1
|
Yi LX, Woon HR, Saw G, Zeng L, Tan EK, Zhou ZD. Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for Parkinson's disease. Neural Regen Res 2025; 20:3193-3206. [PMID: 39665833 PMCID: PMC11881713 DOI: 10.4103/nrr.nrr-d-24-00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease, the second most common human neurodegenerative disease. Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear, the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy. The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons, which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies. The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells. The benefits of induced pluripotent stem cell-based research are highlighted. Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared. The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated. Finally, limitations, challenges, and future directions of induced pluripotent stem cell-based approaches are analyzed and proposed, which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Li Zeng
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Eng King Tan
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
2
|
Choi MA, Rose S, Langouët S. Per- and polyfluoroalkyl substances as potentiators of hepatotoxicity in an exposome framework: Current challenges of environmental toxicology. Toxicology 2025; 515:154167. [PMID: 40300710 DOI: 10.1016/j.tox.2025.154167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/17/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Chronic liver diseases, including metabolic dysfunction-associated steatosic liver disease (MASLD) and hepatocellular carcinoma (HCC), are on the rise, potentially due to daily exposure to complex mixtures of chemical compounds forming part of the exposome. Understanding the mechanisms involved in hepatotoxicity of these mixtures is essential to identify common molecular targets that may highlight potential interactions at the molecular level. We illustrated this issue with two families of environmental contaminants, per- and polyfluoroalkyl substances (PFAS) and heterocyclic aromatic amines (HAAs), both of which could be involved in the progression of chronic liver diseases, and whose toxicity may be potentiated by interactions at the level of xenobiotic metabolism. In the study of exposome effects on chronic liver disease, New Approach Methodologies (NAMs) including omics analyses and data from various in vitro, in vivo and in silico approaches, are crucial for improving predictivity of toxicological studies in humans while reducing animal experimentation. Additionally, the development of complex in vitro human liver cell models, such as organoids, is essential to avoid interspecies differences that minimize the risk for humans. All together, these approaches will contribute to construct Adverse Outcome Pathways (AOPs) and could be applied not only to PFAS mixtures but also to other chemical families, providing valuable insights into mixture hepatotoxicity prediction in the study of the exposome. A better understanding of toxicological mechanisms will clarify the role of environmental contaminant mixtures in the development of MASLD and HCC, supporting risk assessment for better treatment, monitoring and prevention strategies.
Collapse
Affiliation(s)
- Minna A Choi
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France
| | - Sophie Rose
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France.
| |
Collapse
|
3
|
McLain A, Kowalczyk A, Baran-Rachwalska P, Sutera FM, Robertson LJ, Nielsen NS, Enghild JJ, Cobice D, Bonelli F, Barbaro V, Ferrari S, Patterson B, Moore L, Marshall J, Nesbit MA, Moore T. TGFBI R124H mutant allele silencing in granular corneal dystrophy type 2 using topical siRNA delivery. J Control Release 2025; 382:113681. [PMID: 40185334 DOI: 10.1016/j.jconrel.2025.113681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
In recent years, success has been achieved in treating several eye conditions with oligonucleotide-based therapies. Herein, we outline the experimentation involved in progressing selection and development of a lead therapeutic siRNA for R124H mutation of TGFBI gene which causes Granular Corneal Dystrophy Type 2 (GCD2/Avellino CD). Firstly, a series of siRNA designs, generated by a gene walk across the R124H TGFBI mutation site, were tested and a lead siRNA identified. The lead siRNA was delivered into an immortalised human corneal epithelial cell line to assess on-target efficacy and off-target effects. The in vivo efficacy of the lead R124H TGFBI siRNA, complexed with Bio-Courier technology, silicon stabilized hybrid lipid nanoparticles (sshLNP), was assessed in a mouse model of GCD2 which expressed the human R124H TGFBI transgene. Following topical siRNA application for 5 consecutive days, expression of the R124H mutant TGFBI transgene was measured and shown to be reduced by 22.4 % (± 15.7 %, p < 0.05). We investigated gene expression in the mouse cornea and showed expression of murine Tgfbi was 20-fold lower than TGFBI in human cornea, and expression of the mutant TGFBI transgene was a further 3-fold lower. This estimated 60-fold lower mutant transgene expression may explain the low frequency of corneal deposits observed in this mouse model, limiting its usefulness to test whether siRNA silencing is capable of phenotypic improvement or regression of GCD2/Avellino corneal dystrophy. We assessed WT TGFBI silencing in human primary corneal epithelial cells (PCEC) derived from human corneal limbal biopsy material, which express TGFBI at a similar level to human corneal biopsy. We demonstrated that a single 100 nM siRNA treatment, delivered by the sshLNP to the primary human corneal epithelial cells, gave 26.6 % (± 6.6 %, p < 0.001) reduction in TGFBI mRNA and a 15.4 % (±10.5 %, p < 0.05 %) reduction in TGFBi protein after 48 h. In consideration of the mutant gene expression levels in existing models of GCD2 disease, an ex vivo model of mutation-expressing primary corneal epithelial cells generated from corneal limbal biopsies from GCD2 patients would be more suitable than existing transgenic mouse models for future pre-clinical work in the development of gene silencing therapies for corneal dystrophies.
Collapse
Affiliation(s)
- Andrew McLain
- Integrated Diagnostics Laboratory, Northland House, CDHT, Frederick Street, Ulster University, Belfast, UK
| | - Amanda Kowalczyk
- Integrated Diagnostics Laboratory, Northland House, CDHT, Frederick Street, Ulster University, Belfast, UK
| | | | | | - Louise J Robertson
- Integrated Diagnostics Laboratory, Northland House, CDHT, Frederick Street, Ulster University, Belfast, UK
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Diego Cobice
- Integrated Diagnostics Laboratory, Northland House, CDHT, Frederick Street, Ulster University, Belfast, UK
| | - Filippo Bonelli
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, 30174 Venice, Italy
| | - Vanessa Barbaro
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, 30174 Venice, Italy
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, 30174 Venice, Italy
| | - Benjamin Patterson
- Integrated Diagnostics Laboratory, Northland House, CDHT, Frederick Street, Ulster University, Belfast, UK
| | - Luca Moore
- LM Lassi Ltd, 22 Great Victoria Street, Belfast, Northern Ireland BT2 7BA, UK; University of York, Heslington, York YO10 5DD, UK
| | - John Marshall
- University College London, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - M Andrew Nesbit
- Integrated Diagnostics Laboratory, Northland House, CDHT, Frederick Street, Ulster University, Belfast, UK
| | - Tara Moore
- Integrated Diagnostics Laboratory, Northland House, CDHT, Frederick Street, Ulster University, Belfast, UK; LM Lassi Ltd, 22 Great Victoria Street, Belfast, Northern Ireland BT2 7BA, UK; Avellino USA, Menlo Park, 4300 Bohannon Drive, Menlo Park, CA 94025, USA.
| |
Collapse
|
4
|
Hong Z, Zhao Y, Pahlavan S, Wang X, Han S, Wang X, Wang K. iPSC modification strategies to induce immune tolerance. LIFE MEDICINE 2025; 4:lnaf016. [PMID: 40376110 PMCID: PMC12076409 DOI: 10.1093/lifemedi/lnaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/27/2025] [Indexed: 05/18/2025]
Abstract
Human pluripotent stem cells (hPSCs) hold great promise in regenerative medicine. However, immune rejections remain one of the major obstacles to stem cell therapy. Though conventional immunosuppressants are available in clinics, the side effects prevent the wide application of hPSCs derivatives, compromising both survival rate and quality of life. In recent years, a myriad of strategies aimed at inducing immune tolerance specifically by engineering stem cells has been introduced to society. One strategy involves human leukocyte antigen (HLA) deletion through gene editing, affording allografts the capability to evade the host immune system. Another strategy involves immune cloak, which is the focus of this review, with emphasis on the overexpression of immune checkpoints and the blocking of immune cytotoxic pathways. Nevertheless, co-transplantation with mesenchymal stem cells (MSCs) and enhanced MSCs confers immune privilege to engraftments. This review summarizes recent studies on the intricacies of immune tolerance induction by engineering stem cells. In addition, we endeavor to deliberate upon the safety and limitations associated with this promising and potential therapeutic modality.
Collapse
Affiliation(s)
- Zixuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yun Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Xue Wang
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Sen Han
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
da Costa Martins PA, Calore M, Kocken JM. Right ventricle remodelling: from in vitro to in vivo and from simple to complex models. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 12:100298. [PMID: 40276359 PMCID: PMC12020871 DOI: 10.1016/j.jmccpl.2025.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Right ventricle failure (RVF) is a debilitating disease with no cure available. While much is known about the failing left ventricle (LV), many mechanisms and signalling pathways of remodelling are different between the two ventricles. Over the past decades, new insights into the mechanisms of the disease have helped in managing disease progression and improving patient comfort. To study RVF both in vitro and in vivo and even ex vivo, relevant experimental models are required to discover new mechanisms and test novel therapeutic approaches. During the past decades many strategies to mimick RV hypertrophy (RVH), to some extent, have been developed and described with using varying methods of disease induction. Such models either require genetic modulation, surgical intervention, chemical injections, or changes in environmental exposure. As each approach has a different set of requirements of facility and skills, one needs to carefully consider which one better suits a specific study or answer a specific research question. In this review, we provide an overview of the most common in vitro techniques, both 2 and 3 dimensional, in vivo and promising ex vivo approaches to study RV remodelling.
Collapse
Affiliation(s)
- Paula A. da Costa Martins
- CARIM School for Cardiovascular Disease, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 HX Maastricht, the Netherlands
- Department of Physiology and Cardiothoracic Surgery, University of Porto, 4200-319 Porto, Portugal
| | - Martina Calore
- CARIM School for Cardiovascular Disease, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 HX Maastricht, the Netherlands
- Department of Biology, Universitá degli Studi di Padova, Padova, Italy
| | - Jordy M.M. Kocken
- CARIM School for Cardiovascular Disease, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 HX Maastricht, the Netherlands
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Matiukhova M, Ryapolova A, Andriianov V, Reshetnikov V, Zhuravleva S, Ivanov R, Karabelsky A, Minskaia E. A comprehensive analysis of induced pluripotent stem cell (iPSC) production and applications. Front Cell Dev Biol 2025; 13:1593207. [PMID: 40406420 PMCID: PMC12095295 DOI: 10.3389/fcell.2025.1593207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
The ability to reprogram mature, differentiated cells into induced pluripotent stem cells (iPSCs) using exogenous pluripotency factors opened up unprecedented opportunities for their application in biomedicine. iPSCs are already successfully used in cell and regenerative therapy, as various drug discovery platforms and for in vitro disease modeling. However, even though already 20 years have passed since their discovery, the production of iPSC-based therapies is still associated with a number of hurdles due to low reprogramming efficiency, the complexity of accurate characterization of the resulting colonies, and the concerns associated with the safety of this approach. However, significant progress in many areas of molecular biology facilitated the production, characterization, and thorough assessment of the safety profile of iPSCs. The number of iPSC-based studies has been steadily increasing in recent years, leading to the accumulation of significant knowledge in this area. In this review, we aimed to provide a comprehensive analysis of methods used for reprogramming and subsequent characterization of iPSCs, discussed barriers towards achieving these goals, and various approaches to improve the efficiency of reprogramming of different cell populations. In addition, we focused on the analysis of iPSC application in preclinical and clinical studies. The accumulated breadth of data helps to draw conclusions about the future of this technology in biomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ekaterina Minskaia
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
7
|
De Simone U, Caloni F, Pignatti P, Gaetano C, Locatelli CA, Coccini T. Human stromal cell-based protocol to generate astrocytes: a straightforward in vitro predictive strategy in neurotoxicology. Toxicol Mech Methods 2025; 35:340-355. [PMID: 39626968 DOI: 10.1080/15376516.2024.2435351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 05/04/2025]
Abstract
The inherent adaptability of human mesenchymal stromal cells (hMSCs) to differentiate into neural lineages provides a valuable resource for investigating potential neurotoxicity in humans. By harnessing the ability of hMSCs to transform into astrocytes, we can evaluate the effects of various agents on these vital cells. Our protocol employs hMSCs sourced from umbilical cord tissue, ensuring a readily available supply of high-quality cells. The hMSC-to-neural workflow encompasses six essential steps: hMSC culture, followed by the generation of embryoid bodies (EBs) from these cells on specialized surfaces. Next, EBs and cells are expanded in a growth-promoting medium, directing them toward neural lineages. Subsequent differentiation into immature astrocytes is achieved through the use of specific factors. The process continues with the maturation of EBs/cells into astrocyte-like cells (hALCs) under optimized conditions, culminating in the final development of hALCs in a specialized medium. This methodology yields cells that display astrocyte morphology and express characteristic markers such as GFAP and S100β. The protocol is efficient, requiring roughly 6 weeks to generate hALCs from primary hMSCs without genetic manipulation. The application of hMSCs in evaluating cell damage triggered by neurotoxicants like MeHg and MGO underscores their potential as a valuable component within a more extensive battery of neurotoxicity tests.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
8
|
Lamolda M, Frejo L, Martin-Lagos J, Cara FE, Gallego-Martinez A, Lopez-Escamez JA. A Neuron-Like Cellular Model for Severe Tinnitus Associated with Rare Variations in the ANK2 Gene. Mol Neurobiol 2025; 62:6467-6477. [PMID: 39815069 PMCID: PMC11953095 DOI: 10.1007/s12035-024-04674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Tinnitus is the perception of sound without an external source, often associated with changes in the auditory pathway and different brain regions. Recent research revealed an overload of missense variants in the ANK2 gene in individuals with severe tinnitus. ANK2, encoding ankyrin-B, regulates axon branching and inhibits microtubule invasion. Missense mutations in ANK2 may promote excessive axonal branching and the formation of excitatory synapses. This study aims to generate a patient-derived iPSC model from an individual with severe tinnitus and to differentiate these cells into otic-neural progenitors and inner ear neurons. We successfully generated a severe tinnitus cellular model through cell reprogramming. Using a two-stage neural differentiation protocol, we differentiated these cells into otic-neural progenitors and neuron-like cells. We confirmed the expression of genes, proteins, and cellular markers, including ANK2, otic-neural progenitors, and neuron-like cells through qPCR and immunostaining. Our analysis revealed higher ANK2 expression in the control cell line compared to the patient cell line. Although both lines formed multipolar neurons, the patient cell line displayed a unique pattern of closely grouped neurons with increased neuronal projections and dendrites compared to the control. This cellular model provides a valuable tool for studying the cellular and molecular changes associated with the ANK2 gene. It holds great promise for the development of novel drug and gene-based therapies for severe tinnitus.
Collapse
Affiliation(s)
- Mar Lamolda
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Lidia Frejo
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards, Sydney, NSW, Australia.
| | - Juan Martin-Lagos
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otorhinolaryngology, Hospital Clinico Universitario San Cecilio, Granada, Spain
| | - Francisca E Cara
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards, Sydney, NSW, Australia
| |
Collapse
|
9
|
Salomon-Zimri S, Kerem N, Linares GR, Russek-Blum N, Ichida JK, Tracik F. Elucidating the Synergistic Effect of the PrimeC Combination for Amyotrophic Lateral Sclerosis in Human Induced Pluripotent Stem Cell-Derived Motor Neurons and Mouse Models. Pharmaceuticals (Basel) 2025; 18:524. [PMID: 40283960 PMCID: PMC12030000 DOI: 10.3390/ph18040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by the involvement of multiple pathways and mechanisms. The complexity of its pathophysiology is reflected in the diverse hypotheses relating to its underlying causes. Given this intricate interplay of processes, a combination therapy approach offers a promising strategy. Combination therapies have demonstrated significant success in treating complex diseases, where they aim to achieve synergistic therapeutic effects and reduce drug dosage. PrimeC is an oral combination treatment composed of a patented novel formulation consisting of specific and unique doses of two well-characterized drugs (ciprofloxacin and celecoxib). It aims to synergistically inhibit the progression of ALS by addressing key elements of its pathophysiology. Objectives: Demonstrating the synergistic effect of the PrimeC combination compared to each of its individual components, celecoxib and ciprofloxacin, and assessing its ability to improve the drug concentration profile and efficacy. Methods: The efficacy of the PrimeC combination was assessed in a survival assay using human induced pluripotent stem cell (iPSC)-derived motor neurons. Additionally, a drug profiling study was conducted, measuring drug levels in the brain and serum of C57BL mice treated with a single compound versus the combination. Results: Motor neurons modeling ALS treated with the PrimeC combination exhibited better survival rates compared to treatment with either individual compound alone. The enhanced efficacy of the combination was further supported by a drug concentration profiling study in rodents, demonstrating that the PrimeC combination resulted in increased ciprofloxacin concentrations in both brain tissue and serum-highlighting the optimized interaction and synergistic potential of its two comprising agents. Conclusions: Our findings support the potential of combination therapy as an effective strategy for ALS treatment. Specifically, the PrimeC combination demonstrated promising therapeutic effects, providing a strong rationale for its ongoing development as a targeted treatment for ALS.
Collapse
Affiliation(s)
- Shiran Salomon-Zimri
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| | - Nitai Kerem
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| | - Gabriel R. Linares
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.R.L.); (J.K.I.)
| | - Niva Russek-Blum
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.R.L.); (J.K.I.)
| | - Ferenc Tracik
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| |
Collapse
|
10
|
Penrose HM, Sinha S, Tindle C, Zablan K, Le HN, Neill J, Ghosh P, Boland BS. A Living Organoid Biobank of Crohn's Disease Patients Reveals Distinct Clinical Correlates of Molecular Subtypes of Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.01.25325058. [PMID: 40236416 PMCID: PMC11998810 DOI: 10.1101/2025.04.01.25325058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Current clinical decision-making lacks reliable preclinical models to predict patient outcomes. Here, we establish patient-derived organoids (PDOs) as predictive tools in Crohn's disease (CD), a complex, heterogeneous disorder. Using a living biobank of adult stem cell-derived colonic-PDOs, we identified two molecular CD subtypes-Immune-Deficient Infectious CD ( IDICD ) and Stress and Senescence-Induced Fibrostenotic CD ( S2FCD )-each with distinct genomic, transcriptomic and functional profiles, along with paired therapeutics. By prospectively linking colonic PDO-derived phenotypes to real-world patient outcomes, we uncovered that while S2FCD associates with severe colonic disease, IDICD associates with severe ileal disease, prior ileocecal surgery, and future disease progression. This approach transforms PDOs from static descriptive models into dynamic tools that capture the past, present, and future of disease behavior and reveals their utility as patient-specific predictive platforms, extending their use beyond oncology to complex inflammatory diseases. Findings also suggest that colonic immune dysfunction may drive ileal-CD, independent of colonic involvement. GRAPHICAL ABSTRACT In Brief In this work, Penrose et al. demonstrate the potential of patient-derived organoids (PDOs) as predictive tools in Crohn's disease (CD) that capture the past, present, and future of disease behavior, thereby advancing PDO-informed precision medicine beyond oncology into complex inflammatory diseases. HIGHLIGHTS A living PDO biobank identified two molecular CD subtypes with distinct functional phenotypes.PDO subtyping tracked severity of ileal disease, prior surgery and future disease progression.Colonic immune dysfunction may drive ileal-CD, independent of colonic involvement.Colonic CD-PDOs are dynamic platforms for outcome-deterministic therapeutic testing.
Collapse
|
11
|
Aldali F, Yang Y, Deng C, Li X, Cao X, Xu J, Li Y, Ding J, Chen H. Induced Pluripotent Stem Cell-Derived Exosomes Promote Peripheral Nerve Regeneration in a Rat Sciatic Nerve Crush Injury Model: A Safety and Efficacy Study. Cells 2025; 14:529. [PMID: 40214483 PMCID: PMC11989054 DOI: 10.3390/cells14070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Peripheral nerve injury (PNI) remains a significant clinical challenge, often leading to long-term functional impairment. Despite advances in therapies, current repair strategies offer unsatisfactory clinical outcomes. Exosomes derived from induced pluripotent stem cells (iPSC-Exos) have emerged as a promising therapeutic approach in regenerative medicine. This study assesses the efficacy and safety of iPSC-Exos in a rat model of sciatic nerve crush injury. Briefly, iPSCs were generated from peripheral blood mononuclear cells (PBMCs) of healthy donors using Sendai virus vectors and validated for pluripotency. iPSC-Exos were characterized and injected at the injury site. Functional recovery was assessed through gait analysis, grip strength, and pain response. Histological and molecular analyses were used to examine axonal regeneration, myelination, Schwann cell (SC) activation, angiogenesis, and changes in gene expression. iPSC-Exos were efficiently internalized by SC, promoting their proliferation. No adverse effects were observed between groups on body weight, organ histology, or hematological parameters. iPSC-Exos injection significantly enhanced nerve regeneration, muscle preservation, and vascularization, with RNA sequencing revealing activation of PI3K-AKT and focal adhesion pathways. These findings support iPSC-Exos as a safe and effective non-cell-based therapy for PNIs, highlighting their potential for clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Yujie Yang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Xiangling Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Xiaojian Cao
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Jia Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yajie Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Jianlin Ding
- Department of Gynecology & Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
McElwee KJ, Sundberg JP. Innovative strategies for the discovery of new drugs against androgenetic alopecia. Expert Opin Drug Discov 2025; 20:517-536. [PMID: 40029254 DOI: 10.1080/17460441.2025.2473905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Androgenetic alopecia (AGA) is the most common cause of hair loss worldwide. The significant psychological and social impact of AGA continues to drive demand for more effective treatments beyond the limited options currently available. AREAS COVERED The authors review the key components of AGA pathogenesis, as well as current treatments, and therapeutic techniques under development. Innovative strategies for AGA drug discovery are still needed, given the significant unmet medical needs and the limited efficacy of both current and emerging treatments. The authors outline relevant preclinical models, such as hair follicle (HF) cell cultures, 3D spheroids, organoids, follicle explants, and animal models, highlighting their advantages and limitations in AGA research. Finally, they summarize the primary objectives in AGA treatment development, including direct hair growth promotion, interference with androgen signaling, and HF rejuvenation, identifying key pathogenesis intervention points for treatment development. EXPERT OPINION Developing better in vitro models, possibly using induced pluripotent stem cell (iPSC) systems, could greatly accelerate drug discovery. Similarly, a superior in vivo model could significantly expedite drug discovery. Near future development research should focus on drug delivery improvements. Longer term, treatments targeting AGA's underlying pathophysiology and promoting HF rejuvenation or true regeneration would provide the most benefit to prospective patients.
Collapse
Affiliation(s)
- Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Maiers M, Sullivan S, McClain C, Leonhard-Melief C, Turner ML, Turner D. Harnessing global HLA data for enhanced patient matching in iPSC haplobanks. Cytotherapy 2025; 27:300-306. [PMID: 39718520 DOI: 10.1016/j.jcyt.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Several countries have either developed or are developing national induced pluripotent stem cell (iPSC) banks of cell lines derived from donors with HLA homozygous genotypes (two identical haplotypes) prevalent in their local populations to provide immune matched tissues and cells to support regenerative medicine therapies. This 'haplobank' approach relies on knowledge of the HLA genotypes of the population to identify the most beneficial haplotypes for patient coverage, and ultimately identify donors or cord blood units carrying two copies of the target haplotype. AIMS A potentially more efficient alternative to a national bank approach is to assess the haplotypes required to provide global patient coverage and to produce a single, global haplobank. Toward that end, we have developed an algorithm to prioritize HLA haplotypes that optimize coverage across the global population. METHODS We analyzed data from eighteen countries participating in the Global Alliance for iPS Therapy (GAiT). A representative pool of HLA genotypes, reflecting the HLA of patients, was derived by sampling from each country's WMDA hematopoietic stem cell donor registry, or surrogate population. An algorithm was created based on HLA-A, -B and -DRB1 haplotype homozygous types with population HLA matching coverage defined by the absence of Host versus Graft (HvG) mismatches at these loci. HLA matching coverage was determined by iteratively selecting HLA haplotypes that provide the largest coverage against patient HLA genotypes sampled from the same population, excluding genotypes compatible with previous iterations. RESULTS The top 10 haplotypes for each of the 18 countries were identified with patient coverage ranging from 19.5% in Brazil to 63.8% in Japan, with a mean coverage of 33.3%. In a 'global' model, utilizing the 180 most frequent haplotypes across all 18 populations (equivalent to 10 lines per country), the patient coverage ranged from 54.6% in India to 81.7% in Sweden, with a mean of 68.4%. Our findings demonstrate that global collaboration could more than double the potential for patient HLA matching coverage. CONCLUSIONS Interrogation of unrelated hematopoietic stem cell donor registry and cord blood bank HLA data demonstrated that HLA-A, -B, and -DRB1 homozygous donors for the top 180 global haplotypes are widely available. These results show that a globally coordinated strategy for haplobanking would reduce redundancy and allow more patients to be treated with the same investment.
Collapse
Affiliation(s)
- Martin Maiers
- CIBMTR (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, Minnesota, USA.
| | - Stephen Sullivan
- iPSirius, Paris, France; Lindville Bio, Edinburgh, UK; Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| | | | - Christina Leonhard-Melief
- CIBMTR (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, Minnesota, USA
| | - Marc L Turner
- Scottish National Blood Transfusion Service, Edinburgh, UK; Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| | - David Turner
- Scottish National Blood Transfusion Service, Edinburgh, UK; Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| |
Collapse
|
14
|
Moghtaderi H, Mohahammadi S, Sadeghian G, Choudhury M, Al-Harrasi A, Rahman SM. Electrical impedance sensing in stem cell research: Insights, applications, and future directions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:1-14. [PMID: 39557164 DOI: 10.1016/j.pbiomolbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The exceptional differentiation abilities of stem cells make them ideal candidates for cell replacement therapies. Considering their great potential, researchers should understand how stem cells interact with other cell types. The production of high-quality differentiated cells is crucial for favorable treatment and makes them an ideal choice for clinical applications. Label-free stem cell monitoring approaches are anticipated to be more effective in this context, as they ensure quality of differentiation while preserving the therapeutic potential. Electric cell-substrate impedance sensing (ECIS) is a nonintrusive technique that enables cell quantification through continuous monitoring of adherent cell behavior using electronic transcellular impedance measurements. This technique also facilitates the study of cell growth, motility, differentiation, drug effects, and cell barrier functions. Therefore, numerous studies have identified ECIS as an effective method for monitoring stem cell quality and differentiation. In this review, we discuss the current understanding of ECIS's achievements in examining cell behaviors and the potential applications of ECIS arrays in preclinical stem cell research. Moreover, we highlight our present knowledge concerning ECIS's contributions in examining cell behaviors and speculate about the future uses of ECIS arrays in preclinical stem cell research. This review also aims to stimulate research on electrochemical biosensors for future applications in regenerative medicine.
Collapse
Affiliation(s)
- Hassan Moghtaderi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman
| | - Saeed Mohahammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman
| | - Golfam Sadeghian
- Advanced Micro and Nano Device Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439957131, Iran
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas A & M University, College Station, TX, 77843, USA
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman.
| |
Collapse
|
15
|
Quaid K, Xing X, Chen YH, Miao Y, Neilson A, Selvamani V, Tran A, Cui X, Hu M, Wang T. iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation. Nat Commun 2025; 16:1750. [PMID: 39966349 PMCID: PMC11836351 DOI: 10.1038/s41467-025-56569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Understanding the interaction between genetic and epigenetic variation remains a challenge due to confounding environmental factors. We propose that human induced Pluripotent Stem Cells (iPSCs) are an excellent model to study the relationship between genetic and epigenetic variation while controlling for environmental factors. In this study, we have created a comprehensive resource of high-quality genomic, epigenomic, and transcriptomic data from iPSC lines and three iPSC-derived cell types (neural stem cell (NSC), motor neuron, monocyte) from three healthy donors. We find that epigenetic variation is most strongly associated with genetic variation at the iPSC stage, and that relationship weakens as epigenetic variation increases in differentiated cells. Additionally, cell type is a stronger source of epigenetic variation than genetic variation. Further, we elucidate a utility of studying epigenetic variation in iPSCs and their derivatives for identifying important loci for GWAS studies and the cell types in which they may be acting.
Collapse
Affiliation(s)
- Kara Quaid
- Center for Genome Sciences & Systems Biology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaoyun Xing
- Center for Genome Sciences & Systems Biology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Yi-Hsien Chen
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yong Miao
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Amber Neilson
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Vijayalingam Selvamani
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Aaron Tran
- Center for Genome Sciences & Systems Biology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Ting Wang
- Center for Genome Sciences & Systems Biology, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
16
|
Means JC, Martinez-Bengochea AL, Louiselle DA, Nemechek JM, Perry JM, Farrow EG, Pastinen T, Younger ST. Rapid and scalable personalized ASO screening in patient-derived organoids. Nature 2025; 638:237-243. [PMID: 39843740 PMCID: PMC11798851 DOI: 10.1038/s41586-024-08462-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease1. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs. We describe protocols for delivery of ASOs to patient-derived organoid models and confirm reversal of disease-associated phenotypes in cardiac organoids derived from a patient with Duchenne muscular dystrophy (DMD) with a structural deletion in the gene encoding dystrophin (DMD) that is amenable to treatment with existing ASO therapeutics. Furthermore, we designed novel patient-specific ASOs for two additional patients with DMD (siblings) with a deep intronic variant in the DMD gene that gives rise to a novel splice acceptor site, incorporation of a cryptic exon and premature transcript termination. We showed that treatment of patient-derived cardiac organoids with patient-specific ASOs results in restoration of DMD expression and reversal of disease-associated phenotypes. The approach outlined here provides the foundation for an expedited path towards the design and preclinical evaluation of personalized ASO therapeutics for a broad range of rare diseases.
Collapse
Affiliation(s)
- John C Means
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Anabel L Martinez-Bengochea
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Daniel A Louiselle
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jacqelyn M Nemechek
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John M Perry
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily G Farrow
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott T Younger
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
17
|
Dawoody Nejad L, Pioro EP. Modeling ALS with Patient-Derived iPSCs: Recent Advances and Future Potentials. Brain Sci 2025; 15:134. [PMID: 40002468 PMCID: PMC11852857 DOI: 10.3390/brainsci15020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal complex neurodegenerative disease, with 10-15% of cases being familial and the majority being sporadic with no known cause. There are no animal models for the 85-90% of sporadic ALS cases. More creative, sophisticated models of ALS disease are required to unravel the mysteries of this complicated disease. While ALS patients urgently require new medications and treatments, suitable preclinical in vitro models for drug screening are lacking. Therefore, human-derived induced pluripotent stem cell (hiPSC) technology offers the opportunity to model diverse and unreachable cell types in a culture dish. In this review, we focus on recent hiPSC-derived ALS neuronal and non-neuronal models to examine the research progress of current ALS 2D monocultures, co-cultures, and more complex 3D-model organoids. Despite the challenges inherent to hiPSC-based models, their application to preclinical drug studies is enormous.
Collapse
Affiliation(s)
| | - Erik P. Pioro
- Djavad Mowafaghian Centre for Brain Health, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
18
|
Castro-Gutierrez R, Arora A, Vaeth KF, Taliaferro JM, Russ HA. A Recombinase-Mediated Cassette Exchange Platform for a Triple Independent Inducible Expression System for Human Pluripotent Stem Cells. Cells 2025; 14:184. [PMID: 39936976 PMCID: PMC11817695 DOI: 10.3390/cells14030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Human pluripotent stem cells (hPSCs) and their differentiated derivatives represent valuable tools for studying development, modeling diseases, and advancing cell therapy. Recent improvements in genome engineering allow for precise modifications of hPSCs, further enhancing their utility in basic and translational research. Here we describe a Recombinase-Mediated Cassette Exchange (RMCE) platform in hPSCs that allows for the highly efficient, rapid, and specific integration of transgenes. The RCME-mediated DNA integration process is nearly 100% efficient, without negatively affecting the pluripotency or karyotypic stability of hPSCs. Taking advantage of this convenient system, we first established a dual inducible expression system based on the Tet-On and Cumate-On systems, allowing for the inducible expression of two transgenes independently. Secondly, we incorporated a Tet-on inducible system, driving the expression of three genes simultaneously. However, two genes also contain independent degron sequences, allowing for precise control over the expression of each gene individually. We demonstrated the utility of these systems in hPSCs, as well as their functionality after differentiation into cells that were representative of the three germ layers. Lastly, we used the triple inducible system to investigate the lineage commitment induced by the pancreatic transcription factors NKX6.1 and PDX1. We found that controlled dual expression, but not individual expression, biases hPSC embryoid body differentiation towards the pancreatic lineage by inducing the expression of the NeuroD program. In sum, we describe a novel genetic engineering platform that allows for the efficient and fast integration of any desired transgene(s) in hPSCs using RMCE. We anticipate that the ability to modulate the expression of three transgenes simultaneously will further accelerate discoveries using stem cell technology.
Collapse
Affiliation(s)
- Roberto Castro-Gutierrez
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.A.); (K.F.V.); (J.M.T.)
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katherine F. Vaeth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.A.); (K.F.V.); (J.M.T.)
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.A.); (K.F.V.); (J.M.T.)
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Holger A. Russ
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
Kala S, Strutz AG, Katt ME. The Rise of Pluripotent Stem Cell-Derived Glia Models of Neuroinflammation. Neurol Int 2025; 17:6. [PMID: 39852770 PMCID: PMC11767680 DOI: 10.3390/neurolint17010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a blanket term that describes the body's complex inflammatory response in the central nervous system (CNS). It encompasses a phenotype shift to a proinflammatory state, the release of cytokines, the recruitment of peripheral immune cells, and a wide variety of other processes. Neuroinflammation has been implicated in nearly every major CNS disease ranging from Alzheimer's disease to brain cancer. Understanding and modeling neuroinflammation is critical for the identification of novel therapeutic targets in the treatment of CNS diseases. Unfortunately, the translation of findings from non-human models has left much to be desired. This review systematically discusses the role of human pluripotent stem cell (hPSC)-derived glia and supporting cells within the CNS, including astrocytes, microglia, oligodendrocyte precursor cells, pericytes, and endothelial cells, to describe the state of the field and hope for future discoveries. hPSC-derived cells offer an expanded potential to study the pathobiology of neuroinflammation and immunomodulatory cascades that impact disease progression. While much progress has been made in the development of models, there is much left to explore in the application of these models to understand the complex inflammatory response in the CNS.
Collapse
Affiliation(s)
- Srishti Kala
- Cancer Cell Biology Graduate Education Program, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Andrew G. Strutz
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Moriah E. Katt
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| |
Collapse
|
20
|
Taei A, Sajadi FS, Salahi S, Enteshari Z, Falah N, Shiri Z, Abasalizadeh S, Hajizadeh-Saffar E, Hassani SN, Baharvand H. The cell replacement therapeutic potential of human pluripotent stem cells. Expert Opin Biol Ther 2025; 25:47-67. [PMID: 39679436 DOI: 10.1080/14712598.2024.2443079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION The remarkable ability of human pluripotent stem cells (hPSCs) to differentiate into specialized cells of the human body emphasizes their immense potential in treating various diseases. Advances in hPSC technology are paving the way for personalized and allogeneic cell-based therapies. The first-in-human studies showed improved treatment of diseases with no adverse effects, which encouraged the industrial production of this type of medicine. To ensure the quality, safety and efficacy of hPSC-based products throughout their life cycle, it is important to monitor and control their clinical translation through good practices (GxP) regulations. Understanding these rules in advance will help ensure that the industrial development of hPSC-derived products for widespread clinical implementation is feasible and progresses rapidly. AREAS COVERED In this review, we discuss the key translational obstacles of hPSCs, outline the current hPSC-based clinical trials, and present a workflow for putative clinical hPSC-based products. Finally, we highlight some future therapeutic opportunities for hPSC-derivatives. EXPERT OPINION hPSC-based products continue to show promise for the treatment of a variety of diseases. While clinical trials support the relative safety and efficacy of hPSC-based products, further investigation is required to explore the clinical challenges and achieve exclusive regulations for hPSC-based cell therapies.
Collapse
Affiliation(s)
- Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh-Sadat Sajadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Sarvenaz Salahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Enteshari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasrin Falah
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
21
|
Horie T, Hirata H, Sakamoto T, Kitajima H, Fuku A, Nakamura Y, Sunatani Y, Tanida I, Sunami H, Tachi Y, Ishigaki Y, Yamamoto N, Shimizu Y, Ichiseki T, Kaneuji A, Iwabuchi K, Osawa S, Kawahara N. Multiomics analyses reveal adipose-derived stem cells inhibit the inflammatory response of M1-like macrophages through secreting lactate. Stem Cell Res Ther 2024; 15:485. [PMID: 39696485 DOI: 10.1186/s13287-024-04072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) are widely used in the field of regenerative medicine because of their various functions, including anti-inflammatory effects. ADSCs are considered to exert their anti-inflammatory effects by secreting anti-inflammatory cytokines and extracellular vesicles. Although recent studies have reported that metabolites have a variety of physiological activities, whether those secreted by ADSCs have anti-inflammatory properties remains unclear. Here, we performed multiomics analyses to examine the effect of ADSC-derived metabolites on M1-like macrophages, which play an important role in inflammatory responses. METHODS The concentration of metabolites in the culture supernatant of ADSCs was quantified using capillary electrophoresis time-of-flight mass spectrometry. To evaluate their effects on inflammatory responses, M1-like macrophages were exposed to the conditioned ADSC medium or their metabolites, and RNA sequencing was used to detect gene expression changes. Immunoblotting was performed to examine how the metabolite suppresses inflammatory processes. To clarify the contribution of the metabolite in the conditioned medium to its anti-inflammatory effects, metabolite uptake was pharmacologically inhibited, and gene expression and the tumor necrosis factor-α concentration were measured by quantitative PCR and enzyme-linked immunosorbent assay, respectively. RESULTS Metabolomic analysis showed large amounts of lactate in the culture supernatant. The conditioned medium and lactate significantly suppressed or increased the pro-inflammatory and anti-inflammatory gene expressions. However, sequencing and immunoblotting analysis revealed that lactate did not induce polarization from M1- to M2-like macrophages. Based on a recent report that the immunosuppressive effect of lactate depends on epigenetic reprogramming, histone acetylation was investigated, and H3K27ac expression was upregulated. In addition, 7ACC2, which specifically inhibits the monocarboxylate transporter 1, significantly inhibited the anti-inflammatory effect of the conditioned ADSC medium on M1-like macrophages. CONCLUSIONS Our results showed that ADSCs suppress pro-inflammatory effects of M1-like macrophages by secreting lactate. This study adds to our understanding of the importance of metabolites and is also expected to elucidate new mechanisms of ADSC treatments.
Collapse
Affiliation(s)
- Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
| | - Hiroaki Hirata
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| | - Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
| | - Hironori Kitajima
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Atsushi Fuku
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yumi Sunatani
- Department of Biochemistry I, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Ikuhiro Tanida
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa, 924-0838, Japan
| | - Hiroshi Sunami
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshiyuki Tachi
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Naoki Yamamoto
- Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nakagami, Okinawa, 903-0215, Japan
| | - Toru Ichiseki
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| | - Ayumi Kaneuji
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Kuniyoshi Iwabuchi
- Department of Biochemistry I, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Satoshi Osawa
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa, 924-0838, Japan
| | - Norio Kawahara
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| |
Collapse
|
22
|
Genova E, Rispoli P, Fengming Y, Kohei J, Bramuzzo M, Bulla R, Lucafò M, Ferraro RM, Decorti G, Stocco G. Time-efficient strategies in human iPS cell-derived pancreatic progenitor differentiation and cryopreservation: advancing towards practical applications. Stem Cell Res Ther 2024; 15:483. [PMID: 39695795 PMCID: PMC11658428 DOI: 10.1186/s13287-024-04068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Differentiation of patient-specific induced pluripotent stem cells (iPS) helps researchers to study the individual sensibility to drugs. However, differentiation protocols are time-consuming, and not all tissues have been studied. Few works are available regarding pancreatic exocrine differentiation of iPS cells, and little is known on culturing and cryopreserving these cells. METHODS We differentiated the iPS cells of two pediatric Crohn's disease patients into pancreatic progenitors and exocrine cells, adapting and shortening a protocol for differentiating embryonic stem cells. We analyzed the expression of key genes and proteins of the differentiation process by qPCR and immunofluorescence, respectively. We explored the possibility of keeping differentiated cells in culture and freezing and thawing them to shorten the time needed for the differentiation. We analyzed the cell cycle of undifferentiated and differentiated cells by flow cytometry. RESULTS The analysis of mRNA levels of key pancreatic differentiation genes PDX1 and pancreatic amylase indicate that iPS cells were successfully differentiated into pancreatic exocrine cells with expression of PDX1 (one way ANOVA p < 0.0001), and the two isoforms of amylase (one way ANOVA p < 0.05) significantly higher in exocrine cells in comparison to iPS cells. Differentiation efficiency was also confirmed by immunofluorescence analysis of PDX1 and amylase. We confirmed the possibility of shortening the time necessary for obtaining pancreatic cells without losing differentiation efficiency. Pancreatic progenitors and exocrine cells were maintained in culture and cryopreserved. Interestingly, the stemness marker OCT4 resulted significantly lower after subculturing (OCT4 p < 0.001; one-way ANOVA) and after freezing and thawing procedures (p < 0.05, one-way ANOVA) suggesting a reduction of undifferentiated stem cells leading to a purer population of pancreatic progenitor cells. Also, the stemness marker NANOG resulted lower after passaging, corroborating this result. CONCLUSIONS In this work, we optimized the generation of patient-specific pancreatic differentiated cells and laid the foundation for creating a bank of patient-specific pancreatic lines exploitable for tailored pharmacological assays. TRIAL REGISTRATION The study was approved by the Ethical Committee of the Institute of Maternal and Child Health IRCCS Burlo Garofolo, with approval number 1556 (internal ID RC 44/22).
Collapse
Affiliation(s)
- Elena Genova
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Paola Rispoli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Yue Fengming
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research, Matsumoto, Japan
| | - Johkura Kohei
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosalba Monica Ferraro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
23
|
Vo QD, Nakamura K, Saito Y, Iida T, Yoshida M, Amioka N, Akagi S, Miyoshi T, Yuasa S. iPSC-Derived Biological Pacemaker-From Bench to Bedside. Cells 2024; 13:2045. [PMID: 39768137 PMCID: PMC11674228 DOI: 10.3390/cells13242045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity, integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term functionality, and immune response remain significant barriers to clinical translation. Future research should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable production processes to enhance the safety and effectiveness of these biological pacemakers. With further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for cardiac rhythm management. This review discusses key advancements in differentiation protocols and preclinical studies, demonstrating their potential in treating dysrhythmias.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
- Center for Advanced Heart Failure, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Naofumi Amioka
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| |
Collapse
|
24
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
25
|
Hussen BM, Taheri M, Yashooa RK, Abdullah GH, Abdullah SR, Kheder RK, Mustafa SA. Revolutionizing medicine: recent developments and future prospects in stem-cell therapy. Int J Surg 2024; 110:8002-8024. [PMID: 39497543 PMCID: PMC11634165 DOI: 10.1097/js9.0000000000002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
Stem-cell therapy is a revolutionary frontier in modern medicine, offering enormous capacity to transform the treatment landscape of numerous debilitating illnesses and injuries. This review examines the revolutionary frontier of treatments utilizing stem cells, highlighting the distinctive abilities of stem cells to undergo regeneration and specialized cell differentiation into a wide variety of phenotypes. This paper aims to guide researchers, physicians, and stakeholders through the intricate terrain of stem-cell therapy, examining the processes, applications, and challenges inherent in utilizing stem cells across diverse medical disciplines. The historical journey from foundational contributions in the late 19th and early 20th centuries to recent breakthroughs, including ESC isolation and iPSC discovery, has set the stage for monumental leaps in medical science. Stem cells' regenerative potential spans embryonic, adult, induced pluripotent, and perinatal stages, offering unprecedented therapeutic opportunities in cancer, neurodegenerative disorders, cardiovascular ailments, spinal cord injuries, diabetes, and tissue damage. However, difficulties, such as immunological rejection, tumorigenesis, and precise manipulation of stem-cell behavior, necessitate comprehensive exploration and innovative solutions. This manuscript summarizes recent biotechnological advancements, critical trial evaluations, and emerging technologies, providing a nuanced understanding of the triumphs, difficulties, and future trajectories in stem cell-based regenerative medicine. Future directions, including precision medicine integration, immune modulation strategies, advancements in gene-editing technologies, and bioengineering synergy, offer a roadmap in stem cell treatment. The focus on stem-cell therapy's potential highlights its significant influence on contemporary medicine and points to a future in which individualized regenerative therapies will alleviate various medical disorders.
Collapse
Affiliation(s)
- Bashdar M. Hussen
- Department of Biomedical Sciences, Cihan University-Erbil
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Raya Kh. Yashooa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil
| | | | - Snur R. Abdullah
- Department of Medical Laboratory Science, College of Health sciences, Lebanese French University, Erbil, Kurdistan Region, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Suhad A. Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil
| |
Collapse
|
26
|
Qiao W, Dong P, Chen H, Zhang J. Advances in Induced Pluripotent Stem Cell-Derived Natural Killer Cell Therapy. Cells 2024; 13:1976. [PMID: 39682724 PMCID: PMC11640743 DOI: 10.3390/cells13231976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system capable of killing virus-infected cells and/or cancer cells. The commonly used NK cells for therapeutic applications include primary NK cells and immortalized NK cell lines. However, primary NK cell therapy faces limitations due to its restricted proliferation capacity and challenges in stable storage. Meanwhile, the immortalized NK-92 cell line requires irradiation prior to infusion, which reduces its cytotoxic activity, providing a ready-made alternative and overcoming these bottlenecks. Recent improvements in differentiation protocols for iPSC-derived NK cells have facilitated the clinical production of iPSC-NK cells. Moreover, iPSC-NK cells can be genetically modified to enhance tumor targeting and improve the expansion and persistence of iPSC-NK cells, thereby achieving more robust antitumor efficacy. This paper focuses on the differentiation-protocols efforts of iPSC-derived NK cells and the latest progress in iPSC-NK cell therapy. Additionally, we discuss the current challenges faced by iPSC-NK cells and provide an outlook on future applications and developments.
Collapse
Affiliation(s)
- Wenhua Qiao
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| | - Hui Chen
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| | - Jianmin Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| |
Collapse
|
27
|
Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/cartilage organoids: strategy, progress, and application. Bone Res 2024; 12:66. [PMID: 39567500 PMCID: PMC11579019 DOI: 10.1038/s41413-024-00376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.
Collapse
Affiliation(s)
- Long Bai
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Dongyang Zhou
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jinlong Liu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| |
Collapse
|
28
|
Desai D, Song T, Singh RR, Baby A, McNamara J, Green LC, Nabavizadeh P, Ericksen M, Bazrafshan S, Natesan S, Sadayappan S. MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids. Cells 2024; 13:1913. [PMID: 39594661 PMCID: PMC11592734 DOI: 10.3390/cells13221913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
MYBPC3, encoding cardiac myosin binding protein-C (cMyBP-C), is the most mutated gene known to cause hypertrophic cardiomyopathy (HCM). However, since little is known about the underlying etiology, additional in vitro studies are crucial to defining the underlying molecular mechanisms. Accordingly, this study aimed to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with a polymorphic variant (D389V) in MYBPC3 by using isogenic human-induced pluripotent stem cell (hiPSC)-derived cardiac organoids (hCOs). The hiPSC-derived cardiomyocytes (hiPSC-CMs) and hCOs were generated from human subjects to define the molecular, cellular, functional, and energetic changes caused by the MYBPC3D389V variant, which is associated with increased fractional shortening and highly prevalent in South Asian descendants. Recombinant C0-C2, N' region of cMyBP-C (wild-type and D389V), and myosin S2 proteins were also utilized to perform binding and motility assays in vitro. Confocal and electron microscopic analyses of hCOs generated from noncarriers (NC) and carriers of the MYBPC3D389V variant revealed the presence of highly organized sarcomeres. Furthermore, functional experiments showed hypercontractility, faster calcium cycling, and faster contractile kinetics in hCOs expressing MYBPC3D389V than NC hCOs. Interestingly, significantly increased cMyBP-C phosphorylation in MYBPC3D389V hCOs was observed, but without changes in total protein levels, in addition to higher oxidative stress and lower mitochondrial membrane potential (ΔΨm). Next, spatial mapping revealed the presence of endothelial cells, fibroblasts, macrophages, immune cells, and cardiomyocytes in the hCOs. The hypercontractile function was significantly improved after the treatment of the myosin inhibitor mavacamten (CAMZYOS®) in MYBPC3D389V hCOs. Lastly, various vitro binding assays revealed a significant loss of affinity in the presence of MYBPC3D389V with myosin S2 region as a likely mechanism for hypercontraction. Conceptually, we showed the feasibility of assessing the functional and molecular mechanisms of HCM using highly translatable hCOs through pragmatic experiments that led to determining the MYBPC3D389V hypercontractile phenotype, which was rescued by the administration of a myosin inhibitor.
Collapse
Affiliation(s)
- Darshini Desai
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Rohit R. Singh
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Akhil Baby
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - James McNamara
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Lisa C. Green
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Pooneh Nabavizadeh
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Mark Ericksen
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Sholeh Bazrafshan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| |
Collapse
|
29
|
Zhang C, Jing Y, Wang J, Xia Z, Lai Y, Bai L, Su J. Skeletal organoids. BIOMATERIALS TRANSLATIONAL 2024; 5:390-410. [PMID: 39872931 PMCID: PMC11764188 DOI: 10.12336/biomatertransl.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 01/30/2025]
Abstract
The skeletal system, composed of bones, muscles, joints, ligaments, and tendons, serves as the foundation for maintaining human posture, mobility, and overall biomechanical functionality. However, with ageing, chronic overuse, and acute injuries, conditions such as osteoarthritis, intervertebral disc degeneration, muscle atrophy, and ligament or tendon tears have become increasingly prevalent and pose serious clinical challenges. These disorders not only result in pain, functional loss, and a marked reduction in patients' quality of life but also impose substantial social and economic burdens. Current treatment modalities, including surgical intervention, pharmacotherapy, and physical rehabilitation, often do not effectively restore the functionality of damaged tissues and are associated with high recurrence rates and long-term complications, highlighting significant limitations in their efficacy. Thus, there is a strong demand to develop novel and more effective therapeutic and reparative strategies. Organoid technology, as a three-dimensional micro-tissue model, can replicate the structural and functional properties of native tissues in vitro, providing a novel platform for in-depth studies of disease mechanisms, optimisation of drug screening, and promotion of tissue regeneration. In recent years, substantial advancements have been made in the research of bone, muscle, and joint organoids, demonstrating their broad application potential in personalised and regenerative medicine. Nonetheless, a comprehensive review of current research on skeletal organoids is still lacking. Therefore, this article aims to present an overview of the definition and technological foundation of organoids, systematically summarise the progress in the construction and application of skeletal organoids, and explore future opportunities and challenges in this field, offering valuable insights and references for researchers.
Collapse
Affiliation(s)
- Chen Zhang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yingying Jing
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jianhua Wang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhidao Xia
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Swansea, UK
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang Province, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Lee GB, Park SM, Jung UJ, Kim SR. The Potential of Mesenchymal Stem Cells in Treating Spinocerebellar Ataxia: Advances and Future Directions. Biomedicines 2024; 12:2507. [PMID: 39595073 PMCID: PMC11591855 DOI: 10.3390/biomedicines12112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous disorder characterized by impaired balance and coordination caused by cerebellar dysfunction. The absence of treatments approved by the U.S. Food and Drug Administration for SCA has driven the investigation of alternative therapeutic strategies, including stem cell therapy. Mesenchymal stem cells (MSCs), known for their multipotent capabilities, have demonstrated significant potential in treating SCA. This review examines how MSCs may promote neuronal growth, enhance synaptic connectivity, and modulate brain inflammation. Recent findings from preclinical and clinical studies are also reviewed, emphasizing the promise of MSC therapy in addressing the unmet needs of SCA patients. Furthermore, ongoing clinical trials and future directions are proposed to address the limitations of the current approaches.
Collapse
Affiliation(s)
- Gi Beom Lee
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Se Min Park
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
31
|
Hua J, Wang K, Chen Y, Xu X, Dong G, Li Y, Liu R, Xiong Y, Ding J, Zhang T, Zeng X, Li Y, Sun H, Gu Y, Liu S, Ouyang W, Liu C. Molecular characterization of human HSPCs with different cell fates in vivo using single-cell transcriptome analysis and lentiviral barcoding technology. Clin Transl Med 2024; 14:e70085. [PMID: 39538416 PMCID: PMC11560861 DOI: 10.1002/ctm2.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) possess the potential to produce all types of blood cells throughout their lives. It is well recognized that HSPCs are heterogeneous, which is of great significance for their clinical applications and the treatment of diseases associated with HSPCs. This study presents a novel technology called Single-Cell transcriptome Analysis and Lentiviral Barcoding (SCALeBa) to investigate the molecular mechanisms underlying the heterogeneity of human HSPCs in vivo. The SCALeBa incorporates a transcribed barcoding library and algorithm to analyze the individual cell fates and their gene expression profiles simultaneously. Our findings using SCALeBa reveal that HSPCs subset with stronger stemness highly expressed MYL6B, ATP2A2, MYO19, MDN1, ING3, and so on. The high expression of COA3, RIF1, RAB14, and GOLGA4 may contribute to the pluripotent-lineage differentiation of HSPCs. Moreover, the roles of the representative genes revealed in this study regarding the stemness of HPSCs were confirmed with biological experiments. HSPCs expressing MRPL23 and RBM4 genes may contribute to differentiation bias into myeloid and lymphoid lineage, respectively. In addition, transcription factor (TF) characteristics of lymphoid and myeloid differentiation bias HSPCs subsets were identified and linked to previously identified genes. Furthermore, the stemness, pluripotency, and differentiation-bias genes identified with SCALeBa were verified in another independent HSPCs dataset. Finally, this study proposes using the SCALeBa-generated tracking trajectory to improve the accuracy of pseudo-time analysis results. In summary, our study provides valuable insights for understanding the heterogeneity of human HSPCs in vivo and introduces a novel technology, SCALeBa, which holds promise for broader applications. KEY POINTS: SCALeBa and its algorithm are developed to study the molecular mechanism underlying human HSPCs identity and function. The human HSPCs expressing MYL6B, MYO19, ATP2A2, MDN1, ING3, and PHF20 may have the capability for high stemness. The human HSPCs expressing COA3, RIF1, RAB14, and GOLGA4 may have the capability for pluripotent-lineage differentiation. The human HSPCs expressing MRPL23 and RBM4 genes may have the capability to differentiate into myeloid and lymphoid lineage respectively in vivo. The legitimacy of the identified genes with SCALeBa was validated using biological experiments and a public human HSPCs dataset. SCALeBa improves the accuracy of differentiation trajectories in monocle2-based pseudo-time analysis.
Collapse
Affiliation(s)
- Junnan Hua
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGIShenzhenChina
| | - Ke Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | | | - Xiaojing Xu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGIShenzhenChina
| | - Guoyi Dong
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| | - Yue Li
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Rui Liu
- BGIShenzhenChina
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Yecheng Xiong
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| | - Jiabin Ding
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGIShenzhenChina
| | | | - Xinru Zeng
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| | | | | | | | - Sixi Liu
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Wenjie Ouyang
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| | - Chao Liu
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| |
Collapse
|
32
|
Abdalla MMI. Advancing diabetes management: Exploring pancreatic beta-cell restoration's potential and challenges. World J Gastroenterol 2024; 30:4339-4353. [PMID: 39494103 PMCID: PMC11525866 DOI: 10.3748/wjg.v30.i40.4339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/16/2024] Open
Abstract
Diabetes mellitus, characterized by chronic hyperglycemia due to insulin deficiency or resistance, poses a significant global health burden. Central to its pathogenesis is the dysfunction or loss of pancreatic beta cells, which are res-ponsible for insulin production. Recent advances in beta-cell regeneration research offer promising strategies for diabetes treatment, aiming to restore endogenous insulin production and achieve glycemic control. This review explores the physiological basis of beta-cell function, recent scientific advan-cements, and the challenges in translating these findings into clinical applications. It highlights key developments in stem cell therapy, gene editing technologies, and the identification of novel regenerative molecules. Despite the potential, the field faces hurdles such as ensuring the safety and long-term efficacy of regen-erative therapies, ethical concerns around stem cell use, and the complexity of beta-cell differentiation and integration. The review highlights the importance of interdisciplinary collaboration, increased funding, the need for patient-centered approaches and the integration of new treatments into comprehensive care strategies to overcome these challenges. Through continued research and collaboration, beta-cell regeneration holds the potential to revolutionize diabetes care, turning a chronic condition into a manageable or even curable disease.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Lu Y, Shi R, He W, An Q, Zhao J, Gao X, Zhang B, Zhang L, Xu K, Ma D. Cell therapy in Sjögren's syndrome: opportunities and challenges. Expert Rev Mol Med 2024; 26:e28. [PMID: 39438246 PMCID: PMC11505611 DOI: 10.1017/erm.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease caused by immune system disorders. The main clinical manifestations of SS are dry mouth and eyes caused by the destruction of exocrine glands, such as the salivary and lacrimal glands, and systemic manifestations, such as interstitial pneumonia, interstitial nephritis and vasculitis. The pathogenesis of this condition is complex. However, this has not been fully elucidated. Treatment mainly consists of glucocorticoids, disease-modifying antirheumatic drugs and biological agents, which can only control inflammation but not repair the tissue. Therefore, identifying methods to regulate immune disorders and repair damaged tissues is imperative. Cell therapy involves the transplantation of autologous or allogeneic normal or bioengineered cells into the body of a patient to replace damaged cells or achieve a stronger immunomodulatory capacity to cure diseases, mainly including stem cell therapy and immune cell therapy. Cell therapy can reduce inflammation, relieve symptoms and promote tissue repair and regeneration of exocrine glands such as the salivary glands. It has broad application prospects and may become a new treatment strategy for patients with SS. However, there are various challenges in cell preparation, culture, storage and transportation. This article reviews the research status and prospects of cell therapies for SS.
Collapse
Affiliation(s)
- Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Baiyan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Ke Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
34
|
Cotta GC, Teixeira dos Santos RC, Costa GMJ, Lacerda SMDSN. Reporter Alleles in hiPSCs: Visual Cues on Development and Disease. Int J Mol Sci 2024; 25:11009. [PMID: 39456792 PMCID: PMC11507014 DOI: 10.3390/ijms252011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Reporter alleles are essential for advancing research with human induced pluripotent stem cells (hiPSCs), notably in developmental biology and disease modeling. This study investigates the state-of-the-art gene-editing techniques tailored for generating reporter alleles in hiPSCs, emphasizing their effectiveness in investigating cellular dynamics and disease mechanisms. Various methodologies, including the application of CRISPR/Cas9 technology, are discussed for accurately integrating reporter genes into the specific genomic loci. The synthesis of findings from the studies utilizing these reporter alleles reveals insights into developmental processes, genetic disorder modeling, and therapeutic screening, consolidating the existing knowledge. These hiPSC-derived models demonstrate remarkable versatility in replicating human diseases and evaluating drug efficacy, thereby accelerating translational research. Furthermore, this review addresses challenges and future directions in refining the reporter allele design and application to bolster their reliability and relevance in biomedical research. Overall, this investigation offers a comprehensive perspective on the methodologies, applications, and implications of reporter alleles in hiPSC-based studies, underscoring their essential role in advancing both fundamental scientific understanding and clinical practice.
Collapse
Affiliation(s)
| | | | | | - Samyra Maria dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; (G.C.C.); (R.C.T.d.S.); (G.M.J.C.)
| |
Collapse
|
35
|
Serna Villa V, Ren X. Lung Progenitor and Stem Cell Transplantation as a Potential Regenerative Therapy for Lung Diseases. Transplantation 2024; 108:e282-e291. [PMID: 38416452 DOI: 10.1097/tp.0000000000004959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Chronic lung diseases are debilitating illnesses ranking among the top causes of death globally. Currently, clinically available therapeutic options capable of curing chronic lung diseases are limited to lung transplantation, which is hindered by donor organ shortage. This highlights the urgent need for alternative strategies to repair damaged lung tissues. Stem cell transplantation has emerged as a promising avenue for regenerative treatment of the lung, which involves delivery of healthy lung epithelial progenitor cells that subsequently engraft in the injured tissue and further differentiate to reconstitute the functional respiratory epithelium. These transplanted progenitor cells possess the remarkable ability to self-renew, thereby offering the potential for sustained long-term treatment effects. Notably, the transplantation of basal cells, the airway stem cells, holds the promise for rehabilitating airway injuries resulting from environmental factors or genetic conditions such as cystic fibrosis. Similarly, for diseases affecting the alveoli, alveolar type II cells have garnered interest as a viable alveolar stem cell source for restoring the lung parenchyma from genetic or environmentally induced dysfunctions. Expanding upon these advancements, the use of induced pluripotent stem cells to derive lung progenitor cells for transplantation offers advantages such as scalability and patient specificity. In this review, we comprehensively explore the progress made in lung stem cell transplantation, providing insights into the current state of the field and its future prospects.
Collapse
Affiliation(s)
- Vanessa Serna Villa
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | | |
Collapse
|
36
|
Mohite P, Puri A, Dave R, Budar A, Munde S, Ghosh SB, Alqahtani T, Shmrany HA, Kumer A, Dhara B. Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies. Int J Surg 2024; 110:6432-6455. [PMID: 38963728 PMCID: PMC11487032 DOI: 10.1097/js9.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
This review explores the application of induced pluripotent stem cells (iPSCs) in regenerative medicine. The therapeutic significance of iPSC-derived cell therapy within regenerative medicine, emphasizes their reprogramming process and crucial role in cellular differentiation while setting the purpose and scope for the comprehensive exploration of iPSC-derived cell therapy. The subsequent sections intricately examine iPSC-derived cell therapy, unraveling the diverse derivatives of iPSCs and striking a delicate balance between advantages and limitations in therapeutic applications. Mechanisms of action, revealing how iPSC-derived cells seamlessly integrate into tissues, induce regeneration, and contribute to disease modeling and drug screening advancements is discussed. The analysis extends to clinical trials, shedding light on outcomes, safety considerations, and ethical dimensions. Challenges and concerns, including the risk of tumorigenesis and scalability issues, are explored. The focus extends to disease-specific applications, showcasing iPSC-derived cell therapy as a promising avenue for various medical conditions, supported by illustrative case studies. Future directions and research needs are outlined, identifying areas for further exploration, safety considerations and potential enhancements that will shape the future landscape of iPSC-derived therapies. In conclusion, this review provides a significant understanding of iPSC-derived cell therapy's status that contemplates the implications for regenerative medicine and personalized treatment using iPSCs, offering a comprehensive perspective on the evolving field within the confines of a dynamic and promising scientific frontier.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Roshan Dave
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Aarati Budar
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shruti Bagchi Ghosh
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology and Allied Health Science, Uluberia, Howrah
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ajoy Kumer
- Department of Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Bikram Dhara
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community and Educational Foundation. Hebersham, NSW, Australia
| |
Collapse
|
37
|
Filiz Y, Esposito A, De Maria C, Vozzi G, Yesil-Celiktas O. A comprehensive review on organ-on-chips as powerful preclinical models to study tissue barriers. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:042001. [PMID: 39655848 DOI: 10.1088/2516-1091/ad776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
In the preclinical stage of drug development, 2D and 3D cell cultures under static conditions followed by animal models are utilized. However, these models are insufficient to recapitulate the complexity of human physiology. With the developing organ-on-chip (OoC) technology in recent years, human physiology and pathophysiology can be modeled better than traditional models. In this review, the need for OoC platforms is discussed and evaluated from both biological and engineering perspectives. The cellular and extracellular matrix components are discussed from a biological perspective, whereas the technical aspects such as the intricate working principles of these systems, the pivotal role played by flow dynamics and sensor integration within OoCs are elucidated from an engineering perspective. Combining these two perspectives, bioengineering applications are critically discussed with a focus on tissue barriers such as blood-brain barrier, ocular barrier, nasal barrier, pulmonary barrier and gastrointestinal barrier, featuring recent examples from the literature. Furthermore, this review offers insights into the practical utility of OoC platforms for modeling tissue barriers, showcasing their potential and drawbacks while providing future projections for innovative technologies.
Collapse
Affiliation(s)
- Yagmur Filiz
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, 8500 Kortrijk, Belgium
| | - Alessio Esposito
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- EgeSAM-Ege University Translational Pulmonary Research Center, Bornova, Izmir, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| |
Collapse
|
38
|
McErlean EM, McCarthy HO. Non-viral approaches in CAR-NK cell engineering: connecting natural killer cell biology and gene delivery. J Nanobiotechnology 2024; 22:552. [PMID: 39256765 PMCID: PMC11384716 DOI: 10.1186/s12951-024-02746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Natural Killer (NK) cells are exciting candidates for cancer immunotherapy with potent innate cytotoxicity and distinct advantages over T cells for Chimeric Antigen Receptor (CAR) therapy. Concerns regarding the safety, cost, and scalability of viral vectors has ignited research into non-viral alternatives for gene delivery. This review comprehensively analyses recent advancements and challenges with non-viral genetic modification of NK cells for allogeneic CAR-NK therapies. Non-viral alternatives including electroporation and multifunctional nanoparticles are interrogated with respect to CAR expression and translational responses. Crucially, the link between NK cell biology and design of drug delivery technologies are made, which is essential for development of future non-viral approaches. This review provides valuable insights into the current state of non-viral CAR-NK cell engineering, aimed at realising the full potential of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Emma M McErlean
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- School of Chemical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland
- Biodesign Europe, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
39
|
Herath M, Speer AL. Bioengineering of Intestinal Grafts. Gastroenterol Clin North Am 2024; 53:461-472. [PMID: 39068007 PMCID: PMC11284275 DOI: 10.1016/j.gtc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal failure manifests as an impaired capacity of the intestine to sufficiently absorb vital nutrients and electrolytes essential for growth and well-being in pediatric and adult populations. Although parenteral nutrition remains the mainstay therapeutic approach, the pursuit of a definitive and curative strategy, such as regenerative medicine, is imperative. Substantial advancements in the field of engineered intestinal tissues present a promising avenue for addressing intestinal failure; nevertheless, extensive research is still necessary for effective translation from experimental benchwork to clinical bedside applications.
Collapse
Affiliation(s)
- Madushani Herath
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA
| | - Allison L Speer
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Zehra B, Mohamed N, Farhat A, Bru-Mercier G, Satsangi D, Tambi R, Kamarudheen R, Kumail M, Khalil R, Pessia M, D'Adamo MC, Berdiev BK, Uddin M. Integrative analysis of long isoform sequencing and functional data identifies distinct cortical layer neuronal subtypes derived from human iPSCs. J Neurophysiol 2024; 132:653-665. [PMID: 38988287 DOI: 10.1152/jn.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Generation of human induced pluripotent stem cells (iPSCs) through reprogramming was a transformational change in the field of regenerative medicine that led to new possibilities for drug discovery and cell replacement therapy. Several protocols have been established to differentiate hiPSCs into neuronal lineages. However, low differentiation efficiency is one of the major drawbacks of these approaches. Here, we compared the efficiency of two methods of neuronal differentiation from iPSCs cultured in two different culture media, StemFlex Medium (SFM) and Essential 8 Medium (E8M). The results indicated that iPSCs cultured in E8M efficiently generated different types of neurons in a shorter time and without the growth of undifferentiated nonneuronal cells in the culture as compared with those generated from iPSCs in SFM. Furthermore, these neurons were validated as functional units immunocytochemically by confirming the expression of mature neuronal markers (i.e., NeuN, β tubulin, and Synapsin I) and whole cell patch-clamp recordings. Long-read single-cell RNA sequencing confirms the presence of upper and deep layer cortical layer excitatory and inhibitory neuronal subtypes in addition to small populations of GABAergic neurons in day 30 neuronal cultures. Pathway analysis indicated that our protocol triggers the signaling transcriptional networks important for the process of neuronal differentiation in vivo.NEW & NOTEWORTHY Low differentiation efficiency is one of the major drawbacks of the existing protocols to differentiate iPSCs into neuronal lineages. Here, we present time-efficient and robust approach of neuronal differentiation leading to the generation of functional brain units, cortical layer neurons. We found iPSCs cultured in Essential 8 media (E8M) resulted in neuronal differentiation without the signs of growth of spontaneously differentiated cells in culture at any point in 35 days compared with Stemflex media (SFM).
Collapse
Affiliation(s)
- Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nesrin Mohamed
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Gilles Bru-Mercier
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dharana Satsangi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Richa Tambi
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Rihana Kamarudheen
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Muhammad Kumail
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Bakhrom K Berdiev
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| |
Collapse
|
41
|
Modi PS, Singh A, Chaturvedi A, Agarwal S, Dutta R, Nayak R, Singh AK. Tissue chips as headway model and incitement technology. Synth Syst Biotechnol 2024; 10:86-101. [PMID: 39286054 PMCID: PMC11403008 DOI: 10.1016/j.synbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Tissue on a chip or organ-on-chip (OOC) is a technology that's dignified to form a transformation in drug discovery through the use of advanced platforms. These are 3D in-vitro cell culture models that mimic micro-environment of human organs or tissues on artificial microstructures built on a portable microfluidic chip without involving sacrificial humans or animals. This review article aims to offer readers a thorough and insightful understanding of technology. It begins with an in-depth understanding of chip design and instrumentation, underlining its pivotal role and the imperative need for its development in the modern scientific landscape. The review article explores into the myriad applications of OOC technology, showcasing its transformative impact on fields such as radiobiology, drug discovery and screening, and its pioneering use in space research. In addition to highlighting these diverse applications, the article provides a critical analysis of the current challenges that OOC technology faces. It examines both the biological and technical limitations that hinder its progress and efficacy and discusses the potential advancements and innovations that could drive the OOC technology forward. Through this comprehensive review, readers will gain a deep appreciation of the significance, capabilities, and evolving landscape of OOC technology.
Collapse
Affiliation(s)
- Prerna Suchitan Modi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Abhishek Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Awyang Chaturvedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Shailly Agarwal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Raghav Dutta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Alok Kumar Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
42
|
Bannerman D, Gil de Gomez SP, Wu Q, Fernandes I, Zhao Y, Wagner KT, Okhovatian S, Landau S, Raftian N, Bodenstein DF, Wang Y, Nash TR, Vunjak-Novakovic G, Keller G, Epelman S, Radisic M. Heart-on-a-Chip Model of Epicardial-Myocardial Interaction in Ischemia Reperfusion Injury. Adv Healthc Mater 2024; 13:e2302642. [PMID: 38683053 PMCID: PMC11338737 DOI: 10.1002/adhm.202302642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Epicardial cells (EPIs) form the outer layer of the heart and play an important role in development and disease. Current heart-on-a-chip platforms still do not fully mimic the native cardiac environment due to the absence of relevant cell types, such as EPIs. Here, using the Biowire II platform, engineered cardiac tissues with an epicardial outer layer and inner myocardial structure are constructed, and an image analysis approach is developed to track the EPI cell migration in a beating myocardial environment. Functional properties of EPI cardiac tissues improve over two weeks in culture. In conditions mimicking ischemia reperfusion injury (IRI), the EPI cardiac tissues experience less cell death and a lower impact on functional properties. EPI cell coverage is significantly reduced and more diffuse under normoxic conditions compared to the post-IRI conditions. Upon IRI, migration of EPI cells into the cardiac tissue interior is observed, with contributions to alpha smooth muscle actin positive cell population. Altogether, a novel heart-on-a-chip model is designed to incorporate EPIs through a formation process that mimics cardiac development, and this work demonstrates that EPI cardiac tissues respond to injury differently than epicardium-free controls, highlighting the importance of including EPIs in heart-on-a-chip constructs that aim to accurately mimic the cardiac environment.
Collapse
Affiliation(s)
- Dawn Bannerman
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - Simon Pascual Gil de Gomez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - Ian Fernandes
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - Karl T. Wagner
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - Naimeh Raftian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - David F. Bodenstein
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
- Department of Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - Trevor R. Nash
- Department of Medicine, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gordon Keller
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Slava Epelman
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
- Division of Cardiology, University Health Network, Peter Munk Cardiac Centre
| | - Milica Radisic
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
43
|
Soares CSP, Ribeiro MHL. Induced Pluripotent Stem Cell-Derived Cardiomyocytes: From Regulatory Status to Clinical Translation. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:436-447. [PMID: 38149607 DOI: 10.1089/ten.teb.2023.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cardiovascular diseases, considered the deadliest worldwide by the World Health Organization (WHO), lack effective therapies for regenerating cardiomyocytes. With their self-renewal and pluripotency capabilities, stem cell therapies are increasingly used in precision medicine. Induced pluripotent stem cells (iPSCs) are a promising alternative to embryonic stem cells. Good Manufacturing Practice (GMP) principles are not yet adapted for large-scale production of iPSCs. Additionally, the quality risk for iPSC products may not always be possible to eliminate, potentially jeopardizing the health of patients. This review aims to identify critical quality attributes (CQAs) for iPSC-derived cardiomyocytes (iPSC-CMs) for the development of cardiovascular therapy to ensure compliance with regulations and safety for patients. To attain these goals, the literature review was conducted with articles related to iPSCs and iPSC-CM therapies, legislation, and regulatory guidelines of the European Medicines Agency (EMA), Food and Drug Administration (FDA), and Pharmaceuticals and Medical Devices Agency (PMDA). In conclusion, additional regulations and guidelines are needed to monitor differentiation, maturation, and tumorigenicity. GMP-compliant cell banks and fast-track approval systems may increase accessibility for patients.
Collapse
Affiliation(s)
| | - Maria H L Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Research Institute for Medicines (i-Med.ULisboa), Department of Pharmaceutical Sciences and Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
44
|
Li Q, Wang C, Zhang S, Fu Z, Jiao X, Jin ZB, Hejtmancik JF, Peng X. Bietti's crystalline dystrophy: genotyping and deep qualitative and quantitative phenotyping in preparation for clinical trials. Br J Ophthalmol 2024; 108:1145-1153. [PMID: 37963713 PMCID: PMC12035581 DOI: 10.1136/bjo-2022-322673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
PURPOSE To qualitatively and quantitatively characterise the genotypes and phenotypes of Bietti's crystalline dystrophy (BCD) in a cohort of patients. DESIGN Cross-sectional and observational study. METHODS Clinically confirmed BCD patients were recruited for genotyping and phenotyping. Multiple retinal imaging modalities were employed. Atrophy in the fovea was adopted as major consideration for staging strategy, while percentage area of autofluorescence (AF) atrophy (PAFA) in the macula was determined for quantitation. RESULTS In 74 clinically diagnosed BCD patients, c.802-8_810del17insGC was shown the predominant variant of the CYP4V2 gene (allele frequency 55.4%). Sixty-two cases (123 eyes) with full imaging data were classified according to a modified criterion into stages 1 (n=8, 6.50%), 2A (n=9, 7.32%), 2B (n=17, 13.82%), 3A (n=30, 24.39%) and 3B (n=59, 47.97%). The eyes of the stage 2B were particularly deemed 'high risk' due to atrophy near fovea, while in stage 3A, though with remarkable foveal atrophy, preserved retinal pigment epithelium/photoreceptor islands near the fovea were found in 14 eyes. A tendency of increase in PAFA with age was found (rs=0.31, p=0.014). Significant PAFA increase was shown through stages 1 to 3B, and best-corrected visual acuity (BCVA, Logarithm of the Minimum Angle of Resolution) was shown to moderately correlate with PAFA (rs=0.56, p<0.001). CONCLUSION The PAFA might be an efficient biomarker for BCD severities correlating with BCVA. The highly heterogeneous chorioretinopathy and BCVA of BCD cases appear to be associated with disease stages, progression types and patients' ages. Foveal involvement should be of a major concern for consideration of potential therapeutic intervention.
Collapse
Affiliation(s)
- Qian Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Cong Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | | | - Zhongjie Fu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zi-Bing Jin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
| | - James Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoyan Peng
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| |
Collapse
|
45
|
Gregor A, Zweier C. Modelling phenotypes, variants and pathomechanisms of syndromic diseases in different systems. MED GENET-BERLIN 2024; 36:121-131. [PMID: 38854643 PMCID: PMC11154186 DOI: 10.1515/medgen-2024-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this review we describe different model organisms and systems that are commonly used to study syndromic disorders. Different use cases in modeling diseases, underlying pathomechanisms and specific effects of certain variants are elucidated. We also highlight advantages and limitations of different systems. Models discussed include budding yeast, the nematode worm, the fruit fly, the frog, zebrafish, mice and human cell-based systems.
Collapse
Affiliation(s)
- Anne Gregor
- University of BernDepartment of Human GeneticsInselspital Bern3010BernSwitzerland
| | | |
Collapse
|
46
|
Plug BC, Revers IM, Breur M, González GM, Timmerman JA, Meijns NRC, Hamberg D, Wagendorp J, Nutma E, Wolf NI, Luchicchi A, Mansvelder HD, van Til NP, van der Knaap MS, Bugiani M. Human post-mortem organotypic brain slice cultures: a tool to study pathomechanisms and test therapies. Acta Neuropathol Commun 2024; 12:83. [PMID: 38822428 PMCID: PMC11140981 DOI: 10.1186/s40478-024-01784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024] Open
Abstract
Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter. We assessed whether these human post-mortem brain slices recapitulate the in vivo neuropathology and if they are suitable for pathophysiological, experimental and pre-clinical treatment development purposes, specifically regarding leukodystrophies. Human post-mortem brain tissue and cerebrospinal fluid were obtained from control, psychiatric and leukodystrophy donors. Slices were cultured up to six weeks, in culture medium with or without human cerebrospinal fluid. Human post-mortem organotypic brain slice cultures remained viable for at least six weeks ex vivo and maintained tissue structure and diversity of (neural) cell types. Supplementation with cerebrospinal fluid could improve slice recovery. Patient-derived organotypic slice cultures recapitulated and maintained known in vivo neuropathology. The cultures also showed physiologic multicellular responses to lysolecithin-induced demyelination ex vivo, indicating their suitability to study intrinsic repair mechanisms upon injury. The slice cultures were applicable for various experimental studies, as multi-electrode neuronal recordings. Finally, the cultures showed successful cell-type dependent transduction with gene therapy vectors. These human post-mortem organotypic brain slice cultures represent an adapted ex vivo model suitable for multifaceted studies of brain disease mechanisms, boosting translation from human ex vivo to in vivo. This model also allows for assessing potential treatment options, including gene therapy applications. Human post-mortem brain slice cultures are thus a valuable tool in preclinical research to study the pathomechanisms of a wide variety of brain diseases in living human tissue.
Collapse
Affiliation(s)
- Bonnie C Plug
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Ilma M Revers
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Marjolein Breur
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Gema Muñoz González
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Jaap A Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niels R C Meijns
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Daniek Hamberg
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Jikke Wagendorp
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Erik Nutma
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
| | - Nicole I Wolf
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niek P van Til
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marjo S van der Knaap
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marianna Bugiani
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
| |
Collapse
|
47
|
Que H, Mai E, Hu Y, Li H, Zheng W, Jiang Y, Han F, Li X, Gong P, Gu J. Multilineage-differentiating stress-enduring cells: a powerful tool for tissue damage repair. Front Cell Dev Biol 2024; 12:1380785. [PMID: 38872932 PMCID: PMC11169632 DOI: 10.3389/fcell.2024.1380785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
48
|
Desai D, Song T, Singh RR, Baby A, McNamara J, Green L, Nabavizadeh P, Ericksen M, Bazrafshan S, Natesan S, Sadayappan S. MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596463. [PMID: 38853909 PMCID: PMC11160759 DOI: 10.1101/2024.05.29.596463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND MYBPC3 , encoding cardiac myosin binding protein-C (cMyBP-C), is the most mutated gene known to cause hypertrophic cardiomyopathy (HCM). However, since little is known about the underlying etiology, additional in vitro studies are crucial to defining the underlying molecular mechanisms. Accordingly, this study aimed to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with a polymorphic variant (D389V) in MYBPC3 by using human-induced pluripotent stem cell (hiPSC)-derived cardiac organoids (hCOs). METHODS The hiPSC-derived cardiomyocytes (hiPSC-CMs) and hCOs were generated from human subjects to define the molecular, cellular, and functional changes caused by the MYBPC3 D389V variant. This variant is associated with increased fractional shortening and is highly prevalent in South Asian descendants. Recombinant C0-C2, N'-region of cMyBP-C (wildtype and D389V), and myosin S2 proteins were also utilized to perform binding and motility assays in vitro . RESULTS Confocal and electron microscopic analyses of hCOs generated from noncarriers (NC) and carriers of the MYBPC3 D389V variant revealed the presence of highly organized sarcomeres. Furthermore, functional experiments showed hypercontractility with increased contraction velocity, faster calcium cycling, and faster contractile kinetics in hCOs expressing MYBPC3 D389V than NC hCOs. Interestingly, significantly increased cMyBP-C phosphorylation in MYBPC3 D389V hCOs was observed, but without changes in total protein levels, in addition to higher oxidative stress and lower mitochondrial membrane potential (ΔΨm). Next, spatial mapping revealed the presence of endothelial cells, fibroblasts, macrophages, immune cells, and cardiomyocytes in the hCOs. The hypercontractile function was significantly improved after treatment with the myosin inhibitor mavacamten (CAMZYOS®) in MYBPC3 D389V hCOs. Lastly, various in vitro binding assays revealed a significant loss of affinity in the presence of MYBPC3 D389V with myosin S2 region as a likely mechanism for hypercontraction. CONCLUSIONS Conceptually, we showed the feasibility of assessing the functional and molecular mechanisms of HCM using highly translatable hCOs through pragmatic experiments that led to determining the MYBPC3 D389V hypercontractile phenotype, which was rescued by administration of a myosin inhibitor. Novelty and Significance: What Is Known?: MYBPC3 mutations have been implicated in hypertrophic cardiomyopathy. D389V is a polymorphic variant of MYBPC3 predicted to be present in 53000 US South Asians owing to the founder effect. D389V carriers have shown evidence of hyperdynamic heart, and human-induced pluripotent stem cells (hiPSC)-derived cardiomyocytes with D389V show cellular hypertrophy and irregular calcium transients. The molecular mechanism by which the D389V variant develops pathological cardiac dysfunction remains to be conclusively determined.What New Information Does This Article Contribute ?: The authors leveraged a highly translational cardiac organoid model to explore the role of altered cardiac calcium handling and cardiac contractility as a common pathway leading to pathophysiological phenotypes in patients with early HCM. The MYBPC3 D389V -mediated pathological pathway is first studied here by comparing functional properties using three-dimensional cardiac organoids differentiated from hiPSC and determining the presence of hypercontraction. Our data demonstrate that faster sarcomere kinetics resulting from lower binding affinity between D389V-mutated cMyBP-C protein and myosin S2, as evidenced by in vitro studies, could cause hypercontractility which was rescued by administration of mavacamten (CAMZYOS®), a myosin inhibitor. In addition, hypercontractility causes secondary mitochondrial defects such as higher oxidative stress and lower mitochondrial membrane potential (ΔΨm), highlighting a possible early adaptive response to primary sarcomeric changes. Early treatment of MYBPC3 D389V carriers with mavacamten may prevent or reduce early HCM-related pathology. GRAPHICAL ABSTRACT: A graphical abstract is available for this article.
Collapse
|
49
|
Zhang H, Wu LZ, Liu ZY, Jin ZB. Patient-derived induced pluripotent stem cells with a MERTK mutation exhibit cell junction abnormalities and aberrant cellular differentiation potential. World J Stem Cells 2024; 16:512-524. [PMID: 38817331 PMCID: PMC11135251 DOI: 10.4252/wjsc.v16.i5.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (hiPSC) technology is a valuable tool for generating patient-specific stem cells, facilitating disease modeling, and investigating disease mechanisms. However, iPSCs carrying specific mutations may limit their clinical applications due to certain inherent characteristics. AIM To investigate the impact of MERTK mutations on hiPSCs and determine whether hiPSC-derived extracellular vesicles (EVs) influence anomalous cell junction and differentiation potential. METHODS We employed a non-integrating reprogramming technique to generate peripheral blood-derived hiPSCs with and hiPSCs without a MERTK mutation. Chromosomal karyotype analysis, flow cytometry, and immunofluorescent staining were utilized for hiPSC identification. Transcriptomics and proteomics were employed to elucidate the expression patterns associated with cell junction abnormalities and cellular differentiation potential. Additionally, EVs were isolated from the supernatant, and their RNA and protein cargos were examined to investigate the involvement of hiPSC-derived EVs in stem cell junction and differentiation. RESULTS The generated hiPSCs, both with and without a MERTK mutation, exhibited normal karyotype and expressed pluripotency markers; however, hiPSCs with a MERTK mutation demonstrated anomalous adhesion capability and differentiation potential, as confirmed by transcriptomic and proteomic profiling. Furthermore, hiPSC-derived EVs were involved in various biological processes, including cell junction and differentiation. CONCLUSION HiPSCs with a MERTK mutation displayed altered junction characteristics and aberrant differentiation potential. Furthermore, hiPSC-derived EVs played a regulatory role in various biological processes, including cell junction and differentiation.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ling-Zi Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zhen-Yu Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
50
|
Chowdhury MM, Zimmerman S, Leeson H, Nefzger CM, Mar JC, Laslett A, Polo JM, Wolvetang E, Cooper-White JJ. Superior Induced Pluripotent Stem Cell Generation through Phactr3-Driven Mechanomodulation of Both Early and Late Phases of Cell Reprogramming. Biomater Res 2024; 28:0025. [PMID: 38774128 PMCID: PMC11106629 DOI: 10.34133/bmr.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 05/24/2024] Open
Abstract
Human cell reprogramming traditionally involves time-intensive, multistage, costly tissue culture polystyrene-based cell culture practices that ultimately produce low numbers of reprogrammed cells of variable quality. Previous studies have shown that very soft 2- and 3-dimensional hydrogel substrates/matrices (of stiffnesses ≤ 1 kPa) can drive ~2× improvements in human cell reprogramming outcomes. Unfortunately, these similarly complex multistage protocols lack intrinsic scalability, and, furthermore, the associated underlying molecular mechanisms remain to be fully elucidated, limiting the potential to further maximize reprogramming outcomes. In screening the largest range of polyacrylamide (pAAm) hydrogels of varying stiffness to date (1 kPa to 1.3 MPa), we have found that a medium stiffness gel (~100 kPa) increased the overall number of reprogrammed cells by up to 10-fold (10×), accelerated reprogramming kinetics, improved both early and late phases of reprogramming, and produced induced pluripotent stem cells (iPSCs) having more naïve characteristics and lower remnant transgene expression, compared to the gold standard tissue culture polystyrene practice. Functionalization of these pAAm hydrogels with poly-l-dopamine enabled, for the first-time, continuous, single-step reprogramming of fibroblasts to iPSCs on hydrogel substrates (noting that even the tissue culture polystyrene practice is a 2-stage process). Comparative RNA sequencing analyses coupled with experimental validation revealed that a novel reprogramming regulator, protein phosphatase and actin regulator 3, up-regulated under the gel condition at a very early time point, was responsible for the observed enhanced reprogramming outcomes. This study provides a novel culture protocol and substrate for continuous hydrogel-based cell reprogramming and previously unattained clarity of the underlying mechanisms via which substrate stiffness modulates reprogramming kinetics and iPSC quality outcomes.
Collapse
Affiliation(s)
- Mohammad Mahfuz Chowdhury
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Hannah Leeson
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Jessica Cara Mar
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew Laslett
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jose Maria Polo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute and the Australian Regenerative Medicine Institute,
Monash University, Clayton, VIC 3800, Australia
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences,
The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ernst Wolvetang
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Justin John Cooper-White
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemical Engineering, Andrew N. Liveris Building,
The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|