1
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
2
|
Nicoara C, Fezza F, Maccarrone M. FAAH Modulators from Natural Sources: A Collection of New Potential Drugs. Cells 2025; 14:551. [PMID: 40214504 PMCID: PMC11989041 DOI: 10.3390/cells14070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
The endocannabinoid system (ECS) plays a crucial role in maintaining homeostasis by regulating immune response, energy metabolism, cognitive functions, and neuronal activity. It consists of endocannabinoids (eCBs), cannabinoid receptors (CBRs), and enzymes involved in eCB biosynthesis and degradation. Increasing evidence highlights the involvement of the ECS under several pathological conditions, making it a promising therapeutic target. Recent research efforts have focused on modulating endogenous eCB levels, particularly through the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of the major eCB anandamide. Natural substances, including plant extracts and purified compounds, can inhibit FAAH and represent a promising area of pharmacological research. Natural FAAH inhibitors are particularly attractive due to their potentially lower toxicity compared to synthetic compounds, making them safer candidates for therapeutic applications. Phytocannabinoids, flavonoids, and flavolignans have been shown to efficiently inhibit FAAH. The structural diversity and bioactivity of these natural substances provide a valuable alternative to synthetic inhibitors, and may open new avenues for developing innovative pharmacological tools.
Collapse
Affiliation(s)
- Catalin Nicoara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy;
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy;
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
3
|
Goleij P, Tabari MAK, Khandan M, Poudineh M, Rezaee A, Sadreddini S, Sanaye PM, Khan H, Larsen DS, Daglia M. Genistein in focus: pharmacological effects and immune pathway modulation in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3557-3571. [PMID: 39601821 DOI: 10.1007/s00210-024-03647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Cancer is a significant global health concern, responsible for mortality and morbidity of individuals. It is characterized by uncontrolled cellular growth, tumor formation, and potential metastasis. The immune system is pivotal in recognizing and eliminating cancerous cells, with immune cells such as T cells, B cells, natural killer cells (NK), and dendritic cells playing critical roles. Dysregulation of immune responses can contribute to cancer progression. Phytochemicals, bioactive compounds derived from plants, have gained attention for their potential roles in cancer prevention and therapy due to their antioxidant, anti-inflammatory, and immunomodulatory properties. Genistein, an isoflavone found in soy products, is of particular interest. In this study, genistein's mechanisms of action at the molecular and cellular levels in cancer were demonstrated, highlighting its impact on T and B lymphocytes, NK cells and dendritic cells. Genistein's ability to influence cytokine production, reducing levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, is emphasized. Genistein modulates inflammatory response pathways like Toll-like receptors (TLRs), NF-κB, chemokines, and MAPK, inhibiting tumor growth, promoting apoptosis, and reducing metastasis. It shows promise in overcoming chemoresistance, particularly in ovarian and neuroblastoma cancers, by inhibiting autophagy. Genistein also affects T-cell execution markers, including granzyme B, TNF-α, and FAS ligand in cancer by influencing key proteins involved in immune response and apoptosis. Clinical trials have investigated genistein's therapeutic potential, revealing its promise in enhancing the efficacy of traditional cancer treatments while mitigating associated toxicities. Genistein helps overcome chemoresistance in various cancers by inhibiting autophagy and promoting apoptosis. It also enhances immunotherapy by boosting immune responses and modifying antigens, but careful dosing is needed when combined with anti-PD-1 treatments to avoid reducing effectiveness.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, 4816118761, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 51656-87386, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples, 80131, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
4
|
Liu Y, Fu L, Hong L, Kou X, Zhang X, Zeng R, Zhen Y, Han B, Li J. N-Heterocyclic Carbene Organocatalysis Enabled Modular Synthesis of Fluorinated Isoflavonoids to Suppress Proliferation and Migration in Breast Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413851. [PMID: 39945327 PMCID: PMC11967825 DOI: 10.1002/advs.202413851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Indexed: 04/05/2025]
Abstract
Isoflavonoids represent a privileged scaffold among various bioactive natural products, rendering their structural diversification through green synthesis and subsequent biological evaluations a compelling research area. In this study, an NHC organocatalytic radical acylalkylation of 1,3-enynes using salicylaldehydes is presented, followed by a cascade intramolecular annulation, yielding a series of fluorinated isoflavone derivatives with substantial yields under environmental-friendly conditions. This approach, distinguished by its excellent modularity and high functional group tolerance, represents an unprecedented organocatalytic 1,3,4-trifunctionalization of 1,3-enynes designed for the green synthesis of bioactive isoflavones in a single step. Furthermore, it is demonstrated that these synthesized fluorinated isoflavonoids effectively suppress proliferation in breast cancer cells, with the most potent compound 8 also inhibiting migration in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Yan‐Qing Liu
- Anti‐infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
- Department of Pharmacythe Thirteenth People's Hospital of ChongqingChongqing Geriatrics HospitalChongqing400053China
| | - Lei‐Lei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
- Department of Pharmacythe Thirteenth People's Hospital of ChongqingChongqing Geriatrics HospitalChongqing400053China
| | - Long‐Hai Hong
- Anti‐infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
| | - Xin‐Xin Kou
- Anti‐infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
| | - Xiang Zhang
- Anti‐infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
| | - Rong Zeng
- Anti‐infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
| | - Yong‐Qi Zhen
- Department of Pharmacythe Thirteenth People's Hospital of ChongqingChongqing Geriatrics HospitalChongqing400053China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Jun‐Long Li
- Anti‐infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| |
Collapse
|
5
|
Qaed E, Liu W, Almoiliqy M, Mohamed R, Tang Z. Unleashing the potential of Genistein and its derivatives as effective therapeutic agents for breast cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3321-3343. [PMID: 39549063 DOI: 10.1007/s00210-024-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Genistein (Gen), a phytoestrogen soy isoflavone, has emerged as a promising agent in the prevention and treatment of breast cancer due to its ability to function as a natural selective estrogen receptor modulator (SERM). This review explores the multifaceted mechanisms through which Gen and its derivatives exert their anticancer effects, including modulation of the PI3K/Akt signaling pathway, regulation of apoptosis, inhibition of angiogenesis, and impacts on DNA methylation and enzyme functions. We discuss the dual roles of Gen in both enhancing and inhibiting estrogen receptor (ER)-dependent pathways., highlighting its complex interactions with ERα and ERβ. Furthermore, the review examines the synergistic effect of combining Gen with conventional chemotherapeutic agents such as doxorubicin, cisplatin, and selenium, as well as other natural compounds like lycopene. Clinical studies suggest that while isoflavones may not significantly influence breast cancer progression in general, the high consumption of soy isoflavones is associated with reduced recurrence rates in breast cancer survivors. Importantly, Gen's ability to modulate key signaling pathways and enhance the efficacy of existing treatments improves its potential as a valuable adjunct in breast cancer therapy. In conclusion, Gen and its derivatives offer a novel and promising approach for treatment of breast cancer. Continued research into their mechanisms of action and clinical applications will be essential in optimizing their therapeutic potential and translating these findings into effective clinical interventions.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wu Liu
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Marwan Almoiliqy
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Rawan Mohamed
- College of Clinical Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
| |
Collapse
|
6
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
7
|
Fan Y, Yu S, Yang Z, Cai D. Mesoporous SiO 2 based nanocomplex enzymes for enhanced chemodynamic therapy of pancreatic tumors. NANOSCALE 2025; 17:6646-6659. [PMID: 39950252 DOI: 10.1039/d4nr02406k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Chemodynamic therapy (CDT) is a therapeutic method that uses a Fenton/Fenton-like reaction to convert intracellular H2O2 into highly cytotoxic ˙OH to effectively kill cancer cells. This method is adapted to the specific characteristics of the tumor microenvironment, boasting high selectivity and strong specificity among other advantages. However, CDT still faces challenges. Glutathione (GSH), which is present in high levels in the tumor microenvironment, can consume a large amount of ˙OH, significantly limiting the effectiveness of CDT. In this study, we synthesized a core-shell nanozyme (mSiO2@MnO2) with a composite structure comprising a mesoporous silica core and a manganese dioxide (MnO2) shell. The mesoporous structure was loaded with the chemotherapeutic drug genistein (Gen) and surface-modified with polyethylene glycol (PEG) to enhance its effectiveness in treating pancreatic cancer. This formulation, denoted as the Gen@mSiO2@MnO2-PEG nanocomplex enzyme, exhibits a dual action mechanism. Firstly, upon reaching tumor cells, it releases genistein for kinetic therapy and degrades the MnO2 shell. Secondly, GSH consumption triggers Fenton-like reactions to generate ˙OH, thereby enhancing CDT. At the cellular level, the Gen@mSiO2@MnO2-PEG nanocomplex enzyme demonstrates excellent biocompatibility. It induces the production of reactive oxygen species in the pancreatic cancer cell line PANC-1, disrupting the redox balance within tumor cells, and ultimately killing them. In vivo, the Gen@mSiO2@MnO2-PEG nanocomplex enzyme selectively accumulates at the tumor sites in PANC-1 tumor-bearing mice, resulting in the inhibition of tumor growth and metastasis. This study demonstrates that core-shell nanozymes serve as an effective platform for cancer therapy, enhancing the efficacy of combined chemotherapy and CDT for pancreatic cancer.
Collapse
Affiliation(s)
- Yue Fan
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Shulin Yu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhaoshuo Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Won Y, Kim HH, Jeong SH, Bhosale PB, Abusaliya A, Heo JD, Seong JK, Ahn MJ, Kim HJ, Kim GS. The Effects of Iridin and Irigenin on Cancer: Comparison with Well-Known Isoflavones in Breast, Prostate, and Gastric Cancers. Int J Mol Sci 2025; 26:2390. [PMID: 40141034 PMCID: PMC11942201 DOI: 10.3390/ijms26062390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer, a worldwide problem and one of the leading causes of death due to uncontrolled cell proliferation, can be caused by various factors, such as genetic and environmental factors. Apoptosis is a programmed cell death mechanism that eliminates abnormal cells or renews cells. There are two main apoptotic pathways: intrinsic and extrinsic pathways. These pathways can be affected by various signaling pathways in cancer, such as the PI3K/AKT, MAPK, Wnt, and JAK/STAT pathways. Numerous approaches to cancer treatment have been studied, and among them, natural compounds have been actively researched. Flavonoids are natural compounds from fruits and vegetables and have been studied for their anti-cancer effects. Isoflavones, one of the subclasses of flavonoids, are usually found in soy food or legumes and are effective in several bioactive functions. The well-known isoflavones are genistein, daidzein, and glycitein. Irigenin and iridin can be extracted from the Iris family. Both irigenin and iridin are currently being studied for anti-inflammation, antioxidant, and anti-cancer by inducing apoptosis. In this review, we summarized five isoflavones, genistein, daidzein, glycitein, irigenin, and iridin and their effects on three different cancers: breast cancer, prostate cancer, and gastric cancer.
Collapse
Affiliation(s)
- Yaeram Won
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (Y.W.); (H.-J.K.)
- Department of Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hun-Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Se-Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Jeong-Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea;
| | - Je-Kyung Seong
- Laboratory of Developmental Biology and Goenomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Mee-Jung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea;
| | - Hye-Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (Y.W.); (H.-J.K.)
- Department of Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Gon-Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| |
Collapse
|
9
|
Hong Y, Baik H, Lee J, Oh WS, Ryu J, Baek SJ. A novel thrombospondin-1 variant as a potential diagnostic biomarker and therapeutic target in canine mammary tumor and osteosarcoma cells. J Vet Sci 2025; 26:e22. [PMID: 40183909 PMCID: PMC11972944 DOI: 10.4142/jvs.24165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/03/2024] [Accepted: 01/05/2025] [Indexed: 04/05/2025] Open
Abstract
IMPORTANCE Thrombospondin-1 (TSP1) is a vital glycoprotein that plays a key role in critical biological functions, including cell migration, invasion, angiogenesis, and proliferation. Understanding the roles of its variants, particularly TSP1 variant (TSP1V), is critical for cancer biology and therapy. OBJECTIVE This study examined the expression of the transcriptional variant TSP1V, focusing on canine TSP1 sequences. METHODS The expression of canine TSP1 sequences was analyzed using a reverse transcription polymerase chain reaction (RT-PCR) to identify the TSP1 wild-type (dTSP1W) and novel canine TSP1V transcripts (dTSP1V). The effects of damnacanthal and genistein, anticancer compounds, on the viability of canine mammary and osteosarcoma cell lines were assessed by modulating the expression ratios of TSP1V to TSP1W at the transcriptional level. RT-PCR analysis compared the relative dTSP1V and dTSP1W concentrations in normal and tumor canine mammary tissues. RESULTS Two dTSP1V were identified. Treatment with damnacanthal and genistein decreased cell proliferation in canine mammary and osteosarcoma cell lines, associated with changes in the TSP1V to TSP1W expression ratio. RT-PCR analysis revealed increased dTSP1V expression in normal tissues, while dTSP1W expression was elevated in tumor tissues. CONCLUSIONS AND RELEVANCE TSP1V may be a potential diagnostic biomarker and therapeutic target for mammary tumors and osteosarcoma in dogs. The differential expression of dTSP1V and dTSP1W in normal versus tumor tissues underscores the importance of TSPIV in cancer biology, expanding the understanding of its role beyond human thyroid cancer and laying the groundwork for future research in other cancers and species.
Collapse
Affiliation(s)
- Yukyung Hong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Heyeon Baik
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Jeongmin Lee
- Korea Animal Medical Center, Cheongju 28651, Korea
| | - Won Seok Oh
- Center for Veterinary Integrative Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang 10408, Korea.
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
10
|
Dey S, Dinakar YH, R S, Jain V, Jain R. Navigating the therapeutic landscape for breast cancer: targeting breast cancer stem cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2387-2406. [PMID: 39441235 DOI: 10.1007/s00210-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is a common and deadly malignancy that affects women globally, and breast cancer stem cells (BCSCs) play an important role in tumorigenesis, development, metastasis, and recurrence. Traditional therapies often fail to eliminate BCSCs, leading to treatment resistance and relapse. This review explores the therapeutic strategies which are designed to target BCSCs, including inhibition of key signaling pathway and targeting receptor. This paper also explores the approaches to targeting BCSCs including chemotherapy, phytomedicines, and nanotechnology. Nanotechnology has gained a lot of importance in cancer therapy because of its ability to deliver therapeutic agents with more precision and minimal side effects. Various chemotherapeutic drugs, siRNAs, or gene editing tools are delivered efficiently with the use of nanocarriers which target pathways, receptors, and proteins associated with BCSCs. Over the past few years, stimuli-responsive and receptor-targeted nanocarriers have been explored for better therapeutic effects. In recent times, strategies such as chimeric antigen receptor (CAR) T-cell therapy, ablation therapy, and cell-free therapies are explored for targeting these stem cells. This review provides a recent developmental overview of strategies to attack BCSCs from conventional chemotherapeutic agents to nanotechnological platforms such as polymeric, lipidic, and metal-based nanoparticles and advanced technologies like CAR T cell therapies.
Collapse
Affiliation(s)
- Soudeep Dey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Soundarya R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| |
Collapse
|
11
|
Silva-Pinto PA, de Pontes JTC, Aguilar-Morón B, Canales CSC, Pavan FR, Roque-Borda CA. Phytochemical insights into flavonoids in cancer: Mechanisms, therapeutic potential, and the case of quercetin. Heliyon 2025; 11:e42682. [PMID: 40084006 PMCID: PMC11904581 DOI: 10.1016/j.heliyon.2025.e42682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Quercetin, a flavonoid known for its potent antioxidant and anti-inflammatory properties, has gained attention in cancer therapy due to its ability to modulate key molecular pathways involved in tumor progression and immune evasion. This review provides a comprehensive analysis of quercetin's effects on pathways such as PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and JAK/STAT, which are central to cancer cell survival, proliferation, and apoptosis. Through inhibition of PI3K/Akt/mTOR and MAPK/ERK signaling, quercetin promotes apoptosis and reduces proliferation specifically in cancer cells while sparing healthy cells. Additionally, quercetin downregulates NF-κB activity and modulates JAK/STAT signaling, enhancing immune recognition of cancer cells and decreasing inflammation in the tumor microenvironment. Emerging nanoformulation strategies are also discussed, highlighting how nanotechnology can improve quercetin's bioavailability and targeting capabilities. Unlike other reviews, this work uniquely integrates molecular insights with cutting-edge nanoformulations, showcasing quercetin's dual potential as a therapeutic agent and an immune modulator in the evolving landscape of cancer treatment. This review underscores quercetin's multifaceted role in cancer treatment and suggests future directions to optimize its clinical efficacy, particularly in combination with conventional therapies.
Collapse
Affiliation(s)
- Piero Alex Silva-Pinto
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa, 04000, Republic of Peru
| | - Janaína Teixeira Costa de Pontes
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Brigitte Aguilar-Morón
- Facultad de Ingeniería de Procesos – Universidad Nacional de San Agustín, Arequipa, Arequipa, Republic of Peru
| | | | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa, 04000, Republic of Peru
| |
Collapse
|
12
|
Yu XP, Zheng LJ, Yan JL, Luo Y, Song XL, Fu TY, Peng XL, Du JC, Han B, Li F, Zhu YF. Genistein resists castration-resistant prostate cancer by inhibiting the androgen receptor pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-17. [PMID: 39985785 DOI: 10.1080/10286020.2025.2464695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Prostate cancer is a prevalent malignancy, often diagnosed at advanced stages and associated with poor prognosis. Genistein, a soybean isoflavone, has demonstrated antitumor effects against castration-resistant prostate cancer in vivo. Our results indicate that genistein effectively downregulates the expression of key enzymes involved in the de novo synthesis pathway, namely AKR1C3, SRD5A2, CYP11A1, and 3βHSD, thus blocking androgen synthesis in CRPC cells. Additionally, genistein inhibits the activation and nuclear translocation of the AR. Collectively, these findings support the potential of genistein as a therapeutic agent for CRPC, highlighting its role in both inhibiting androgen synthesis and disrupting AR signaling.
Collapse
Affiliation(s)
- Xiao-Ping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu 610106, China
| | - Lu-Jie Zheng
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Jia-Li Yan
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Yan Luo
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Xiao-Long Song
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Tian-Yu Fu
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Xiao-Li Peng
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Jing-Chang Du
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Bin Han
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Fei Li
- Nanchong Health School of Sichuan Province, Nanchong 637000, China
| | - Yan-Feng Zhu
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
13
|
Naponelli V, Piscazzi A, Mangieri D. Cellular and Molecular Mechanisms Modulated by Genistein in Cancer. Int J Mol Sci 2025; 26:1114. [PMID: 39940882 PMCID: PMC11818640 DOI: 10.3390/ijms26031114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Genistein (4',5,7-trihydroxyisoflavone) is a phytoestrogen belonging to a subclass of natural flavonoids that exhibits a wide range of pharmacological functions, including antioxidant and anti-inflammatory properties. These characteristics make genistein a valuable phytochemical compound for the prevention and/or treatment of cancer. Genistein effectively inhibits tumor growth and dissemination by modulating key cellular mechanisms. This includes the suppression of angiogenesis, the inhibition of epithelial-mesenchymal transition, and the regulation of cancer stem cell proliferation. These effects are mediated through pivotal signaling pathways such as JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin. Moreover, genistein interferes with the function of specific cyclin/CDK complexes and modulates the activation of Bcl-2/Bax and caspases, playing a critical role in halting tumor cell division and promoting apoptosis. The aim of this review is to discuss in detail the key cellular and molecular mechanisms underlying the pleiotropic anticancer effects of this flavonoid.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Annamaria Piscazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
14
|
Shpigel J, Luciano EF, Ukandu B, Sauane M, de la Parra C. Soy Isoflavone Genistein Enhances Tamoxifen Sensitivity in Breast Cancer via microRNA and Glucose Metabolism Modulation. Int J Mol Sci 2025; 26:733. [PMID: 39859445 PMCID: PMC11765730 DOI: 10.3390/ijms26020733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer treatment has advanced significantly, particularly for estrogen receptor-positive (ER+) tumors. Tamoxifen, an estrogen antagonist, is widely used; however, approximately 40% of patients develop resistance. Recent studies indicate that microRNAs, especially miR-155, play a critical role in this resistance. Our analysis of MCF-7 tamoxifen-sensitive (TAM-S) and tamoxifen-resistant (TAM-R) cells revealed that miR-155 is significantly upregulated in TAM-R cells. Overexpression of miR-155 in TAM-S cells increased resistance to tamoxifen. Additionally, genistein, a natural isoflavone from soybeans, effectively downregulated miR-155 and its targets associated with apoptosis and glucose metabolism, including STAT3 and hexokinase 2 (HK2). Notably, genistein also significantly decreased cell migration, suggesting potential anti-metastatic effects. Furthermore, genistein reduced glucose consumption, indicating its potential to overcome miR-155-mediated tamoxifen resistance and modulate the Warburg effect. These findings highlight genistein as a promising therapeutic agent for overcoming tamoxifen resistance in ER+ breast cancer and merit further investigation.
Collapse
Affiliation(s)
- Jessica Shpigel
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA; (J.S.); (E.F.L.); (B.U.)
| | - Emilia F. Luciano
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA; (J.S.); (E.F.L.); (B.U.)
| | - Blessing Ukandu
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA; (J.S.); (E.F.L.); (B.U.)
| | - Moira Sauane
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA;
| | - Columba de la Parra
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA; (J.S.); (E.F.L.); (B.U.)
- Biochemistry, Biology, and Chemistry Ph.D. Programs, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
15
|
Liu X, Zheng T, Bao Y, Li P, Zhao T, Liu Y, Wang H, Sun C. Genistein Implications in Radiotherapy: Kill Two Birds with One Stone. Molecules 2025; 30:188. [PMID: 39795243 PMCID: PMC11723059 DOI: 10.3390/molecules30010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
More than 70% of cancer patients receive radiotherapy during their treatment, with consequent various side effects on normal cells due to high ionizing radiation doses despite tumor shrinkage. To date, many radioprotectors and radiosensitizers have been investigated in preclinical studies, but their use has been hampered by the high toxicity to normal cells or poor tumor radiosensitization effects. Genistein is a naturally occurring isoflavone found in soy products. It selectively sensitizes tumor cells to radiation while protecting normal cells from radiation-induced damage, thus improving the efficacy of radiotherapy and consequent therapeutic outcomes while reducing adverse effects. Genistein protects normal cells by its potent antioxidant effect that reduces oxidative stress and mitigates radiation-induced apoptosis and inflammation. Conversely, genistein increases the radiosensitivity of tumor cells through specific mechanisms such as the inhibition of DNA repair, the arrest of the cell cycle in the G2/M phase, the generation of reactive oxygen species (ROS), and the modulation of apoptosis. These effects increase the cytotoxicity of radiation. Preclinical studies demonstrated genistein efficacy in various cancer models, such as breast, prostate, and lung cancer. Despite limited clinical studies, the existing evidence supports the potential of genistein in improving the therapeutic effect of radiotherapy. Future research should focus on dosage optimization and administration, the exploration of combination therapies, and long-term clinical trials to establish genistein benefits in clinical settings. Hence, the unique ability of genistein to improve the radiosensitivity of tumor cells while protecting normal cells could be a promising strategy to improve the efficacy and safety of radiotherapy.
Collapse
Affiliation(s)
- Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Bao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China;
| | - Hui Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Chaichian S, Nikfar B, Bidgoli SA, Moazzami B. The Role of Genistein and its Derivatives in Ovarian Cancer: New Perspectives for Molecular Mechanisms and Clinical Applications. Curr Med Chem 2025; 32:907-922. [PMID: 37921172 DOI: 10.2174/0109298673251713231019091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023]
Abstract
Genistein (GEN) is a member of the polyphenol family, known chiefly for its effects on metabolic diseases and gynecological disorders. GEN has anti-cancer properties by inhibiting tumor proliferation, tumor metastasis, invasion, migration, and inducing apoptosis. Ovarian cancer (OC) is ranked 7th among the most common gynecological cancers. Despite its low incidence compared to other cancers, it is the first cause of death among gynecologic malignancies. Surgery and chemotherapy are the main options for treating this fatal cancer. Therefore, further investigations into GEN may aid in the discovery of novel therapeutics for preventing and/or treating OC. In this review, we aim to investigate the role of GEN in ovarian cancer. We investigate the anti-tumor effects of GEN on OC cell lines, including inducing apoptosis, suppressing tumor growth, and inhibiting metastasis. Also, we review the studies investigating GEN's roles as an adjuvant in therapeutic regimens with other chemotherapeutic agents (e.g., cisplatin, quercetin, and gemcitabine).
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University, Tehran, Iran
| | - Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Singh DD. Epigenetic Mechanisms of Endocrine-Disrupting Chemicals in Breast Cancer and Their Impact on Dietary Intake. J Xenobiot 2024; 15:1. [PMID: 39846533 PMCID: PMC11755457 DOI: 10.3390/jox15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Addressing the consequences of exposure to endocrine-disrupting chemicals (EDCs) demands thorough research and elucidation of the mechanism by which EDCs negatively impact women and lead to breast cancer (BC). Endocrine disruptors can affect major pathways through various means, including histone modifications, the erroneous expression of microRNA (miRNA), DNA methylation, and epigenetic modifications. However, it is still uncertain if the epigenetic modifications triggered by EDCs can help predict negative outcomes. Consequently, it is important to understand how different endocrine disrupters or signals interact with epigenetic modifications and regulate signalling mechanisms. This study proposes that the epigenome may be negatively impacted by several EDCs, such as cadmium, arsenic, lead, bisphenol A, phthalates, polychlorinated biphenyls and parabens, organochlorine, and dioxins. Further, this study also examines the impact of EDCs on lifestyle variables. In breast cancer research, it is essential to consider the potential impacts of EDC exposure and comprehend how EDCs function in tissues.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
18
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
19
|
Shannar A, Chou PJ, Peter R, Dave PD, Patel K, Pan Y, Xu J, Sarwar MS, Kong AN. Pharmacodynamics (PD), Pharmacokinetics (PK) and PK-PD Modeling of NRF2 Activating Dietary Phytochemicals in Cancer Prevention and in Health. CURRENT PHARMACOLOGY REPORTS 2024; 11:6. [PMID: 39649473 PMCID: PMC11618211 DOI: 10.1007/s40495-024-00388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Purpose of Review Dietary phytochemicals, bioactive compounds derived from plants, have gained increasing attention for their potential role in cancer prevention. Among these, NRF2 (nuclear factor erythroid 2-related factor 2) activating dietary phytochemicals such as curcumin, sulforaphane, ursolic acid, and cyanidin have demonstrated significant antioxidant and anti-inflammatory properties, making them promising agents in chemoprevention. This review examines the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of these dietary phytochemicals, with a focus on their NRF2-mediated effects in cancer prevention. Recent Findings Preclinical studies have highlighted the potential of these dietary phytochemicals to modulate oxidative stress and inflammation, key drivers of carcinogenesis. We explore the complexity of their PK/PD properties, influenced by factors such as bioavailability, metabolism, and drug interactions. While most of these phytochemicals follow two compartmental PK, their anti-oxidant and anti-inflammatory effects follow the indirect response (IDR) model. Furthermore, we discuss the application of physiologically based pharmacokinetic (PBPK) modeling to simulate the behavior of these compounds in humans, providing insights for clinical translation. Summary The integration of PK-PD analysis into the development of dietary phytochemical-based therapies offers a pathway to optimize dosing strategies, enhance therapeutic efficacy, and improve safety. This review underscores the importance of these compounds as part of cancer interception strategies, particularly in the early stages of cancer development, where they may offer a natural, less toxic alternative to conventional therapies. Graphical Abstract
Collapse
Affiliation(s)
- Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Parv Dushyant Dave
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Komal Patel
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yuxin Pan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jiawei Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| |
Collapse
|
20
|
Dhanasekaran S, Selvadoss PP, Manoharan SS, Jeyabalan S, Muthu Laxmi V, Choudhury AA, Rajeswari VD, Ramanathan G, Thamaraikani T, Subramaniyan V, Sekar M, Shing WL. Targeting Nudix Hydrolase 5 with Bioactive Flavonoids: Molecular Dynamics and Docking Studies for Breast Cancer Therapy. Cell Biochem Biophys 2024:10.1007/s12013-024-01609-x. [PMID: 39638981 DOI: 10.1007/s12013-024-01609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer (BC) is the most prevalent malignancy among women globally and the leading cause of cancer-related mortality. Consequently, there is an urgent need for new, effective treatment strategies for breast cancer. Research has shown that the enzyme nudix hydrolase 5 (NUDT5) plays a critical role in promoting breast cancer aggressiveness and serves as a key regulator of oncogenic pathways. The development of NUDT5 inhibitors presents a viable strategy for enhancing treatment results in managing BC. The ability of the flavonoids to modulate key biochemical pathways and improve therapeutic outcomes highlights their promise in developing novel breast cancer treatments. Hence, the main objective of the present investigation is to identify the potential interaction of structurally diverse bioactive flavonoids with the active site of the target NUDT5. Our docking analysis revealed that the flavonoids such as naringin and genistein have shown a significant binding association with residues Arg51, Asp60, Gln82, Arg84, Ala96, Leu98, Glu112, Glu116, Met132, Cys139, Ile141, and Glu166 of NUDT5, suggesting its potential as a potent inhibitor. The stabilizing effects of these leads (naringin and genistein) were further validated using molecular dynamics investigations, including RMSD, RMRF, Rg, SASA, PCA, and FEL. The results of the MD simulation studies evidenced a more significant interaction between genistein and NUDT5, indicating a steady and robust affinity, making genistein a more promising inhibitor. In conclusion, the flavonoid genistein has a strong potential as a therapeutic agent for targeting NUDT5 in breast cancer treatment making it viable candidates for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sivaraman Dhanasekaran
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India.
| | - Pradeep Pushparaj Selvadoss
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Solomon Sundar Manoharan
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Srikanth Jeyabalan
- Department of Pharmacology, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - V Muthu Laxmi
- Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | | | | | | | - Tamilanban Thamaraikani
- Department of Pharmacology, Faculty of Medicine, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Petaling Jaya, Malaysia
| | | | - Wong Ling Shing
- INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
21
|
Arzuk E, Armağan G. Genistein and daidzein induce ferroptosis in MDA-MB-231 cells. J Pharm Pharmacol 2024; 76:1599-1608. [PMID: 39245043 DOI: 10.1093/jpp/rgae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES In recent years, there has been a growing interest in targeting ferroptosis for the treatment and prevention of multiple cancers. This study aimed to assess the contribution of ferroptosis to the antiproliferative effects of genistein (GN) and daidzein (DZ) in breast cancer cell lines. METHODS MDA-MB-231 and MCF-7 cells were employed as an in vitro model. The antiproliferative effects of GN and DZ were determined by WST-1 assay in the presence of specific inhibitors of different cell death pathways. The mRNA expressions of Gpx4 and Fsp-1, the levels of lipid peroxidation, glutathione (GSH)/glutathione disulfide (GSSG) ratio, and intracellular iron ion content were assessed in GN- or DZ-treated cells. RESULTS GN and DZ were found to cause ferroptotic cell death in MDA-MB-231, as confirmed by the reversal of viability when cells were pretreated with ferrostatin-1. Furthermore, both phytochemicals induced biochemical markers of ferroptosis, including lipid peroxidation and iron ions levels, and decreased GSH/GSSG levels. The mRNA expression levels of the main anti-ferroptotic genes, Gpx4 and Fsp-1, were diminished by the treatment of both phytochemicals. Surprisingly, ferroptosis did not play a role in GN- or DZ-induced cell death in MCF-7 cells. CONCLUSION Our findings highlight the potential of GN and DZ as ferroptosis inducers in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35080, İzmir, Turkey
| | - Güliz Armağan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35080, İzmir, Turkey
| |
Collapse
|
22
|
Chakravarti B, Rajput S, Srivastava A, Sharma LK, Sinha RA, Chattopadhyay N, Siddiqui JA. A Systematic Review and Meta-Analysis of the Effects of Dietary Isoflavones on Female Hormone-Dependent Cancers for Benefit-Risk Evaluation. Phytother Res 2024; 38:6062-6081. [PMID: 39480044 DOI: 10.1002/ptr.8358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Female hormone-dependent cancers depend on estrogen for their growth. Numerous studies have explored the antitumor effect of dietary isoflavones on female hormone-dependent cancers. Still, few clinical evidence supports the use of isoflavones in female hormone-dependent cancer patients. This study was performed to examine the impact of dietary isoflavones on tumor growth of female hormone-dependent cancers and accelerate the transformation of research from bench to bedside. We searched PubMed Medline, Web of Science, and Google Scholar for relevant articles related to the effect of dietary isoflavone on tumor growth of experimental animal models of female hormone-dependent cancers from 1998 to 2024. The effects of dietary isoflavones on tumor growth were analyzed between the control and treatment groups using comprehensive meta-analysis software (CMA). We included 30 studies describing tumor growth focused on female hormone-dependent cancer types, including breast, ovarian, and uterine cancers. Overall, a pooled analysis revealed that dietary isoflavones reduced tumor volume (Hedge's g = -1.151, 95% CI = -1.717 to -0.585, p = 0.000) and tumor weight (Hedge's g = -2.584, 95% CI = -3.618 to -1.549, p = 0.000). On the other hand, dietary isoflavones increased tumor area (Hedge's g = 1.136, 95% CI = 0.752 to 1.520, p = 0.000). Dietary isoflavones have potential benefits and risks in female hormone-dependent cancers. Therefore, caution should be exercised when considering the intake of dietary isoflavones in female hormone-dependent cancer patients, particularly in the form of supplements.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Stem Cell/Cell culture lab Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Swati Rajput
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anubhav Srivastava
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, Lucknow, Uttar Pradesh, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, Lucknow, Uttar Pradesh, India
| | - Rohit Anthony Sinha
- Stem Cell/Cell culture lab Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jawed Akhtar Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
23
|
Eren E, Das J, Tollefsbol TO. Polyphenols as Immunomodulators and Epigenetic Modulators: An Analysis of Their Role in the Treatment and Prevention of Breast Cancer. Nutrients 2024; 16:4143. [PMID: 39683540 PMCID: PMC11644657 DOI: 10.3390/nu16234143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer poses a substantial health challenge for women globally. Recently, there has been a notable increase in scholarly attention regarding polyphenols, primarily attributed to not only the adverse effects associated with conventional treatments but also their immune-preventive impacts. Polyphenols, nature-derived substances present in vegetation, including fruits and vegetables, have received considerable attention in various fields of science due to their probable wellness merits, particularly in the treatment and hindrance of cancer. This review focuses on the immunomodulatory effects of polyphenols in breast cancer, emphasizing their capacity to influence the reaction of adaptive and innate immune cells within the tumor-associated environment. Polyphenols are implicated in the modulation of inflammation, the enhancement of antioxidant defenses, the promotion of epigenetic modifications, and the support of immune functions. Additionally, these compounds have been shown to influence the activity of critical immune cells, including macrophages and T cells. By targeting pathways involved in immune evasion, polyphenols may augment the capacity of the defensive system to detect and eliminate tumors. The findings suggest that incorporating polyphenol-rich foods into the diet could offer a promising, collaborative (integrative) approach to classical breast cancer remedial procedures by regulating how the defense mechanism interacts with the disease.
Collapse
Affiliation(s)
- Esmanur Eren
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Jyotirmoyee Das
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
24
|
Azevedo T, Ferreira T, Peña‐Corona SI, Cortes H, Silva‐Reis R, da Costa RMG, Faustino‐Rocha AI, Oliveira PA, Calina D, Cardoso SM, Büsselberg D, Leyva‐Gómez G, Sharifi‐Rad J, Cho WC. Natural products‐based antiangiogenic agents: New frontiers in cancer therapy. FOOD FRONTIERS 2024; 5:2423-2466. [DOI: 10.1002/fft2.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractAngiogenesis, vital for tumor growth and metastasis, is a promising target in cancer therapy. Natural compounds offer potential as antiangiogenic agents with reduced toxicity. This review provides a comprehensive overview of natural product‐based antiangiogenic therapies, focusing on molecular mechanisms and therapeutic potential. A systematic search identified relevant articles from 2019 to 2023. Various natural compounds, including polyphenols, terpenes, alkaloids, cannabinoids, omega‐3 fatty acids, polysaccharides, proteins, and carotenoids, were investigated for their antiangiogenic properties. Challenges such as dose standardization, routes of administration, and potential side effects remain. Further studies, including in‐depth animal models and human epidemiological studies, must elucidate clinical efficacy and safety. Synergistic effects with current antiangiogenic therapies, such as bevacizumab and tyrosine kinase inhibitors, should be explored. Additionally, the potential hormone‐dependent effects of compounds like genistein highlight the need for safety evaluation. In conclusion, natural products hold promise as adjunctive therapies to conventional antineoplastic drugs in modulating angiogenesis in cancer. However, robust clinical trials are needed to validate preclinical findings and ensure safety and efficacy.
Collapse
Affiliation(s)
- Tiago Azevedo
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Tiago Ferreira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Sheila I. Peña‐Corona
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genómica Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Ciudad de México Mexico
| | - Rita Silva‐Reis
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC) Porto Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering University of Porto Porto Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering University of Porto Porto Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology Federal University of Maranhão (UFMA), UFMA University Hospital (HUUFMA) São Luís Brazil
| | - Ana I. Faustino‐Rocha
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Comprehensive Health Research Center, Department of Zootechnics, School of Sciences and Technology University of Évora Evora Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| | - Susana M. Cardoso
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | | | - Gerardo Leyva‐Gómez
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Javad Sharifi‐Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo Veracruz Mexico
- Department of Medicine, College of Medicine Korea University Seoul Republic of Korea
- Facultad de Medicina Universidad del Azuay Cuenca Ecuador
| | - William C. Cho
- Department of Clinical Oncology Queen Elizabeth Hospital Kowloon Hong Kong
| |
Collapse
|
25
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
26
|
Neagu AN, Josan CL, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int J Mol Sci 2024; 25:11078. [PMID: 39456858 PMCID: PMC11508170 DOI: 10.3390/ijms252011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| |
Collapse
|
27
|
Song L, Wang Y, Guo Y, Bulale S, Zhou M, Yu F, He L. Engineering aptamers to enhance their interaction with protein target for selective inhibition of cell surface receptors. Int J Biol Macromol 2024; 278:134989. [PMID: 39181365 DOI: 10.1016/j.ijbiomac.2024.134989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Cell surface receptors play a key role in intracellular signaling, and their overexpression and activation are among the drivers of multiple diseases. Selective inhibition of cell surface receptors is important for regulating intracellular signaling pathways and cell behavior. Here, we design engineered aptamers to selectively inhibit receptor function. In this strategy, the aptamer specifically recognizing the extracellular structural domain of the EGFR, was conjugated to an adamantane moiety through linking arms of various lengths in order to obtain better performances toward EGFR. These interactions inhibit EGFR dimerization, thereby impeding the activation of downstream signaling pathways. It is shown that the adamantane-modified aptamers exhibit superior inhibition of downstream effector proteins relative to the unmodified aptamers. The optimal inhibitory effect was observed with a linker arm of 40 T-base in length. Notably, the best-performing adamantane-modified aptamer specifically binds to A549 cells with a dissociation constant (22.6 ± 4.5 nM) that is approximately 4-fold lower than that of the parent EGFR aptamer (94.4 ± 21.9 nM). We further combine the use of the adamantane-modified aptamer with that of genistein, a natural isoflavone compound with EGFR tyrosine kinase inhibition activity, to enhance the inhibitory effect on EGFR and its downstream signaling employing a synergistic action. This study is expected to provide a versatile approach for the improvement of existing aptamers obtaining increased selective inhibition of cell surface receptors.
Collapse
Affiliation(s)
- Lulu Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yujing Guo
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shajidan Bulale
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Miaomiao Zhou
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
28
|
Skonieczna M, Plasa K, Borowska E, Jakubowska A, Szeja W, Kasprzycka A. In Vitro Studies of Genistein Lipophilic Derivatives as Potential UV Radiation Protectors. Pharmaceuticals (Basel) 2024; 17:1166. [PMID: 39338329 PMCID: PMC11435217 DOI: 10.3390/ph17091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The major environmental factor responsible for skin cancer is ultraviolet (UV) radiation, present in sunlight. UV radiation is directly linked to the production of reactive oxygen species (ROS), which accumulate in exposed cells and cause serious damage. The antioxidant systems present in cells cannot always sufficiently neutralize the ROS. Therefore, supplementation with exogenous antioxidants has been proposed. The antioxidant properties of some isoflavones, such as genistein, have already been well-proven. Genistein has limited bioavailability. However, its derivatives, with increased lipophilicity, could facilitate its transfer into cells, where they can expose its antioxidative potential. This study aims to investigate three genistein derivatives, with greater lipophilicity than the native compound, regarding their cytotoxicity, antioxidative properties, and effect on the cell cycle in normal human dermal fibroblasts (NHDF) and a melanoma cancer cell line (Me45). Results showed that lipophilic modification of the genistein molecule changes the biological response of NHDF and Me45 cell lines to UV-C radiation, but the lipophilicity cannot be directly linked with the activity of the compounds. A comparison of the effects of the genistein derivatives on healthy and cancerous cells suggests that their mode of action strongly depends on the type of cell involved.
Collapse
Affiliation(s)
- Magdalena Skonieczna
- Department of Systems Engineering and Biology, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Kinga Plasa
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Borowska
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Agata Jakubowska
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Wiesław Szeja
- Department of Organic, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Anna Kasprzycka
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
- Department of Organic, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
29
|
Zhou X, Alimu A, Zhao J, Xu X, Li X, Lin H, Lin Z. Paeonia genus: a systematic review of active ingredients, pharmacological effects and mechanisms, and clinical applications for the treatment of cancer. Arch Pharm Res 2024; 47:677-695. [PMID: 39306813 DOI: 10.1007/s12272-024-01512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
The main active constituents of plants of the Paeonia genus are known to have antitumor activity. Hundreds of compounds with a wide range of pharmacological activities, including monoterpene glycosides, flavonoids, tannins, stilbenes, triterpenoids, steroids, and phenolic compounds have been isolated. Among them, monoterpenes and their glycosides, flavonoids, phenolic acids, and other constituents have been shown to have good therapeutic effects on various cancers, with the main mechanisms including the induction of apoptosis; the inhibition of tumor cell proliferation, migration, and invasion; and the modulation of immunity. In this study, many citations related to the traditional uses, phytochemical constituents, antitumor effects, and clinical applications of the Paeonia genus were retrieved from popular and widely used databases such as Web of Science, Science Direct, Google Scholar, and PubMed using different search strings. A systematic review of the antitumor constituents of the Paeonia genus and their therapeutic effects on various cancers was conducted and the mechanisms of action and pathways of these phytochemicals were summarised to provide a further basis for antitumor research.
Collapse
Affiliation(s)
- Xinrui Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Aikebaier Alimu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinyi Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaowen Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
30
|
Ghosh S, Das SK, Sinha K, Ghosh B, Sen K, Ghosh N, Sil PC. The Emerging Role of Natural Products in Cancer Treatment. Arch Toxicol 2024; 98:2353-2391. [PMID: 38795134 DOI: 10.1007/s00204-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata, 700064, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata, 700013, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
31
|
Xing Y, Shen W, Sun C, Wang R, Fan B, Liang G. Genistein-Chitosan Derivative Nanoparticles for Targeting and Enhancing the Anti-Breast Cancer Effect of Tamoxifen In Vitro. J Pharm Sci 2024; 113:2575-2583. [PMID: 38801972 DOI: 10.1016/j.xphs.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Tamoxifen (TAM) is a classical anti-estrogenic drug that antagonizes estrogen by competitively binding to estrogen receptor α (ERα). However, drug resistance to TAM remains a significant challenge in breast cancer treatment. In this study, we aimed to design an actively targeted drug delivery system to enhance the proliferation inhibitory effects of TAM on ER positive breast cancer cells. Herein, chitosan (CS) was modified with genistein (GEN) to obtain the actively targeted GEN-CS. The TAM-loaded nanoparticles (TAM-GEN-CS-NPs) were constructed using an ionic-crosslinking method, with GEN-CS as the carrier material and sodium tripolyphosphate (TPP) as the crosslinking agent. As a result, TAM-GEN-CS-NPs exhibited a spherical morphology with an average size of 299.8 nm. The encapsulation efficiency and drug loading content were 85.77% and 14.13 µg/mg, respectively. Compared with free TAM, TAM-GEN-CS-NPs displayed obvious slow-release performance. In vitro cellular assays demonstrated that TAM-GEN-CS-NPs had active targeting and proliferation inhibitory effects on MCF-7 cells. The IC50 of TAM and TAM-GEN-CS-NPs were 10.25 µg/mL and 7.22 µg/mL, respectively. More importantly, the combination index (CI) value of TAM and GEN was less than 1, indicating synergistic effects. Therefore, TAM-GEN-CS-NPs hold the potential to enhance TAM therapy for breast cancer through active targeting and synergistic treatment strategies.
Collapse
Affiliation(s)
- Yang Xing
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Weiguang Shen
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Chuan Sun
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Ruyi Wang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Bo Fan
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Guixian Liang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| |
Collapse
|
32
|
Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol 2024; 15:1387866. [PMID: 39104398 PMCID: PMC11298448 DOI: 10.3389/fphar.2024.1387866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
33
|
Azbazdar Y, Sosa EA, Monka J, Kurmangaliyev YZ, Tejeda-Muñoz N. Interactions between genistein and Wnt pathway in colon adenocarcinoma and early embryos. Heliyon 2024; 10:e32243. [PMID: 38947477 PMCID: PMC11214441 DOI: 10.1016/j.heliyon.2024.e32243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
The Wnt signaling pathway is one of the most ancient and pivotal signaling cascades, governing diverse processes in development and cancer regulation. Within the realm of cancer treatment, genistein emerges as a promising candidate due to its multifaceted modulation of various signaling pathways, including the Wnt pathway. Despite promising preclinical studies, the precise mechanisms underlying genistein's therapeutic effects via Wnt modulation remain elusive. In this study, we unveil novel insights into the therapeutic mechanisms of genistein by elucidating its inhibitory effects on Wnt signaling through macropinocytosis. Additionally, we demonstrate its capability to curtail cell growth, proliferation, and lysosomal activity in the SW480 colon adenocarcinoma cell model. Furthermore, our investigation extends to the embryonic context, where genistein influences gene regulatory networks governed by endogenous Wnt pathways. Our findings shed light on the intricate interplay between genistein, Wnt signaling, membrane trafficking, and gene regulation, paving the way for further exploration of genistein's therapeutic potential in cancer treatment strategies.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Eric A. Sosa
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | | | - Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
34
|
Li H, Zeng Y, Zi J, Hu Y, Ma G, Wang X, Shan S, Cheng G, Xiong J. Dietary Flavonoids Consumption and Health: An Umbrella Review. Mol Nutr Food Res 2024; 68:e2300727. [PMID: 38813726 DOI: 10.1002/mnfr.202300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/07/2024] [Indexed: 05/31/2024]
Abstract
SCOPE The current evidence between dietary flavonoids consumption and multiple health outcomes is inadequate and inconclusive. To summarize and evaluate the evidence for dietary flavonoids consumption and multiple health outcomes, an umbrella review of meta-analyses and systematic reviews is conducted. METHODS AND RESULTS PubMed, Ovid-EMBASE, and the Cochrane Database of Systematic Reviews are searched up to January 2024. The study includes a total of 32 articles containing 24 unique health outcomes in this umbrella review. Meta-analyses are recalculated by using a random effects model. Separate analyses are performed based on the kind of different flavonoid subclasses. The study finds some unique associations such as flavonol and gastric cancer, isoflavone and uterine fibroids and endometrial cancer, total flavonoids consumption and lung cancer, ovarian cancer, and prostate cancer. Overall, the study confirms the negative associations between dietary flavonoids consumption and type 2 diabetes mellitus, cardiovascular diseases, breast cancer, colorectal cancer, lung cancer, and mortality, while positive associations are observed for prostate cancer and uterine fibroids. CONCLUSION Although dietary flavonoids are significantly associated with many outcomes, firm generalizable conclusions about their beneficial or harmful effects cannot be drawn because of the low certainty of evidence for most of outcomes. More well-designed primary studies are needed.
Collapse
Affiliation(s)
- Haoqi Li
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaxian Zeng
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zi
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Hu
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Guochen Ma
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| |
Collapse
|
35
|
Konstantinou EK, Gioxari A, Dimitriou M, Panoutsopoulos GI, Panagiotopoulos AA. Molecular Pathways of Genistein Activity in Breast Cancer Cells. Int J Mol Sci 2024; 25:5556. [PMID: 38791595 PMCID: PMC11122029 DOI: 10.3390/ijms25105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The most common malignancy in women is breast cancer. During the development of cancer, oncogenic transcription factors facilitate the overproduction of inflammatory cytokines and cell adhesion molecules. Antiapoptotic proteins are markedly upregulated in cancer cells, which promotes tumor development, metastasis, and cell survival. Promising findings have been found in studies on the cell cycle-mediated apoptosis pathway for medication development and treatment. Dietary phytoconstituents have been studied in great detail for their potential to prevent cancer by triggering the body's defense mechanisms. The underlying mechanisms of action may be clarified by considering the role of polyphenols in important cancer signaling pathways. Phenolic acids, flavonoids, tannins, coumarins, lignans, lignins, naphthoquinones, anthraquinones, xanthones, and stilbenes are examples of natural chemicals that are being studied for potential anticancer drugs. These substances are also vital for signaling pathways. This review focuses on innovations in the study of polyphenol genistein's effects on breast cancer cells and presents integrated chemical biology methods to harness mechanisms of action for important therapeutic advances.
Collapse
Affiliation(s)
| | | | | | | | - Athanasios A. Panagiotopoulos
- Department of Nutritional Science and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.K.K.); (A.G.); (M.D.); (G.I.P.)
| |
Collapse
|
36
|
Banyś K, Jelińska M, Wrzosek M, Skrajnowska D, Wrzesień R, Bielecki W, Bobrowska-Korczak B. Inflammation Factors and Genistein Supplementation in Cancer-Preliminary Research. Curr Issues Mol Biol 2024; 46:2166-2180. [PMID: 38534756 DOI: 10.3390/cimb46030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The purpose of this study was to evaluate the effect of genistein in nano, micro, and macro forms on the intensity of the DMBA-induced tumor process in rats and to understand the mechanisms of this action. The effect of genistein supplementation on the content of selected eicosanoids (HETEs, HODE, and HEPE) in the serum of rats was evaluated. The levels and expression of genes encoding various pro-inflammatory cytokines (IL-1, IL-6) and MMP-9 in the blood of rats were also investigated. The biological material for the study was blood obtained from female rats of the Sprague Dawley strain (n = 32). The animals were randomly divided into four groups: animals without supplementation, and animals supplemented at a dose of 0.2 mg/kg b.w. (0.1 mg/mL) with macro, micro (587 ± 83 nm), or nano (92 ± 41 nm) genistein. To induce mammary neoplasia (adenocarcinoma), rats were given 7,12-dimethyl-1,2-benz[a]anthracene (DMBA). The content of selected eicosanoids was determined by liquid chromatography with UV detection. An immunoenzymatic method was used to determine the content of cytokines and MMP-9. The expression of the IL-6, IL-1beta, and MMP-9 genes was determined with quantitative real-time PCR (qRT-PCR) using TaqMan probes. Based on the study, it was shown that supplementation of animals with genistein in macro, micro, and nano forms increased the intensity of the tumor process in rats. It was shown that the content of 12-HEPE, HODE, and 12-HETE in the serum of genistein-supplemented rats was statistically significantly lower with respect to the content of the aforementioned markers in the serum of rats receiving only a standard diet, devoid of supplementation. It was found that animals supplemented with nano-, micro-, and macrogenistein had higher levels of metalloproteinase-9, MMP-9, compared to animals without supplementation. There was a significant increase in MMP-9 gene expression in the blood of macrogenistein-supplemented animals, relative to the other groups of rats. On the basis of the study, it was shown that supplementation of animals with nano-, micro-, and macrogenistein had an effect on the development of the tumor process. Dietary supplementation with genistein significantly decreased the level of selected eicosanoids, which may have significant impacts on cancer development and progression.
Collapse
Affiliation(s)
- Karolina Banyś
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Małgorzata Jelińska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Live Sciences, Nowoursynowska 159c Street, 02-787 Warsaw, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
37
|
Odongo R, Demiroglu-Zergeroglu A, Çakır T. A network-based drug prioritization and combination analysis for the MEK5/ERK5 pathway in breast cancer. BioData Min 2024; 17:5. [PMID: 38378612 PMCID: PMC10880212 DOI: 10.1186/s13040-024-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Prioritizing candidate drugs based on genome-wide expression data is an emerging approach in systems pharmacology due to its holistic perspective for preclinical drug evaluation. In the current study, a network-based approach was proposed and applied to prioritize plant polyphenols and identify potential drug combinations in breast cancer. We focused on MEK5/ERK5 signalling pathway genes, a recently identified potential drug target in cancer with roles spanning major carcinogenesis processes. RESULTS By constructing and identifying perturbed protein-protein interaction networks for luminal A breast cancer, plant polyphenols and drugs from transcriptome data, we first demonstrated their systemic effects on the MEK5/ERK5 signalling pathway. Subsequently, we applied a pathway-specific network pharmacology pipeline to prioritize plant polyphenols and potential drug combinations for use in breast cancer. Our analysis prioritized genistein among plant polyphenols. Drug combination simulations predicted several FDA-approved drugs in breast cancer with well-established pharmacology as candidates for target network synergistic combination with genistein. This study also highlights the concept of target network enhancer drugs, with drugs previously not well characterised in breast cancer being prioritized for use in the MEK5/ERK5 pathway in breast cancer. CONCLUSION This study proposes a computational framework for drug prioritization and combination with the MEK5/ERK5 signaling pathway in breast cancer. The method is flexible and provides the scientific community with a robust method that can be applied to other complex diseases.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey.
| | - Asuman Demiroglu-Zergeroglu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| |
Collapse
|
38
|
Kumari L, Mishra L, Sharma Y, Chahar K, Kumar M, Patel P, Gupta GD, Kurmi BD. NOTCH Signaling Pathway: Occurrence, Mechanism, and NOTCH-Directed Therapy for the Management of Cancer. Cancer Biother Radiopharm 2024; 39:19-34. [PMID: 37797218 DOI: 10.1089/cbr.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
It is now well understood that many signaling pathways are vital in carrying out and controlling essential pro-survival and pro-growth cellular functions. The NOTCH signaling pathway, a highly conserved evolutionary signaling pathway, has been thoroughly studied since the discovery of NOTCH phenotypes about 100 years ago in Drosophila melanogaster. Abnormal NOTCH signaling has been linked to the pathophysiology of several diseases, notably cancer. In tumorigenesis, NOTCH plays the role of a "double-edged sword," that is, it may act as an oncogene or as a tumor suppressor gene depending on the nature of the context. However, its involvement in several cancers and inhibition of the same provides targeted therapy for the management of cancer. The use of gamma (γ)-secretase inhibitors and monoclonal antibodies for cancer treatment involved NOTCH receptors inhibition, leading to the possibility of a targeted approach for cancer treatment. Likewise, several natural compounds, including curcumin, resveratrol, diallyl sulfide, and genistein, also play a dynamic role in the management of cancer by inhibition of NOTCH receptors. This review outlines the functions and structure of NOTCH receptors and their associated ligands with the mechanism of the signaling pathway. In addition, it also emphasizes the role of NOTCH-targeted nanomedicine in various cancer treatment strategies.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | | | - Yash Sharma
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Kanak Chahar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Mritunjay Kumar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
39
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
40
|
Clayton EJ, Islam NS, Pannunzio K, Kuflu K, Sirjani R, Kohalmi SE, Dhaubhadel S. Soybean AROGENATE DEHYDRATASES (GmADTs): involvement in the cytosolic isoflavonoid metabolon or trans-organelle continuity? FRONTIERS IN PLANT SCIENCE 2024; 15:1307489. [PMID: 38322824 PMCID: PMC10845154 DOI: 10.3389/fpls.2024.1307489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Soybean (Glycine max) produces a class of phenylalanine (Phe) derived specialized metabolites, isoflavonoids. Isoflavonoids are unique to legumes and are involved in defense responses in planta, and they are also necessary for nodule formation with nitrogen-fixing bacteria. Since Phe is a precursor of isoflavonoids, it stands to reason that the synthesis of Phe is coordinated with isoflavonoid production. Two putative AROGENATE DEHYDRATASE (ADT) isoforms were previously co-purified with the soybean isoflavonoid metabolon anchor ISOFLAVONE SYNTHASE2 (GmIFS2), however the GmADT family had not been characterized. Here, we present the identification of the nine member GmADT family. We determined that the GmADTs share sequences required for enzymatic activity and allosteric regulation with other characterized plant ADTs. Furthermore, the GmADTs are differentially expressed, and multiple members have dual substrate specificity, also acting as PREPHENATE DEHYDRATASES. All GmADT isoforms were detected in the stromules of chloroplasts, and they all interact with GmIFS2 in the cytosol. In addition, GmADT12A interacts with multiple other isoflavonoid metabolon members. These data substantiate the involvement of GmADT isoforms in the isoflavonoid metabolon.
Collapse
Affiliation(s)
- Emily J. Clayton
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Nishat S. Islam
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Kelsey Pannunzio
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Kuflom Kuflu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ramtin Sirjani
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Susanne E. Kohalmi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
41
|
Das D, M K, Mitra A, Zaky MY, Pathak S, Banerjee A. A Review on the Efficacy of Plant-derived Bio-active Compounds Curcumin and Aged Garlic Extract in Modulating Cancer and Age-related Diseases. Curr Rev Clin Exp Pharmacol 2024; 19:146-162. [PMID: 37150987 DOI: 10.2174/2772432819666230504093227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 05/09/2023]
Abstract
Aging is a process characterized by accumulating degenerative changes resulting in the death of an organism. Aging is mediated by various pathways that are directly linked to the individual's lifespan and are shunted for many age-related diseases. Many strategies for alleviating age-related diseases have been studied, which can target cells and molecules. Modern drugs such as Metformin, Rapamycin, and other drugs are used to reduce the effects of age-related diseases. Despite their beneficial activity, they possess some side effects which can limit their applications, mainly in older adults. Natural phytochemicals which have anti-aging activities have been studied by many researchers from a broader aspect and suggested that plant-based compounds can be a possible, direct, and practical way to treat age-related diseases which has enormous anti-aging activity. Also, studies indicated that the synergistic action of phytochemicals might enhance the biological effect rather than the individual or summative effects of natural compounds. Curcumin has an antioxidant property and is an effective scavenger of reactive oxygen species. Curcumin also has a beneficial role in many age-related diseases like diabetes, cardiovascular disease, neurological disorder, and cancer. Aged garlic extracts are also another bioactive component that has high antioxidant properties. Many studies demonstrated aged garlic extract, which has high antioxidant properties, could play a significant role in anti-aging and age-related diseases. The synergistic effect of these compounds can decrease the requirement of doses of a single drug, thus reducing its side effects caused by increased concentration of the single drug.
Collapse
Affiliation(s)
- Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Kanchan M
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Abhijit Mitra
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
42
|
García A, Torres-Ruiz S, Vila L, Villarroel-Vicente C, Bernabeu Á, Eroles P, Cabedo N, Cortes D. Synthesis of 2-aminopropyl benzopyran derivatives as potential agents against triple-negative breast cancer. RSC Med Chem 2023; 14:2327-2341. [PMID: 38020071 PMCID: PMC10650959 DOI: 10.1039/d3md00385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 12/01/2023] Open
Abstract
Synthesis of three series of 2-aminopropyl derivatives containing a benzopyran nucleus was performed to evaluate their performance against triple-negative breast cancer cell lines (MDA-MB-231 and MDA-MB-436) and normal breast epithelial cells (MCF10A). For the three series, the cytotoxic activity was as follows: N-methylated derivatives (tertiary amines) 5b, 6b, and 7b > secondary amine benzopyrans 5, 6, and 7 > quaternary amine salts 5c, 6c, and 7c > free phenolic derivatives 5a, 6a, and 7a. The structure-activity relationship showed the importance of the presence of an amine group and a p-fluorobenzyloxy substituent in the chromanol ring (IC50 values from 1.5 μM to 58.4 μM). In addition, 5a, 5b, 6a, and 7b displayed slight selectivity towards tumor cells. Compounds 5, 5a, 5b, 6, 6a, 6c, 7, and 7b showed apoptotic/necrotic effects due to, at least in part, an increase in reactive oxygen species generation, whereas 5b, 5c, 6b, 7a, and 7c caused cell cycle arrest in the G1 phase. Further cell-based mechanistic studies revealed that 5a, 6a, and 7b, which were the most promising compounds, downregulated the expression of Bcl-2, while 5b downregulated the expression of cyclins CCND1 and CCND2. Therefore, 2-aminopropyl benzopyran derivatives emerge as new hits and potential leads for developing useful agents against breast cancer.
Collapse
Affiliation(s)
- Ainhoa García
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Sandra Torres-Ruiz
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Laura Vila
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Carlos Villarroel-Vicente
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Álvaro Bernabeu
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
| | - Pilar Eroles
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
- Department of Physiology, University of Valencia 46010 Valencia Spain
- Center for Biomedical Network Research on Cancer (CIBERONC) 28019 Madrid Spain
| | - Nuria Cabedo
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Diego Cortes
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
| |
Collapse
|
43
|
Guelfi G, Pasquariello R, Anipchenko P, Capaccia C, Pennarossa G, Brevini TAL, Gandolfi F, Zerani M, Maranesi M. The Role of Genistein in Mammalian Reproduction. Molecules 2023; 28:7436. [PMID: 37959856 PMCID: PMC10647478 DOI: 10.3390/molecules28217436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Genistein is a natural compound belonging to flavonoids, having antioxidant, anti-inflammatory, and anti-neoplastic properties. Genistein is considered a phytoestrogen. As such, genistein can bind estrogen receptors (ERα and ERβ), although with a lower affinity than that of estradiol. Despite considerable work, the effects of genistein are not well established yet. This review aims to clarify the role of genistein on female and male reproductive functions in mammals. In females, at a high dose, genistein diminishes the ovarian activity regulating several pathway molecules, such as topoisomerase isoform I and II, protein tyrosine kinases (v-src, Mek-4, ABL, PKC, Syk, EGFR, FGFR), ABC, CFTR, Glut1, Glut4, 5α-reductase, PPAR-γ, mitogen-activated protein kinase A, protein histidine kinase, and recently circulating RNA-miRNA. The effect of genistein on pregnancy is still controversial. In males, genistein exerts an estrogenic effect by inducing testosterone biosynthesis. The interaction of genistein with both natural and synthetic endocrine disruptors has a negative effect on testis function. The positive effect of genistein on sperm quality is still in debate. In conclusion, genistein has a potentially beneficial effect on the mechanisms regulating the reproduction of females and males. However, this is dependent on the dose, the species, the route, and the time of administration.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (R.P.); (F.G.)
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Georgia Pennarossa
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy;
| | - Tiziana A. L. Brevini
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (R.P.); (F.G.)
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| |
Collapse
|
44
|
Yıldırım M, Sessevmez M, Poyraz S, Düzgüneş N. Recent Strategies for Cancer Therapy: Polymer Nanoparticles Carrying Medicinally Important Phytochemicals and Their Cellular Targets. Pharmaceutics 2023; 15:2566. [PMID: 38004545 PMCID: PMC10675520 DOI: 10.3390/pharmaceutics15112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a leading cause of death in the world today. In addition to the side effects of the chemotherapeutic drugs used to treat cancer, the development of resistance to the drugs renders the existing drugs ineffective. Therefore, there is an urgent need to develop novel anticancer agents. Medicinally important phytochemicals such as curcumin, naringenin, quercetin, epigallocatechin gallate, thymoquinone, kaempferol, resveratrol, genistein, and apigenin have some drawbacks, including low solubility in water, stability and bioavailability issues, despite having significant anticancer effects. Encapsulation of these natural compounds into polymer nanoparticles (NPs) is a novel technology that could overcome these constraints. In comparison to the free compounds, phytochemicals loaded into nanoparticles have greater activity and bioavailability against many cancer types. In this review, we describe the preparation and characterization of natural phytochemical-loaded polymer NP formulations with significant antioxidant and anti-inflammatory effects, their in vitro and in vivo anticancer activities, as well as their possible cellular targets.
Collapse
Affiliation(s)
- Metin Yıldırım
- Department of Biochemistry, Faculty of Pharmacy, Harran University, Sanliurfa 63050, Turkey;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
| | - Samet Poyraz
- Department of Analytical Chemistry, Faculty of Pharmacy, Harran University, Sanliurfa 63050, Turkey;
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| |
Collapse
|
45
|
Alatawi FS, Faridi U. Anticancer and anti-metastasis activity of 1,25 dihydroxycholecalciferols and genistein in MCF-7 and MDA-MB-231 breast cancer cell lines. Heliyon 2023; 9:e21975. [PMID: 38034665 PMCID: PMC10682641 DOI: 10.1016/j.heliyon.2023.e21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
A powerful steroid hormone precursor, 1,25 dihydroxycholecalciferols (1,25(OH)2D3), and dietary phytoestrogen (genistein) are essential compounds that act by binding to nuclear receptors and altering gene expression. They have many biological benefits, some of which have anticancer properties. We studied the impact of 1,25(OH)2D3 and genistein on the proliferation, progression, and metastasis of MCF-7 and MDA-MB-231 cells when they were used alone or in combination and investigated whether there was a synergistic effect between genistein and 1,25(OH)2D3. To achieve these goals, a variety of assays, including flow cytometry, cell invasion assays, cell adhesion assays, Western blotting, and RT‒PCR, were used. Our findings showed that genistein, 1,25(OH)2D3, and the two combined all effectively declined the growth of MCF-7 and MDA-MB-231 cells by arresting the cells in the G0/G1 phase and inducing an apoptotic pathway. Stimulation of apoptosis was achieved by upregulating the expression of BAX and CASP3 genes and downregulating the expression levels of BCL-2 gene. Furthermore, both compounds suppress metastasis by reducing cell adhesion and cell migration/invasion by elevating the expression level of E-cadherin and reducing the expression level of P-cadherin and N-cadherin. Additionally, both genistein and 1,25(OH)2D3 increased the expression level of ERK1 and reduced the expression levels of JNK, p38, Ras, and MEK proteins, which reduced metastasis, enhanced the response to cancer treatment, and improved overall survival. Thus, genistein and 1,25(OH)2D3 can both be considered key candidates in the search for new breast cancer treatments.
Collapse
Affiliation(s)
- Fatema Suliman Alatawi
- Faculty of Sciences, Biochemistry Department, Science College, University of Tabuk, Tabuk Saudi Arabia
| | - Uzma Faridi
- Faculty of Sciences, Biochemistry Department, Science College, University of Tabuk, Tabuk Saudi Arabia
| |
Collapse
|
46
|
Suhail M, AlZahrani WM, Shakil S, Tarique M, Tabrez S, Zughaibi TA, Rehan M. Analysis of some flavonoids for inhibitory mechanism against cancer target phosphatidylinositol 3-kinase (PI3K) using computational tool. Front Pharmacol 2023; 14:1236173. [PMID: 37900167 PMCID: PMC10612336 DOI: 10.3389/fphar.2023.1236173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Cancer has been one of the leading causes of mortality worldwide over the past few years. Some progress has been made in the development of more effective cancer therapeutics, resulting in improved survival rates. However, the desired outcome in the form of successful treatment is yet to be achieved. There is high demand for the development of innovative, inexpensive, and effective anticancer treatments using natural resources. Natural compounds have been increasingly discovered and used for cancer therapy owing to their high molecular diversity, novel biofunctionality, and minimal side effects. These compounds can be utilized as chemopreventive agents because they can efficiently inhibit cell growth, control cell cycle progression, and block several tumor-promoting signaling pathways. PI3K is an important upstream protein of the PI3K-Akt-mTOR pathway and a well-established cancer therapeutic target. This study aimed to explore the small molecules, natural flavonoids, viz. quercetin, luteolin, kaempferol, genistein, wogonin, daidzein, and flavopiridol for PI3Kγ kinase activity inhibition. In this study, the binding pose, interacting residues, molecular interactions, binding energies, and dissociation constants were investigated. Our results showed that these flavonoids bound well with PI3Kγ with adequate binding strength scores and binding energy ranging from (-8.19 to -8.97 Kcal/mol). Among the explored ligands, flavopiridol showed the highest binding energy of -8.97 Kcal/mol, dock score (-44.40), and dissociation constant term, p K d of 6.58 against PI3Kγ. Based on the above results, the stability of the most promising ligand, flavopiridol, against PI3Kγ was evaluated by molecular dynamics simulations for 200 ns, confirming the stable flavopiridol and PI3Kγ complex. Our study suggests that among the selected flavonoids specifically flavopiridol may act as potential inhibitors of PI3Kγ and could be a therapeutic alternative to inhibit the PI3Kγ pathway, providing new insights into rational drug discovery research for cancer therapy.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wejdan M. AlZahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Wang LL, Liu N, Hu S, Xing RR, Wang RQ, Yang L, Chen X. Application of instantaneous nebulization dispersive liquid-phase microextraction combined with HPLC for the determination of chalcone and isoflavone in traditional Chinese medicines. J Sep Sci 2023; 46:e2300326. [PMID: 37485627 DOI: 10.1002/jssc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
A simple and rapid instantaneous nebulization dispersive liquid-phase microextraction method was developed, and combined with high-performance liquid chromatography for determination of the contents of seven analytes in traditional Chinese medicines. In this study, using the sprinkler device to achieve instantaneous synchronous dispersion and extraction, only one spray can rapidly achieve the concentration and enrichment of seven kinds of chalcone and isoflavones. The key factors affecting the extraction efficiency were optimized including the type and volume of extractant, the pH and salt concentration of the sample phase, and the number of dispersion. Under the optimal conditions, the enrichment factor of the target analytes ranged from 103.1 to 180.9, with good linearity and correlation coefficients above 0.9970. The limits of detection ranged from 0.02 to 0.15 ng/mL, with good accuracy (recoveries 91.1 to 108.9%) and precision (relative standard deviations 1.5-7.1%). This method has short extraction time (2 s), low organic solvent consumption and high enrichment effect, so it has a wide application prospects.
Collapse
Affiliation(s)
- Ling-Li Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Na Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Rong-Rong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Run-Qin Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Li Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
48
|
Akash S, Bibi S, Biswas P, Mukerjee N, Khan DA, Hasan MN, Sultana NA, Hosen ME, Jardan YAB, Nafidi HA, Bourhia M. Revolutionizing anti-cancer drug discovery against breast cancer and lung cancer by modification of natural genistein: an advanced computational and drug design approach. Front Oncol 2023; 13:1228865. [PMID: 37817764 PMCID: PMC10561655 DOI: 10.3389/fonc.2023.1228865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/15/2023] [Indexed: 10/12/2023] Open
Abstract
Breast and lung cancer are two of the most lethal forms of cancer, responsible for a disproportionately high number of deaths worldwide. Both doctors and cancer patients express alarm about the rising incidence of the disease globally. Although targeted treatment has achieved enormous advancements, it is not without its drawbacks. Numerous medicines and chemotherapeutic drugs have been authorized by the FDA; nevertheless, they can be quite costly and often fall short of completely curing the condition. Therefore, this investigation has been conducted to identify a potential medication against breast and lung cancer through structural modification of genistein. Genistein is the active compound in Glycyrrhiza glabra (licorice), and it exhibits solid anticancer efficiency against various cancers, including breast cancer, lung cancer, and brain cancer. Hence, the design of its analogs with the interchange of five functional groups-COOH, NH2 and OCH3, Benzene, and NH-CH2-CH2-OH-have been employed to enhance affinities compared to primary genistein. Additionally, advanced computational studies such as PASS prediction, molecular docking, ADMET, and molecular dynamics simulation were conducted. Firstly, the PASS prediction spectrum was analyzed, revealing that the designed genistein analogs exhibit improved antineoplastic activity. In the prediction data, breast and lung cancer were selected as primary targets. Subsequently, other computational investigations were gradually conducted. The mentioned compounds have shown acceptable results for in silico ADME, AMES toxicity, and hepatotoxicity estimations, which are fundamental for their oral medication. It is noteworthy that the initial binding affinity was only -8.7 kcal/mol against the breast cancer targeted protein (PDB ID: 3HB5). However, after the modification of the functional group, when calculating the binding affinities, it becomes apparent that the binding affinities increase gradually, reaching a maximum of -11.0 and -10.0 kcal/mol. Similarly, the initial binding affinity was only -8.0 kcal/mol against lung cancer (PDB ID: 2P85), but after the addition of binding affinity, it reached -9.5 kcal/mol. Finally, a molecular dynamics simulation was conducted to study the molecular models over 100 ns and examine the stability of the docked complexes. The results indicate that the selected complexes remain highly stable throughout the 100-ns molecular dynamics simulation runs, displaying strong correlations with the binding of targeted ligands within the active site of the selected protein. It is important to further investigate and proceed to clinical or wet lab experiments to determine the practical value of the proposed compounds.
Collapse
Affiliation(s)
- Shopnil Akash
- Faculty of Allied Health Science, Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, India
| | - Dhrubo Ahmed Khan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Nazneen Ahmeda Sultana
- Faculty of Allied Health Science, Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Md. Eram Hosen
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Yousef A. Bin Jardan
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Hiba-Allah Nafidi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| |
Collapse
|
49
|
Wu CY, Huang CK, Hong WS, Liu YH, Shih MC, Lin JC. Influence of Symbiotic Fermentation Broth on Regulating Metabolism with Gut Microbiota and Metabolite Profiles Is Estimated Using a Third-Generation Sequencing Platform. Metabolites 2023; 13:999. [PMID: 37755279 PMCID: PMC10535509 DOI: 10.3390/metabo13090999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Overnutrition with a high-fat or high-sugar diet is widely considered to be the risk factor for various metabolic, chronic, or malignant diseases that are accompanied by alterations in gut microbiota, metabolites, and downstream pathways. In this study, we investigated supplementation with soybean fermentation broth containing saponin (SFBS, also called SAPOZYME) in male C57BL/6 mice fed a high-fat-fructose diet or normal chaw. In addition to the lessening of weight gain, the influence of SFBS on reducing hyperlipidemia and hyperglycemia associated with a high-fat-fructose diet was estimated using the results of related biological tests. The results of gut microbial profiling indicated that the high-fat-fructose diet mediated increases in opportunistic pathogens. In contrast, SFBS supplementation reprogrammed the high-fat-fructose diet-related microbial community with a relatively high abundance of potential probiotics, including Akkermansia and Lactobacillus genera. The metagenomic functions of differential microbial composition in a mouse model and enrolled participants were assessed using the PICRUSt2 algorithm coupled with the MetaCyc and the KEGG Orthology databases. SFBS supplementation exerted a similar influence on an increase in the level of 4-aminobutanoate (also called GABA) through the L-glutamate degradation pathway in the mouse model and the enrolled healthy population. These results suggest the beneficial influence of SFBS supplementation on metabolic disorders associated with a high-fat-fructose diet, and SFBS may function as a nutritional supplement for people with diverse requirements.
Collapse
Affiliation(s)
- Chih-Yin Wu
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 116, Taiwan;
| | - Chun-Kai Huang
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Wei-Sheng Hong
- Sagittarius Life Science Corporations, Taipei 115, Taiwan; (W.-S.H.); (Y.-H.L.); (M.-C.S.)
| | - Yin-Hsiu Liu
- Sagittarius Life Science Corporations, Taipei 115, Taiwan; (W.-S.H.); (Y.-H.L.); (M.-C.S.)
| | - Ming-Chi Shih
- Sagittarius Life Science Corporations, Taipei 115, Taiwan; (W.-S.H.); (Y.-H.L.); (M.-C.S.)
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
50
|
Sakalli-Tecim E, Gur-Dedeoglu B, Guray NT. Systems biology based miRNA-mRNA expression pattern analysis of Emodin in breast cancer cell lines. Pathol Res Pract 2023; 249:154780. [PMID: 37633004 DOI: 10.1016/j.prp.2023.154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Breast cancer has been among the most prominent cancers with high mortality. Currently most of the offered therapeutics are toxic; hence, less toxic therapeutic intervention is required. Here, we studied the molecular mechanisms of the effect of a phytoestrogen Emodin on estrogen receptor positive MCF-7 and negative MDA-MB-231 cells by carrying out a comprehensive network assessment. Differentially expressed microRNAs along with their previously identified differentially expressed mRNAs were analyzed through microarrays by using integrative systems biology approach. For each cell line miRNA-target gene networks were built, gene ontology and pathway enrichment analyses were performed, enrichment maps were constructed and the potential key genes, miRNAs and miRNA-gene interactions were studied.
Collapse
Affiliation(s)
- Elif Sakalli-Tecim
- Department of Biotechnology, Middle East Technical University, Ankara, Turkiye
| | | | - N Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara, Turkiye; Department of Biological Sciences, Middle East Technical University, Ankara, Turkiye.
| |
Collapse
|