR1A and SPRR1B were of significant value to predict the metastatic transformation of melanoma. To further validate our hypotheses, functional enrichment and significant pathways of the hub genes were performed to indicate that the most involved considerable path. In summary, this study identified substantial DEGs participating in melanoma metastasis. DGS3, DSC3, PKP1, EVPL, IVL, FLG, SPRR1A and SPRR1B may be considered as new biomarkers in the therapeutics of metastatic melanoma, which might help us predict the potential metastatic capability of SKCM patients, thus provide earlier precautionary treatments. However, further experiments are still required to support the specific mechanisms of these hub genes.
Collapse
Affiliation(s)
- Zufeng Sheng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| | - Wei Han
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| | - Biao Huang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| | - Guoliang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| |
Collapse
|
18
|
Galindo I, Gómez-Morales M, Díaz-Cano I, Andrades Á, Caba-Molina M, Miranda-León MT, Medina PP, Martín-Padron J, Fárez-Vidal ME. The value of desmosomal plaque-related markers to distinguish squamous cell carcinoma and adenocarcinoma of the lung. Ups J Med Sci 2020; 125:19-29. [PMID: 31809668 PMCID: PMC7054907 DOI: 10.1080/03009734.2019.1692101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: An antibody panel is needed to definitively differentiate between adenocarcinoma (AC) and squamous cell carcinoma (SCC) in order to meet more stringent requirements for the histologic classification of lung cancers. Staining of desmosomal plaque-related proteins may be useful in the diagnosis of lung SCC.Materials and methods: We compared the usefulness of six conventional (CK5/6, p40, p63, CK7, TTF1, and Napsin A) and three novel (PKP1, KRT15, and DSG3) markers to distinguish between lung SCC and AC in 85 small biopsy specimens (41 ACs and 44 SCCs). Correlations were examined between expression of the markers and patients' histologic and clinical data.Results: The specificity for SCC of membrane staining for PKP1, KRT15, and DSG3 was 97.4%, 94.6%, and 100%, respectively, and it was 100% when the markers were used together and in combination with the conventional markers (AUCs of 0.7619 for Panel 1 SCC, 0.7375 for Panel 2 SCC, 0.8552 for Panel 1 AC, and 0.8088 for Panel 2 AC). In a stepwise multivariate logistic regression model, the combination of CK5/6, p63, and PKP1 in membrane was the optimal panel to differentiate between SCC and AC, with a percentage correct classification of 96.2% overall (94.6% of ACs and 97.6% of SCCs). PKP1 and DSG3 are related to the prognosis.Conclusions: PKP1, KRT15, and DSG3 are highly specific for SCC, but they were more useful to differentiate between SCC and AC when used together and in combination with conventional markers. PKP1 and DSG3 expressions may have prognostic value.
Collapse
Affiliation(s)
- Inmaculada Galindo
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | | | - Inés Díaz-Cano
- Department of Biochemistry and Molecular Biology III, School of Medicine, University of Granada, Granada, Spain
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Institute for Biomedical Research (IBS Granada), University Hospital Complex of Granada/University of Granada, Granada, Spain
| | - Álvaro Andrades
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Mercedes Caba-Molina
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - María Teresa Miranda-León
- Department of Statistics and Operative Research, School of Medicine, University of Granada, Granada, Spain
| | - Pedro Pablo Medina
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Joel Martín-Padron
- Department of Biochemistry and Molecular Biology III, School of Medicine, University of Granada, Granada, Spain
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Institute for Biomedical Research (IBS Granada), University Hospital Complex of Granada/University of Granada, Granada, Spain
| | - María Esther Fárez-Vidal
- Department of Biochemistry and Molecular Biology III, School of Medicine, University of Granada, Granada, Spain
- Institute for Biomedical Research (IBS Granada), University Hospital Complex of Granada/University of Granada, Granada, Spain
- CONTACT María Esther Fárez-Vidal Department of Biochemistry and Molecular Biology III, School of Medicine, University of Granada, 18012 Granada, Spain
| |
Collapse
|
19
|
Uttagomol J, Ahmad US, Rehman A, Huang Y, Laly AC, Kang A, Soetaert J, Chance R, Teh MT, Connelly JT, Wan H. Evidence for the Desmosomal Cadherin Desmoglein-3 in Regulating YAP and Phospho-YAP in Keratinocyte Responses to Mechanical Forces. Int J Mol Sci 2019; 20:ijms20246221. [PMID: 31835537 PMCID: PMC6940936 DOI: 10.3390/ijms20246221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Desmoglein 3 (Dsg3) plays a crucial role in cell-cell adhesion and tissue integrity. Increasing evidence suggests that Dsg3 acts as a regulator of cellular mechanotransduction, but little is known about its direct role in mechanical force transmission. The present study investigated the impact of cyclic strain and substrate stiffness on Dsg3 expression and its role in mechanotransduction in keratinocytes. A direct comparison was made with E-cadherin, a well-characterized mechanosensor. Exposure of oral and skin keratinocytes to equiaxial cyclic strain promoted changes in the expression and localization of junction assembly proteins. The knockdown of Dsg3 by siRNA blocked strain-induced junctional remodeling of E-cadherin and Myosin IIa. Importantly, the study demonstrated that Dsg3 regulates the expression and localization of yes-associated protein (YAP), a mechanosensory, and an effector of the Hippo pathway. Furthermore, we showed that Dsg3 formed a complex with phospho-YAP and sequestered it to the plasma membrane, while Dsg3 depletion had an impact on both YAP and phospho-YAP in their response to mechanical forces, increasing the sensitivity of keratinocytes to the strain or substrate rigidity-induced nuclear relocation of YAP and phospho-YAP. Plakophilin 1 (PKP1) seemed to be crucial in recruiting the complex containing Dsg3/phospho-YAP to the cell surface since its silencing affected Dsg3 junctional assembly with concomitant loss of phospho-YAP at the cell periphery. Finally, we demonstrated that this Dsg3/YAP pathway has an influence on the expression of YAP1 target genes and cell proliferation. Together, these findings provide evidence of a novel role for Dsg3 in keratinocyte mechanotransduction.
Collapse
Affiliation(s)
- Jutamas Uttagomol
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Ambreen Rehman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Yunying Huang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Ana C. Laly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.C.L.); (J.S.); (J.T.C.)
| | - Angray Kang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Jan Soetaert
- Centre for Cell Biology and Cutaneous Research, Blizard Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.C.L.); (J.S.); (J.T.C.)
| | - Randy Chance
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - John T. Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.C.L.); (J.S.); (J.T.C.)
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
- Correspondence: ; Tel.: +(44)-020-7882-7139; Fax: +(44)-020-7882-7137
| |
Collapse
|
20
|
Li X, Ahmad US, Huang Y, Uttagomol J, Rehman A, Zhou K, Warnes G, McArthur S, Parkinson EK, Wan H. Desmoglein-3 acts as a pro-survival protein by suppressing reactive oxygen species and doming whilst augmenting the tight junctions in MDCK cells. Mech Ageing Dev 2019; 184:111174. [PMID: 31678215 DOI: 10.1016/j.mad.2019.111174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022]
Abstract
Kidney disease prevalence increases with age, with a common feature of the disease being defects in the epithelial tight junctions. Emerging evidence suggests that the desmosomal adhesion protein Desmoglein-3 (Dsg3) functions beyond the desmosomal adhesion and plays a role in regulating the fundamental pathways that govern cell fate decisions in response to environmental chemical and mechanical stresses. In this study, we explored the role of Dsg3 on dome formation, reactive oxygen species (ROS) production and transepithelial electrical resistance (TER) in MDCK cells, a kidney epithelial cell model widely used to study cell differentiation and tight junction formation and integrity. We show that overexpression of Dsg3 constrained nuclear ROS production and cellular doming in confluent cell cultures and these features coincided with augmented TER and enhanced tight junction integrity. Conversely, cells expressing dominant-negative Dsg3ΔC mutants exhibited heightened ROS production and accelerated doming, accompanied by increased apoptosis, as well as cell proliferation, with massive disruption in F-actin organization and accumulation, and alterations in tight junctions. Inhibition of actin polymerization and protein synthesis was able to sufficiently block dome formation in mutant populations. Taken together, these findings underscore that Dsg3 has a role in controlling cellular viability and differentiation as well as the functional integrity of tight junctions in MDCK cells.
Collapse
Affiliation(s)
- Xiao Li
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Usama Sharif Ahmad
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Yunying Huang
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Jutamas Uttagomol
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Ambreen Rehman
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Ke Zhou
- CB Joint MHNCRL, Hospital and School of Stomatology, Guizhou Medical University, China
| | - Gary Warnes
- Blizard Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Simon McArthur
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Eric Kenneth Parkinson
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - H Wan
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.
| |
Collapse
|
21
|
The desmosomal cadherin desmoglein-3 acts as a keratinocyte anti-stress protein via suppression of p53. Cell Death Dis 2019; 10:750. [PMID: 31582719 PMCID: PMC6776551 DOI: 10.1038/s41419-019-1988-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Desmoglein-3 (Dsg3), the Pemphigus Vulgaris (PV) antigen (PVA), plays an essential role in keratinocyte cell-cell adhesion and regulates various signaling pathways involved in the progression and metastasis of cancer where it is upregulated. We show here that expression of Dsg3 impacts on the expression and function of p53, a key transcription factor governing the responses to cellular stress. Dsg3 depletion increased p53 expression and activity, an effect enhanced by treating cells with UVB, mechanical stress and genotoxic drugs, whilst increased Dsg3 expression resulted in the opposite effects. Such a pathway in the negative regulation of p53 by Dsg3 was Dsg3 specific since neither E-cadherin nor desmoplakin knockdown caused similar effects. Analysis of Dsg3-/- mouse skin also indicated an increase of p53/p21WAF1/CIP1 and cleaved caspase-3 relative to Dsg3+/- controls. Finally, we evaluated whether this pathway was operational in the autoimmune disease PV in which Dsg3 serves as a major antigen involved in blistering pathogenesis. We uncovered increased p53 with diffuse cytoplasmic and/or nuclear staining in the oral mucosa of patients, including cells surrounding blisters and the pre-lesional regions. This finding was verified by in vitro studies where treatment of keratinocytes with PV sera, as well as a characterized pathogenic antibody specifically targeting Dsg3, evoked pronounced p53 expression and activity accompanied by disruption of cell-cell adhesion. Collectively, our findings suggest a novel role for Dsg3 as an anti-stress protein, via suppression of p53 function, and this pathway is disrupted in PV.
Collapse
|
22
|
Sun C, Wang L, Yang XX, Jiang YH, Guo XL. The aberrant expression or disruption of desmocollin2 in human diseases. Int J Biol Macromol 2019; 131:378-386. [DOI: 10.1016/j.ijbiomac.2019.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
|
23
|
Valenzuela-Iglesias A, Burks HE, Arnette CR, Yalamanchili A, Nekrasova O, Godsel LM, Green KJ. Desmoglein 1 Regulates Invadopodia by Suppressing EGFR/Erk Signaling in an Erbin-Dependent Manner. Mol Cancer Res 2019; 17:1195-1206. [PMID: 30655320 PMCID: PMC6581214 DOI: 10.1158/1541-7786.mcr-18-0048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Loss of the desmosomal cell-cell adhesion molecule, Desmoglein 1 (Dsg1), has been reported as an indicator of poor prognosis in head and neck squamous cell carcinomas (HNSCC) overexpressing epidermal growth factor receptor (EGFR). It has been well established that EGFR signaling promotes the formation of invadopodia, actin-based protrusions formed by cancer cells to facilitate invasion and metastasis, by activating pathways leading to actin polymerization and ultimately matrix degradation. We previously showed that Dsg1 downregulates EGFR/Erk signaling by interacting with the ErbB2-binding protein Erbin (ErbB2 Interacting Protein) to promote keratinocyte differentiation. Here, we provide evidence that restoring Dsg1 expression in cells derived from HNSCC suppresses invasion by decreasing the number of invadopodia and matrix degradation. Moreover, Dsg1 requires Erbin to downregulate EGFR/Erk signaling and to fully suppress invadopodia formation. Our findings indicate a novel role for Dsg1 in the regulation of invadopodia signaling and provide potential new targets for development of therapies to prevent invadopodia formation and therefore cancer invasion and metastasis. IMPLICATIONS: Our work exposes a new pathway by which a desmosomal cadherin called Dsg1, which is lost early in head and neck cancer progression, suppresses cancer cell invadopodia formation by scaffolding ErbB2 Interacting Protein and consequent attenuation of EGF/Erk signaling.
Collapse
Affiliation(s)
| | - Hope E Burks
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christopher R Arnette
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amulya Yalamanchili
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oxana Nekrasova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago and Evanston, IL
| |
Collapse
|
24
|
Hoque Apu E, Akram SU, Rissanen J, Wan H, Salo T. Desmoglein 3 - Influence on oral carcinoma cell migration and invasion. Exp Cell Res 2018; 370:353-364. [PMID: 29969588 DOI: 10.1016/j.yexcr.2018.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
Desmoglein 3 (Dsg3) is an adhesion receptor in desmosomes, but its role in carcinoma cell migration and invasion is mostly unknown. Our aim was to quantitatively analyse the motion of Dsg3-modified carcinoma cells in 2D settings and in 3D within tumour microenvironment mimicking (TMEM) matrices. We tested mutant constructs of C-terminally truncated Dsg3 (∆238 and ∆560), overexpressed full-length (FL) Dsg3, and empty vector control (Ct) of buccal mucosa squamous cell carcinoma (SqCC/Y1) cells. We captured live cell images and analysed migration velocities and accumulated and Euclidean distances. We compared rodent collagen and Matrigel® with human Myogel TMEM matrices for these parameters in 3D sandwich, in which we also tested the effects of monoclonal antibody AK23, which targets the EC1 domain of Dsg3. In monolayer culture, FL and both truncated constructs migrated faster and had higher accumulated distances than Ct cells. However, in the 3D assays, only the mutants invaded faster relative to Ct cells. Of the mutants, the shorter form (Δ238) exhibited faster migration and invasion than Δ560 cells. In the Transwell, all of the cells invaded faster through Myogel than Matrigel® coated wells. In 3D sandwich, AK23 antibody inhibited only the invasion of FL cells. We conclude that different experimental 2D and 3D settings can markedly influence the movement of oral carcinoma cells with various Dsg3 modifications.
Collapse
Affiliation(s)
- Ehsanul Hoque Apu
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Saad Ullah Akram
- Department of Computer Science and Engineering, University of Oulu, Oulu, Finland
| | - Jouni Rissanen
- Fibre and Particle Engineering, University of Oulu, Oulu, Finland
| | - Hong Wan
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland; Medical Research Centre, Oulu University Hospital, Oulu, Finland; HUSLAB, Department of Pathology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland; Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Campinas, Brazil.
| |
Collapse
|
25
|
Molecular and Histopathological Changes Associated with Keratoconus. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7803029. [PMID: 28251158 PMCID: PMC5303843 DOI: 10.1155/2017/7803029] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Keratoconus (KC) is a corneal thinning disorder that leads to loss of visual acuity through ectasia, opacity, and irregular astigmatism. It is one of the leading indicators for corneal transplantation in the Western countries. KC usually starts at puberty and progresses until the third or fourth decade; however its progression differs among patients. In the keratoconic cornea, all layers except the endothelium have been shown to have histopathological structural changes. Despite numerous studies in the last several decades, the mechanisms of KC development and progression remain unclear. Both genetic and environmental factors may contribute to the pathogenesis of KC. Many previous articles have reviewed the genetic aspects of KC, but in this review we summarize the histopathological features of different layers of cornea and discuss the differentially expressed proteins in the KC-affected cornea. This summary will help emphasize the major molecular defects in KC and identify additional research areas related to KC, potentially opening up possibilities for novel methods of KC prevention and therapeutic intervention.
Collapse
|
26
|
Cai F, Zhu Q, Miao Y, Shen S, Su X, Shi Y. Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown suppresses NSCLC growth by regulation of p27 and CDK2. J Cancer Res Clin Oncol 2017; 143:59-69. [PMID: 27629878 DOI: 10.1007/s00432-016-2250-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Desmoglein-2 (Dsg2) is a cell adhesion protein of the cadherin superfamily. Altered Dsg2 expression is associated with tumorigenesis. This study determined Dsg2 expression in non-small cell lung cancer (NSCLC) tissue specimens for association with clinicopathological and survival data and then assessed the effect of Dsg2 knockdown on regulation of NSCLC cell malignant behaviors in vitro and in nude mouse xenografts. METHODS qRT-PCR and Western blot were used to detect Dsg2 expression in 28 paired NSCLC and normal tissue samples. Immunohistochemistry was used to detect Dsg2 expression in 70 cases of paraffin-embedded NSCLC tissues. NSCLC A549, H1703, and H1299 cells were cultured with Dsg2 knockdown performed using Dsg2 siRNA. Cell viability, cell cycle, apoptosis, and colony formation were assessed. siRNA-transfected A549 cells were also used to generate tumor xenografts in nude mice. RESULTS Both Dsg2 mRNA and protein were highly expressed in NSCLC tissues and associated with NSCLC size, but not with overall survival of patients. Moreover, knockdown of Dsg2 expression reduced NSCLC cell proliferation and arrested them at the G1 phase of the cell cycle, but did not significantly affect NSCLC cell apoptosis. Dsg2 knockdown downregulated cyclin-dependent kinase 2 expression and upregulated p27 expression. Nude mouse xenograft assays showed that Dsg2 knockdown inhibited NSCLC xenograft growth in vivo. CONCLUSION This study revealed the importance of Dsg2 in suppression of NSCLC development and progression. Further studies will explore whether restoration of Dsg2 expression is a novel strategy in control of NSCLC.
Collapse
Affiliation(s)
- Feng Cai
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Yingying Miao
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Simei Shen
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Xin Su
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Yi Shi
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
27
|
Qin JH, Wang L, Li QL, Liang Y, Ke ZY, Wang RA. Epithelial-mesenchymal transition as strategic microenvironment mimicry for cancer cell survival and immune escape? Genes Dis 2016; 4:16-18. [PMID: 30258903 PMCID: PMC6136597 DOI: 10.1016/j.gendis.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is the phenotypic transition of epithelial cells to mesenchymal cells characterized by loss of epithelial markers, loss of intercellular adherence and acquirement of mesenchymal cell markers and increased locomotive ability. EMT is widely considered to be a gene regulated process necessary for cancer metastasis. Yet it is a highly controversial issue. We here propose that EMT is an environmentally induced cell behavior. It is the mimicry of their living environment. It is a survival strategy, a way of immune escape. We also propose here that the epithelial cell markers may functionally act as tumor antigens since in the mesenchymal surroundings there are no other structures bearing the same antigens as epithelial cells.
Collapse
Affiliation(s)
- Jun-Hui Qin
- State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qin-Long Li
- State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuan Liang
- State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhen-Yu Ke
- State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rui-An Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
28
|
Wan H, Lin K, Tsang SM, Uttagomol J. Evidence for Dsg3 in regulating Src signaling by competing with it for binding to caveolin-1. Data Brief 2015; 6:124-34. [PMID: 26858977 PMCID: PMC4706560 DOI: 10.1016/j.dib.2015.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/02/2015] [Accepted: 11/22/2015] [Indexed: 11/28/2022] Open
Abstract
This data article contains extended, complementary analysis related to the research articles entitled “Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src” (Tsang et al., 2010) [1] and figures related to the review article entitled “Desmoglein 3: a help or a hindrance in cancer progression?” (Brown et al., 2014) [2]. We show here that both Src and caveolin-1 (Cav-1) associate with Dsg3 in a non-ionic detergent soluble pool and that modulation of Dsg3 levels inversely alters the expression of Src in the Cav-1 complex. Furthermore, immunofluorescence analysis revealed a reduced colocalization of Cav-1/total Src in cells with overexpression of Dsg3 compared to control cells. In support, the sequence analysis has identified a region within the carboxyl-terminus of human Dsg3 for a likelihood of binding to the scaffolding domain of Cav-1, the known Src binding site in Cav-1, and this region is highly conserved across most of 18 species as well as within desmoglein family members. Based on these findings, we propose a working model that Dsg3 activates Src through competing with its inactive form for binding to Cav-1, thus leading to release of Src followed by its auto-activation.
Collapse
Affiliation(s)
- Hong Wan
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, London
| | - Kuang Lin
- Institute of Psychiatry, King׳s College London, London
| | - Siu Man Tsang
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, London
| | - Jutamas Uttagomol
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, London
| |
Collapse
|
29
|
Ormanns S, Altendorf-Hofmann A, Jackstadt R, Horst D, Assmann G, Zhao Y, Bruns C, Kirchner T, Knösel T. Desmogleins as prognostic biomarkers in resected pancreatic ductal adenocarcinoma. Br J Cancer 2015; 113:1460-6. [PMID: 26469831 PMCID: PMC4815888 DOI: 10.1038/bjc.2015.362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/10/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background: Frequent disease relapse and a lack of effective therapies result in a very poor outcome in pancreatic ductal adenocarcinoma (PDAC) patients. Thus, identification of prognostic biomarkers and possible therapeutic targets is essential. Besides their function in cell–cell adhesion, desmogleins may play a role in tumour progression and invasion that has not been investigated in PDAC to date. This study evaluated desmoglein expression as a biomarker in PDAC. Methods: Using immunohistochemistry, we examined desmoglein 1 (DSG1), desmoglein 2 (DSG2) and desmoglein 3 (DSG3) expression in the tumour tissue of 165 resected PDAC cases. Expression levels were correlated to the patients' clinicopathological parameters and postoperative survival times. We confirmed these results in two independent gene expression data sets. Results: A total of 36% of the tumours showed high DSG3 expression that correlated significantly with shorter patient survival (P=0.011) and poor tumour differentiation (P<0.001), whereas no such association was detected for DSG1 or DSG2. In RNA-Seq data and in microarray expression data, high DSG3 expression correlated significantly with poor survival (P=0.000356 and P=0.00499). Conclusions: We identify DSG3 as a negative prognostic biomarker in resected PDAC, as high DSG3 expression is associated with poor overall survival and poor tumour-specific survival. These findings suggest DSG3 and its downstream signalling pathways as possible therapeutic targets in DSG3-expressing PDAC.
Collapse
Affiliation(s)
- Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, Munich 80337, Germany
| | - Annelore Altendorf-Hofmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, Jena 07747, Germany
| | - Rene Jackstadt
- Cancer Research UK, Beatson Institute, Glasgow G61 1BD, UK
| | - David Horst
- Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, Munich 80337, Germany
| | - Gerald Assmann
- Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, Munich 80337, Germany
| | - Yue Zhao
- Department of Surgery, University Hospital Magdeburg, Leipziger Strasse 44, Magdeburg 39120, Germany
| | - Christiane Bruns
- Department of Surgery, University Hospital Magdeburg, Leipziger Strasse 44, Magdeburg 39120, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, Munich 80337, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, Munich 80337, Germany
| |
Collapse
|
30
|
Rajwar YC, Jain N, Bhatia G, Sikka N, Garg B, Walia E. Expression and Significance of Cadherins and Its Subtypes in Development and Progression of Oral Cancers: A Review. J Clin Diagn Res 2015; 9:ZE05-7. [PMID: 26155591 DOI: 10.7860/jcdr/2015/11964.5907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/25/2015] [Indexed: 12/26/2022]
Abstract
Cadherins are a family of transmembranous glycoproteins responsible for calcium-dependent intercellular adhesion. Absence or loss of function of E-cadherin leads to the disappearance of epithelial characteristics of the cells and generates higher invasiveness for extracellular matrices. That is why cadherin expression is considered to be a decisive indicator for differentiation, aggressive behaviour, high proliferation, metastasis, poor prognosis and invasiveness of human carcinoma cells. In this review, the role of cadherin expression was focused on, both in development and carcinogenesis, paying particular attention to mechanisms involved in its down-regulation. The elements common to this process in both physiological and pathological situations was analysed, particularly in relation to one of the most common malignancy, oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yogesh Chand Rajwar
- Senior Lecturer, Department of Oral Pathology, Eklavya Dental College and Hospital , Kotputli, Rajasthan, India
| | - Nitul Jain
- Reader, Department of Oral Pathology, Eklavya Dental College and Hospital , Kotputli, Rajasthan, India
| | - Gouri Bhatia
- Senior Lecturer, Department of Periodontics, Eklavya Dental College and Hospital , Kotputli, Rajasthan, India
| | - Neha Sikka
- Senior Lecturer, Department of Prosthodontics, PGIDS , Rohtak, India
| | - Balram Garg
- Senior Lecturer, Department of Oral & Maxillofacial Surgery, PGIDS , Rohtak, India
| | - Esha Walia
- Private Practitioner, Department of Oral Pathology, Center Head, Axiss Dental Pvt Ltd , Faridabad, India
| |
Collapse
|