1
|
Hope HC, de Sostoa J, Ginefra P, Andreatta M, Chiang YH, Ronet C, Pich-Bavastro C, Corria Osorio J, Kuonen F, Auwerx J, D'Amelio P, Ho PC, Carmona SJ, Coukos G, Migliorini D, Vannini N. Age-associated nicotinamide adenine dinucleotide decline drives CAR-T cell failure. NATURE CANCER 2025:10.1038/s43018-025-00982-7. [PMID: 40394194 DOI: 10.1038/s43018-025-00982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/15/2025] [Indexed: 05/22/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is one of the most promising cancer treatments. However, different hurdles are limiting its application and efficacy. In this context, how aging influences CAR-T cell outcomes is largely unknown. Here we show that CAR-T cells generated from aged female mice present a mitochondrial dysfunction derived from nicotinamide adenine dinucleotide (NAD) depletion that leads to poor stem-like properties and limited functionality in vivo. Moreover, human data analysis revealed that both age and NAD metabolism determine the responsiveness to CAR-T cell therapy. Targeting NAD pathways, we were able to recover the mitochondrial fitness and functionality of CAR-T cells derived from older adults. Altogether, our study demonstrates that aging is a limiting factor to successful CAR-T cell responses. Repairing metabolic and functional obstacles derived from age, such as NAD decline, is a promising strategy to improve current and future CAR-T cell therapies.
Collapse
Affiliation(s)
- Helen Carrasco Hope
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Jana de Sostoa
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne and Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Pierpaolo Ginefra
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Massimo Andreatta
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne and Geneva, Geneva, Switzerland
| | - Yi-Hsuan Chiang
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Catherine Ronet
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Christine Pich-Bavastro
- Department of Dermatology and Venereology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jesús Corria Osorio
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne and Geneva, Geneva, Switzerland
| | - François Kuonen
- Swiss Cancer Center Léman (SCCL), Lausanne and Geneva, Geneva, Switzerland
- Department of Dermatology and Venereology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Patrizia D'Amelio
- Service of Geriatric Medicine and Geriatric Rehabilitation, Department of Internal Medicine, University of Lausanne Hospital Centre (CHUV), Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Santiago J Carmona
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne and Geneva, Geneva, Switzerland
| | - George Coukos
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne and Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne and Geneva, Geneva, Switzerland.
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.
| | - Nicola Vannini
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
2
|
Li Z, Tang Y, Chen Z, Liu G, Yao W, Li G, Cheng X, Peng Y, Cai S, Cui C, Ai D, Zhang J, Poon MC, Zhang W, Wu R. Outcomes of immune tolerance induction with rituximab to eradicate high-titer inhibitor of hemophilia A: depicted by exponential decay model and the gene expression profile of different outcomes by RNA-sequencing. J Thromb Haemost 2025:S1538-7836(25)00265-X. [PMID: 40286913 DOI: 10.1016/j.jtha.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/12/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Eradication of inhibitors is still a desirable goal for patients with hemophilia A inhibitors. Combining rituximab with immune tolerance induction (ITI) is the secondline regimen, but data and predictors are limited. OBJECTIVES To evaluate the efficacy of ITI-rituximab and to identify the predictors of prognosis. METHODS In total, 76 children with high-titer inhibitor prospectively using low-dose ITI together with 1-3 round(s) of rituximab were evaluated for outcomes: success or failure and rapidity (rapid or slow) of inhibitor negativity (ie, inhibitor titers turned negative, inhibitor negativity [IN]). The whole-transcriptome RNA-sequencing (RNA-seq) was used to analyze the gene expression profile of 4 failure patients (excluding F8 large deletion) and 4 rapid success-IN patients. RESULTS Success IN was achieved in 41 of 76 (53.9%) patients after first-round of rituximab, 50 of 76 (65.8%) after second-round of rituximab, and 51 of 76 (67.1%) after third-round of rituximab. Profile of inhibitor decay followed an exponential decay curve. Time to a given inhibitor titer during ITI-rituximab could be estimated by the model t=ln(Y0-PlateauY-Plateau)k. The newly observed poor prognostic factors included relapse after the first-round of rituximab and early occurence of poor-outcome events.. RNA-seq analysis showed 186 upregulated differential expressed genes (DEGs) and 176 downregulated DEGs in failure subjects compared with those in patients with rapid success IN. The upregulated DEGs included CXCL8, NLRP6, CHI3L1, CLEC9A, THBD, and PROS1. The downregulated DEGs included STAT1, TLR7, C1Q, C2, IDO1, and CD38. CONCLUSION Success IN was achieved in 67% of children with hemophilia A with high-titer inhibitor treated by ITI-rituximab. A model based on the profile of inhibitor-titer decay can be used for predicting outcomes. Humoral immune response and complement and coagulation cascades may act as signals that influence ITI outcomes (ClinicalTrials.gov: NCT03598725).
Collapse
Affiliation(s)
- Zekun Li
- Hemophilia Comprehensive Care Center, Hematology Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yongqiang Tang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenping Chen
- Hematologic Disease Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Guoqing Liu
- Hemophilia Comprehensive Care Center, Hematology Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wanru Yao
- Hemophilia Comprehensive Care Center, Hematology Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Gang Li
- Hematologic Disease Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaoling Cheng
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yaguang Peng
- Center for Clinical Epidemiology and Evidence-based Medicine, Capital Medical University, Beijing, China
| | - Siyu Cai
- Center for Clinical Epidemiology and Evidence-based Medicine, Capital Medical University, Beijing, China
| | - Chang Cui
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Di Ai
- Hemophilia Comprehensive Care Center, Hematology Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Pediatrics Departments, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
| | - Jialu Zhang
- Hemophilia Comprehensive Care Center, Hematology Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Pediatrics Departments, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
| | - Man Chiu Poon
- Departments of Medicine, Pediatrics and Oncology, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Wensheng Zhang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Runhui Wu
- Hemophilia Comprehensive Care Center, Hematology Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
3
|
Sarkar I, Basak D, Ghosh P, Gautam A, Bhoumik A, Singh P, Kar A, Mahanti S, Chowdhury S, Chakraborty L, Mondal S, Mukherjee R, Mehrotra S, Majumder S, Sengupta S, Paul S, Chatterjee S. CD38-mediated metabolic reprogramming promotes the stability and suppressive function of regulatory T cells in tumor. SCIENCE ADVANCES 2025; 11:eadt2117. [PMID: 40117361 PMCID: PMC11927613 DOI: 10.1126/sciadv.adt2117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
In the tumor microenvironment (TME), regulatory T cells (Tregs) adapt their metabolism to thrive in low-glucose, high-lactate conditions, but the mechanisms remain unclear. Our study identifies CD38 as a key regulator of this adaptation by depleting nicotinamide adenine dinucleotide (oxidized form) (NAD+), redirecting lactate-derived pyruvate toward phosphoenolpyruvate and bypassing the tricarboxylic acid (TCA) cycle. This prevents accumulation of α-ketoglutarate, which destabilizes Tregs by inducing hypermethylation at the Foxp3 locus. Restoring NAD+ with nicotinamide mononucleotide reverses this adaptation, pushing Tregs back to the TCA cycle and reducing their suppressive function. In YUMM1.7 melanoma-bearing mice, small-molecule CD38 inhibition selectively destabilizes intratumoral Tregs, sparking robust antitumor immunity. These findings reveal that targeting the CD38-NAD+ axis disrupts Tregs metabolic adaptation and offers a strategy to enhance antitumor responses.
Collapse
Affiliation(s)
- Ishita Sarkar
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debashree Basak
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puspendu Ghosh
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Arpita Bhoumik
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Praveen Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR–Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | - Anwesha Kar
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shaun Mahanti
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Snehanshu Chowdhury
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Lagnajita Chakraborty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Soumya Mondal
- Department of Urology, IPGME&R and SSKM Hospital, Kolkata, India
| | | | | | - Saikat Majumder
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shantanu Sengupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR–Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | - Sandip Paul
- Center for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Shilpak Chatterjee
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Zucchi E, Banchelli F, Simonini C, De Biasi S, Martinelli I, Gianferrari G, Lo Tartaro D, Cossarizza A, D’Amico R, Mandrioli J. Tregs levels and phenotype modifications during Amyotrophic Lateral Sclerosis course. Front Immunol 2025; 15:1508974. [PMID: 39845951 PMCID: PMC11750661 DOI: 10.3389/fimmu.2024.1508974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction T regulatory cells (Tregs) inversely correlate with disease progression in Amyotrophic Lateral Sclerosis (ALS) and fast-progressing ALS patients have been reported to exhibit dysfunctional, as well as reduced, levels of Tregs. This study aimed to evaluate the longitudinal changes in Tregs among ALS patients, considering potential clinical and biological modifiers of their percentages and concentrations. Additionally, we explored whether measures of ALS progression, such as the decline over time in the revised ALS Functional Rating Scale (ALSFRS-r) or forced vital capacity (FVC) correlated Treg levels and whether Treg phenotype varied during the course of ALS. Methods Total Tregs (detected by CD3, CD4, FoxP3, CD25, and CD127) were quantified at five time points over 54 weeks in 21 patients in the placebo arm of the RAP-ALS trial; next they were characterized for the expression of surface markers including CD38, CD39, CXCR3, and PD1. Repeated measures mixed models were used to analyze the longitudinal course of Tregs, considering potential associations with other clinical and laboratory characteristics. Correlations between ALSFRS-r or FVC and Tregs over time were similarly investigated. Results Our study showed that Treg levels did not change significantly on average during the observation period in our ALS cohort. However, PD1+Tregs decreased and CD39+Tregs increased over time. Male sex and cholesterol levels were associated with increasing Tregs (%) over time, while monocytes positively affected Treg concentrations. Treg concentrations showed a modesty association with FVC decline but were not associated with ALSFRS-r decline. Discussion Treg levels remained stable during the ALS observation period and were not significantly associated with ALSFRS-r variations, suggesting that Treg numbers alone may have limited utility as a pharmaco-dynamic biomarker for ALS trials. However the observed changes in Treg phenotypes, such as the decrease in PD1+Tregs, indicate that phenotypic variations may warrant further investigation for their potential role in ALS progression and therapeutic targeting.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Federico Banchelli
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| | - Roberto D’Amico
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Yang C, You J, Wang Y, Chen S, Tang Y, Chen H, Zhong H, Song R, Long H, Xiang T, Zhao ZR, Xia J. TLS and immune cell profiling: immunomodulatory effects of immunochemotherapy on tumor microenvironment in resectable stage III NSCLC. Front Immunol 2024; 15:1499731. [PMID: 39726591 PMCID: PMC11670196 DOI: 10.3389/fimmu.2024.1499731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Background The use of programmed death-1 (PD-1) inhibitors in the neoadjuvant setting for patients with resectable stage III NSCLC has revolutionized this field in recent years. However, there is still 40%-60% of patients do not benefit from this approach. The complex interactions between immune cell subtypes and tertiary lymphoid structures (TLSs) within the tumor microenvironment (TME) may influence prognosis and the response to immunochemotherapy. This study aims to assess the relationship between immune cells subtypes and TLSs to better understand their impact on immunotherapy response. Methods This study initially compared the tertiary lymphoid structures (TLSs) density among patients who underwent immunochemotherapy, chemotherapy and upfront surgery using 123 tumor samples from stage-matched patients. Multiplex immunohistochemistry (mIHC) was employed to analyze the spatial distribution of PD-L1+CD11c+ cells and PD1+CD8+ T cells within TLSs. Cytometry by time-of-flight (CyTOF) was used to assess immune cell dynamics in paired biopsy and resection specimens from six patients who underwent immunochemotherapy. Key immune cells were validated in newly collected samples using flow cytometry, mIHC, and in vitro CAR-T cells model. Results Patients who underwent neoadjuvant chemotherapy or immunochemotherapy exhibited increased TLSs compared to those who opted for upfront surgery. The TLS area-to-tumor area ratio distinguished pCR+MPR and NR patients in the immunochemotherapy group. Spatial analysis revealed variations in the distance between PD-L1+CD11c+ cells and PD1+CD8+ T cells within TLSs in the immunochemotherapy group. CyTOF analysis revealed an increase in the frequency of key immune cells (CCR7+CD127+CD69+CD4+ and CD38+CD8+ cells) following combined therapy. Treatment responders exhibited an increase in CCR7+CD4+ T cells, whereas CD38+CD8+ T cells were associated with compromised treatment effectiveness. Conclusions Immunochemotherapy and chemotherapy increase TLSs and granzyme B+ CD8+ T cells in tumors. The TLS area-to-tumor ratio distinguishes responders from non-responders, with PD-L1+ dendritic cells near CD8+PD-1+ T cells linked to efficacy, suggesting that PD-1 inhibitors disrupt harmful interactions. Post-immunochemotherapy, CD8+ T cells increase, but CD38+CD8+ T cells show reduced functionality. These findings highlight the complex immune dynamics and their implications for NSCLC treatment.
Collapse
Affiliation(s)
- Chaopin Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jinqi You
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yizhi Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Si Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Haoran Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ruyue Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hao Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Tong Xiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ze-Rui Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianchuan Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Lory W, Chowdhury N, Wellslager B, Pandruvada S, Huang Y, Yilmaz Ö, Yu H. CD38 Inhibitor 78c Attenuates Pro-Inflammatory Cytokine Expression and Osteoclastogenesis in Macrophages. Cells 2024; 13:1971. [PMID: 39682719 PMCID: PMC11640151 DOI: 10.3390/cells13231971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
CD38, a nicotinamide adenine dinucleotide (NAD+) glycohydrolase, increases during infection or inflammation. Therefore, we aimed to evaluate the effects of a CD38 inhibitor (78c) on NAD+ levels, IL-1β, IL-6, TNF-α cytokine expressions, and osteoclastogenesis. The results show that treatment with 78c on murine BMMs dose-dependently reduced CD38, reversed the decline of NAD+, and inhibited IL-1β, IL-6, and TNF-α pro-inflammatory cytokine levels induced by oral pathogen Porphyromonas gingivalis (Pg) or Aggregatibacter actinomycetemcomitans (Aa) or by advanced glycation end products (AGEs). Additionally, treatment with 78c dose-dependently suppressed osteoclastogenesis and bone resorption induced by RANKL. Treatment with 78c suppressed CD38, nuclear factor kappa-B (NF-κB), phosphoinositide 3-kinase (PI3K), and mitogen-activated protein kinases (MAPKs) induced by Pg, Aa, or AGEs, and suppressed podosome components (PI3K, Pyk2, Src, F-actin, integrins, paxillin, and talin) induced by RANKL. These results from our studies support the finding that the inhibition of CD38 by 78c is a promising therapeutic strategy to treat inflammatory bone loss diseases. However, treatment with a CD38 shRNA only significantly reduced IL-1β, IL-6, and TNF-α pro-inflammatory cytokine levels induced by AGEs. Compared with controls, it had limited effects on cytokine levels induced by Pg or Aa. Treatment with the CD38 shRNA enhanced RANKL-induced osteoclastogenesis, suggesting that 78c has some off-target effects.
Collapse
Affiliation(s)
- William Lory
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (W.L.); (N.C.); (B.W.); (S.P.); (Ö.Y.)
| | - Nityananda Chowdhury
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (W.L.); (N.C.); (B.W.); (S.P.); (Ö.Y.)
| | - Bridgette Wellslager
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (W.L.); (N.C.); (B.W.); (S.P.); (Ö.Y.)
| | - Subramanya Pandruvada
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (W.L.); (N.C.); (B.W.); (S.P.); (Ö.Y.)
| | - Yan Huang
- Department of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Özlem Yilmaz
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (W.L.); (N.C.); (B.W.); (S.P.); (Ö.Y.)
| | - Hong Yu
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (W.L.); (N.C.); (B.W.); (S.P.); (Ö.Y.)
| |
Collapse
|
7
|
Guo Y, Liu H, Chen B, Zhang K, Meng L, Yan L, Niu Q, Zhang J, Yin G, Li Y. Dysregulated CD38 expression on T cells was associated with rapidly progressive interstitial lung disease in anti-melanoma differentiation-associated gene 5 positive dermatomyositis. Front Immunol 2024; 15:1455944. [PMID: 39588376 PMCID: PMC11586385 DOI: 10.3389/fimmu.2024.1455944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Background Anti-melanoma differentiation-associated gene 5 positive dermatomyositis (MDA5+ DM) is a life-threatening disease due to rapidly progressive interstitial lung disease (RP-ILD). We aimed to investigate the expression profile of T cell subsets in MDA5+ DM patients, seeking for possible disease-causing T cell subsets and potential biomarkers to distinguish ILD, especially RP-ILD patients. Methods Peripheral blood T cell subpopulations were immunophenotyped in 24 MDA5+ DM patients and 21 healthy controls (HCs) by flow cytometry. The proportion of T cell subsets and clinical characteristics were analyzed. The quantitative determination of cytokines in the plasma was measured by using a microsphere-based immunofluorescence assaying kit. Results The proportion of naïve and CD38+ T cells were much higher, whereas the proportion of central memory T cells were lower in MDA5+ DM patients than in HCs. Notably, the proportion of CD38+CD4+ T cells and CD38+CD8+ T cells on T cells in in RP-ILD group were significantly elevated compared to C-ILD, non-ILD group and HCs. Moreover, serum IFN-α levels were significantly increased in MDA5+ DM patients with RP-ILD. Further, the frequencies of CD38+CD4+ T cells and CD38+CD8+ T cells were positively correlated with IFN-α levels. Finally, ROC analysis indicated that CD38+CD4+ T cells and CD38+CD8+ T cells could be potential biomarkers for predicting ILD/RP-ILD in MDA5+ DM patients. Conclusion Dysregulated CD38 expression on T cell subsets was associated with lung involvement, especially RP-ILD in MDA5+ DM patients. CD38+ T cell subsets could be used as potential biomarkers for predicting ILD/RP-ILD in MDA5+ DM patients.
Collapse
Affiliation(s)
- Yixue Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| | - Liye Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| | - Geng Yin
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| |
Collapse
|
8
|
Dong W, Lu J, Li Y, Zeng J, Du X, Yu A, Zhao X, Chi F, Xi Z, Cao S. SIRT1: a novel regulator in colorectal cancer. Biomed Pharmacother 2024; 178:117176. [PMID: 39059350 DOI: 10.1016/j.biopha.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The class-III histone deacetylase SIRT1 is the most extensively investigated sirtuin deacetylase. It is resistant to the broad deacetylase inhibitor trichostatin A and depends on oxidized nicotinamide adenine nucleotide (NAD+). SIRT1 plays a crucial role in the tumorigenesis of numerous types of cancers, including colorectal cancer (CRC). Accumulating evidence indicates that SIRT1 is a therapeutic target for CRC; however, the function and underlying mechanism of SIRT1 in CRC still need to be elucidated. Herein, we provide a detailed and updated review to illustrate that SIRT1 regulates many processes that go awry in CRC cells, such as apoptosis, autophagy, proliferation, migration, invasion, metastasis, oxidative stress, resistance to chemo-radio therapy, immune evasion, and metabolic reprogramming. Moreover, we closely link our review to the clinical practice of CRC treatment, summarizing the mechanisms and prospects of SIRT1 inhibitors in CRC therapy. SIRT1 inhibitors as monotherapy in CRC or in combination with chemotherapy, radiotherapy, and immune therapies are comprehensively discussed. From epigenetic regulation to its potential therapeutic effect, we hope to offer novel insights and a comprehensive understanding of SIRT1's role in CRC.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - You Li
- Nursing Department, Liaoning Jinqiu Hospital, Shenyang, Liaoning Province 110016, China
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xiaoyun Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Ao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xuechan Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Shuo Cao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
9
|
Tripp BA, Dillon ST, Yuan M, Asara JM, Vasunilashorn SM, Fong TG, Inouye SK, Ngo LH, Marcantonio ER, Xie Z, Libermann TA, Otu HH. Integrated Multi-Omics Analysis of Cerebrospinal Fluid in Postoperative Delirium. Biomolecules 2024; 14:924. [PMID: 39199312 PMCID: PMC11352186 DOI: 10.3390/biom14080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
Preoperative risk biomarkers for delirium may aid in identifying high-risk patients and developing intervention therapies, which would minimize the health and economic burden of postoperative delirium. Previous studies have typically used single omics approaches to identify such biomarkers. Preoperative cerebrospinal fluid (CSF) from the Healthier Postoperative Recovery study of adults ≥ 63 years old undergoing elective major orthopedic surgery was used in a matched pair delirium case-no delirium control design. We performed metabolomics and lipidomics, which were combined with our previously reported proteomics results on the same samples. Differential expression, clustering, classification, and systems biology analyses were applied to individual and combined omics datasets. Probabilistic graph models were used to identify an integrated multi-omics interaction network, which included clusters of heterogeneous omics interactions among lipids, metabolites, and proteins. The combined multi-omics signature of 25 molecules attained an AUC of 0.96 [95% CI: 0.85-1.00], showing improvement over individual omics-based classification. We conclude that multi-omics integration of preoperative CSF identifies potential risk markers for delirium and generates new insights into the complex pathways associated with delirium. With future validation, this hypotheses-generating study may serve to build robust biomarkers for delirium and improve our understanding of its pathophysiology.
Collapse
Affiliation(s)
- Bridget A. Tripp
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Simon T. Dillon
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.T.D.)
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
| | - Min Yuan
- Division of Signal Transduction and Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - John M. Asara
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Division of Signal Transduction and Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sarinnapha M. Vasunilashorn
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tamara G. Fong
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, USA
| | - Sharon K. Inouye
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, USA
| | - Long H. Ngo
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Edward R. Marcantonio
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Towia A. Libermann
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.T.D.)
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
10
|
Chang Y, Cao W, Lu L, Han Y, Qin L, Zhou B, Li T. An updated immunosenescence exploration in healthy Chinese donors: circular elevated PD-1 on T cell and increased Ki67 on CD8+ T cell towards aging. Aging (Albany NY) 2024; 16:10985-10996. [PMID: 38954761 PMCID: PMC11272111 DOI: 10.18632/aging.205985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
Immunosenescence is a process of immune dysfunction that occurs along with aging. Many studies have focused on the changes of different lymphocyte subsets in diseases and immune aging. However, the fluctuation in the number and phenotype of lymphocyte subset caused by aging have not been comprehensively analyzed, especially the effects of new indicators such as PD-1 and Ki67 in peripheral blood have been rarely reported. We further investigated the humoral and cellular immune parameters of 150 healthy donors over 18 years old. Age was associated with decreased CD4+CD45RA+CD62L+ T cells, decreased CD4+CD45RA+CD31+ T cells, and increased memory CD4+ or CD8+ T cells, dominated by male CD8+ T cells. The loss of CD28 expression on T cells and the transverse trend of activated CD38 and HLA-DR were also related to the increased age. In addition, CD8+ T cells in men were more prominent in activation indicators, and the difference between the old and young groups was obvious. CD4+CD25+CD127- T cells percentage tended to decrease with age and did not differ significantly between gender. Interestingly, we found that age was positively associated with PD-1+ T cells and showed significant age-related variability in men. Similarly, the percentage of CD8+ki-67+ also showed an increasing trend, with significant differences between the young group and other elderly groups in males. Our findings can provide immunological clues for future aging research, offering new insights for clinical monitoring and prevention of certain diseases.
Collapse
Affiliation(s)
- Yue Chang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- School of Clinical Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lin Qin
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Baotong Zhou
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- Tsinghua University Medical College, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Balog JÁ, Horti-Oravecz K, Kövesdi D, Bozsik A, Papp J, Butz H, Patócs A, Szebeni GJ, Grolmusz VK. Peripheral immunophenotyping reveals lymphocyte stimulation in healthy women living with hereditary breast and ovarian cancer syndrome. iScience 2024; 27:109882. [PMID: 38799565 PMCID: PMC11126817 DOI: 10.1016/j.isci.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Germline pathogenic variants in BRCA1 and BRCA2 (gpath(BRCA1/2)) represent genetic susceptibility for hereditary breast and ovarian cancer syndrome. Tumor-immune interactions are key contributors to breast cancer pathogenesis. Although earlier studies confirmed pro-tumorigenic immunological alterations in breast cancer patients, data are lacking in healthy carriers of gpath(BRCA1/2). Peripheral blood mononuclear cells of 66 women with or without germline predisposition or breast cancer were studied with a mass cytometry panel that identified 4 immune subpopulations of altered frequencies between healthy controls and healthy gpath(BRCA1) carriers, while no difference was observed in healthy gpath(BRCA2) carriers compared to controls. Moreover, 3 (one IgD-CD27+CD95+ B cell subpopulation and two CD45RA-CCR7+CD38+ CD4+ T cell subpopulations) out of these 4 subpopulations were also elevated in triple-negative breast cancer patients compared to controls. Our results reveal an activated peripheral immune phenotype in healthy carriers of gpath(BRCA1) that needs to be further elucidated to be leveraged in risk-reducing strategies.
Collapse
Affiliation(s)
- József Ágoston Balog
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Core Facility, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Klaudia Horti-Oravecz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- Semmelweis University, Doctoral School, 1085 Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
| | - Janos Papp
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Gábor János Szebeni
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Core Facility, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine University of Szeged, 6725 Szeged, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
12
|
Long J, You X, Yang Q, Wang SR, Zhou M, Zhou W, Wang C, Xie H, Zhang Y, Wang S, Lian ZX, Li L. Bone marrow CD8 + Trm cells induced by IL-15 and CD16 + monocytes contribute to HSPC destruction in human severe aplastic anemia. Clin Immunol 2024; 263:110223. [PMID: 38636890 DOI: 10.1016/j.clim.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Idiopathic severe aplastic anemia (SAA) is a disease of bone marrow failure caused by T-cell-induced destruction of hematopoietic stem and progenitor cells (HSPCs), however the mechanism remains unclear. We performed single-cell RNA sequencing of PBMCs and BMMCs from SAA patients and healthy donors and identified a CD8+ T cell subset with a tissue residency phenotype (Trm) in bone marrow that exhibit high IFN-γ and FasL expression and have a higher ability to induce apoptosis in HSPCs in vitro through FasL expression. CD8+ Trm cells were induced by IL-15 presented by IL-15Rα on monocytes, especially CD16+ monocytes, which were increased in SAA patients. CD16+ monocytes contributed to IL-15-induced CD38+CXCR6+ pre-Trm differentiation into CD8+ Trm cells, which can be inhibited by the CD38 inhibitor 78c. Our results demonstrate that IL-15-induced CD8+ Trm cells are pathogenic cells that mediate HSPC destruction in SAA patients and are therapeutic targets for future treatments.
Collapse
Affiliation(s)
- Jie Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xing You
- School of Medicine South China University of Technology, Guangzhou, China; Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiong Yang
- School of Medicine South China University of Technology, Guangzhou, China
| | - Song-Rong Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ming Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Huafeng Xie
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Roders N, Nakid-Cordero C, Raineri F, Fayon M, Abecassis A, Choisy C, Nelson E, Maillard C, Garrick D, Talbot A, Fermand JP, Arnulf B, Bories JC. Dual Chimeric Antigen Receptor T Cells Targeting CD38 and SLAMF7 with Independent Signaling Demonstrate Preclinical Efficacy and Safety in Multiple Myeloma. Cancer Immunol Res 2024; 12:478-490. [PMID: 38289260 DOI: 10.1158/2326-6066.cir-23-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma targeting B-cell maturation antigen (BCMA) induces high overall response rates. However, relapse still occurs and novel strategies for targeting multiple myeloma cells using CAR T-cell therapy are needed. SLAMF7 (also known as CS1) and CD38 on tumor plasma cells represent potential alternative targets for CAR T-cell therapy in multiple myeloma, but their expression on activated T cells and other hematopoietic cells raises concerns about the efficacy and safety of such treatments. Here, we used CRISPR/Cas9 deletion of the CD38 gene in T cells and developed DCAR, a double CAR system targeting CD38 and CS1 through activation and costimulation receptors, respectively. Inactivation of CD38 enhanced the anti-multiple myeloma activity of DCAR T in vitro. Edited DCAR T cells showed strong in vitro and in vivo responses specifically against target cells expressing both CD38 and CS1. Furthermore, we provide evidence that, unlike anti-CD38 CAR T-cell therapy, which elicited a rapid immune reaction against hematopoietic cells in a humanized mouse model, DCAR T cells showed no signs of toxicity. Thus, DCAR T cells could provide a safe and efficient alternative to anti-BCMA CAR T-cell therapy to treat patients with multiple myeloma.
Collapse
Affiliation(s)
- Nathalie Roders
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Cecilia Nakid-Cordero
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Fabio Raineri
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Maxime Fayon
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Audrey Abecassis
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Caroline Choisy
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Elisabeth Nelson
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | | | - David Garrick
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Alexis Talbot
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
- Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Jean-Paul Fermand
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
- Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Bertrand Arnulf
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
- Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Jean-Christophe Bories
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| |
Collapse
|
14
|
Kar A, Ghosh P, Gautam A, Chowdhury S, Basak D, Sarkar I, Bhoumik A, Barman S, Chakraborty P, Mukhopadhyay A, Mehrotra S, Ganesan SK, Paul S, Chatterjee S. CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer. Proc Natl Acad Sci U S A 2024; 121:e2315989121. [PMID: 38451948 PMCID: PMC10945783 DOI: 10.1073/pnas.2315989121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
PD1 blockade therapy, harnessing the cytotoxic potential of CD8+ T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8+ T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8+ T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8+ T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8+ T cells, revealed that CD38-expressing CD8+ T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8+ T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8+ T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8+ T cells elevated intracellular Ca2+ levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8+ T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.
Collapse
Affiliation(s)
- Anwesha Kar
- Division of Cancer Biology and Inflammatory Disorder, Translational Research Unit of Excellence, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, Uttar Pradesh, India
| | - Puspendu Ghosh
- Division of Cancer Biology and Inflammatory Disorder, Translational Research Unit of Excellence, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700032, West Bengal, India
| | - Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 1472076, Tübingen, Baden-Württemberg, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen72076, Tübingen, Baden-Württemberg, Germany
| | - Snehanshu Chowdhury
- Division of Cancer Biology and Inflammatory Disorder, Translational Research Unit of Excellence, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, Uttar Pradesh, India
| | - Debashree Basak
- Division of Cancer Biology and Inflammatory Disorder, Translational Research Unit of Excellence, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, Uttar Pradesh, India
| | - Ishita Sarkar
- Division of Cancer Biology and Inflammatory Disorder, Translational Research Unit of Excellence, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700032, West Bengal, India
| | - Arpita Bhoumik
- Division of Cancer Biology and Inflammatory Disorder, Translational Research Unit of Excellence, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700032, West Bengal, India
| | - Shubhrajit Barman
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, Uttar Pradesh, India
- Division of Structural Biology & Bioinformatics, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700032, West Bengal, India
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, South CarolinaSC- 29425
| | - Asima Mukhopadhyay
- Kolkata Gynaecology Oncology Trials and Translational Research Group, Kolkata700156, West Bengal, India
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South CarolinaSC- 29425
| | - Senthil Kumar Ganesan
- Division of Structural Biology & Bioinformatics, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700032, West Bengal, India
| | - Sandip Paul
- System Biology Informatics Lab, Center for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata700091, West Bengal, India
| | - Shilpak Chatterjee
- Division of Cancer Biology and Inflammatory Disorder, Translational Research Unit of Excellence, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700032, West Bengal, India
| |
Collapse
|
15
|
Wang LT, Chen YH, Cheng Y, Fan HL, Chen TW, Shih YL, Hsieh TY, Huang WY, Huang WC. Clinical implications of hepatitis B virus core antigen-mediated immunopathologic T cell responses in chronic hepatitis B. J Med Virol 2024; 96:e29515. [PMID: 38469923 DOI: 10.1002/jmv.29515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Hepatitis B virus (HBV) infection significantly impacts Asian populations. The influences of continuous HBV antigen and inflammatory stimulation to T cells in chronic hepatitis B (CHB) remain unclear. In this study, we first conducted bioinformatics analysis to assess T-cell signaling pathways in CHB patients. In a Taiwanese cohort, we examined the phenotypic features of HBVcore -specific T cells and their correlation with clinical parameters. We used core protein overlapping peptides from the Taiwan prevalent genotype B HBV to investigate the antiviral response and the functional implication of HBV-specific T cells. In line with Taiwanese dominant HLA-alleles, we also evaluated ex vivo HBVcore -specific T cells by pMHC-tetramers targeting epitopes within HBV core protein. Compared to healthy subjects, we disclosed CD8 T cells from CHB patients had higher activation marker CD38 levels but showed an upregulation in the inhibitory receptor PD-1. Our parallel study showed HBV-specific CD8 T cells were more activated with greater PD-1 expression than CMV-specific subset and bulk CD8 T cells. Moreover, our longitudinal study demonstrated a correlation between the PD-1 fluctuation pattern of HBVcore -specific CD8 T cells and liver inflammation in CHB patients. Our research reveals the HBV core antigen-mediated immunopathologic profile of CD8 T cells in chronic HBV infection. Our findings suggest the PD-1 levels of HBVcore -specific CD8 T cells can be used as a valuable indicator of personal immune response for clinical application in hepatitis management.
Collapse
Affiliation(s)
- Li-Tzu Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hong Chen
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yang Cheng
- Division of Infectious Disease & Immunology, Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Lung Fan
- Department of Surgery, Division of Organ Transplantation Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Teng-Wei Chen
- Department of Surgery, Division of Organ Transplantation Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lueng Shih
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chen Huang
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
16
|
Huang Y, Shao M, Teng X, Si X, Wu L, Jiang P, Liu L, Cai B, Wang X, Han Y, Feng Y, Liu K, Zhang Z, Cui J, Zhang M, Hu Y, Qian P, Huang H. Inhibition of CD38 enzymatic activity enhances CAR-T cell immune-therapeutic efficacy by repressing glycolytic metabolism. Cell Rep Med 2024; 5:101400. [PMID: 38307031 PMCID: PMC10897548 DOI: 10.1016/j.xcrm.2024.101400] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Chimeric antigen receptor (CAR)-T therapy has shown superior efficacy against hematopoietic malignancies. However, many patients failed to achieve sustainable tumor control partially due to CAR-T cell exhaustion and limited persistence. In this study, by performing single-cell multi-omics data analysis on patient-derived CAR-T cells, we identify CD38 as a potential hallmark of exhausted CAR-T cells, which is positively correlated with exhaustion-related transcription factors and further confirmed with in vitro exhaustion models. Moreover, inhibiting CD38 activity reverses tonic signaling- or tumor antigen-induced exhaustion independent of single-chain variable fragment design or costimulatory domain, resulting in improved CAR-T cell cytotoxicity and antitumor response. Mechanistically, CD38 inhibition synergizes the downregulation of CD38-cADPR -Ca2+ signaling and activation of the CD38-NAD+-SIRT1 axis to suppress glycolysis. Collectively, our findings shed light on the role of CD38 in CAR-T cell exhaustion and suggest potential clinical applications of CD38 inhibition in enhancing the efficacy and persistence of CAR-T cell therapy.
Collapse
Affiliation(s)
- Yue Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Si
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Longyuan Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Penglei Jiang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Lianxuan Liu
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Bohan Cai
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Xiujian Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Yingli Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Youqin Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Kai Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Zhaoru Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Henderson JD, Quigley SNZ, Chachra SS, Conlon N, Ford D. The use of a systems approach to increase NAD + in human participants. NPJ AGING 2024; 10:7. [PMID: 38302501 PMCID: PMC10834541 DOI: 10.1038/s41514-023-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
Reversal or mitigation against an age-related decline in NAD+ has likely benefits, and this premise has driven academic and commercial endeavour to develop dietary supplements that achieve this outcome. We used a systems-based approach to improve on current supplements by targeting multiple points in the NAD+ salvage pathway. In a double-blind, randomised, crossover trial, the supplement - Nuchido TIME+® (NT) - increased NAD+ concentration in whole blood. This was associated with an increase in SIRT1 and an increase in nicotinamide phosphoribosyltransferase (NAMPT) in peripheral blood mononucleocytes, lower concentrations of pro-inflammatory cytokines in plasma, including a reduction in interleukin 2 (IL2), a reduction in glycated serum protein and a shift in the glycosylation profile of immunoglobulin G (IgG) toward a younger biological age, all of which are likely to promote a healthier ageing trajectory.
Collapse
Affiliation(s)
- John D Henderson
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Mærsk Tårnet, 7, Sal, 2200, København N, Denmark
| | - Sophia N Z Quigley
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK
| | - Shruti S Chachra
- Nuchido Ltd. Dissington Hall, Dalton, Northumberland, NE18 0AD, UK
| | - Nichola Conlon
- Nuchido Ltd. Dissington Hall, Dalton, Northumberland, NE18 0AD, UK.
| | - Dianne Ford
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
18
|
Lu X, Song CY, Wang P, Li L, Lin LY, Jiang S, Zhou JN, Feng MX, Yang YM, Lu YQ. The clinical trajectory of peripheral blood immune cell subsets, T-cell activation, and cytokines in septic patients. Inflamm Res 2024; 73:145-155. [PMID: 38085279 DOI: 10.1007/s00011-023-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE AND DESIGN Changes in the immune status of patients with sepsis may have a major impact on their prognosis. Our research focused on changes in various immune cell subsets and T-cell activation during the progression of sepsis. METHODS AND SUBJECTS We collected data from 188 sepsis patients at the First Affiliated Hospital of Zhejiang University School of Medicine. The main focus was on the patient's immunocyte subset typing, T-cell activation/Treg cell analysis, and cytokine assay, which can indicate the immune status of the patient. RESULTS The study found that the number of CD4+ T cells, CD8+ T cells, NK cells, and B cells decreased early in the disease, and the decrease in CD4+ and CD8+ T cells was more pronounced in the death group. T lymphocyte activation was inhibited, and the number of Treg cells increased as the disease progressed. T lymphocyte inhibition was more significant in the death group, and the increase in IL-10 was more significant in the death group. Finally, we used patients' baseline conditions and immunological detection indicators for modeling and found that IL-10, CD4+ Treg cells, CD3+HLA-DR+ T cells, and CD3+CD69+ T cells could predict patients' prognosis well. CONCLUSION Our study found that immunosuppression occurs in patients early in sepsis. Early monitoring of the patient's immune status may provide a timely warning of the disease.
Collapse
Affiliation(s)
- Xuan Lu
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Cong-Ying Song
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Ping Wang
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Li Li
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Li-Ying Lin
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Shuai Jiang
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jia-Ning Zhou
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Meng-Xiao Feng
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Yun-Mei Yang
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Yuan-Qiang Lu
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China.
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Shorer O, Yizhak K. Metabolic predictors of response to immune checkpoint blockade therapy. iScience 2023; 26:108188. [PMID: 37965137 PMCID: PMC10641254 DOI: 10.1016/j.isci.2023.108188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Metabolism of immune cells in the tumor microenvironment (TME) plays a critical role in cancer patient response to immune checkpoint inhibitors (ICI). Yet, a metabolic characterization of immune cells in the TME of patients treated with ICI is lacking. To bridge this gap we performed a semi-supervised analysis of ∼1700 metabolic genes using single-cell RNA-seq data of > 1 million immune cells from ∼230 samples of cancer patients treated with ICI. When clustering cells based on their metabolic gene expression, we found that similar immunological cellular states are found in different metabolic states. Most importantly, we found metabolic states that are significantly associated with patient response. We then built a metabolic predictor based on a dozen gene signature, which significantly differentiates between responding and non-responding patients across different cancer types (AUC = 0.8-0.92). Taken together, our results demonstrate the power of metabolism in predicting patient response to ICI.
Collapse
Affiliation(s)
- Ofir Shorer
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Keren Yizhak
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
- The Taub Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
20
|
Bisht K, Fukao T, Chiron M, Richardson P, Atanackovic D, Chini E, Chng WJ, Van De Velde H, Malavasi F. Immunomodulatory properties of CD38 antibodies and their effect on anticancer efficacy in multiple myeloma. Cancer Med 2023; 12:20332-20352. [PMID: 37840445 PMCID: PMC10652336 DOI: 10.1002/cam4.6619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND CD38 has been established as an important therapeutic target for multiple myeloma (MM), for which two CD38 antibodies are currently approved-daratumumab and isatuximab. CD38 is an ectoenzyme that degrades NAD and its precursors and is involved in the production of adenosine and other metabolites. AIM Among the various mechanisms by which CD38 antibodies can induce MM cell death is immunomodulation, including multiple pathways for CD38-mediated T-cell activation. Patients who respond to anti-CD38 targeting treatment experience more marked changes in T-cell expansion, activity, and clonality than nonresponders. IMPLICATIONS Resistance mechanisms that undermine the immunomodulatory effects of CD38-targeting therapies can be tumor intrinsic, such as the downregulation of CD38 surface expression and expression of complement inhibitor proteins, and immune microenvironment-related, such as changes to the natural killer (NK) cell numbers and function in the bone marrow niche. There are numerous strategies to overcome this resistance, which include identifying and targeting other therapeutic targets involved in, for example, adenosine production, the activation of NK cells or monocytes through immunomodulatory drugs and their combination with elotuzumab, or with bispecific T-cell engagers.
Collapse
Affiliation(s)
| | - Taro Fukao
- Sanofi OncologyCambridgeMassachusettsUSA
| | | | - Paul Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma CenterDana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Djordje Atanackovic
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterBaltimoreMarylandUSA
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Wee Joo Chng
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | | | - Fabio Malavasi
- Department of Medical SciencesUniversity of TurinTorinoItaly
- Fondazione Ricerca MolinetteTorinoItaly
| |
Collapse
|
21
|
Verhoeven D, Grinwis L, Marsman C, Jansen MH, Van Leeuwen EM, Kuijpers TW. B-cell targeting with anti-CD38 daratumumab: implications for differentiation and memory responses. Life Sci Alliance 2023; 6:e202302214. [PMID: 37419630 PMCID: PMC10331639 DOI: 10.26508/lsa.202302214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
B cell-targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell-dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-κB in B cells and the transcription of NF-κB-targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell-mediated diseases other than the currently targeted malignancies.
Collapse
Affiliation(s)
- Dorit Verhoeven
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lucas Grinwis
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Casper Marsman
- Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Department of Immunopathology, Amsterdam, The Netherlands
| | - Machiel H Jansen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Ester Mm Van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
23
|
Zhang R, Chen S, Wang Z, Ye L, Jiang Y, Li M, Jiang X, Peng H, Guo Z, Chen L, Zhang R, Niu Y, Aschner M, Li D, Chen W. Assessing the Effects of Nicotinamide Mononucleotide Supplementation on Pulmonary Inflammation in Male Mice Subchronically Exposed to Ambient Particulate Matter. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:77006. [PMID: 37458712 PMCID: PMC10351503 DOI: 10.1289/ehp12259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Chronic lung injury and dysregulated cellular homeostasis in response to particulate matter (PM) exposure are closely associated with adverse health effects. However, an effective intervention for preventing the adverse health effects has not been developed. OBJECTIVES This study aimed to evaluate the protective effects of nicotinamide mononucleotide (NMN) supplementation on lung injury and elucidate the mechanism by which NMN improved immune function following subchronic PM exposure. METHODS Six-week-old male C57BL/6J mice were placed in a real-ambient PM exposure system or filtered air-equipped chambers (control) for 16 wk with or without NMN supplementation in drinking water (regarded as Con-H2O, Exp-H2O, Con-NMN and Exp-NMN groups, respectively) in Shijiazhuang City, China (n=20/group). The effects of NMN supplementation (500mg/kg) on PM-induced chronic pulmonary inflammation were assessed, and its mechanism was characterized using single-cell transcriptomic sequencing (scRNA-seq) analysis of whole lung cells. RESULTS The NMN-treated mice exhibited higher NAD+ levels in multiple tissues. Following 16-wk PM exposure, slightly less pulmonary inflammation and less collagen deposition were noted in mice with NMN supplementation in response to real-ambient PM exposure (Exp-NMN group) compared with the Exp-H2O group (all p<0.05). Mouse lung tissue isolated from the Exp-NMN group was characterized by fewer neutrophils, monocyte-derived cells, fibroblasts, and myeloid-derived suppressor cells induced by subchronic PM exposure as detected by scRNA-seq transcriptomic analysis. The improved immune functions were further characterized by interleukin-17 signaling pathway inhibition and lower secretion of profibrotic cytokines in the Exp-NMN group compared with the Exp-H2O group. In addition, reduced proportions of differentiated myofibroblasts and profibrotic interstitial macrophages were identified in the NMN-supplemented mice in response to PM exposure. Furthermore, less immune function suppression and altered differentiation of pathological cell phenotypes NMN was related to intracellular lipid metabolism activation. DISCUSSION Our novel findings suggest that NMN supplementation mitigated PM-induced lung injury by regulating immune functions and improving lipid metabolism in male mice, providing a putative intervention method for prevention of human health effects associated with PM exposure. https://doi.org/10.1289/EHP12259.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Miao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xinhang Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhanyu Guo
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
25
|
Reolo MJY, Otsuka M, Seow JJW, Lee J, Lee YH, Nguyen PHD, Lim CJ, Wasser M, Chua C, Lim TKH, Leow WQ, Chung A, Goh BKP, Chow PKH, DasGupta R, Yeong JPS, Chew V. CD38 marks the exhausted CD8 + tissue-resident memory T cells in hepatocellular carcinoma. Front Immunol 2023; 14:1182016. [PMID: 37377962 PMCID: PMC10292929 DOI: 10.3389/fimmu.2023.1182016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Despite recent advances in immunotherapy for hepatocellular carcinoma (HCC), the overall modest response rate underscores the need for a better understanding of the tumor microenvironment (TME) of HCC. We have previously shown that CD38 is widely expressed on tumor-infiltrating leukocytes (TILs), predominantly on CD3+ T cells and monocytes. However, its specific role in the HCC TME remains unclear. Methods In this current study, we used cytometry time-of-flight (CyTOF), bulk RNA sequencing on sorted T cells, and single-cell RNA (scRNA) sequencing to interrogate expression of CD38 and its correlation with T cell exhaustion in HCC samples. We also employed multiplex immunohistochemistry (mIHC) for validating our findings. Results From CyTOF analysis, we compared the immune composition of CD38-expressing leukocytes in TILs, non-tumor tissue-infiltrating leukocytes (NIL), and peripheral blood mononuclear cells (PBMC). We identified CD8+ T cells as the dominant CD38-expressing TILs and found that CD38 expression was significantly higher in CD8+ TRM in TILs than in NILs. Furthermore, through transcriptomic analysis on sorted CD8+ TRM from HCC tumors, we observed a higher expression of CD38 along with T cell exhaustion genes, including PDCD1 and CTLA4, compared to the circulating memory CD8 T cells from PBMC. This was validated by scRNA sequencing that revealed co-expression of CD38 with PDCD1, CTLA4, and ITGAE (CD103) in T cells from HCC tumors. The protein co-expression of CD38 and PD-1 on CD8+ T cells was further demonstrated by mIHC on HCC FFPE tissues, marking CD38 as a T cell co-exhaustion marker in HCC. Lastly, the higher proportions of CD38+PD-1+ CD8+ T cells and CD38+PD-1+ TRM were significantly associated with the higher histopathological grades of HCC, indicating its role in the aggressiveness of the disease. Conclusion Taken together, the concurrent expression of CD38 with exhaustion markers on CD8+ TRM underpins its role as a key marker of T cell exhaustion and a potential therapeutic target for restoring cytotoxic T cell function in HCC.
Collapse
Affiliation(s)
- Marie J. Y. Reolo
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Masayuki Otsuka
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Justine Jia Wen Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joycelyn Lee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yun Hua Lee
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Phuong H. D. Nguyen
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Chun Jye Lim
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Martin Wasser
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Camillus Chua
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Tony K. H. Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Alexander Chung
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
| | - Brian K. P. Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- SingHealth-DukeNUS Academic Surgery Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Pierce K. H. Chow
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- SingHealth-DukeNUS Academic Surgery Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- Division of Medical Science, National Cancer Center, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
26
|
Freeman TL, Zhao C, Schrode N, Fortune T, Shroff S, Tweel B, Beaumont KG, Swartz TH. HIV-1 activates oxidative phosphorylation in infected CD4 T cells in a human tonsil explant model. Front Immunol 2023; 14:1172938. [PMID: 37325659 PMCID: PMC10266353 DOI: 10.3389/fimmu.2023.1172938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Human immunodeficiency virus type 1 (HIV-1) causes a chronic, incurable infection leading to immune activation and chronic inflammation in people with HIV-1 (PWH), even with virologic suppression on antiretroviral therapy (ART). The role of lymphoid structures as reservoirs for viral latency and immune activation has been implicated in chronic inflammation mechanisms. Still, the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue remain unexplored. Methods In this study, we utilized human tonsil explants from healthy human donors and infected them with HIV-1 ex vivo. We performed single-cell RNA sequencing (scRNA-seq) to analyze the cell types represented in the tissue and to investigate the impact of infection on gene expression profiles and inflammatory signaling pathways. Results Our analysis revealed that infected CD4+ T cells exhibited upregulation of genes associated with oxidative phosphorylation. Furthermore, macrophages exposed to the virus but uninfected showed increased expression of genes associated with the NLRP3 inflammasome pathway. Discussion These findings provide valuable insights into the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue. The activation of oxidative phosphorylation in infected CD4+ T cells and the proinflammatory response in macrophages may contribute to the chronic inflammation observed in PWH despite ART. Understanding these mechanisms is crucial for developing targeted therapeutic strategies to eradicate HIV-1 infection in PWH.
Collapse
Affiliation(s)
- Tracey L. Freeman
- Medical Scientist Training Program, University of Pittsburgh-Carnegie Mellon University, Pittsburgh, PA, United States
| | - Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadine Schrode
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanjana Shroff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Tweel
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Díaz-Del Cerro E, Félix J, De la Fuente M. [Touch, a crucial sense in social interactions to improve homeostasis in aging and promote healthy longevity]. Rev Esp Geriatr Gerontol 2023; 58:161-166. [PMID: 37085344 DOI: 10.1016/j.regg.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Aging is associated with the generalized deterioration of the organism, being of great relevance experienced by homeostatic systems such as the nervous, immune, and endocrine systems, which increases the risk of morbidity and mortality. Among the lifestyle strategies that have been researched to improve these systems and achieve greater healthy longevity, this review will focus on the social environment. In order to verify the effectiveness of these both in the improvement of homeostasis and in life expectancy, the research carried out with experimental animals that have allowed this to be done will be discussed. In addition, as it has been observed that physical contact is crucial for the positive outcomes of social interaction on homeostatic systems and longevity to occur, we will focus on that mechanism, as well as some of the possible molecular pathways underlying the effects found.
Collapse
Affiliation(s)
- Estefanía Díaz-Del Cerro
- Departamento de Genética, Fisiología y Microbiología (Unidad de Fisiología Animal). Facultad de Ciencias biológicas de la Universidad Complutense de Madrid, Madrid, España; Instituto de investigación del Hospital 12 de Octubre (i+12) de Madrid, Madrid, España
| | - Judith Félix
- Departamento de Genética, Fisiología y Microbiología (Unidad de Fisiología Animal). Facultad de Ciencias biológicas de la Universidad Complutense de Madrid, Madrid, España; Instituto de investigación del Hospital 12 de Octubre (i+12) de Madrid, Madrid, España
| | - Mónica De la Fuente
- Departamento de Genética, Fisiología y Microbiología (Unidad de Fisiología Animal). Facultad de Ciencias biológicas de la Universidad Complutense de Madrid, Madrid, España; Instituto de investigación del Hospital 12 de Octubre (i+12) de Madrid, Madrid, España.
| |
Collapse
|
28
|
Ghosh A, Khanam A, Ray K, Mathur P, Subramanian A, Poonia B, Kottilil S. CD38: an ecto-enzyme with functional diversity in T cells. Front Immunol 2023; 14:1146791. [PMID: 37180151 PMCID: PMC10172466 DOI: 10.3389/fimmu.2023.1146791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
CD38, a nicotinamide adenine dinucleotide (NAD)+ glycohydrolase, is considered an activation marker of T lymphocytes in humans that is highly expressed during certain chronic viral infections. T cells constitute a heterogeneous population; however, the expression and function of CD38 has been poorly defined in distinct T cell compartments. We investigated the expression and function of CD38 in naïve and effector T cell subsets in the peripheral blood mononuclear cells (PBMCs) from healthy donors and people with HIV (PWH) using flow cytometry. Further, we examined the impact of CD38 expression on intracellular NAD+ levels, mitochondrial function, and intracellular cytokine production in response to virus-specific peptide stimulation (HIV Group specific antigen; Gag). Naïve T cells from healthy donors showed remarkably higher levels of CD38 expression than those of effector cells with concomitant reduced intracellular NAD+ levels, decreased mitochondrial membrane potential and lower metabolic activity. Blockade of CD38 by a small molecule inhibitor, 78c, increased metabolic function, mitochondrial mass and mitochondrial membrane potential in the naïve T lymphocytes. PWH exhibited similar frequencies of CD38+ cells in the T cell subsets. However, CD38 expression increased on Gag-specific IFN-γ and TNF-α producing cell compartments among effector T cells. 78c treatment resulted in reduced cytokine production, indicating its distinct expression and functional profile in different T cell subsets. In summary, in naïve cells high CD38 expression reflects lower metabolic activity, while in effector cells it preferentially contributes to immunopathogenesis by increasing inflammatory cytokine production. Thus, CD38 may be considered as a therapeutic target in chronic viral infections to reduce ongoing immune activation.
Collapse
Affiliation(s)
- Alip Ghosh
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Poonam Mathur
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ananya Subramanian
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Bhawna Poonia
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
DeRogatis JM, Neubert EN, Viramontes KM, Henriquez ML, Nicholas DA, Tinoco R. Cell-Intrinsic CD38 Expression Sustains Exhausted CD8 + T Cells by Regulating Their Survival and Metabolism during Chronic Viral Infection. J Virol 2023; 97:e0022523. [PMID: 37039663 PMCID: PMC10134879 DOI: 10.1128/jvi.00225-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 04/12/2023] Open
Abstract
Acute and chronic viral infections result in the differentiation of effector and exhausted T cells with functional and phenotypic differences that dictate whether the infection is cleared or progresses to chronicity. High CD38 expression has been observed on CD8+ T cells across various viral infections and tumors in patients, suggesting an important regulatory function for CD38 on responding T cells. Here, we show that CD38 expression was increased and sustained on exhausted CD8+ T cells following chronic lymphocytic choriomeningitis virus (LCMV) infection, with lower levels observed on T cells from acute LCMV infection. We uncovered a cell-intrinsic role for CD38 expression in regulating the survival of effector and exhausted CD8+ T cells. We observed increased proliferation and function of Cd38-/- CD8+ progenitor exhausted T cells compared to those of wild-type (WT) cells. Furthermore, decreased oxidative phosphorylation and glycolytic potential were observed in Cd38-/- CD8+ T cells during chronic but not acute LCMV infection. Our studies reveal that CD38 has a dual cell-intrinsic function in CD8+ T cells, where it decreases proliferation and function yet supports their survival and metabolism. These findings show that CD38 is not only a marker of T cell activation but also has regulatory functions on effector and exhausted CD8+ T cells. IMPORTANCE Our study shows how CD38 expression is regulated on CD8+ T cells responding during acute and chronic viral infection. We observed higher CD38 levels on CD8+ T cells during chronic viral infection compared to levels during acute viral infection. Deleting CD38 had an important cell-intrinsic function in ensuring the survival of virus-specific CD8+ T cells throughout the course of viral infection. We found defective metabolism in Cd38-/- CD8+ T cells arising during chronic infection and changes in their progenitor T cell phenotype. Our studies revealed a dual cell-intrinsic role for CD38 in limiting proliferation and granzyme B production in virus-specific exhausted T cells while also promoting their survival. These data highlight new avenues for research into the mechanisms through which CD38 regulates the survival and metabolism of CD8+ T cell responses to viral infections.
Collapse
Affiliation(s)
- Julia M. DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Emily N. Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Karla M. Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Monique L. Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Dequina A. Nicholas
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| |
Collapse
|
30
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
31
|
Agarbati S, Benfaremo D, Viola N, Paolini C, Svegliati Baroni S, Funaro A, Moroncini G, Malavasi F, Gabrielli A. Increased expression of the ectoenzyme CD38 in peripheral blood plasmablasts and plasma cells of patients with systemic sclerosis. Front Immunol 2022; 13:1072462. [PMID: 36618427 PMCID: PMC9811259 DOI: 10.3389/fimmu.2022.1072462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Objective CD38 is a type II glycoprotein highly expressed on plasmablasts and on short- and long-lived plasma cells, but weakly expressed by lymphoid, myeloid, and non-hematopoietic cells. CD38 is a target for therapies aimed at depleting antibody-producing plasma cells. Systemic sclerosis (SSc) is an immune-mediated disease with a well-documented pathogenic role of B cells. We therefore analyzed CD38 expression in different subsets of peripheral blood mononuclear cells (PBMCs) from a cohort of SSc patients. Methods Cell surface expression of CD38 was evaluated on PBMCs from SSc patients using eight-color flow cytometry analysis performed with a FacsCanto II (BD). Healthy individuals were used as controls (HC). Results Forty-six SSc patients (mean age 56, range 23-79 years; 38 females and 8 males), and thirty-two age- and sex-matched HC were studied. Twenty-eight patients had the limited cutaneous form and eighteen the diffuse cutaneous form of SSc. The mean disease duration was 7 years. Fourteen patients were on immunosuppressive therapy (14 MMF, 5 RTX). The total percentages of T, B and NK cells were not different between SSc and HC. Compared to HC, SSc patients had higher levels of CD3+CD38+ T cells (p<0.05), higher percentage (p<0.001) of CD3+CD4+CD25+FOXP3+ regulatory T cells, lower percentage (p<0.05) of CD3+CD56+ NK T cells. Moreover, SSc patients had higher levels of CD24highCD19+CD38high regulatory B cells than HC (p<0.01), while the amount of CD24+CD19+CD38+CD27+ memory B cells was lower (p<0.001). Finally, the percentages of circulating CD38highCD27+ plasmablasts and CD138+CD38high plasma cells were both higher in the SSc group than in HC (p<0.001). We did not observe any correlations between these immunophenotypes and disease subsets or duration, and ongoing immunosuppressive treatment. Conclusions The increased expression of CD38 in peripheral blood plasmablasts and plasma cells of SSc patients may suggest this ectoenzyme as a candidate therapeutic target, under the hypothesis that depletion of these cells may beneficially downregulate the chronic immune response in SSc patients. Validation of this data in multicenter cohorts shall be obtained prior to clinical trials with existing anti-CD38 drugs.
Collapse
Affiliation(s)
- S. Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - D. Benfaremo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy,Clinica Medica, Department of Internal Medicine, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - N. Viola
- Immunologia Clinica, Department of Internal Medicine, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - C. Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - S. Svegliati Baroni
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - A. Funaro
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - G. Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy,Clinica Medica, Department of Internal Medicine, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy,*Correspondence: G. Moroncini,
| | - F. Malavasi
- Department of Medical Sciences, University of Turin, Torino, Italy,Fondazione Ricerca Molinette, Torino, Italy
| | - A. Gabrielli
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
32
|
Li H, Zhao A, Li M, Shi L, Han Q, Hou Z. Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy. Front Immunol 2022; 13:1046755. [PMID: 36569893 PMCID: PMC9768337 DOI: 10.3389/fimmu.2022.1046755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown promising therapeutic effects in the treatment of advanced solid cancers, but their overall response rate is still very low for certain tumor subtypes, limiting their clinical scope. Moreover, the high incidence of drug resistance (including primary and acquired) and adverse effects pose significant challenges to the utilization of these therapies in the clinic. ICIs enhance T cell activation and reverse T cell exhaustion, which is a complex and multifactorial process suggesting that the regulatory mechanisms of ICI therapy are highly heterogeneous. Recently, metabolic reprogramming has emerged as a novel means of reversing T-cell exhaustion in the tumor microenvironment; there is increasing evidence that T cell metabolic disruption limits the therapeutic effect of ICIs. This review focuses on the crosstalk between T-cell metabolic reprogramming and ICI therapeutic efficacy, and summarizes recent strategies to improve drug tolerance and enhance anti-tumor effects by targeting T-cell metabolism alongside ICI therapy. The identification of potential targets for altering T-cell metabolism can significantly contribute to the development of methods to predict therapeutic responsiveness in patients receiving ICI therapy, which are currently unknown but would be of great clinical significance.
Collapse
Affiliation(s)
- Haohao Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Alison Zhao
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve School of Medicine, Cleveland, OH, United States
| | - Menghua Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Lizhi Shi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China,*Correspondence: Qiuju Han, ; Zhaohua Hou,
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States,*Correspondence: Qiuju Han, ; Zhaohua Hou,
| |
Collapse
|
33
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
34
|
Barbaro JM, Jaureguiberry-Bravo M, Sidoli S, Berman JW. Morphine disrupts macrophage functions even during HIV infection. J Leukoc Biol 2022; 112:1317-1328. [PMID: 36205434 PMCID: PMC9677813 DOI: 10.1002/jlb.3ma0522-273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 12/24/2022] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) is a debilitating comorbidity that reduces quality of life in 15-40% of people with HIV (PWH) taking antiretroviral therapy (ART). Opioid use has been shown to increase neurocognitive deficits in PWH. Monocyte-derived macrophages (MDMs) harbor HIV in the CNS even in PWH on ART. We hypothesized that morphine (MOR), a metabolite of heroin, further dysregulates functional processes in MDMs to increase neuropathogenesis. We found that, in uninfected and HIV-infected primary human MDMs, MOR activates these cells by increasing phagocytosis and up-regulating reactive oxygen species. Effects of MOR on phagocytosis were dependent on μ-opioid receptor activity and were mediated, in part, by inhibited lysosomal degradation of phagocytized substrates. All results persisted when cells were treated with both MOR and a commonly prescribed ART cocktail, suggesting minimal impact of ART during opioid exposure. We then performed mass spectrometry in HIV-infected MDMs treated with or without MOR to determine proteomic changes that suggest additional mechanisms by which opioids affect macrophage homeostasis. Using downstream pathway analyses, we found that MOR dysregulates ER quality control and extracellular matrix invasion. Our data indicate that MOR enhances inflammatory functions and impacts additional cellular processes in HIV-infected MDMs to potentially increases neuropathogenesis in PWH using opioids.
Collapse
Affiliation(s)
- John M. Barbaro
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Matias Jaureguiberry-Bravo
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
35
|
VanValkenburg A, Kaipilyawar V, Sarkar S, Lakshminarayanan S, Cintron C, Prakash Babu S, Knudsen S, Joseph NM, Horsburgh CR, Sinha P, Ellner JJ, Narasimhan PB, Johnson WE, Hochberg NS, Salgame P. Malnutrition leads to increased inflammation and expression of tuberculosis risk signatures in recently exposed household contacts of pulmonary tuberculosis. Front Immunol 2022; 13:1011166. [PMID: 36248906 PMCID: PMC9554585 DOI: 10.3389/fimmu.2022.1011166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Most individuals exposed to Mycobacterium tuberculosis (Mtb) develop latent tuberculosis infection (LTBI) and remain at risk for progressing to active tuberculosis disease (TB). Malnutrition is an important risk factor driving progression from LTBI to TB. However, the performance of blood-based TB risk signatures in malnourished individuals with LTBI remains unexplored. The aim of this study was to determine if malnourished and control individuals had differences in gene expression, immune pathways and TB risk signatures. Methods We utilized data from 50 tuberculin skin test positive household contacts of persons with TB - 18 malnourished participants (body mass index [BMI] < 18.5 kg/m2) and 32 controls (individuals with BMI ≥ 18.5 kg/m2). Whole blood RNA-sequencing was conducted to identify differentially expressed genes (DEGs). Ingenuity Pathway Analysis was applied to the DEGs to identify top canonical pathways and gene regulators. Gene enrichment methods were then employed to score the performance of published gene signatures associated with progression from LTBI to TB. Results Malnourished individuals had increased activation of inflammatory pathways, including pathways involved in neutrophil activation, T-cell activation and proinflammatory IL-1 and IL-6 cytokine signaling. Consistent with known association of inflammatory pathway activation with progression to TB disease, we found significantly increased expression of the RISK4 (area under the curve [AUC] = 0.734) and PREDICT29 (AUC = 0.736) progression signatures in malnourished individuals. Conclusion Malnourished individuals display a peripheral immune response profile reflective of increased inflammation and a concomitant increased expression of risk signatures predicting progression to TB. With validation in prospective clinical cohorts, TB risk biomarkers have the potential to identify malnourished LTBI for targeted therapy.
Collapse
Affiliation(s)
- Arthur VanValkenburg
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, United States
- Bioinformatics Program, Boston University, Boston, MA, United States
| | - Vaishnavi Kaipilyawar
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Sonali Sarkar
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Subitha Lakshminarayanan
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Chelsie Cintron
- Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Senbagavalli Prakash Babu
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Selby Knudsen
- Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Noyal Mariya Joseph
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - C. Robert Horsburgh
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, United States
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Pranay Sinha
- Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Jerrold J. Ellner
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Prakash Babu Narasimhan
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - W. Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, United States
- Bioinformatics Program, Boston University, Boston, MA, United States
| | - Natasha S. Hochberg
- Department of Medicine, Boston Medical Center, Boston, MA, United States
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, United States
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
36
|
Targeting CD38 in Neoplasms and Non-Cancer Diseases. Cancers (Basel) 2022; 14:cancers14174169. [PMID: 36077708 PMCID: PMC9454480 DOI: 10.3390/cancers14174169] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary CD38 remains an interesting target for anticancer therapy. Its relatively high abundance in neoplasms and crucial impact on NAD+/cADPR metabolism and the activity of T cells allows for changing the immune response in autoimmune diseases, neoplasms, and finally the induction of cell death. Antibody-dependent cell cytotoxicity is responsible for cell death induced by targeting the tumor with anti-CD38 antibodies, such as daratumumab. A wide range of laboratory experiments and clinical trials show an especially promising role of anti-CD38 therapy against multiple myeloma, NK cell lymphomas, and CD19- B-cell malignancies. More studies are required to include more diseases in the therapeutic protocols involving the modulation of CD38 activity. Abstract CD38 is a myeloid antigen present both on the cell membrane and in the intracellular compartment of the cell. Its occurrence is often enhanced in cancer cells, thus making it a potential target in anticancer therapy. Daratumumab and isatuximab already received FDA approval, and novel agents such as MOR202, TAK079 and TNB-738 undergo clinical trials. Also, novel therapeutics such as SAR442085 aim to outrank the older antibodies against CD38. Multiple myeloma and immunoglobulin light-chain amyloidosis may be effectively treated with anti-CD38 immunotherapy. Its role in other hematological malignancies is also important concerning both diagnostic process and potential treatment in the future. Aside from the hematological malignancies, CD38 remains a potential target in gastrointestinal, neurological and pulmonary system disorders. Due to the strong interaction of CD38 with TCR and CD16 on T cells, it may also serve as the biomarker in transplant rejection in renal transplant patients. Besides, CD38 finds its role outside oncology in systemic lupus erythematosus and collagen-induced arthritis. CD38 plays an important role in viral infections, including AIDS and COVID-19. Most of the undergoing clinical trials focus on the use of anti-CD38 antibodies in the therapy of multiple myeloma, CD19- B-cell malignancies, and NK cell lymphomas. This review focuses on targeting CD38 in cancer and non-cancerous diseases using antibodies, cell-based therapies and CD38 inhibitors. We also provide a summary of current clinical trials targeting CD38.
Collapse
|
37
|
|
38
|
He Z, Liu X, Zhou Y. Research progress in the role of CD38 in clinical tumor treatment. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:952-959. [PMID: 36039593 PMCID: PMC10930288 DOI: 10.11817/j.issn.1672-7347.2022.210351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 06/15/2023]
Abstract
Tumor is one of the ten leading causes of death in the world. Traditional tumor treatments include surgery, radiation therapy, and chemotherapy. With the development of immune checkpoint blockade therapy targeting the programmed death 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis, the number of cancers in solid tumors has increased. Changes in the immunometabolic microenvironment have been shown to be important regulators of innate suppression of immune cell function and acquired resistance to immunotherapy. As a new target, CD38 is an enzyme that produces immunosuppressive metabolites (such as adenosine), which can be used in combination with immunotherapy to improve the clinical efficacy of tumor therapy, and can also be used as an indicator for understanding tumor immunotherapy response.
Collapse
Affiliation(s)
- Zhengxi He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008. hezhengxi@ csu.edu.cn
- Cancer Research Institute, Central South University, Changsha 410078. hezhengxi@ csu.edu.cn
| | - Xing Liu
- Functional Experimental Center of School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Yanhong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008.
- Cancer Research Institute, Central South University, Changsha 410078.
| |
Collapse
|
39
|
Okwuofu EO, Hui AYC, Woei JLC, Stanslas J. Molecular and Immunomodulatory Actions of New Antiasthmatic Agents: Exploring the Diversity of Biologics in Th2 Endotype Asthma. Pharmacol Res 2022; 181:106280. [PMID: 35661709 DOI: 10.1016/j.phrs.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Asthma is a major respiratory disorder characterised by chronic inflammation and airway remodelling. It affects about 1-8% of the global population and is responsible for over 461,000 deaths annually. Until recently, the pharmacotherapy of severe asthma involved high doses of inhaled corticosteroids in combination with β-agonist for prolonged action, including theophylline, leukotriene antagonist or anticholinergic yielding limited benefit. Although the use of newer agents to target Th2 asthma endotypes has improved therapeutic outcomes in severe asthmatic conditions, there seems to be a paucity of understanding the diverse mechanisms through which these classes of drugs act. This article delineates the molecular and immunomodulatory mechanisms of action of new antiasthmatic agents currently being trialled in preclinical and clinical studies to remit asthmatic conditions. The ultimate goal in developing antiasthmatic agents is based on two types of approaches: either anti-inflammatory or bronchodilators. Biologic and most small molecules have been shown to modulate specific asthma endotypes, targeting thymic stromal lymphopoietin, tryptase, spleen tyrosine kinase (Syk), Janus kinase, PD-L1/PD-L2, GATA-3, and CD38 for the treatment and management of Th2 endotype asthma.
Collapse
Affiliation(s)
- Emmanuel Oshiogwe Okwuofu
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Jonathan Lim Chee Woei
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
40
|
Prietl B, Odler B, Kirsch AH, Artinger K, Eigner M, Schmaldienst S, Pfeifer V, Stanzer S, Eberl A, Raml R, Pieber T, Rosenkranz AR, Brodmann M, Eller P, Eller K. Chronic Inflammation Might Protect Hemodialysis Patients From Severe COVID-19. Front Immunol 2022; 13:821818. [PMID: 35265078 PMCID: PMC8901184 DOI: 10.3389/fimmu.2022.821818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Hemodialysis patients (HD) are expected to have excess mortality in coronavirus disease 2019 (COVID-19). This was challenged by a recent study reporting HD patients to have comparable mortality and less ICU admissions when hospitalized with COVID-19. An altered immune system due to chronic inflammation might protect HD-patients from severe COVID-19. Therefore, we aimed to describe the peripheral blood immune phenotype in HD-patients and respective controls with COVID-19.
Collapse
Affiliation(s)
- Barbara Prietl
- Center for Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Balazs Odler
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander H Kirsch
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Katharina Artinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Manfred Eigner
- Klinikum Favoriten, Wiener Krankenanstaltenverbund, Vienna, Austria
| | | | - Verena Pfeifer
- Center for Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Anita Eberl
- Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Reingard Raml
- Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Thomas Pieber
- Center for Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
41
|
He Z, Liu JJ, Shu GF, Ma SL, Wu GQ. Diagnostic Utility of CD64 and CD38 Biomarkers for the Differential Diagnosis of Infections. Genet Test Mol Biomarkers 2022; 26:133-139. [PMID: 35230865 DOI: 10.1089/gtmb.2021.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Identification of infection type in patients with fever is particularly important in the emergency departments (EDs) of hospitals. This study aimed to evaluate the performance of two biomarkers, namely the modified neutrophil CD64 (nCD64) index and CD38 present on T cells, using flow cytometry. Methods: A total of 305 potentially infected patients with fever were admitted to the ED of Zhongda Hospital (Nanjing, China) between March 2021 and August 2021. This study grouped 180, 30, and 65 patients as having bacterial (local, Gram-positive, and Gram-negative infections), viral, or no infections, respectively, based on their diagnostic outcomes and clinical records. Results: The expression level of traditional/modified nCD64 was significantly increased in the bacterial infection group, especially in case of patients infected with Gram-negative bacteria, and the main infectious strains were Staphylococcus and Escherichia coli. Similarly, CD3+CD38+ cell percentages were elevated in patients with viral infections, which were mostly caused by Epstein-Barr virus and cytomegalovirus. CD38 expression is age dependent, and high percentages of CD3+CD38+ cells were observed in children with viral infections. For the prediction of bacterial infections, the area under the curve (AUC) of modified nCD64 (AUC: 0.800) was significantly higher than that of C-reactive protein and heparin-binding protein but slightly lower than that of traditional nCD64 (AUC: 0.831). The AUC, specificity, and sensitivity values for the prediction of viral infections using CD3+CD38+ cells percentages in children were 0.899 (0.785-1.000), 96.2%, and 85.9%, respectively. Conclusion: nCD64 levels and CD3+CD38+ cell percentage are potential biomarkers that facilitate identification of patients with bacterial and viral infections.
Collapse
Affiliation(s)
- Zhi He
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jing-Jing Liu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guo-Fang Shu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shao-Lei Ma
- Department of Emergency and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guo-Qiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
42
|
Barrientos-Robledo SG, Cebada-Ruiz JA, Rodríguez-Alba JC, Baltierra-Uribe SL, Díaz Y Orea MA, Romero-Ramírez H. CD38 a biomarker and therapeutic target in non-hematopoietic tumors. Biomark Med 2022; 16:387-400. [PMID: 35195042 DOI: 10.2217/bmm-2021-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type II transmembrane glycoprotein CD38 has recently been implicated in regulating metabolism and the pathogenesis of multiple conditions, including aging, inflammation and cancer. CD38 is overexpressed in several tumor cells and microenvironment tumoral cells, associated to migration, angiogenesis, cell invasion and progression of the disease. Thus, CD38 has been used as a progression marker for different cancer types as well as in immunotherapy. This review focuses on describing the involvement of CD38 in various non-hematopoietic cancers.
Collapse
Affiliation(s)
- Susana G Barrientos-Robledo
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Jorge A Cebada-Ruiz
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Juan C Rodríguez-Alba
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Shantal L Baltierra-Uribe
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria A Díaz Y Orea
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
43
|
Oberholtzer N, Quinn KM, Chakraborty P, Mehrotra S. New Developments in T Cell Immunometabolism and Implications for Cancer Immunotherapy. Cells 2022; 11:708. [PMID: 35203357 PMCID: PMC8870179 DOI: 10.3390/cells11040708] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Despite rapid advances in the field of immunotherapy, the elimination of established tumors has not been achieved. Many promising new treatments such as adoptive cell therapy (ACT) fall short, primarily due to the loss of T cell effector function or the failure of long-term T cell persistence. With the availability of new tools and advancements in technology, our understanding of metabolic processes has increased enormously in the last decade. Redundancy in metabolic pathways and overlapping targets that could address the plasticity and heterogenous phenotypes of various T cell subsets have illuminated the need for understanding immunometabolism in the context of multiple disease states, including cancer immunology. Herein, we discuss the developing field of T cell immunometabolism and its crucial relevance to improving immunotherapeutic approaches. This in-depth review details the metabolic pathways and preferences of the antitumor immune system and the state of various metabolism-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.Q.); (P.C.)
| | | | | | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.Q.); (P.C.)
| |
Collapse
|
44
|
Liikanen I, Basnet S, Quixabeira DCA, Taipale K, Hemminki O, Oksanen M, Kankainen M, Juhila J, Kanerva A, Joensuu T, Tähtinen S, Hemminki A. Oncolytic adenovirus decreases the proportion of TIM-3 + subset of tumor-infiltrating CD8 + T cells with correlation to improved survival in patients with cancer. J Immunother Cancer 2022; 10:e003490. [PMID: 35193929 PMCID: PMC8867324 DOI: 10.1136/jitc-2021-003490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oncolytic viruses are a potent form of active immunotherapy, capable of invoking antitumor T-cell responses. Meanwhile, less is known about their effects on immune checkpoints, the main targets for passive immunotherapy of cancer. T-cell immunoglobulin and mucin domain-3 (TIM-3) is a coinhibitory checkpoint driving T-cell exhaustion in cancer. Here we investigated the effects of oncolytic adenovirus on the TIM-3 checkpoint on tumor-infiltrating immune cells and clinical impact in patients with cancer receiving oncolytic immunotherapy. METHODS Modulation of TIM-3 expression on tumor-infiltrating immune cells was studied preclinically in B16 melanoma following intratumoral treatment with Ad5/3∆24-granulocyte-macrophage colony-stimulating factor oncolytic adenovirus. We conducted a retrospective longitudinal analysis of 15 patients with advanced-stage cancer with tumor-site biopsies before and after oncolytic immunotherapy, treated in the Advanced Therapy Access Program (ISRCTN10141600, April 5, 2011). Following patient stratification with regard to TIM-3 (increase vs decrease in tumors), overall survival and imaging/marker responses were evaluated by log-rank and Fisher's test, while coinhibitory receptors/ligands, transcriptomic changes and tumor-reactive and tumor-infltrating immune cells in biopsies and blood samples were studied by microarray rank-based statistics and immunoassays. RESULTS Preclinically, TIM-3+ tumor-infiltrating lymphocytes (TILs) in B16 melanoma showed an exhausted phenotype, whereas oncolytic adenovirus treatment significantly reduced the proportion of TIM-3+ TIL subset through recruitment of less-exhausted CD8+ TIL. Decrease of TIM-3 was observed in 60% of patients, which was associated with improved overall survival over TIM-3 increase patients (p=0.004), together with evidence of clinical benefit by imaging and blood analyses. Coinhibitory T-cell receptors and ligands were consistently associated with TIM-3 changes in gene expression data, while core transcriptional exhaustion programs and T-cell dysfunction were enriched in patients with TIM-3 increase, thus identifying patients potentially benefiting from checkpoint blockade. In striking contrast, patients with TIM-3 decrease displayed an acute inflammatory signature, redistribution of tumor-reactive CD8+ lymphocytes and higher influx of CD8+ TIL into tumors, which were associated with the longest overall survival, suggesting benefit from active immunotherapy. CONCLUSIONS Our results indicate a key role for the TIM-3 immune checkpoint in oncolytic adenoviral immunotherapy. Moreover, our results identify TIM-3 as a potential biomarker for oncolytic adenoviruses and create rationale for combination with passive immunotherapy for a subset of patients.
Collapse
Affiliation(s)
- Ilkka Liikanen
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, San Diego, California, USA
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Saru Basnet
- Translational Immunology Research Program, Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
| | - Dafne C A Quixabeira
- Translational Immunology Research Program, Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
| | - Kristian Taipale
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- Division of Urologic Oncology, Department of Surgical Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Urology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Minna Oksanen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Medical and Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Juuso Juhila
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Siri Tähtinen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| |
Collapse
|
45
|
Tian GX, Peng KP, Liu MH, Tian DF, Xie HQ, Wang LW, Guo YY, Zhou S, Mo LH, Yang PC. CD38+ B cells affect immunotherapy for allergic rhinitis. J Allergy Clin Immunol 2022; 149:1691-1701.e9. [DOI: 10.1016/j.jaci.2022.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
46
|
Wu Z, Wang M, Liang G, Jin P, Wang P, Xu Y, Qian Y, Jiang X, Qian J, Dong M. Pro-Inflammatory Signature in Decidua of Recurrent Pregnancy Loss Regardless of Embryonic Chromosomal Abnormalities. Front Immunol 2021; 12:772729. [PMID: 34956198 PMCID: PMC8694032 DOI: 10.3389/fimmu.2021.772729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Recurrent pregnancy loss (RPL), especially the unexplained RPL, is associated with the disruption of maternal immune tolerance. However, little is known about the immune status at the decidua of RPL with embryonic chromosomal aberrations. Herein, mass cytometry (CyTOF) was used to interrogate the immune atlas at the decidua which was obtained from 15 RPL women-six with normal chromosome and nine with chromosomal aberrations-and five controls. The total frequency of CCR2-CD11chigh macrophages increased, while CD39high NK cells and CCR2-CD11clow macrophages decrease significantly in RPL when RPLs were stratified, compared with controls. Pro-inflammatory subsets of CD11chigh macrophages increased, while less pro-inflammatory or suppressive subsets decreased statistically in RPL decidua whenever RPLs were stratified or not. However, CD11chigh NK and CD161highCD8+ T cells increased only in RPL with normal chromosome, while the inactivated and naive CD8+/CD4+ T cells were enriched only in RPL with chromosomal aberrations. A pro-inflammatory signature is observed in RPL decidua; however, differences exist between RPL with and without chromosomal abnormalities.
Collapse
Affiliation(s)
- Zaigui Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaomiao Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanmian Liang
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Pengzhen Jin
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeqing Qian
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xiuxiu Jiang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junbin Qian
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Dong
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Gao Y, Shan W, Gu T, Zhang J, Wu Y, Li X, Zeng X, Zhou H, Chen Z, Xiao H. Daratumumab Prevents Experimental Xenogeneic Graft-Versus-Host Disease by Skewing Proportions of T Cell Functional Subsets and Inhibiting T Cell Activation and Migration. Front Immunol 2021; 12:785774. [PMID: 34987512 PMCID: PMC8720868 DOI: 10.3389/fimmu.2021.785774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains the major cause of mortality and morbidity in non-relapse patients after allogeneic hematopoietic cell transplantation (allo-HCT). As the number of patients undergoing allo-HCT increases, it will become imperative to determine safe and effective treatment options for patients with GVHD, especially those who become refractory to systemic steroid therapy. Daratumumab (Dara), a humanized IgG1 (ĸ subclass) monoclonal antibody targeting the CD38 epitope, is used for the treatment of multiple myeloma. CD38 is a multifunctional ectoenzyme that behaves either as an enzyme, a cell adhesion molecule or a cell surface receptor involved in cell signaling. CD38 is also expressed on various immune effector and suppressor cells. However, the role of CD38 in the immune response remains elusive. We questioned whether CD38 is a potential therapeutic target against alloreactive T cells in the GVHD pathological process. Here, we investigated the impact of Dara on xenogeneic GVHD (xeno-GVHD) and graft-versus-leukemia (GVL) effects in a humanized murine model of transplantation, where human peripheral blood mononuclear cells were adoptively transplanted into immunocompromised NOD.SCID.gc-null (NSG) mice. Mice receiving Dara treatment experienced less weight loss, longer survival and lower GVHD scores compared with those in the control group. Histological evaluations, flow cytometry, RNA-sequencing and RT-qPCR analysis revealed that Dara efficaciously mitigated GVHD through multiple mechanisms including inhibition of the proliferation, activation and differentiation of CD8+ cytotoxic T cells, reduced expression of cytotoxic effector molecules, pro-inflammatory cytokines, chemokines and chemoattractant receptors by T cells and promotion of immunosuppressive T cells. More importantly, Dara preserved the GVL effect in a humanized mouse model of leukemia by metabolic reprograming of T cells to promote the induction of Th17, Th1/17and Tc1/17 cells. Our findings indicate that Dara may be an attractive therapeutic option to separate GVHD from GVL effects in patients with hematopoietic malignancies receiving allo-HCT.
Collapse
Affiliation(s)
- Yang Gao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Tianning Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jie Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yibo Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiaoqing Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Hongyu Zhou
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Chen
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- *Correspondence: Haowen Xiao,
| |
Collapse
|
48
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
49
|
Boo YC. Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants (Basel) 2021; 10:1315. [PMID: 34439563 PMCID: PMC8389214 DOI: 10.3390/antiox10081315] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Vitamin B3 (nicotinic acid, niacin) deficiency causes the systemic disease pellagra, which leads to dermatitis, diarrhea, dementia, and possibly death depending on its severity and duration. Vitamin B3 is used in the synthesis of the NAD+ family of coenzymes, contributing to cellular energy metabolism and defense systems. Although nicotinamide (niacinamide) is primarily used as a nutritional supplement for vitamin B3, its pharmaceutical and cosmeceutical uses have been extensively explored. In this review, we discuss the biological activities and cosmeceutical properties of nicotinamide in consideration of its metabolic pathways. Supplementation of nicotinamide restores cellular NAD+ pool and mitochondrial energetics, attenuates oxidative stress and inflammatory response, enhances extracellular matrix and skin barrier, and inhibits the pigmentation process in the skin. Topical treatment of nicotinamide, alone or in combination with other active ingredients, reduces the progression of skin aging and hyperpigmentation in clinical trials. Topically applied nicotinamide is well tolerated by the skin. Currently, there is no convincing evidence that nicotinamide has specific molecular targets for controlling skin aging and pigmentation. This substance is presumed to contribute to maintaining skin homeostasis by regulating the redox status of cells along with various metabolites produced from it. Thus, it is suggested that nicotinamide will be useful as a cosmeceutical ingredient to attenuate skin aging and hyperpigmentation, especially in the elderly or patients with reduced NAD+ pool in the skin due to internal or external stressors.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, BK21 Plus KNU Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
50
|
Nasarre P, Garcia DI, Siegel JB, Bonilla IV, Mukherjee R, Hilliard E, Chakraborty P, Nasarre C, Yustein JT, Lang M, Jaffa AA, Mehrotra S, Klauber-DeMore N. Overcoming PD-1 Inhibitor Resistance with a Monoclonal Antibody to Secreted Frizzled-Related Protein 2 in Metastatic Osteosarcoma. Cancers (Basel) 2021; 13:cancers13112696. [PMID: 34070758 PMCID: PMC8199140 DOI: 10.3390/cancers13112696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Secreted frizzled-related protein 2 (SFRP2) promotes the migration/invasion of metastatic osteosarcoma (OS) cells and tube formation by endothelial cells. However, its function on T-cells is unknown. We hypothesized that blocking SFRP2 with a humanized monoclonal antibody (hSFRP2 mAb) can restore immunity by reducing CD38 and PD-1 levels, ultimately overcoming resistance to PD-1 inhibitors. Treating two metastatic murine OS cell lines in vivo, RF420 and RF577, with hSFRP2 mAb alone led to a significant reduction in the number of lung metastases, compared to IgG1 control treatment. While PD-1 mAb alone had minimal effect, hSFRP2 mAb combination with PD-1 mAb had an additive antimetastatic effect. This effect was accompanied by lower SFRP2 levels in serum, lower CD38 levels in tumor-infiltrating lymphocytes and T-cells, and lower PD-1 levels in T-cells. In vitro data confirmed that SFRP2 promotes NFATc3, CD38 and PD-1 expression in T-cells, while hSFRP2 mAb treatment counteracts these effects and increases NAD+ levels. hSFRP2 mAb treatment further rescued the suppression of T-cell proliferation by tumor cells in a co-culture model. Finally, hSFRP2 mAb induced apoptosis in RF420 and RF577 OS cells but not in T-cells. Thus, hSFRP2 mAb therapy could potentially overcome PD-1 inhibitor resistance in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Denise I. Garcia
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Julie B. Siegel
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Ingrid V. Bonilla
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Rupak Mukherjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Cécile Nasarre
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Jason T. Yustein
- Department of Pediatrics, The Faris D. Virani Ewing Sarcoma Center at the Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Margaret Lang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Aneese A. Jaffa
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
- Correspondence:
| |
Collapse
|