1
|
Qiu Z, Li Z, Zhang C, Zhao Q, Liu Z, Cheng Q, Zhang J, Lin A, Luo P. NK Cell Senescence in Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Aging Dis 2025:AD.2025.0053. [PMID: 40249925 DOI: 10.14336/ad.2025.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2025] [Accepted: 03/13/2025] [Indexed: 04/20/2025] Open
Abstract
P Natural killer (NK) cells function as crucial effectors in the innate immune response against tumors. Nevertheless, NK cell senescence, characterized by phenotypic and functional changes, substantially compromises their antitumor immune response. This review provides a comprehensive summary of the molecular mechanisms governing NK cell senescence and its implications for cancer immunotherapy. We propose a refined definition of NK cell senescence based on distinct biomarkers, including elevated CD57 expression, reduced cytotoxicity, and altered cytokine secretion. Moreover, we investigate the complex interactions between the tumor microenvironment (TME) and NK cell senescence, highlighting the influence of chronic inflammation, immunosuppressive cytokines, and persistent tumor antigenic stimulation. Additionally, this review underscores the potential utility of senescent NK cells as biomarkers for assessing antitumor efficacy and examines the adverse effects of NK cell senescence on cancer immunotherapy. Lastly, we summarize current approaches to mitigate NK cell senescence, such as gene editing techniques and cytokine modulation, which may enhance the efficacy of NK cell-based immunotherapies. By establishing a comprehensive framework for understanding NK cell senescence within the TME, this review aims to guide future research and the development of innovative therapeutic strategies targeting senescent NK cells to improve cancer immunotherapy outcomes.
Collapse
Affiliation(s)
- Zilin Qiu
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Zhengrui Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang 050011, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Cheng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| |
Collapse
|
2
|
Uzen R, Bayram F, Dursun H, Kardas F, Cakir M, Cucer N, Eken A, Donmez-Altuntas H. The number and frequency of mucosal-associated invariant T (MAIT), γδ T, and innate lymphoid cells (ILCs) altered in patients with type I Gaucher disease. Hum Immunol 2025; 86:111302. [PMID: 40184787 DOI: 10.1016/j.humimm.2025.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
INTRODUCTION Gaucher disease (GD) is a rare lysosomal storage disease caused by mutations in the Glucocerebrosidase (GBA) gene. The innate immunopathology of GD beyond macrophage involvement is not well characterized. In the current study, the changes in ILC subsets, γδ T and MAIT cells, TNF-α and IFN-γ cytokine levels in the peripheral blood of patients with Type 1 GD and GD carriers were evaluated. METHODS Peripheral blood mononuclear cells obtained from patients and controls were isolated using the Ficoll-Paque gradient method; after surface and intracellular staining, the cells were analyzed on FACSARIA III. RESULTS Our analyses revealed that CD8+ MAIT cells and CD8+ γδ T cells are reduced in the treated patients compared with the carriers. MAIT cell-specific IFN-γ production and absolute counts of IFN-γ+ MAIT cells significantly decreased in Type 1 GD patients who received ERT compared with healthy controls, which could be important indicators for the pathogenesis and severity of the disease. Additionally, total ILCs, particularly the ILC1 subset, were reduced in the Type I GD patients receiving ERT compared with healthy controls and the carriers. CONCLUSION The changes observed in ILCs, γδ T cells, MAIT cells, TNF-α and IFN-γ cytokine levels in both pre- and post-treatment Type 1 GD patients may play a vital role in the pathogenesis of GD.
Collapse
Affiliation(s)
- Ramazan Uzen
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030 Kayseri, Turkey; 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, Turkey.
| | - Fahri Bayram
- Department of Endocrinology and Metabolism, Medical Faculty, Erciyes University, 38030 Kayseri, Turkey
| | - Huseyin Dursun
- Department of Endocrinology and Metabolism, Medical Faculty, Erciyes University, 38030 Kayseri, Turkey
| | - Fatih Kardas
- Department of Pediatric Nutrition and Metabolism, Medical Faculty, Erciyes University, 38030 Kayseri, Turkey
| | - Mustafa Cakir
- Department of Medical Biology, Medical Faculty, Van Yuzuncu Yıl University, 65080 Van, Turkey
| | - Nurhan Cucer
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030 Kayseri, Turkey
| | - Ahmet Eken
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030 Kayseri, Turkey; Betül-Ziya Eren Genome and Stem Cell Research Center, Erciyes University, 38030 Kayseri, Turkey; Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA.
| | - Hamiyet Donmez-Altuntas
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030 Kayseri, Turkey; Betül-Ziya Eren Genome and Stem Cell Research Center, Erciyes University, 38030 Kayseri, Turkey
| |
Collapse
|
3
|
Kast RE. Potential Benefits of Adding Alendronate, Celecoxib, Itraconazole, Ramelteon, and Simvastatin to Endometrial Cancer Treatment: The EC5 Regimen. Curr Issues Mol Biol 2025; 47:153. [PMID: 40136407 PMCID: PMC11941490 DOI: 10.3390/cimb47030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Metastatic endometrial cancer continues to be a common cause of death as of 2024, even after maximal use of all currently available standard treatments. To address this problem of metastatic cancer generally in 2025, the drug repurposing movement within oncology identifies medicines in common general medical use that have clinical or preclinical experimental data indicating that they interfere with or inhibit a specific growth driving element identified in a given cancer. The drug repurposing movement within oncology also uses data from large scale in vitro screens of thousands of drugs, looking for simple empirical growth inhibition in a given cancer type. This paper outlines the data showing that five drugs from general medical practice meet these evidence criteria for inhibition of endometrial cancer growth, the EC5 regimen. The EC5 regimen uses the osteoporosis treatment drug, alendronate; the analgesic drug, celecoxib; the antifungal drug, itraconazole; the sleep aid, ramelteon; and the cholesterol lowering drug, simvastatin. Side effects seen with these drugs are usually minimal and easily tolerated by patients.
Collapse
|
4
|
Barakos GP, Georgoulis V, Koumpis E, Hatzimichael E. Elucidating the Role of the T Cell Receptor Repertoire in Myelodysplastic Neoplasms and Acute Myeloid Leukemia. Diseases 2025; 13:19. [PMID: 39851483 PMCID: PMC11765071 DOI: 10.3390/diseases13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
T cells, as integral components of the adaptive immune system, recognize diverse antigens through unique T cell receptors (TCRs). To achieve this, during T cell maturation, the thymus generates a wide repertoire of TCRs. This is essential for understanding cancer evolution, progression, and the efficacy of immunotherapies. Myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML) are hematological neoplasms that are characterized by immune evasion mechanisms, with immunotherapy giving only modest results thus far. Our review of TCR repertoire dynamics in these diseases reveals distinct patterns: MDS patients show increased TCR clonality with disease progression, while AML exhibits varied TCR signatures depending on disease stage and treatment response. Understanding these patterns has important clinical implications, as TCR repertoire metrics may serve as potential biomarkers for disease progression and treatment response, particularly in the context of immunotherapy and stem cell transplantation. These insights could guide patient stratification and treatment selection, ultimately improving therapeutic outcomes in MDS and AML.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Vasileios Georgoulis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| |
Collapse
|
5
|
Zarobkiewicz M, Kowalska W, Szymańska A, Lehman N, Kowalczyk B, Tomczak W, Bojarska-Junak A. γδ T Are Significantly Impacted by CLL Burden but Only Mildly Influenced by M-MDSCs. Cancers (Basel) 2025; 17:254. [PMID: 39858035 PMCID: PMC11763719 DOI: 10.3390/cancers17020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The current study explores the impact of CLL on γδ T cells and, in an attempt to better understand the sources of immunosuppression, assesses the impact of M-MDSCs on γδ T cells in vitro. METHODS The study included 163 CLL patients and 34 healthy volunteers. γδ T cells were screened with flow cytometry, including NKG2D, Fas, FasL, and TRAIL staining. Additionally, to deepen understanding of the immunosuppressive impact of CLL on γδ T, a set of in vitro co-cultures of γδ T and M-MDSCs was performed. RESULTS RNAseq revealed significant, though relatively minor, changes in the transcriptome. Functional analyses showed a minor drop in cytotoxic potential against CLL cells. Finally, depletion of M-MDSCs from CLL-derived peripheral blood mononuclear cells did not restore γδ T cells' proliferative response. CONCLUSIONS Altogether, this suggests a minor impact of M-MDSCs on activated γδ T. Thus, it seems probable that other mechanisms than M-MDSCs mediate the negative impact of CLL on circulating γδ T cells.
Collapse
Affiliation(s)
- Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Agata Szymańska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Natalia Lehman
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Bożena Kowalczyk
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| |
Collapse
|
6
|
Nguyen AA, Platt CD. Flow Cytometry-based Immune Phenotyping of T and B Lymphocytes in the Evaluation of Immunodeficiency and Immune Dysregulation. Clin Lab Med 2024; 44:479-493. [PMID: 39089753 DOI: 10.1016/j.cll.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There are approximately 500 congenital disorders that impair immune cell development and/or function. Patients with these disorders may present with a wide range of symptoms, including increased susceptibility to infection, autoimmunity, autoinflammation, lymphoproliferation, and/or atopy. Flow cytometry-based immune phenotyping of T and B lymphocytes plays an essential role in the evaluation of patients with these presentations. In this review, we describe the clinical utility of flow cytometry as part of a comprehensive evaluation of immune function and how this testing may be used as a diagnostic tool to identify underlying aberrant immune pathways, monitor disease activity, and assess infection risk.
Collapse
Affiliation(s)
- Alan A Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Fegan Building 6th Floor, Boston, MA 02115, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Karp Building 10th Floor, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Le Floch AC, Orlanducci F, Béné MC, Ben Amara A, Rouviere MS, Salem N, Le Roy A, Cordier C, Demerlé C, Granjeaud S, Hamel JF, Ifrah N, Cornillet-Lefebvre P, Delaunay J, Récher C, Delabesse E, Pigneux A, Vey N, Chretien AS, Olive D. Low frequency of Vγ9Vδ2 T cells predicts poor survival in newly diagnosed acute myeloid leukemia. Blood Adv 2024; 8:4262-4275. [PMID: 38788176 PMCID: PMC11372596 DOI: 10.1182/bloodadvances.2023011594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
ABSTRACT In several tumor subtypes, an increased infiltration of Vγ9Vδ2 T cells has been shown to have the highest prognostic value compared with other immune subsets. In acute myeloid leukemia (AML), similar findings have been based solely on the inference of transcriptomic data and have not been assessed with respect to confounding factors. This study aimed at determining, by immunophenotypic analysis (flow or mass cytometry) of peripheral blood from patients with AML at diagnosis, the prognostic impact of Vγ9Vδ2 T-cell frequency. This was adjusted for potential confounders (age at diagnosis, disease status, European LeukemiaNet classification, leukocytosis, and allogeneic hematopoietic stem cell transplantation as a time-dependent covariate). The cohort was composed of 198 patients with newly diagnosed (ND) AML. By univariate analysis, patients with lower Vγ9Vδ2 T cells at diagnosis had significantly lower 5-year overall and relapse-free survivals. These results were confirmed in multivariate analysis (hazard ratio [HR], 1.55 [95% confidence interval (CI), 1.04-2.30]; P = .030 and HR, 1.64 [95% CI, 1.06-2.53]; P = .025). Immunophenotypic alterations observed in patients with lower Vγ9Vδ2 T cells included a loss of some cytotoxic Vγ9Vδ2 T-cell subsets and a decreased expression of butyrophilin 3A on the surface of blasts. Samples expanded regardless of their Vγ9Vδ2 T-cell levels and displayed similar effector functions in vitro. This study confirms the prognostic value of elevated Vγ9Vδ2 T cells among lymphocytes in patients with ND AML. These results provide a strong rationale to consider consolidation protocols aiming at enhancing Vγ9Vδ2 T-cell responses.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Middle Aged
- Female
- Male
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Aged
- Prognosis
- Immunophenotyping
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
- Aged, 80 and over
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Anne-Charlotte Le Floch
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Florence Orlanducci
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | | | - Amira Ben Amara
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Marie-Sarah Rouviere
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Nassim Salem
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Aude Le Roy
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Charlotte Cordier
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Clémence Demerlé
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Marseille, France
| | - Jean-François Hamel
- Département de Biostatistiques, Centre Hospitalier Universitaire d'Angers, Université d'Angers, Angers, France
| | - Norbert Ifrah
- Département d'Hématologie, Centre Hospitalier Universitaire d'Angers, Université d'Angers, INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Angers, France
| | | | - Jacques Delaunay
- Département d'Hématologie, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Christian Récher
- Département d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Arnaud Pigneux
- Département d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Norbert Vey
- Département d’hématologie, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Anne-Sophie Chretien
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Olive
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
8
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
9
|
Bettin L, Darbellay J, van Kessel J, Dhar N, Gerdts V. Porcine γδ T cells express cytotoxic cell-associated markers and display killing activity but are not selectively cytotoxic against PRRSV- or swIAV-infected macrophages. Front Immunol 2024; 15:1434011. [PMID: 39144143 PMCID: PMC11321972 DOI: 10.3389/fimmu.2024.1434011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.
Collapse
MESH Headings
- Animals
- Swine
- Porcine respiratory and reproductive syndrome virus/immunology
- Porcine respiratory and reproductive syndrome virus/physiology
- Cytotoxicity, Immunologic
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/virology
- Porcine Reproductive and Respiratory Syndrome/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Biomarkers
- Orthomyxoviridae Infections/immunology
- Perforin/metabolism
- Perforin/immunology
- Intraepithelial Lymphocytes/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Leonie Bettin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Rao A, Agrawal A, Borthakur G, Battula VL, Maiti A. Gamma delta T cells in acute myeloid leukemia: biology and emerging therapeutic strategies. J Immunother Cancer 2024; 12:e007981. [PMID: 38417915 PMCID: PMC10900322 DOI: 10.1136/jitc-2023-007981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/01/2024] Open
Abstract
γδ T cells play an important role in disease control in acute myeloid leukemia (AML) and have become an emerging area of therapeutic interest. These cells represent a minor population of T lymphocytes with intrinsic abilities to recognize antigens in a major histocompatibility complex-independent manner and functionally straddle the innate and adaptive immunity interface. AML shows high expression of phosphoantigens and UL-16 binding proteins that activate the Vδ2 and Vδ1 subtypes of γδ T cells, respectively, leading to γδ T cell-mediated cytotoxicity. Insights from murine models and clinical data in humans show improved overall survival, leukemia-free survival, reduced risk of relapse, enhanced graft-versus-leukemia effect, and decreased graft-versus-host disease in patients with AML who have higher reconstitution of γδ T cells following allogeneic hematopoietic stem cell transplantation. Clinical trials leveraging γδ T cell biology have used unmodified and modified allogeneic cells as well as bispecific engagers and monoclonal antibodies. In this review, we discuss γδ T cells' biology, roles in cancer and AML, and mechanisms of immune escape and antileukemia effect; we also discuss recent clinical advances related to γδ T cells in the field of AML therapeutics.
Collapse
Affiliation(s)
- Adishwar Rao
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Akriti Agrawal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Venkata Lokesh Battula
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Verkerk T, Pappot AT, Jorritsma T, King LA, Duurland MC, Spaapen RM, van Ham SM. Isolation and expansion of pure and functional γδ T cells. Front Immunol 2024; 15:1336870. [PMID: 38426099 PMCID: PMC10902048 DOI: 10.3389/fimmu.2024.1336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
γδ T cells are important components of the immune system due to their ability to elicit a fast and strong response against infected and transformed cells. Because they can specifically and effectively kill target cells in an MHC independent fashion, there is great interest to utilize these cells in anti-tumor therapies where antigen presentation may be hampered. Since only a small fraction of T cells in the blood or tumor tissue are γδ T cells, they require extensive expansion to allow for fundamental, preclinical and ex vivo research. Although expansion protocols can be successful, most are based on depletion of other cell types rather than γδ T cell specific isolation, resulting in unpredictable purity of the isolated fraction. Moreover, the primary focus only lies with expansion of Vδ2+ T cells, while Vδ1+ T cells likewise have anti-tumor potential. Here, we investigated whether γδ T cells directly isolated from blood could be efficiently expanded while maintaining function. γδ T cell subsets were isolated using MACS separation, followed by FACS sorting, yielding >99% pure γδ T cells. Isolated Vδ1+ and Vδ2+ T cells could effectively expand immediately after isolation or upon freeze/thawing and reached expansion ratios between 200 to 2000-fold starting from varying numbers using cytokine supported feeder stimulations. MACS/FACS isolated and PHA stimulated γδ T cells expanded as good as immobilized antibody mediated stimulated cells in PBMCs, but delivered purer cells. After expansion, potential effector functions of γδ T cells were demonstrated by IFN-γ, TNF-α and granzyme B production upon PMA/ionomycin stimulation and effective killing capacity of multiple tumor cell lines was confirmed in killing assays. In conclusion, pure γδ T cells can productively be expanded while maintaining their anti-tumor effector functions against tumor cells. Moreover, γδ T cells could be expanded from low starting numbers suggesting that this protocol may even allow for expansion of cells extracted from tumor biopsies.
Collapse
Affiliation(s)
- Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Anouk T Pappot
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Lisa A King
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Deng S, Zhou F, Wang F, Jiang Y, Tang J, Hu X, Luo L, Jin Y, Huang L, Sun D, Xiao G, Feng J, Li X. C5a enhances Vδ1 T cells recruitment via the CCL2-CCR2 axis in IgA nephropathy. Int Immunopharmacol 2023; 125:111065. [PMID: 37862725 DOI: 10.1016/j.intimp.2023.111065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Mucosal immune-associated γδ T cells have been implicated in IgA nephropathy (IgAN). However, the involvement of Vδ1 T cells, the major γδ T cells subtype, in renal damage and the mechanism underlying their migration from peripheral blood to kidney in IgAN remain unclear. METHODS Clinical data from IgAN patients and healthy controls (HC) were analyzed. Phenotypes and chemokine receptors of γδ T cell were compared between IgAN patients and HC. Immunohistochemistry and immunofluorescence were performed to assess the infiltration of γδ T cell subsets and the expression of chemokine in renal tissues. In vitro, C5a was used to stimulate the human glomerular mesangial cells (HMCs) and chemotaxis experiment was used to examine Vδ1 T cells migration. Correlation between Vδ1 T cells and related clinical indicators were analyzed. RESULTS IgAN patients exhibited decreased Vδ1 T cell in blood but increased levels in kidneys compared to HC. Increased CCR2-expressing Vδ1 T cells and serum level of CCL2 were observed in IgAN patients. CCL2 co-localized with CCR2 in HMCs of IgAN. In vitro, C5a enhanced Vδ1 T cells recruitment by HMCs through CCL2-CCR2 axis. Importantly, circulating Vδ1 T cell levels showed a negatively correlated with both the urinary protein creatinine ratio (UACR) and 24-hour urine protein (UP). Moreover, kidney infiltration of Vδ1 cells positively correlated with UACR, UP, mesangial hyperplasia and renal tubule atrophy/interstitial fibrosis in IgAN. CONCLUSIONS C5a-induced production of CCL2 by HMCs facilitates Vδ1 T cells recruitment via the CCL2-CCR2 axis, contributing to renal damage in IgAN.
Collapse
Affiliation(s)
- Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangyu Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangyuan Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Jiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanli Jin
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingyu Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Danni Sun
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gong Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China..
| |
Collapse
|
13
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Zhang C, Liu X, Xiao J, Jiang F, Fa L, Jiang H, Zhou L, Su W, Xu Z. γδ T cells in autoimmune uveitis pathogenesis: A promising therapeutic target. Biochem Pharmacol 2023; 213:115629. [PMID: 37257721 DOI: 10.1016/j.bcp.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Autoimmune uveitis is a non-infectious, inflammatory intraocular disease that affects the uveal and adjacent tissues. It frequently causes varying degrees of visual loss. Evidence for the strong association between activated γδ T cells and the development of autoimmune uveitis is growing. The innate and adaptive immune response are connected in the early phases by the γδ T cells that contain the γ and δ chains. γδ T cells can identify antigens in a manner that is not constrained by the MHC. When activated by various pathways, γδ T cells can not only secrete pro-inflammatory factors early on (such as IL-17), but they can also promote Th17 cells responses, which ultimately exacerbates autoimmune uveitis. Therefore, we review the mechanisms by which γδ T cells affect autoimmune uveitis in different activation and disease states. Moreover, we also prospect for immunotherapies targeting different γδ T cell-related action pathways, providing a reference for exploring new drug for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Luzhong Fa
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
16
|
Ridgley LA, Caron J, Dalgleish A, Bodman-Smith M. Releasing the restraints of Vγ9Vδ2 T-cells in cancer immunotherapy. Front Immunol 2023; 13:1065495. [PMID: 36713444 PMCID: PMC9880221 DOI: 10.3389/fimmu.2022.1065495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Vγ9Vδ2 T-cells are a subset of T-cells with a crucial role in immunosurveillance which can be activated and expanded by multiple means to stimulate effector responses. Little is known about the expression of checkpoint molecules on this cell population and whether the ligation of these molecules can regulate their activity. The aim of this study was to assess the expression of both activatory and inhibitory receptors on Vγ9Vδ2 T-cells to assess potential avenues of regulation to target with immunotherapy. Methods Expression of various activatory and inhibitory receptors was assessed on Vγ9Vδ2 T-cells by flow cytometry following activation and expansion using zoledronic acid (ZA) and Bacillus Calmette-Guérin (BCG). Expression of these markers and production of effector molecules was also examined following co-culture with various tumour cell targets. The effect of immune checkpoint blockade on Vγ9Vδ2 T-cells was also explored. Results Vγ9Vδ2 T-cells expressed high levels of activatory markers both at baseline and following stimulation. Vγ9Vδ2 T-cells expressed variable levels of inhibitory checkpoint receptors with many being upregulated following stimulation. Expression of these markers is further modulated upon co-culture with tumour cells with changes reflecting activation and effector functions. Despite their high expression of inhibitory receptors when cultured with tumour cells expressing cognate ligands there was no effect on Vδ2+ T-cell cytotoxic capacity or cytokine production with immune checkpoint blockade. Conclusions Our work suggests the expression of checkpoint receptors present on Vγ9Vδ2 T-cells which may provide a mechanism with the potential to be utilised by tumour cells to subvert Vγ9Vδ2 T-cell cytotoxicity. This work suggests important candidates for blockade by ICI therapy in order to increase the successful use of Vγ9Vδ2 T-cells in immunotherapy.
Collapse
|
17
|
Singh P, Szaraz‐Szeles M, Mezei Z, Barath S, Hevessy Z. Gender-dependent frequency of unconventional T cells in a healthy adult Caucasian population: A combinational study of invariant NKT cells, γδ T cells, and mucosa-associated invariant T cells. J Leukoc Biol 2022; 112:1155-1165. [PMID: 35587609 PMCID: PMC9790664 DOI: 10.1002/jlb.5a1121-583rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/27/2022] [Indexed: 12/30/2022] Open
Abstract
This study tested the hypothesis of gender bias in frequency of unconventional T cells. Unconventional T cells exist as minor subsets of T cells in peripheral blood. Despite their low number, they play a crucial role in various immune-mediated diseases such as inflammation, autoimmunity, allergy, and cancer. Gender-based frequency of these cells altogether on large number of healthy individuals are unestablished creating hurdles to manifest association with various immune-mediated pathologic conditions. In this study, we used a multicolor flow cytometric panel to identify iNKT cells, γδ T cells, and MAIT cells altogether in the peripheral blood samples of 93 healthy adult males and 109 healthy adult females from the Caucasian population. The results revealed iNKT cell median value (% T cells) in females was higher: 0.114% ranging from 0.011 to 3.84%, than males: 0.076% (p value 0.0292), ranging from 0.007 to 0.816% and found to be negatively correlated with age in females (p value 0.0047). However, γδ T cell median value in males was higher: 2.52% ranging from 0.31 to 16.09%, than females: 1.79% (p value 0.0155), ranging from 0.078 to 12.49% and each gender was negatively correlated with age (male p value 0.0003 and female p value 0.0007). MAIT cell median values were 3.04% ranging from 0.11 to 10.75% in males and 2.67% ranging from 0.2 to 18.36% in females. MAIT cells did not show any statistically significant difference between genders and found to be negatively correlated with age (p value < 0.0001). Our results could be used for further gender-wise investigations of various pathologic conditions such as cancer and their prognosis, autoimmune diseases, allergies, and their pathogenicity.
Collapse
Affiliation(s)
- Parvind Singh
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Marianna Szaraz‐Szeles
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zoltan Mezei
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Sandor Barath
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
18
|
Ji L, Xu F, Zhang J, Song T, Chen W, Yin X, Wang Q, Chen X, Li X, Guo M, Chen Z. ADRB2 expression predicts the clinical outcomes and is associated with immune cells infiltration in lung adenocarcinoma. Sci Rep 2022; 12:15994. [PMID: 36163241 PMCID: PMC9512930 DOI: 10.1038/s41598-022-19991-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
The gene encoding beta2-adrenergic receptor (β2-AR), adrenoceptor beta 2 (ADRB2), has been reported to closely associated with various cancers. However, its role in lung adenocarcinoma (LUAD) remains controversial. This research shed light on the prognostic value of ADRB2 in LUAD and further explored its association with immune cell infiltration. ADRB2 was significantly decreased in LUAD. ADRB2 expression in LUAD was significantly correlated with gender, smoking status, T classification, and pathologic stage. Patients in the low ADRB2 expression group presented with significantly poorer overall survival (OS) and disease-specific survival (DSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) results showed that ADRB2 participates in immune response. The expression of ADRB2 was positively correlated with the infiltration level of most immune cells. Notably, ADRB2 is involved in LUAD progression partly by regulating the immune microenvironment, which may potentially serve as a significant prognostic biomarker as well as a potential drug target.
Collapse
Affiliation(s)
- Lingyun Ji
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingtao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xi Yin
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingqing Wang
- Department of Record Room, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China, Jinan
| | - Xiubao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Li
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Guo
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zetao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China. .,Subject of Integrated Chinese and Western Medicine , Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
19
|
Joseph M, Wu Y, Dannebaum R, Rubelt F, Zlatareva I, Lorenc A, Du ZG, Davies D, Kyle-Cezar F, Das A, Gee S, Seow J, Graham C, Telman D, Bermejo C, Lin H, Asgharian H, Laing AG, del Molino del Barrio I, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS, Francos-Quijorna I, Kamdar S, Davis R, Sofra V, Cano F, Theodoridis E, Martinez L, Merrick B, Bisnauthsing K, Brooks K, Edgeworth J, Cason J, Mant C, Doores KJ, Vantourout P, Luong K, Berka J, Hayday AC. Global patterns of antigen receptor repertoire disruption across adaptive immune compartments in COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2201541119. [PMID: 35943978 PMCID: PMC9407655 DOI: 10.1073/pnas.2201541119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) β and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRβ and TCRδ loci, including some TCRβ sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.
Collapse
Affiliation(s)
- Magdalene Joseph
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Yin Wu
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
- cBreast Cancer Now Research Unit, King’s College London, London, SE1 9RT, United Kingdom
- dDepartment of Medical Oncology, Guy’s and St. Thomas’ NHS Foundation Trust, London, SE1 9RT, United Kingdom
- eUCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
| | | | | | - Iva Zlatareva
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Anna Lorenc
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | | | - Daniel Davies
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- gDepartment of Plastic and Reconstructive Surgery, Royal Free NHS Foundation Trust, London, NW3 2QG, United Kingdom
| | - Fernanda Kyle-Cezar
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Abhishek Das
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- hLondon School of Hygiene & Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Sarah Gee
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jeffrey Seow
- iDepartment of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Carl Graham
- iDepartment of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | | | | | - Hai Lin
- fRoche Diagnostics Solutions, Pleasanton, CA, 94588
| | | | - Adam G. Laing
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Irene del Molino del Barrio
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- eUCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
| | - Leticia Monin
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Miguel Muñoz-Ruiz
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Duncan R. McKenzie
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Thomas S. Hayday
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Isaac Francos-Quijorna
- jRegeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AB, United Kingdom
| | - Shraddha Kamdar
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Richard Davis
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Vasiliki Sofra
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Florencia Cano
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Efstathios Theodoridis
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Lauren Martinez
- kResearch and Development Department, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - Blair Merrick
- lCentre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - Karen Bisnauthsing
- kResearch and Development Department, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - Kate Brooks
- kResearch and Development Department, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - Jonathan Edgeworth
- iDepartment of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
- lCentre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - John Cason
- mInfectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Christine Mant
- mInfectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Katie J. Doores
- iDepartment of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Pierre Vantourout
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Khai Luong
- fRoche Diagnostics Solutions, Pleasanton, CA, 94588
| | - Jan Berka
- fRoche Diagnostics Solutions, Pleasanton, CA, 94588
| | - Adrian C. Hayday
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
- 2To whom correspondence may be addressed.
| |
Collapse
|
20
|
Wang G, Wang W. Advanced Cell Therapies for Glioblastoma. Front Immunol 2022; 13:904133. [PMID: 36052072 PMCID: PMC9425637 DOI: 10.3389/fimmu.2022.904133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The sheer ubiquity of Gioblastoma (GBM) cases would lead you to believe that there should have been many opportunities for the discovery of treatments to successfully render it into remission. Unfortunately, its persistent commonality is due in large part to the fact that it is the most treatment-resistant tumors in adults. That completely changes the treatment plan of attack. Long established and accepted treatment therapies such as surgical resection, radiation, and aggressive chemotherapy, (and any combination thereof) have only confirmed that the disease lives up to its treatment-resistant reputation. To add to the seemingly insurmountable task of finding a cure, GBM has also proven to be a very stubborn and formidable opponent to newer immunotherapies. Across the board, regardless of the therapy combination, the five-year survival rate of GBM patients is still very poor at a heartbreaking 5.6%. Obviously, the present situation cannot be tolerated or deemed acceptable. The grave situation calls for researchers to be more innovative and find more efficient strategies to discover new and successful strategies to treat GBM. Inspired by researchers worldwide attempting to control GBM, we provide in this review a comprehensive overview of the many diverse cell therapies currently being used to treat GBM. An overview of the treatments include: CAR T cells, CAR NK cells, gamma-delta T cells, NKT cells, dendritic cells, macrophages, as well stem cell-based strategies. To give you the complete picture, we will discuss the efficacy, safety, and developmental stages, the mechanisms of action and the challenges of each of these therapies and detail their potential to be the next-generation immunotherapeutic to eliminate this dreadful disease.
Collapse
Affiliation(s)
- Guangwen Wang
- BlueRock Therapeutics, Department of Process Development, Cambridge, MA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| | - Wenshi Wang
- Metagenomi Inc., Department of Cell Therapy, Emeryville, CA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| |
Collapse
|
21
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Defining TCRγδ lymphoproliferative disorders by combined immunophenotypic and molecular evaluation. Nat Commun 2022; 13:3298. [PMID: 35676278 PMCID: PMC9177852 DOI: 10.1038/s41467-022-31015-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Tγδ large granular lymphocyte leukemia (Tγδ LGLL) is a rare lymphoproliferative disease, scantily described in literature. A deep-analysis, in an initial cohort of 9 Tγδ LGLL compared to 23 healthy controls, shows that Tγδ LGLL dominant clonotypes are mainly public and exhibit different V-(D)-J γ/δ usage between patients with symptomatic and indolent Tγδ neoplasm. Moreover, some clonotypes share the same rearranged sequence. Data obtained in an enlarged cohort (n = 36) indicate the importance of a combined evaluation of immunophenotype and STAT mutational profile for the correct management of patients with Tγδ cell expansions. In fact, we observe an association between Vδ2/Vγ9 clonality and indolent course, while Vδ2/Vγ9 negativity correlates with symptomatic disease. Moreover, the 7 patients with STAT3 mutations have neutropenia and a CD56-/Vδ2- phenotype, and the 3 cases with STAT5B mutations display an asymptomatic clinical course and CD56/Vδ2 expression. All these data indicate that biological characterization is needed for Tγδ-cell neoplasm definition. Tγδ large granular lymphocyte leukemia (Tγδ LGLL) is a rare lymphoproliferative neoplasm characterized by the expansion of T large granular lymphocytes expressing γδ TCR. Here, based on deep sequencing analysis of the clonotype repertoire, the authors show that leukemic Tγδ cells are characterized by recurrent public clonotypes that are diversified between symptomatic and asymptomatic patients.
Collapse
|
23
|
Peng H, Xing J, Wang X, Ding X, Tang X, Zou J, Wang S, Liu Y. Circular RNA circNUP214 Modulates the T Helper 17 Cell Response in Patients With Rheumatoid Arthritis. Front Immunol 2022; 13:885896. [PMID: 35686126 PMCID: PMC9170918 DOI: 10.3389/fimmu.2022.885896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
Circular RNAs (circRNAs) are important transcriptional regulators of genome expression that participate in the pathogenesis of human diseases. Mechanistically, circRNAs, as competitive endogenous RNAs (ceRNAs), can sponge microRNAs (miRNAs) with miRNA response elements. A previous study identified that hsa_circ_0089172 (circNUP214) is abnormally expressed in Hashimoto's thyroiditis. However, the role of circNUP214 in rheumatoid arthritis (RA) remains unclear. In total, 28 RA patients and 28 healthy controls were enrolled in this study. We found that circNUP214 is an abundant and stable circRNA in RA patients that can potentially differentiate RA patients from healthy subjects. Additionally, the elevated levels of IL-23R positively correlated with circNUP214 expression. The knockdown of circNUP214 resulted in the reduction of IL-23R at both transcriptional and translational levels in human CD4+ T cells. The proportion of circulating Th17 cells and the transcript levels of IL-17A were increased in RA patients and were both positively correlated with IL-23R expression. Moreover, positive correlations between the transcript levels of circNUP214 and the percentage of Th17 cells and the transcript levels of IL-17A were observed in RA patients. The downregulation of circNUP214 decreased the proportion of Th17 cells and the transcript levels of IL-17A in vitro. Furthermore, circNUP214 functioned as a ceRNA for miR-125a-3p in RA patients. Taken together, our results indicate that elevated levels of circNUP214 contribute to the Th17 cell response in RA patients.
Collapse
Affiliation(s)
- Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Xing
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Xuehua Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiangmei Ding
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Xinyi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Junli Zou
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| |
Collapse
|
24
|
He W, Hu Y, Chen D, Li Y, Ye D, Zhao Q, Lin L, Shi X, Lu L, Yin Z, He X, Gao Y, Wu Y. Hepatocellular carcinoma-infiltrating γδ T cells are functionally defected and allogenic Vδ2 + γδ T cell can be a promising complement. Clin Transl Med 2022; 12:e800. [PMID: 35390227 PMCID: PMC8989380 DOI: 10.1002/ctm2.800] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
In hepatocellular carcinoma (HCC), γδ T cells participate in mediating the anti-tumour response and are linked with a positive prognosis. However, these cells can become pro-tumoural in the tumour microenvironment (TME). We aimed to decipher the immune landscape and functional states of HCC-infiltrating γδ T cells to provide fundamental evidence for the adoptive transfer of allogeneic Vδ2+ γδ T cells in HCC immunotherapy. We performed single-cell RNA sequencing (scRNA-seq) on γδ T cells derived from HCC tumours and healthy donor livers. Confocal microscopy, flow cytometry and a Luminex assay were applied to validate the scRNA-seq findings. The γδ T cells in the HCC TME entered G2/M cell cycle arrest, and expressed cytotoxic molecules such as interferon-gamma and granzyme B, but were functionally exhausted as indicated by upregulated gene and protein LAG3 expression. The γδ T cells in the HCC TME were dominated by the LAG3+ Vδ1+ population, whereas the Vδ2+ γδ T population was greatly depleted. Moreover, glutamine metabolism of γδ T cells was markedly upregulated in the glutamine-deficient TME. Both in vitro and in vivo experiments showed that glutamine deficiency upregulated LAG3 expression. Finally, our results indicated that ex vivo-expanded Vδ2+ γδ T cells from healthy donor could complement the loss of T cell receptor clonality and effector functions of HCC-derived γδ T cells. This work deciphered the dysfunctional signatures of HCC-infiltrating γδ T cells in the HCC TME, providing scientific support for the use of allogeneic Vδ2+ γδ T cells in HCC cellular therapy.
Collapse
Affiliation(s)
- Wenjing He
- Organ Transplantation UnitFirst Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant ImmunologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineJinan UniversityGuangzhouGuangdongP.R. China
| | - Dan Chen
- Zhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)Jinan UniversityZhuhaiGuangdongP.R. China
| | - Yijia Li
- Zhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)Jinan UniversityZhuhaiGuangdongP.R. China
| | - Dongmei Ye
- Organ Transplantation UnitFirst Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant ImmunologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Qiang Zhao
- Organ Transplantation UnitFirst Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant ImmunologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Li Lin
- The Biomedical Translational Research InstituteJinan UniversityGuangzhouGuangdongP.R. China
| | - Xiaomin Shi
- Organ Transplantation UnitFirst Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant ImmunologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Ligong Lu
- Zhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)Jinan UniversityZhuhaiGuangdongP.R. China
| | - Zhinan Yin
- Zhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)Jinan UniversityZhuhaiGuangdongP.R. China
- The Biomedical Translational Research InstituteJinan UniversityGuangzhouGuangdongP.R. China
| | - Xiaoshun He
- Organ Transplantation UnitFirst Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant ImmunologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Yifang Gao
- Organ Transplantation UnitFirst Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant ImmunologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Yangzhe Wu
- Zhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)Jinan UniversityZhuhaiGuangdongP.R. China
| |
Collapse
|
25
|
CD161 expression defines new human γδ T cell subsets. IMMUNITY & AGEING 2022; 19:11. [PMID: 35193613 PMCID: PMC8862246 DOI: 10.1186/s12979-022-00269-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022]
Abstract
Abstractγδ T cells are a highly versatile immune lineage involved in host defense and homeostasis, but questions remain around their heterogeneity, precise function and role during health and disease. We used multi−parametric flow cytometry, dimensionality reduction, unsupervised clustering, and self-organizing maps (SOM) to identify novel γδ T cell naïve/memory subsets chiefly defined by CD161 expression levels, a surface membrane receptor that can be activating or suppressive. We used middle-to-old age individuals given immune blockade is commonly used in this population. Whilst most Vδ1+subset cells exhibited a terminal differentiation phenotype, Vδ1− subset cells showed an early memory phenotype. Dimensionality reduction revealed eight γδ T cell clusters chiefly diverging through CD161 expression with CD4 and CD8 expression limited to specific subpopulations. Comparison of matched healthy elderly individuals to bronchiectasis patients revealed elevated Vδ1+ terminally differentiated effector memory cells in patients potentially linking this population with chronic proinflammatory disease.
Collapse
|
26
|
Singh P, Szaraz-Szeles M, Mezei Z, Barath S, Hevessy Z. Age-dependent frequency of unconventional T cells in a healthy adult Caucasian population: a combinational study of invariant natural killer T cells, γδ T cells, and mucosa-associated invariant T cells. GeroScience 2022; 44:2047-2060. [PMID: 35038082 PMCID: PMC8763133 DOI: 10.1007/s11357-022-00515-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Unconventional T cells show distinct and unique features during antigen recognition as well as other immune responses. Their decrease in frequency is associated with various autoimmune disorders, allergy, inflammation, and cancer. The landscape frequency of the unconventional T cells altogether (iNKT, γδ T, and MAIT) is largely unestablished leading to various challenges affecting diagnosis and research in this field. In this study, we have established the age group–wise frequency of iNKT, γδ T, and MAIT cells altogether on a total of 203 healthy adult samples of the Caucasian population. The results revealed that iNKT cells were 0.095%, γδ T cells were 2.175%, and MAIT cells were 2.99% of the total T cell population. γδ and MAIT cell frequency is higher in younger age groups than elderly; however, there is no statistically significant difference in the frequency of iNKT cells. Furthermore, γδ and MAIT cells were negatively correlating with age, supporting immunosenescence, unlike iNKT cells. Our finding could be used for further age-wise investigation of various pathological conditions such as cancer and their prognosis, autoimmune diseases and their pathogenicity.
Collapse
Affiliation(s)
- Parvind Singh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Marianna Szaraz-Szeles
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Zoltan Mezei
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Sandor Barath
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary.
| |
Collapse
|
27
|
Rosso DA, Rosato M, Gómez FD, Álvarez RS, Shiromizu CM, Keitelman IA, Ibarra C, Amaral MM, Jancic CC. Human Glomerular Endothelial Cells Treated With Shiga Toxin Type 2 Activate γδ T Lymphocytes. Front Cell Infect Microbiol 2021; 11:765941. [PMID: 34900753 PMCID: PMC8656354 DOI: 10.3389/fcimb.2021.765941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
The hemolytic uremic syndrome associated with diarrhea, a consequence of Shiga toxin (Stx)-producing Escherichia coli infection, is a common cause of pediatric acute renal failure in Argentina. Stx type 2a (Stx2a) causes direct damage to renal cells and induces local inflammatory responses that involve secretion of inflammatory mediators and the recruitment of innate immune cells. γδ T cells constitute a subset of T lymphocytes, which act as early sensors of cellular stress and infection. They can exert cytotoxicity against infected and transformed cells, and produce cytokines and chemokines. In this study, we investigated the activation of human peripheral γδ T cells in response to the incubation with Stx2a-stimulated human glomerular endothelial cells (HGEC) or their conditioned medium, by analyzing in γδ T lymphocytes, the expression of CD69, CD107a, and perforin, and the production of TNF-α and IFN-γ. In addition, we evaluated by confocal microscopy the contact between γδ T cells and HGEC. This analysis showed an augmentation in cellular interactions in the presence of Stx2a-stimulated HGEC compared to untreated HGEC. Furthermore, we observed an increase in cytokine production and CD107a expression, together with a decrease in intracellular perforin when γδ T cells were incubated with Stx2a-treated HGEC or their conditioned medium. Interestingly, the blocking of TNF-α by Etanercept reversed the changes in the parameters measured in γδ T cells incubated with Stx2a-treated HGEC supernatants. Altogether, our results suggest that soluble factors released by Stx2a-stimulated HGEC modulate the activation of γδ T cells, being TNF-α a key player during this process.
Collapse
Affiliation(s)
- David Antonio Rosso
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Micaela Rosato
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Fernando Daniel Gómez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Soledad Álvarez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Irene Angélica Keitelman
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Cristina Jancic
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Antoine P, Terriou L, Lefèvre G, Kannengiesser C, Sanges S, Launay D, Sobanski V, Hachulla É, Louvet A, Willemin MC, Renaut-Marceau A, Lainey E, Sicre de Fontbrune F, Farhat MM. [Telomeropathies: A study of 15 cases]. Rev Med Interne 2021; 43:3-8. [PMID: 34649755 DOI: 10.1016/j.revmed.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/24/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Telomeres are composed of a repeated sequence of double-stranded nucleotides TTAGGG and numerous proteins including the Shelterin complex. Their main role is to maintain the stability of the genome during cell replication through a mechanism of copying the repeted sequence by the telomerase complexe. All the diseases involving a deregulation of this complex are now grouped together under the term telomeropathies. They are difficult to diagnose and manage. Our objective was to describe the clinico-biological characteristics and treatments used, in patients affected by telomeropathies previously seen by an hematologist followed at the Lille University Hospital Center. METHODS This is a retrospective, single-center study carried out within the department of internal medicine-clinical immunology, Reference center for rare autoimmune and systemic diseases at Lille University Hospital Center between 2005 and 2020 including all patients followed for telomeropathy. RESULTS Probands and relatives were included. Fifteen patients were studied from 10 independant families. Sixty percent had an heterozygous TERC gene mutation. Sixty seven percent had haematological diseases including macrocytosis, anemia and/or thrombocytopenia, 20 % had a fibrotic hepatic disease, 27 % had a fibrotic pulmonary disease. Lymphocyte immunophenotyping showed a double negative T lymphocyte population with γδ TCR expression in 5 (33 %) patients. Forty-seven percent of the patients had not received any treatment. Twenty-seven percent were on androgen therapy. Twenty percent had received cyclosporine and 13 % anti-lymphocyte serum in the context of initial misdiagnosis. CONCLUSION It is important to be aware of the complexity of telomeropathies, a differential diagnosis of immune aplastic anemia, in order to optimize management and avoid inappropriate treatments. Allografting of hematopoietic stem cells is the only potentially curative treatment. Our analysis found particularities in immunophenotyping lymphocyte not previously described to our knowledge, whose physiopathological imputability remains to be demonstrated.
Collapse
Affiliation(s)
- P Antoine
- Université de. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; Service de médecine interne et immunologie clinique, centre de référence des maladies auto-immunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), CHU de Lille, 59000 Lille, France
| | - L Terriou
- Université de. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; Service de médecine interne et immunologie clinique, centre de référence des maladies auto-immunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), CHU de Lille, 59000 Lille, France
| | - G Lefèvre
- Université de. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; Service de médecine interne et immunologie clinique, centre de référence des maladies auto-immunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), CHU de Lille, 59000 Lille, France; Centre de référence national des syndromes hyperéosinophiliques (CEREO), institut d'immunologie, Université de Lille, CHU de Lille, Lille, France
| | - C Kannengiesser
- Département de génétique, pôle de biologie, AP-HP, hôpital Bichat, université de Paris, 1152 Paris, France
| | - S Sanges
- Université de. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; Service de médecine interne et immunologie clinique, centre de référence des maladies auto-immunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), CHU de Lille, 59000 Lille, France
| | - D Launay
- Université de. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; Service de médecine interne et immunologie clinique, centre de référence des maladies auto-immunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), CHU de Lille, 59000 Lille, France
| | - V Sobanski
- Université de. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; Service de médecine interne et immunologie clinique, centre de référence des maladies auto-immunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), CHU de Lille, 59000 Lille, France
| | - É Hachulla
- Université de. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; Service de médecine interne et immunologie clinique, centre de référence des maladies auto-immunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), CHU de Lille, 59000 Lille, France
| | - A Louvet
- Service des maladies de l'appareil digestif, hôpital Claude-Huriez, CHU de Lille, Lille, France
| | - M-C Willemin
- Pneumologie et oncologie thoracique, université de Lille, Inserm U1019, CHU de Lille, CIIL, Institut Pasteur, 59000 Lille, France; MESOCLIN-réseau national des centres cliniques experts pour la prise en charge des mésothéliomes pleuraux malins, domiciliation du centre coordinateur national, CHU de Lille, 59000 Lille, France
| | - A Renaut-Marceau
- Université de Lille, CNRS, Inserm, CHU de Lille, UMR9020-U1277 - CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - E Lainey
- Service d'hématologie biologique, hôpital Robert-Debré, APHP, UMRS_1131, institut universitaire d'hématologie, Paris, France
| | - F Sicre de Fontbrune
- Service d'hématologie greffe, centre de référence aplasie médullaire, Assistance publique des Hôpitaux de Paris, hôpital Saint-Louis, Paris, France
| | - M-M Farhat
- Université de. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; Service de médecine interne et immunologie clinique, centre de référence des maladies auto-immunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), CHU de Lille, 59000 Lille, France.
| |
Collapse
|
29
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
30
|
Ye W, Kong X, Zhang W, Weng Z, Wu X. The Roles of γδ T Cells in Hematopoietic Stem Cell Transplantation. Cell Transplant 2021; 29:963689720966980. [PMID: 33073597 PMCID: PMC7784584 DOI: 10.1177/0963689720966980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The αβ T-cell-depleted hematopoietic stem cell transplantation (HSCT) leads to lower relapse and better outcome, and may correlate strongly with expansion of donor-derived γδ T cells. γδ T cells play an important role in immune reconstitution and can exert a graft-versus-leukemia effect after HSCT. This review showed the recent literature on immune functions of γδ T cells after HSCT. The discrepancies between studies of γδ T cells in graft-versus-host disease may cause by its heterogeneous and various distinct subsets. And reconstitution of γδ T cells may play a potential immunoregulatory role in the infections after HSCT.
Collapse
Affiliation(s)
- Wanyi Ye
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Xueting Kong
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Wenbin Zhang
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Zheng Weng
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, 47885Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Klyuchnikov E, Badbaran A, Massoud R, Fritsche-Friedland U, Janson D, Ayuk F, Wolschke C, Bacher U, Kröger N. Enhanced Immune Reconstitution of γδ T Cells after Allogeneic Stem Cell Transplantation Overcomes the Negative Impact of Pretransplantation Minimal Residual Disease-Positive Status in Patients with Acute Myelogenous Leukemia. Transplant Cell Ther 2021; 27:841-850. [PMID: 34118468 DOI: 10.1016/j.jtct.2021.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023]
Abstract
Minimal/measurable residual disease (MRD) before allogeneic stem cell transplantation (allo-SCT) in patients with acute myelogenous leukemia (AML) is a poor risk factor for outcome. γδ T cells represent a unique minority lymphocyte population that is preferentially located in peripheral tissues, can recognize antigens in a non-MHC-restricted manner, and plays a "bridging" role between the innate and adaptive immune systems. In this study, we investigated a potential graft-versus-leukemia effect of γδ T cell reconstitution post-transplantation in AML patients with pretransplantation positive MRD status (MRD+). MRD assessment was performed in 202 patients using multicolored flow cytometry ("different from normal" strategy); 100 patients were deemed MRD+. Analysis for absolute concentrations of CD3+, CD4+, CD8+, natural killer, and γδ T cells were performed by flow cytometry according to an internal protocol at day +30 and +100 post-transplantation. Differences between categorical and continuous variables were determined using the chi-square and Student t test, respectively. The Mann-Whitney U test was used to compare medians of continuous variables. Spearman's correlation was used for nonparametric assessment of correlation between different cell subsets during immune reconstitution. Kaplan-Meier survival analysis and Cox regression analysis were used to investigate the associations between immune reconstitution and survival outcomes. Gray's analysis was used to compute incidences of relapse, nonrelapse mortality, and graft-versus-host disease (GVHD). The median follow-up of survivors was 28 months (range 3 to 59 months). Younger age (≤58 years) of recipient and donor (<30 years), sex mismatch, use of a matched donor, cytomegalovirus reactivation, and administration of antithymocyte globulin were associated with a faster γδ T cell reconstitution. In multivariable analysis for MRD+ patients, a higher than median level of γδ T cells on days +30 and +100 resulted in significantly improved leukemia-free survival (hazard ratio [HR], 0.42 [P = .007] and 0.42 [P = .011], respectively) and overall survival (HR, 0.44 [P = .038] and 0.33 [P = .009], respectively). Furthermore, a higher γδ T cell level on day +30 was associated with a significantly reduced risk of relapse (HR, 0.36; P = .019). No impact of γδ T cell level on relapse at days +30 and +100 could be seen in MRD-negative patients, and no correlation with occurrence of GVHD was observed. Our data indicate that enhanced immune reconstitution of γδ T cells post-transplantation may overcome the higher relapse risk of pretransplantation MRD+ status in patients with AML.
Collapse
Affiliation(s)
- Evgeny Klyuchnikov
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Badbaran
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Radwan Massoud
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Fritsche-Friedland
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dietlinde Janson
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Switzerland
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
32
|
Fattori S, Gorvel L, Granjeaud S, Rochigneux P, Rouvière MS, Ben Amara A, Boucherit N, Paul M, Dauplat MM, Thomassin-Piana J, Paciencia-Gros M, Avenin M, Pakradouni J, Barrou J, Charafe-Jauffret E, Houvenaeghel G, Lambaudie E, Bertucci F, Goncalves A, Tarpin C, Nunès JA, Devillier R, Chretien AS, Olive D. Quantification of Immune Variables from Liquid Biopsy in Breast Cancer Patients Links Vδ2 + γδ T Cell Alterations with Lymph Node Invasion. Cancers (Basel) 2021; 13:441. [PMID: 33503843 PMCID: PMC7865589 DOI: 10.3390/cancers13030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/12/2023] Open
Abstract
The rationale for therapeutic targeting of Vδ2+ γδ T cells in breast cancer is strongly supported by in vitro and murine preclinical investigations, characterizing them as potent breast tumor cell killers and source of Th1-related cytokines, backing cytotoxic αβ T cells. Nonetheless, insights regarding Vδ2+ γδ T cell phenotypic alterations in human breast cancers are still lacking. This paucity of information is partly due to the challenging scarcity of these cells in surgical specimens. αβ T cell phenotypic alterations occurring in the tumor bed are detectable in the periphery and correlate with adverse clinical outcomes. Thus, we sought to determine through an exploratory study whether Vδ2+ γδ T cells phenotypic changes can be detected within breast cancer patients' peripheral blood, along with association with tumor progression. By using mass cytometry, we quantified 130 immune variables from untreated breast cancer patients' peripheral blood. Supervised analyses and dimensionality reduction algorithms evidenced circulating Vδ2+ γδ T cell phenotypic alterations already established at diagnosis. Foremost, terminally differentiated Vδ2+ γδ T cells displaying phenotypes of exhausted senescent T cells associated with lymph node involvement. Thereby, our results support Vδ2+ γδ T cells implication in breast cancer pathogenesis and progression, besides shedding light on liquid biopsies to monitor surrogate markers of tumor-infiltrating Vδ2+ γδ T cell antitumor activity.
Collapse
Affiliation(s)
- Stéphane Fattori
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Laurent Gorvel
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France;
| | - Philippe Rochigneux
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
| | - Marie-Sarah Rouvière
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Nicolas Boucherit
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Magali Paul
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Marie Mélanie Dauplat
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Jeanne Thomassin-Piana
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Maria Paciencia-Gros
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Morgan Avenin
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Jihane Pakradouni
- Department of Clinical Research and Innovations, Institut Paoli-Calmettes, 13009 Marseille, France;
| | - Julien Barrou
- Department of Surgical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (J.B.); (G.H.); (E.L.)
| | - Emmanuelle Charafe-Jauffret
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
- Team Epithelial Stem Cells and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - Gilles Houvenaeghel
- Department of Surgical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (J.B.); (G.H.); (E.L.)
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - Eric Lambaudie
- Department of Surgical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (J.B.); (G.H.); (E.L.)
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
- Team Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
| | - Anthony Goncalves
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
- Team Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
| | - Jacques A. Nunès
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
| | - Raynier Devillier
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
- Department of Haematology, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Anne-Sophie Chretien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| |
Collapse
|
33
|
Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. J Immunol Res 2021; 2021:6633824. [PMID: 33506055 PMCID: PMC7808823 DOI: 10.1155/2021/6633824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, cell-mediated immune response in malignant neoplasms has become the focus in immunotherapy against cancer. However, in leukemia, most studies on the cytotoxic potential of T cells have concentrated only on T cells that recognize peptide antigens (Ag) presented by polymorphic molecules of the major histocompatibility complex (MHC). This ignores the great potential of unconventional T cell populations, which include gamma-delta T cells (γδ), natural killer T cells (NKT), and mucosal-associated invariant T cells (MAIT). Collectively, these T cell populations can recognize lipid antigens, specially modified peptides and small molecule metabolites, in addition to having several other advantages, which can provide more effective applications in cancer immunotherapy. In recent years, these cell populations have been associated with a repertoire of anti- or protumor responses and play important roles in the dynamics of solid tumors and hematological malignancies, thus, encouraging the development of new investigations in the area. This review focuses on the current knowledge regarding the role of unconventional T cell populations in the antitumor immune response in leukemia and discusses why further studies on the immunotherapeutic potential of these cells are needed.
Collapse
|
34
|
Plužarić V, Štefanić M, Mihalj M, Tolušić Levak M, Muršić I, Glavaš-Obrovac L, Petrek M, Balogh P, Tokić S. Differential Skewing of Circulating MR1-Restricted and γδ T Cells in Human Psoriasis Vulgaris. Front Immunol 2020; 11:572924. [PMID: 33343564 PMCID: PMC7744298 DOI: 10.3389/fimmu.2020.572924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023] Open
Abstract
Psoriasis vulgaris (PV) is a chronic, recurrent inflammatory dermatosis mediated by aberrantly activated immune cells. The role of the innate-like T cells, particularly gammadelta T (γδT) cells and MR1-restricted T lymphocytes, is incompletely explored, mainly through animal models, or by use of surrogate lineage markers, respectively. Here, we used case-control settings, multiparameter flow cytometry, 5-OP-RU-loaded MR1-tetramers, Luminex technology and targeted qRT-PCR to dissect the cellular and transcriptional landscape of γδ and MR1-restricted blood T cells in untreated PV cases (n=21, 22 matched controls). High interpersonal differences in cell composition were observed, fueling transcriptional variability at healthy baseline. A minor subset of canonical CD4+CD8+MR1-tet+TCRVα7.2+ and CD4+CD8-MR1-tet+TCRVα7.2+ T cells was the most significantly underrepresented community in male PV individuals, whereas Vδ2+ γδ T cells expressing high levels of TCR and Vδ1-δ2- γδ T cells expressing intermediate levels of TCR were selectively enriched in affected males, partly reflecting disease severity. Our findings highlight a formerly unappreciated skewing of human circulating MAIT and γδ cytomes during PV, and reveal their compositional changes in relation to sex, CMV exposure, serum cytokine content, BMI, and inflammatory burden. Complementing numerical alterations, we finally show that flow-sorted, MAIT and γδ populations exhibit divergent transcriptional changes in mild type I psoriasis, consisting of differential bulk expression for signatures of cytotoxicity/type-1 immunity (EOMES, RUNX3, IL18R), type-3 immunity (RORC, CCR6), and T cell innateness (ZBTB16).
Collapse
Affiliation(s)
- Vera Plužarić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Maja Tolušić Levak
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Histology and Embryology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Ivanka Muršić
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia
| | - Peter Balogh
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pecs, Pecs, Hungary
| | - Stana Tokić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| |
Collapse
|
35
|
Kabelitz D. Gamma Delta T Cells (γδ T Cells) in Health and Disease: In Memory of Professor Wendy Havran. Cells 2020; 9:E2564. [PMID: 33266147 PMCID: PMC7760329 DOI: 10.3390/cells9122564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022] Open
Abstract
Gamma delta (γδ) T cells are a small subset of CD3-positive T cells in the peripheral blood but occur at increased frequency in mucosal tissues [...].
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, D-24105 Kiel, Germany
| |
Collapse
|
36
|
Li W, Morgan R, Nieder R, Truong S, Habeebu SSM, Ahmed AA. Normal or reactive minor cell populations in bone marrow and peripheral blood mimic minimal residual leukemia by flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:590-601. [PMID: 33197125 DOI: 10.1002/cyto.b.21968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/17/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Measurable residual disease (MRD) is a strong independent poor prognostic factor for acute leukemia. Multiparameter flow cytometry (FCM) is a commonly used MRD detection method. However, FCM MRD detection is not well standardized, and the interpretation is subjective. There are normal/reactive minor cell populations in bone marrow (BM) and peripheral blood (PB), which could be confused with MRD. METHODS The FCM data of 231 BM and 44 PB pediatric samples performed in a recent 15-month period were retrospectively reviewed. These samples were from 56 B-lymphoblastic leukemia (B-ALL) patients, 11 T-lymphoblastic leukemia (T-ALL) patients, 28 acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) patients, 44 cytopenia/leukocytosis patients, and five patients with mycosis fungoides. RESULTS There were over 10 normal or reactive minor cell populations identified with certain phenotypes mimicking MRD of acute leukemia. These mimickers included CD19+ NK cells, CD22+ basophils, CD22+ dendritic cells (DCs), and plasma cells for B-ALL MRD; CD4/8 double-negative T cells, CD4/8 double-positive T cells, cytoplasmic CD3+ NK cells, CD2- T cells, CD7- T cells, CD5- gamma delta T cells, CD56+ NKT cells for T-ALL MRD; CD33+ NK cells, CD117+ NK cells, basophils, plasmacytoid DCs, non-classical monocytes, CD56+ and/or CD61+ monocytes for AML MRD. CONCLUSIONS These data confirm the presence of a variety of normal/reactive minor cell populations that could mimic MRD of acute leukemia by FCM. Recognizing these MRD mimickers is important for correct FCM MRD interpretation.
Collapse
Affiliation(s)
- Weijie Li
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Ruth Morgan
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Roxanne Nieder
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Sa Truong
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Sahibu Sultan M Habeebu
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Atif A Ahmed
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| |
Collapse
|
37
|
Chobrutskiy A, Chobrutskiy BI, Zaman S, Hsiang M, Blanck G. Chemical features of blood-borne TRG CDR3s associated with an increased overall survival in breast cancer. Breast Cancer Res Treat 2020; 185:591-600. [PMID: 33180235 DOI: 10.1007/s10549-020-05996-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Immunogenomics and earlier, pioneering studies, particularly by Whiteside and colleagues, have indicated a positive role for B-cells in breast cancer, as well as a positive role for gamma-delta T-cells. However, these studies have been completely limited to assessing breast cancer tumor tissue. METHODS AND RESULTS Our analyses here has shown that blood-borne T-cell receptor gamma (TRG) chain sequences were associated with greater overall survival, of particular note due to the comparative longevity of primary breast cancer patients, whereby assessments of disease-free, but rarely overall survival parameters are possible. Additional immunogenomics approaches narrowed the overall survival correlations to specific, TRG complementarity determining region-3, amino acid (AA) sequence chemical features, independently of many common, confounding variables in the breast cancer setting, such as estrogen or progesterone receptor status. CONCLUSIONS These results are discussed in the context of patient age and with regard to potential antigenic targets, based on the chemistry of the TRG CDR3 AA sequences associated with the higher survival rates.
Collapse
Affiliation(s)
- Andrea Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA
| | - Monica Hsiang
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA. .,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
| |
Collapse
|
38
|
Notz Q, Schmalzing M, Wedekink F, Schlesinger T, Gernert M, Herrmann J, Sorger L, Weismann D, Schmid B, Sitter M, Schlegel N, Kranke P, Wischhusen J, Meybohm P, Lotz C. Pro- and Anti-Inflammatory Responses in Severe COVID-19-Induced Acute Respiratory Distress Syndrome-An Observational Pilot Study. Front Immunol 2020; 11:581338. [PMID: 33123167 PMCID: PMC7573122 DOI: 10.3389/fimmu.2020.581338] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives The severity of Coronavirus Disease 2019 (COVID-19) is largely determined by the immune response. First studies indicate altered lymphocyte counts and function. However, interactions of pro- and anti-inflammatory mechanisms remain elusive. In the current study we characterized the immune responses in patients suffering from severe COVID-19-induced acute respiratory distress syndrome (ARDS). Methods This was a single-center retrospective study in patients admitted to the intensive care unit (ICU) with confirmed COVID-19 between March 14th and May 28th 2020 (n = 39). Longitudinal data were collected within routine clinical care, including flow-cytometry of lymphocyte subsets, cytokine analysis and growth differentiation factor 15 (GDF-15). Antibody responses against the receptor binding domain (RBD) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein were analyzed. Results All patients suffered from severe ARDS, 30.8% died. Interleukin (IL)-6 was massively elevated at every time-point. The anti-inflammatory cytokine IL-10 was concomitantly upregulated with IL-6. The cellular response was characterized by lymphocytopenia with low counts of CD8+ T cells, natural killer (NK) and naïve T helper cells. CD8+ T and NK cells recovered after 8 to 14 days. The B cell system was largely unimpeded. This coincided with a slight increase in anti-SARS-CoV-2-Spike-RBD immunoglobulin (Ig) G and a decrease in anti-SARS-CoV-2-Spike-RBD IgM. GDF-15 levels were elevated throughout ICU treatment. Conclusions Massively elevated levels of IL-6 and a delayed cytotoxic immune defense characterized severe COVID-19-induced ARDS. The B cell response and antibody production were largely unimpeded. No obvious imbalance of pro- and anti-inflammatory mechanisms was observed, with elevated GDF-15 levels suggesting increased tissue resilience.
Collapse
Affiliation(s)
- Quirin Notz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marc Schmalzing
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Florian Wedekink
- Department of Gynecology, Section for Experimental Tumor Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Schlesinger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Michael Gernert
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Herrmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Lena Sorger
- Department of Gynecology, Section for Experimental Tumor Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Dirk Weismann
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Benedikt Schmid
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Magdalena Sitter
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular and Pediatric Surgery (Surgery I), University Hospital Würzburg, Würzburg, Germany
| | - Peter Kranke
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Department of Gynecology, Section for Experimental Tumor Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Christopher Lotz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Comeau K, Paradis P, Schiffrin EL. Human and murine memory γδ T cells: Evidence for acquired immune memory in bacterial and viral infections and autoimmunity. Cell Immunol 2020; 357:104217. [PMID: 32979762 PMCID: PMC9533841 DOI: 10.1016/j.cellimm.2020.104217] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
γδ T cells are unconventional lymphocytes that could play a role in bridging the innate and adaptive immune system. Upon initial exposure to an antigen, some activated T cells become memory T cells that could be reactivated upon secondary immune challenge. Recently, subsets of γδ T cells with a restricted antigen repertoire and long-term persistence have been observed after clearance of viral and bacterial infections. These γδ T cells possess the hallmark ability of memory T cells to respond more strongly and proliferate to a higher extent upon secondary infection. Murine and primate models of Listeria monocytogenes and cytomegalovirus infection display these memory hallmarks and demonstrate γδ T cell memory responses. In addition, human and non-human primate infections with Mycobacterium tuberculosis, as well as non-human primate infection with monkeypox and studies on patients suffering from autoimmune disease (rheumatoid arthritis and multiple sclerosis) reveal memory-like responses corresponding with disease. Murine models of psoriatic disease (imiquimod) and parasite infections (malaria) exhibited shifts to memory phenotypes with repeated immune challenge. These studies provide strong support for the formation of immune memory in γδ T cells, and memory γδ T cells may have a widespread role in protective immunity and autoimmunity.
Collapse
Affiliation(s)
- Kevin Comeau
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada; Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada.
| |
Collapse
|