1
|
Xia T, Nie Y, Chen Y, Zhang N, Wang Y, Liu S, Bai X, Cao H, Xu Y, Wang M. Structural and physicochemical properties and changes in vitro digestion and fermentation of soluble dietary fiber from tea residues modified by fermentation. Food Chem 2025; 473:142926. [PMID: 39884229 DOI: 10.1016/j.foodchem.2025.142926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The aim of this study was to investigate the structure, physicochemical properties, and changes in vitro digestion and fermentation between unfermented tea residue dietary fiber (UDF) and fermented tea residue soluble dietary fiber (FSDF). The results showed that soluble dietary fiber in FSDF was increased from 2.54 % to 15.65 % after fermentation modification. Monosaccharide composition analysis showed that xylose and glucose accounted for a higher proportion in FSDF. FSDF had smaller particle size, lower crystallinity and higher thermal stability. The water holding capacity, oil holding capacity and water swelling capacity of FSDF were significantly increased. Rheological properties showed that FSDF exhibited higher viscosity and better elastic than UDF. Furthermore, FSDF generated more short-chain fatty acids, and the structure was looser than UDF, which was easier to be utilized by intestinal flora. These findings provided higher value of dietary fiber in tea residue by fermentation modification as functional products.
Collapse
Affiliation(s)
- Ting Xia
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaning Nie
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Chen
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nannan Zhang
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yongqi Wang
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shunhang Liu
- Yunnan Tasly Deepure Bio-Tea Group Co, Ltd, Yunnan 665099, China
| | - Xiaoli Bai
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd, Tianjin 300410, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Yongquan Xu
- Yunnan Tasly Deepure Bio-Tea Group Co, Ltd, Yunnan 665099, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd, Tianjin 300410, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Aljumaah MR, Roach J, Hu Y, Gunstad J, Azcarate-Peril MA. Microbial dipeptidyl peptidases of the S9B family as host-microbe isozymes. SCIENCE ADVANCES 2025; 11:eads5721. [PMID: 40173242 PMCID: PMC11964003 DOI: 10.1126/sciadv.ads5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Human dipeptidyl peptidase 4 (hDPP-4) has been a pharmacological target for metabolic diseases, particularly diabetes, since the early 2000s. As a ubiquitous enzyme found in both prokaryotic and eukaryotic organisms, hDPP-4 plays crucial roles in host homeostasis and disease progression. While many studies have explored hDPP-4's properties, research on gut microbially derived DPP-4 (mDPP-4) remains limited. This review discusses the significance of mDPP-4 and its health implications, analyzing crystal structures of mDPP-4 in comparison to human counterparts. We examine how hDPP-4 inhibitors could influence gut microbiome composition and mDPP-4 activity. Additionally, this review connects ongoing discussions regarding DPP-4 substrate specificity and potential access routes for mDPP-4, emphasizing the urgent need for further research on mDPP-4's role in health and improve the precision of DPP-4 inhibitor therapies.
Collapse
Affiliation(s)
- Mashael R. Aljumaah
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jeffery Roach
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Yunan Hu
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - M. Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Wang YT, Wu H, Wu JJ, Yu YS, Wen J, Zou B, Li L, Peng J, Cheng LN, Bu ZB, Xu YJ, Hu TG. The hypoglycemic effect of mulberry ( Morus atropurpurea) fruit lacking fructose and glucose by regulation of the gut microbiota. Food Funct 2025; 16:2444-2460. [PMID: 40017446 DOI: 10.1039/d4fo02781g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Mulberries are known to be rich in hypoglycemic active substances such as anthocyanins and dietary fiber, which primarily aid in regulating gut microbiota. However, their high sugar content, such as fructose, hinders their application in hypoglycemic functional foods. This research utilized microbial fermentation technology to remove the fructose and glucose in mulberries (FM), subsequently evaluating their hypoglycemic properties and balancing gut microbiota. Results indicated that administering varying doses of FM to type 2 diabetic mice for five weeks notably decreased blood sugar and insulin levels, improved dyslipidemia and insulin resistance, enhanced antioxidant capacity, repaired organ damage, and regulated hypoglycemic activity by influencing mRNA expression of key signaling factors in the PI3K/Akt and AMPK pathways. Analysis of the intestinal microbiota composition revealed that FM can modulate specific bacterial populations, increasing beneficial bacteria like Lactobacillus, Bifidobacterium and Akkermansia while inhibiting harmful bacteria like Escherichia-Shigella and Helicobacter. This restoration of the intestinal microecological balance helped regulate host sugar metabolism homeostasis and affect the secretion of short chain fatty acid (SCFA) synthase in the gut microbiota to increase the production of SCFAs. These findings offer significant support for the potential use of FM in the treatment of diabetes.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- School of Food Science and Engineering, South China University of Technology, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, China
| | - Ji-Jun Wu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Jing Wen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Bo Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Lu Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Jian Peng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Li-Na Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Zhi-Bin Bu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| |
Collapse
|
4
|
Asaad GF, Doghish AS, Rashad AA, El-Dakroury WA. Exploring cutting-edge approaches in diabetes care: from nanotechnology to personalized therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2443-2458. [PMID: 39453501 PMCID: PMC11919990 DOI: 10.1007/s00210-024-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is a persistent condition characterized by high levels of glucose in the blood due to irregularities in the secretion of insulin, its action, or both. The disease was believed to be incurable until insulin was extracted, refined, and produced for sale. In DM, insulin delivery devices and insulin analogs have improved glycemic management even further. Sulfonylureas, biguanides, alpha-glucosidase inhibitors, and thiazolidinediones are examples of newer-generation medications having high efficacy in decreasing hyperglycemia as a result of scientific and technological advancements. Incretin mimetics, dual glucose-dependent insulinotropic polypeptide, GLP-1 agonists, PPARs, dipeptidyl peptidase-4 inhibitors, anti-CD3 mAbs, glucokinase activators, and glimins as targets have all performed well in recent clinical studies. Considerable focus was placed on free FA receptor 1 agonist, protein tyrosine phosphatase-1B inhibitors, and Sparc-related modular calcium-binding protein 1 which are still being studied. Theranostics, stem cell therapy, gene therapy, siRNA, and nanotechnology are some of the new therapeutic techniques. Traditional Chinese medicinal plants will also be discussed. This study seeks to present a comprehensive analysis of the latest research advancements, the emerging trends in medication therapy, and the utilization of delivery systems in treating DM. The objective is to provide valuable insights into the application of different pharmaceuticals in the field of diabetes mellitus treatment. Also, the therapeutic approach for diabetic patients infected with COVID-19 will be highlighted. Recent clinical and experimental studies evidence the Egyptian experience. Finally, as per the knowledge of the state of the art, our conclusion and future perspective will be declared.
Collapse
Affiliation(s)
- Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
5
|
Lei P, Yu H, Jiang T, Ma J, Du J, Fang Y, Wang H, Chen R, Yang Q, Cheng Y, Wu W, Sun D. Development of a sodium hyaluronate-enriched therapeutic formulation with stevia glycoside and mogroside V for the comprehensive management of diabetes and its complications. Int J Biol Macromol 2025; 293:139487. [PMID: 39756763 DOI: 10.1016/j.ijbiomac.2025.139487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Diabetes prevalence continues to increase as a result of people's increasing sugar intake. Diabetes mellitus and its complications (dry skin, constipation, depression, and dental caries), as well as the prohibition of sweets ingestion, seriously affect patients' physical and mental health. Therefore, it is crucial to develop a long-term food for special medical purposes (FSMP) that aids in managing diabetes and its complications. To ensure effective biomedical function and taste, we developed a FSMP beverage formulation containing stevia glycoside, mogroside V, and sodium hyaluronate (SMH-B), each at a concentration of 0.1 mg/mL. Meanwhile, this study verified that SMH-B is an environmentally friendly and biocompatible formulation. Furthermore, both in vivo and in vitro studies have demonstrated that SMH-B significantly lowers blood glucose and lipid levels, enhances skin moisture and elasticity, prevents dental caries, alleviates constipation, reduces oxidative stress, and mitigates depressive symptoms. Notably, the SMH-B compound formula exhibits a more effective adjuvant therapeutic effect compared to single-ingredient formulation composed of stevia glycosides, mogroside V, and sodium hyaluronate. Moreover, SMH-B provides the sweetness desired by diabetic patients without affecting blood glucose levels, while also offering an auxiliary therapeutic role, making it a potential FSMP for diabetes management.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Tao Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yongwei Cheng
- National Engineering Research Center of Cell Growth Factor Drugs and Protein Biologics, Wenzhou Medical University, Wenzhou 325000, China; MedTech (Wenzhou) Health Innovation Achievement Transformation Institute, Wenzhou Institute of Industry & Science, Wenzhou 325000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
6
|
Zhang Y, He J, Zeng H, Xu D, Li W, Wang Y. Advances in prebiotic carbohydrate-based targeted delivery: Overcoming gastrointestinal challenges for bioactive ingredients. Food Chem 2025; 466:142210. [PMID: 39615354 DOI: 10.1016/j.foodchem.2024.142210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Natural bioactive ingredients face challenges in extensive application owing to low oral bioavailability. This can be improved by overcoming gastrointestinal barriers and facilitating targeted release through delivery strategies. This study provides a comprehensive review of targeted delivery systems using prebiotic carbohydrate matrices, focusing on structures, release mechanisms and applications. The bioactive ingredients can be encapsulated into nanohydrogels, nanoparticles, nanoemulsions, micro/nanocapsules and nanofibres to achieve controlled/targeted delivery to predetermined locations via interactions with pH, mucus, microbiome, enzymes and other factors in the colon. In particular, the prebiotic function of carbohydrates is generated by colonic microbiota degradation and fermentation, producing beneficial postbiotics through multiple metabolic pathways. This study provides certain insights into the in-depth development and application of prebiotic carbohydrate-based targeted delivery systems in the fields of food and health.
Collapse
Affiliation(s)
- Yunzhen Zhang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, 8 West Guochuang Road, Hohhot 010110, Inner Mongolia, PR China
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Duoxia Xu
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Wenlu Li
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| |
Collapse
|
7
|
Ahmad F, Ahmed SH, Choucair F, Chouliaras S, Awwad J, Terranegra A. A disturbed communication between hypothalamic-pituitary-ovary axis and gut microbiota in female infertility: is diet to blame? J Transl Med 2025; 23:92. [PMID: 39838491 PMCID: PMC11749209 DOI: 10.1186/s12967-025-06117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Female infertility is a multifactorial condition influenced by various genetic, environmental, and lifestyle factors. Recent research has investigated the significant impact of gut microbiome dysbiosis on systemic inflammation, metabolic dysfunction, and hormonal imbalances, which can potentially impair fertility. The gut-brain axis, a bidirectional communication system between the gut and the brain, also plays a significant role in regulating reproductive functions. Emerging evidence suggests that the gut microbiome can influence brain functions and behavior, further emphasizing the importance of the microbiota-gut-brain axis in reproduction. Given their role as a major modulator of the gut microbiome, diet and dietary factors, including dietary patterns and nutrient intake, have been implicated in the development and management of female infertility. Hence, this review aims to highlight the impact of dietary patterns, such as the Western diet (WD) and Mediterranean diet (MD), and to decipher their modulatory action on the microbiota-gut-brain axis in infertile women. By contrasting the detrimental effects of WD with the therapeutic potential of MD, we emphasize the pivotal role of a balanced diet rich in nutrients in promoting a healthy gut microbiome. These insights underscore the potential of targeted dietary interventions and lifestyle modifications as promising strategies to enhance reproductive outcomes in subfertile women.
Collapse
Affiliation(s)
- Fatima Ahmad
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Salma H Ahmed
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Fadi Choucair
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
| | - Spyridon Chouliaras
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Ar-Rayyan, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Vincent Memorial Obstetrics and Gynecology Service, Massachusetts General Hospital, Boston, MA, USA
| | - Annalisa Terranegra
- Translational Medicine Department, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar.
| |
Collapse
|
8
|
Manaer T, Sailike J, Sun X, Yeerjiang B, Nabi X. Therapeutic effects of composite probiotics derived from fermented camel milk on metabolic dysregulation and intestinal barrier integrity in type 2 diabetes rats. Front Pharmacol 2025; 15:1520158. [PMID: 39840100 PMCID: PMC11747018 DOI: 10.3389/fphar.2024.1520158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Background In the Kazakh community of Xinjiang, China, fermented camel milk has been traditionally used to manage diabetes. This study evaluates the effects of composite probiotics derived from fermented camel milk (CPCM) on metabolic disturbances in a rat model of Type 2 diabetes (T2DM). Methods T2DM was induced in Wistar rats using streptozotocin. Experimental groups included a diabetic control, Metformin, and low- and high-dose CPCM. Measurements over 6 weeks included body weight (BW), fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c), C-peptide (CP), lipid profiles, inflammatory markers, fecal short-chain fatty acids (SCFAs), and tight junction protein expression in colonic tissues. Results High-dose CPCM significantly increased BW by 22.2% (p < 0.05) and reduced FBG by 6.5 mmol/L (p < 0.001). The OGTT AUC decreased by 40.1% (p < 0.001), and HbA1c levels fell by 22.9% (p < 0.01). CP levels rose by 21.8% (p < 0.05). Lipid profiles improved: TC decreased by 40.0%, TG by 17.1%, and LDL-C by 30.4% (all p < 0.001). Fecal SCFAs, including acetate (75.4%, p < 0.001), methyl acetate (18.9%, p < 0.05), and butyrate (289.9%, p < 0.001), increased, with total SCFAs rising by 89.7% (p < 0.001). Inflammatory markers IL-1β (12.7%, p < 0.01), TNF-α (16.7%, p < 0.05), and IL-6 (17.3%, p < 0.01) were significantly reduced. Tight junction protein expression (ZO-1, occludin, claudin-1) and mucin (MUC2) in colonic tissues increased (p < 0.05). CPCM treatment also reduced serum total bile acids by 24.9%, while hepatic and fecal bile acids increased by 114.0% and 37.8% (all p < 0.001). CPCM lowered serum DAO, D-lactate, and LPS levels (all p < 0.001). mRNA levels of TGR5 and CYP7A1 in the liver, and TGR5 and FXR in the colon, were markedly elevated (all p < 0.001). Histological examinations revealed reduced pancreatic inflammation and hepatic steatosis, with restored colonic structure. Conclusion CPCM treatment significantly improved metabolic dysregulation in the T2DM rat model, reducing blood glucose and lipid levels, enhancing intestinal barrier function, and increasing insulin secretion. These findings highlight the therapeutic potential of CPCM in T2DM management and probiotics' role in metabolic health.
Collapse
Affiliation(s)
- Tabusi Manaer
- School of Pharmacy, Xinjiang Medical University, Urumchi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, China
| | | | - Xin Sun
- Srational for Drug Control and Medical Device Varification of Xinjiang Military Command, Urumchi, China
| | - Baheban Yeerjiang
- School of Pharmacy, Xinjiang Medical University, Urumchi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, China
| | - Xinhua Nabi
- School of Pharmacy, Xinjiang Medical University, Urumchi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, China
| |
Collapse
|
9
|
Yue Z, Xiang W, Duping D, Yuanyuan G, Xuanyi C, Juan L, Xiaojuan H. Integrating 16S rDNA and metabolomics to uncover the therapeutic mechanism of electroacupuncture in type 2 diabetic rats. Front Microbiol 2025; 15:1436911. [PMID: 39834366 PMCID: PMC11743489 DOI: 10.3389/fmicb.2024.1436911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This study aimed to investigate the impact of electroacupuncture (EA) on blood glucose levels, gut microbiota, short-chain fatty acids (SCFAs), and glucagon-like peptide-1 (GLP-1) in a rat model of type 2 diabetes mellitus (T2DM). Methods Forty Sprague-Dawley (SD) rats were randomly assigned to five groups (n = 8/group) using a random number table: normal control, T2DM model, electroacupuncture (EA), EA + antibiotics (EA + A), and antibiotics (A). The normal rats received a standard diet and saline gavage, while the other groups were fed a high-fat diet and emulsion. The EA + A and A groups received additional antibiotic solution gavage. The normal, model, and A groups were immobilized and restrained for 30 min, six times per week, for 4 weeks. The EA and EA + A groups received EA treatment at specific acupoints for 30 min, six times per week, for 4 weeks. EA parameters were continuous waves at 10 Hz and 1-2 mA. During the intervention, water and food consumption, body weight, fasting blood glucose (FBG), and oral glucose tolerance test (OGTT) were monitored. Pancreatic tissue was examined using hematoxylin and eosin (H&E) staining. Fecal microbial communities were analyzed by 16S rDNA sequencing, and short-chain fatty acids (SCFAs) were measured using gas chromatography-mass spectrometry (GC-MS). Serum levels of fasting insulin (FINS), glycated hemoglobin (HbA1c), and glucagon-like peptide-1 (GLP-1) were determined using enzyme-linked immunosorbent assay (ELISA). Results EA significantly improved daily water intake, food consumption, and body weight in T2DM rats (p < 0.01). EA also reduced FBG, the area under the curve of the OGTT, FINS, and homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM rats (p < 0.05). The ELISA results showed a lower concentration of HbA1c in the EA group (p < 0.05). EA improved the overall morphology and area of pancreatic islets, increased the number of β-cell nuclei, and alleviated β-cell hypertrophy. The abundance of operational taxonomic units (OTUs) in the EA group increased than the model group (p < 0.05), and EA upregulated the Shannon, Chao1, and Ace indices (p < 0.05). EA increased the concentrations of acetic acid, butyric acid, and GLP-1 (p < 0.05). Correlation analysis revealed negative associations between Lactobacillaceae (R = -0.81, p = 0.015) and Lactobacillus (R = -0.759, p = 0.029) with FBG. Peptostreptococcaceae and Romboutsia were negatively correlated with HbA1c (R = -0.81, p = 0.015), while Enterobacteriaceae was positively correlated with OGTT (R = 0.762, p = 0.028). GLP-1 was positively correlated with acetic acid (R = 0.487, p = 0.001), butyric acid (R = 0.586, p = 0.000), isovaleric acid (R = 0.374, p = 0.017), valeric acid (R = 0.535, p = 0.000), and caproic acid (R = 0.371, p = 0.018). Antibiotics disrupted the intestinal microbiota structure and weakened the therapeutic effects of EA. Conclusion EA effectively improved glucose metabolism in T2DM rats. The hypoglycemic effects of EA were associated with the regulation of gut microbiota, SCFAs, and GLP-1.
Collapse
Affiliation(s)
- Zhang Yue
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wang Xiang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Deng Duping
- Department of Rehabilitation Medicine, Meishan Hospital of Traditional Chinese Medicine, Meishan, China
| | - Gong Yuanyuan
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Xuanyi
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Juan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Xiaojuan
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Zeng Z, Chen M, Liu Y, Zhou Y, Liu H, Wang S, Ji Y. Role of Akkermansia muciniphila in insulin resistance. J Gastroenterol Hepatol 2025; 40:19-32. [PMID: 39396929 DOI: 10.1111/jgh.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Insulin resistance (IR) is a pathogenic factor in numerous metabolic diseases. The gut microbiota plays a crucial role in maintaining the function of the intestinal barrier and overall human health, thereby influencing IR. Dysbiosis of the gut microbiota can contribute to the development of IR. Therefore, it is essential to maintain a balanced and diverse gut microbiota for optimal health. Akkermansia muciniphila, a widely present microorganism in the human intestine, has been shown to regulate gastrointestinal mucosal barrier integrity, reduce endotoxin penetration, decrease systemic inflammation levels, and improve insulin sensitivity. Reduced abundance of A. muciniphila is associated with an increased risk of IR and other metabolic diseases, highlighting its correlation with IR. Understanding the role and regulatory mechanism of A. muciniphila is crucial for comprehending IR pathogenesis and developing novel strategies for preventing and treating related metabolic disorders. Individual variations may exist in both the gut microbiota composition and its impact on IR among different individuals. Further investigation into individual differences between A. muciniphila and IR will facilitate advancements in personalized medicine by promoting tailored interventions based on the gut microbiota composition, which is a potential future direction that would optimize insulin sensitivity while preventing metabolic disease occurrence. In this review, we describe the physiological characteristics of A. muciniphila, emphasize its roles in underlying mechanisms contributing to IR pathology, and summarize how alterations in its abundance affect IR development, thereby providing valuable insights for further research on A. muciniphila, as well as new drug development targeting diabetes.
Collapse
Affiliation(s)
- Zhijun Zeng
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mengjie Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yimin Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yun Zhou
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hongning Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shaohua Wang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yanhua Ji
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
11
|
Wei J, Liu Q, Yuen HY, Lam ACH, Jiang Y, Yang Y, Liu Y, Zhao X, Xiao L. Gut-bone axis perturbation: Mechanisms and interventions via gut microbiota as a primary driver of osteoporosis. J Orthop Translat 2025; 50:373-387. [PMID: 40171106 PMCID: PMC11960541 DOI: 10.1016/j.jot.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 04/03/2025] Open
Abstract
A growing number of studies have highlighted the significance of human gut microbiota (GM) as a potential target for osteoporosis. In this review, we discuss the effect of GM to bone metabolism focusing on two aspects: the local alterations of the human gut permeability that modify how the GM interact with the gut-bone axis (e.g., intestinal leakage, nutrient absorption), and the alterations of the GM itself (e.g., changes in microbiota metabolites, immune secretion, hormones) that modify the events of the gut-bone axis. We then classify these changes as possible therapeutic targets of bone metabolism and highlight some associated promising microbiome-based therapies. We also extend our discussions into combinatorial treatments that incorporate conservative treatments, such as exercise. We anticipate our review can provide an overview of the current pathophysiological and therapeutic paradigms of the gut-bone axis, as well as the prospects of ongoing clinical trials for readers to gain further insights into better microbiome-based treatments to osteoporosis and other bone-degenerative diseases. The translational potential of this article: This paper reviewed the potential links between gut microbiota and osteoporosis, as well as the prospective therapeutic avenues targeting gut microbiota for osteoporosis management, presenting a thorough and comprehensive literature review.
Collapse
Affiliation(s)
- Jingyuan Wei
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qi Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho-Yin Yuen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yaxiong Liu
- Jihua Laboratory, Foshan, Guangdong, 528000, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| |
Collapse
|
12
|
Alahmari LA. Dietary fiber influence on overall health, with an emphasis on CVD, diabetes, obesity, colon cancer, and inflammation. Front Nutr 2024; 11:1510564. [PMID: 39734671 PMCID: PMC11671356 DOI: 10.3389/fnut.2024.1510564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Dietary fiber, found in plant-based foods, plays an essential role in human health. It is divided into two types-soluble and insoluble-both offering significant health benefits. Research has shown that increasing fiber intake can reduce the risk of various chronic diseases, such as cardiovascular diseases (CVD), type II diabetes, obesity, colon cancer, and inflammation. These health conditions are major global challenges, making fiber consumption a key focus for disease prevention. This study reviews a range of clinical trials, cohort studies, and meta-analyses to explore how dietary fiber affects these health risks. By synthesizing data from multiple sources, we found a clear association between higher fiber intake and a lower incidence of these diseases. However, studying the effects of fiber on health presents several challenges. Variations in fiber types and bioavailability make it difficult to generalize results. Additionally, dietary intake is often self-reported, leading to potential inaccuracies in data. Many studies also lack consistency in methodology, and short study durations limit the ability to assess long-term health outcomes. These factors make it harder to draw definitive conclusions about the full range of fiber's health benefits. Despite these challenges, increasing fiber-rich foods like fruits, vegetables, whole grains, and legumes remains a highly recommended strategy for improving health and reducing the risk of chronic disease.
Collapse
Affiliation(s)
- Layla A. Alahmari
- Department of Community Health, College of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
13
|
Han Y, Quan H, Ji W, Tian Q, Liu X, Liu W. Moderate-intensity continuous training and high-intensity interval training alleviate glycolipid metabolism through modulation of gut microbiota and their metabolite SCFAs in diabetic rats. Biochem Biophys Res Commun 2024; 735:150831. [PMID: 39432925 DOI: 10.1016/j.bbrc.2024.150831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/10/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
Glucose and lipid metabolism disorders are typical of diabetic patients and are important factors leading to macrovascular and microvascular complications. The aim of this study was to understand the effects of different exercises on glycolipid metabolism in diabetic rats and the role of gut flora in metabolic maintenance. We measured glycolipid metabolic indices and short-chain fatty acids (SCFAs) content and sequenced and analyzed gut microbes after 8 weeks of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) programs in type 2 diabetic rats(T2DM). We found that Enterococcaceae, Enterococcus, Subdoligranulum, Kurthia, Bacillales, and Planococcaceae may be key bacterial taxa related to T2DM and that both programs of exercise regulated the intestinal flora of rats with T2DM, improved their glycolipid metabolism, increased the abundance of SCFA-producing intestinal bacteria, and it was found that the PWY-5676 and P163-PWY pathways which are closely related to production of SCFAs were significantly upregulated in the exercise groups. Notably, MICT appeared to be more effective than HIIT in increasing the homogeneity of rat intestinal flora, enriching species, and increasing acetic acid and butyric acid content. These results suggest that exercise improves glycolipid metabolism in diabetic rats, which may be attributed to alterations in the structure of their intestinal flora.
Collapse
Affiliation(s)
- Yuxia Han
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| | - Hongjiao Quan
- Hospital of Hunan Normal University, Changsha, 410081, China.
| | - Wei Ji
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| | - Qinghua Tian
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| | - Xia Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| | - Wenfeng Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| |
Collapse
|
14
|
Iqbal ZS, Halkjær SI, Ghathian KSA, Heintz JE, Petersen AM. The Role of the Gut Microbiome in Urinary Tract Infections: A Narrative Review. Nutrients 2024; 16:3615. [PMID: 39519448 PMCID: PMC11547363 DOI: 10.3390/nu16213615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Urinary tract infections (UTIs) represent a substantial health concern worldwide. Although it is known that the gut can act as a reservoir for UTI-causing pathogens, the exact role of the gut microbiome in developing UTIs remains unclear. This review aims to investigate the link between the gut microbiome and UTIs and whether gut dysbiosis increases the risk of getting a UTI. METHODS To find relevant studies, a search was conducted across three databases, PubMed, EMBASE and Cochrane Library. Only records that directly described the association between the gut microbiome and UTIs were included in this review. RESULTS Of the numerous studies retrieved, eight studies met the pre-set criteria and were selected for the review. The findings suggest several potential ways in which gut dysbiosis might enhance UTI susceptibility. A low gut microbiome diversity, a reduced level of bacteria involved in short-chain fatty acid (SCFA) production and a high abundance of Escherichia coli (E. coli) among UTI patients all offer a reasonable explanation for the existence of a link between an altered gut microbiome and UTIs. However, contradictory study results make it difficult to verify this. CONCLUSIONS Research on the link between the gut microbiome and UTIs is limited, and further studies need to be carried out to substantiate this relationship, as this can bring attention to finding improved and more relevant treatment for UTIs.
Collapse
Affiliation(s)
- Zaryan Safdar Iqbal
- Gastrounit, Medical Section, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (Z.S.I.); (S.I.H.)
| | - Sofie Ingdam Halkjær
- Gastrounit, Medical Section, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (Z.S.I.); (S.I.H.)
| | - Khaled Saoud Ali Ghathian
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (K.S.A.G.); (J.E.H.)
| | - Julie Elm Heintz
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (K.S.A.G.); (J.E.H.)
| | - Andreas Munk Petersen
- Gastrounit, Medical Section, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (Z.S.I.); (S.I.H.)
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (K.S.A.G.); (J.E.H.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
15
|
Edison LK, Kudva IT, Kariyawasam S. Host-Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms 2024; 12:2009. [PMID: 39458318 PMCID: PMC11509540 DOI: 10.3390/microorganisms12102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a significant public health threat due to its ability to cause severe gastrointestinal diseases in humans, ranging from diarrhea to life-threatening conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). As the primary reservoir of STEC, cattle play a crucial role in its transmission through contaminated food and water, posing a considerable risk to human health. This comprehensive review explores host-pathogen interactions during STEC colonization of the bovine gut, focusing on the role of gut microbiota in modulating these interactions and influencing disease outcomes. We integrated findings from published transcriptomics, proteomics, and genomics studies to provide a thorough understanding of how STEC adheres to and colonizes the bovine gastrointestinal tract. The insights from this review offer potential avenues for the development of novel preventative and therapeutic strategies aimed at controlling STEC colonization in cattle, thereby reducing the risk of zoonotic transmission.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
16
|
Yu J, Gao M, Wang L, Guo X, Liu X, Sheng M, Cheng S, Guo Y, Wang J, Zhao C, Guo W, Zhang Z, Liu Y, Hu C, Ma X, Xie C, Zhang Q, Xu L. An insoluble cellulose nanofiber with robust expansion capacity protects against obesity. Int J Biol Macromol 2024; 277:134401. [PMID: 39097049 DOI: 10.1016/j.ijbiomac.2024.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
An imbalance between energy intake and energy expenditure predisposes obesity and its related metabolic diseases. Soluble dietary fiber has been shown to improve metabolic homeostasis mainly via microbiota reshaping. However, the application and metabolic effects of insoluble fiber are less understood. Herein, we employed nanotechnology to design citric acid-crosslinked carboxymethyl cellulose nanofibers (CL-CNF) with a robust capacity of expansion upon swelling. Supplementation with CL-CNF reduced food intake and delayed digestion rate in mice by occupying stomach. Besides, CL-CNF treatment mitigated diet-induced obesity and insulin resistance in mice with enhanced energy expenditure, as well as ameliorated inflammation in adipose tissue, intestine and liver and reduced hepatic steatosis, without any discernible signs of toxicity. Additionally, CL-CNF supplementation resulted in enrichment of probiotics such as Bifidobacterium and decreased in the relative abundances of deleterious microbiota expressing bile salt hydrolase, which led to increased levels of conjugated bile acids and inhibited intestinal FXR signaling to stimulate the release of GLP-1. Taken together, our findings demonstrate that CL-CNF administration protects mice from diet-induced obesity and metabolic dysfunction by reducing food intake, enhancing energy expenditure and remodeling gut microbiota, making it a potential therapeutic strategy against metabolic diseases.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaodi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shimiao Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yingying Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
17
|
Lin K, Peng F, He K, Qian Z, Mei X, Su Z, Wujimaiti Y, Xia X, Zhang T. Research progress on intestinal microbiota regulating cognitive function through the gut-brain axis. Neurol Sci 2024; 45:3711-3721. [PMID: 38632176 DOI: 10.1007/s10072-024-07525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
The intestinal microbiota community is a fundamental component of the human body and plays a significant regulatory role in maintaining overall health and in the management disease states.The intestinal microbiota-gut-brain axis represents a vital connection in the cognitive regulation of the central nervous system by the intestinal microbiota.The impact of intestinal microbiota on cognitive function is hypothesized to manifest through both the nervous system and circulatory system. Imbalances in intestinal microbiota during the perioperative period could potentially contribute to perioperative neurocognitive dysfunction. This article concentrates on a review of existing literature to explore the potential influence of intestinal microbiota on brain and cognitive functions via the nervous and circulatory systems.Additionally, it summarizes recent findings on the impact of perioperative intestinal dysbacteriosis on perioperative neurocognitive dysfunction and suggests novel approaches for prevention and treatment of this condition.
Collapse
Affiliation(s)
- Kaijie Lin
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng Peng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- The First Affiliated Hospital Of Chengdu Medical College, Chengdu, Sichuan, China
| | - Kunyang He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Zhengyu Qian
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xuan Mei
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Zhikun Su
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Xun Xia
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
- The First Affiliated Hospital Of Chengdu Medical College, Chengdu, Sichuan, China.
| | - Tianyao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
- The First Affiliated Hospital Of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Beura S, Kundu P, Das AK, Ghosh A. Genome-scale community modelling elucidates the metabolic interaction in Indian type-2 diabetic gut microbiota. Sci Rep 2024; 14:17259. [PMID: 39060274 PMCID: PMC11282233 DOI: 10.1038/s41598-024-63718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/31/2024] [Indexed: 07/28/2024] Open
Abstract
Type-2 diabetes (T2D) is a rapidly growing multifactorial metabolic disorder that induces the onset of various diseases in the human body. The compositional and metabolic shift of the gut microbiota is a crucial factor behind T2D. Hence, gaining insight into the metabolic profile of the gut microbiota is essential for revealing their role in regulating the metabolism of T2D patients. Here, we have focused on the genome-scale community metabolic model reconstruction of crucial T2D-associated gut microbes. The model-based analysis of biochemical flux in T2D and healthy gut conditions showed distinct biochemical signatures and diverse metabolic interactions in the microbial community. The metabolic interactions encompass cross-feeding of short-chain fatty acids, amino acids, and vitamins among individual microbes within the community. In T2D conditions, a reduction in the metabolic flux of acetate, butyrate, vitamin B5, and bicarbonate was observed in the microbial community model, which can impact carbohydrate metabolism. The decline in butyrate levels is correlated with both insulin resistance and diminished glucose metabolism in T2D patients. Compared to the healthy gut, an overall reduction in glucose consumption and SCFA production flux was estimated in the T2D gut environment. Moreover, the decreased consumption profiles of branch chain amino acids (BCAAs) and aromatic amino acids (AAAs) in the T2D gut microbiota can be a distinct biomarker for T2D. Hence, the flux-level analysis of the microbial community model can provide insights into the metabolic reprogramming in diabetic gut microbiomes, which may be helpful in personalized therapeutics and diet design against T2D.
Collapse
Affiliation(s)
- Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
19
|
Yu F, Zong B, Ji L, Sun P, Jia D, Wang R. Free Fatty Acids and Free Fatty Acid Receptors: Role in Regulating Arterial Function. Int J Mol Sci 2024; 25:7853. [PMID: 39063095 PMCID: PMC11277118 DOI: 10.3390/ijms25147853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The metabolic network's primary sources of free fatty acids (FFAs) are long- and medium-chain fatty acids of triglyceride origin and short-chain fatty acids produced by intestinal microorganisms through dietary fibre fermentation. Recent studies have demonstrated that FFAs not only serve as an energy source for the body's metabolism but also participate in regulating arterial function. Excess FFAs have been shown to lead to endothelial dysfunction, vascular hypertrophy, and vessel wall stiffness, which are important triggers of arterial hypertension and atherosclerosis. Nevertheless, free fatty acid receptors (FFARs) are involved in the regulation of arterial functions, including the proliferation, differentiation, migration, apoptosis, inflammation, and angiogenesis of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). They actively regulate hypertension, endothelial dysfunction, and atherosclerosis. The objective of this review is to examine the roles and heterogeneity of FFAs and FFARs in the regulation of arterial function, with a view to identifying the points of intersection between their actions and providing new insights into the prevention and treatment of diseases associated with arterial dysfunction, as well as the development of targeted drugs.
Collapse
Affiliation(s)
- Fengzhi Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lili Ji
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| |
Collapse
|
20
|
Li J, Zhao J, Tian C, Dong L, Kang Z, Wang J, Zhao S, Li M, Tong X. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: effects on short-chain fatty acids. Nutr Metab (Lond) 2024; 21:49. [PMID: 39026248 PMCID: PMC11256480 DOI: 10.1186/s12986-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Natural compounds can positively impact health, and various studies suggest that they regulate glucose‒lipid metabolism by influencing short-chain fatty acids (SCFAs). This metabolism is key to maintaining energy balance and normal physiological functions in the body. This review explores how SCFAs regulate glucose and lipid metabolism and the natural compounds that can modulate these processes through SCFAs. This provides a healthier approach to treating glucose and lipid metabolism disorders in the future. METHODS This article reviews relevant literature on SCFAs and glycolipid metabolism from PubMed and the Web of Science Core Collection (WoSCC). It also highlights a range of natural compounds, including polysaccharides, anthocyanins, quercetins, resveratrols, carotenoids, and betaines, that can regulate glycolipid metabolism through modulation of the SCFA pathway. RESULTS Natural compounds enrich SCFA-producing bacteria, inhibit harmful bacteria, and regulate operational taxonomic unit (OTU) abundance and the intestinal transport rate in the gut microbiota to affect SCFA content in the intestine. However, most studies have been conducted in animals, lack clinical trials, and involve fewer natural compounds that target SCFAs. More research is needed to support the conclusions and to develop healthier interventions. CONCLUSIONS SCFAs are crucial for human health and are produced mainly by the gut microbiota via dietary fiber fermentation. Eating foods rich in natural compounds, including fruits, vegetables, tea, and coarse fiber foods, can hinder harmful intestinal bacterial growth and promote beneficial bacterial proliferation, thus increasing SCFA levels and regulating glucose and lipid metabolism. By investigating how these compounds impact glycolipid metabolism via the SCFA pathway, novel insights and directions for treating glucolipid metabolism disorders can be provided.
Collapse
Affiliation(s)
- Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Lishuo Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingshuo Wang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolin Tong
- Guang'anmen Hospital, Academician of Chinese Academy of Sciences, China Academy of Traditional Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Lin X, Li Y, Wu Q, Lv Y, Zhu Y, Liu J, He L, Wang Z. Quality and Quantity of School Lunch in Nanjing: Based on Data from the Sunshine Restaurant Supervision Platform. Nutrients 2024; 16:2184. [PMID: 39064627 PMCID: PMC11280376 DOI: 10.3390/nu16142184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
School lunch plays an important role in children's healthy growth. Previous investigations revealed many problems with school lunches, including unreasonable dietary structure and insufficient micronutrients. This study aimed to assess the dietary structure and nutritional quality of lunches in Nanjing primary and middle schools. A stratified cluster random sampling method was used to select 44 schools that supply lunch in 12 districts in Nanjing, with two primary and two middle schools in each district. Twenty-four primary and twenty middle schools were selected. The Mann-Whitney U test was used to explore the influencing factors. Findings revealed a serious shortage of milk and fruit in school lunches; supply of eggs, fish, shrimp, and shellfish was less than half of the recommended quantity; livestock and poultry supply exceeded the recommended level by over four times. Energy and nutrition intake were suboptimal. Provision of energy, carbohydrates, vitamins (A, B1, B2, and C), calcium, and iron in urban primary schools was significantly higher than that in non-urban primary schools. The same pattern of significantly higher nutrients was equally seen in urban middle schools compared with non-urban middle schools, indicating that food supply was affected by regional economies. Therefore, it is urgent to improve the quality of lunches, with a particular focus on those in non-urban areas.
Collapse
Affiliation(s)
- Xiaofang Lin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Yuanyuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Qiong Wu
- Nanjing Municipal Healthcare Institute for Primary and Secondary Schools, Nanjing 210002, China; (Q.W.); (Y.L.)
| | - Yizhou Lv
- Nanjing Municipal Healthcare Institute for Primary and Secondary Schools, Nanjing 210002, China; (Q.W.); (Y.L.)
| | - Yirong Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Jingwen Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Le He
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Zhixu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| |
Collapse
|
22
|
Tabrizi E, Pourteymour Fard Tabrizi F, Mahmoud Khaled G, Sestito MP, Jamie S, Boone BA. Unraveling the gut microbiome's contribution to pancreatic ductal adenocarcinoma: mechanistic insights and therapeutic perspectives. Front Immunol 2024; 15:1434771. [PMID: 39044834 PMCID: PMC11263025 DOI: 10.3389/fimmu.2024.1434771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The gut microbiome plays a significant role in the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), influencing oncogenesis, immune responses, and treatment outcomes. Studies have identified microbial species like Porphyromonas gingivalis and Fusobacterium nucleatum, that promote PDAC progression through various mechanisms. Additionally, the gut microbiome affects immune cell activation and response to immunotherapy, including immune checkpoint inhibitors and CAR-T therapy. Specific microbes and their metabolites play a significant role in the effectiveness of immune checkpoint inhibitors (ICIs). Alterations in the gut microbiome can either enhance or diminish responses to PD-1/PD-L1 and CTLA-4 blockade therapy. Additionally, bacterial metabolites like trimethylamine N-oxide (TMAO) and lipopolysaccharide (LPS) impact antitumor immunity, offering potential targets to augment immunotherapy responses. Modulating the microbiome through fecal microbiota transplantation, probiotics, prebiotics, dietary changes, and antibiotics shows promise in PDAC treatment, although outcomes are highly variable. Dietary modifications, particularly high-fiber diets and specific fat consumption, influence microbiome composition and impact cancer risk. Combining microbiome-based therapies with existing treatments holds potential for improving PDAC therapy outcomes, but further research is needed to optimize their effectiveness.
Collapse
Affiliation(s)
- Eileen Tabrizi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Fatemeh Pourteymour Fard Tabrizi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran
| | - Gehad Mahmoud Khaled
- Department of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo, Egypt
| | - Michael P. Sestito
- Department of Surgery, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Saeid Jamie
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University School of Medicine, Morgantown, WV, United States
| |
Collapse
|
23
|
Bock PM, Martins AF, Schaan BD. Understanding how pre- and probiotics affect the gut microbiome and metabolic health. Am J Physiol Endocrinol Metab 2024; 327:E89-E102. [PMID: 38809510 DOI: 10.1152/ajpendo.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The gut microbiome, a complex assembly of microorganisms, significantly impacts human health by influencing nutrient absorption, the immune system, and disease response. These microorganisms form a dynamic ecosystem that is critical to maintaining overall well-being. Prebiotics and probiotics are pivotal in regulating gut microbiota composition. Prebiotics nourish beneficial bacteria and promote their growth, whereas probiotics help maintain balance within the microbiome. This intricate balance extends to several aspects of health, including maintaining the integrity of the gut barrier, regulating immune responses, and producing metabolites crucial for metabolic health. Dysbiosis, or an imbalance in the gut microbiota, has been linked to metabolic disorders such as type 2 diabetes, obesity, and cardiovascular disease. Impaired gut barrier function, endotoxemia, and low-grade inflammation are associated with toll-like receptors influencing proinflammatory pathways. Short-chain fatty acids derived from microbial fermentation modulate anti-inflammatory and immune system pathways. Prebiotics positively influence gut microbiota, whereas probiotics, especially Lactobacillus and Bifidobacterium strains, may improve metabolic outcomes, such as glycemic control in diabetes. It is important to consider strain-specific effects and study variability when interpreting these findings, highlighting the need for further research to optimize their therapeutic potential. The aim of this report is therefore to review the role of the gut microbiota in metabolic health and disease and the effects of prebiotics and probiotics on the gut microbiome and their therapeutic role, integrating a broad understanding of physiological mechanisms with a clinical perspective.
Collapse
Affiliation(s)
- Patricia M Bock
- Pharmacology, Institute of Basic Science, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Andreza F Martins
- Microbiology, Department of Microbiology, Immunology, and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Beatriz D Schaan
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
24
|
Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, Franczyk B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management-A Narrative Review. Nutrients 2024; 16:1938. [PMID: 38931292 PMCID: PMC11206785 DOI: 10.3390/nu16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes is a disease with significant health consequences for the individual. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. One of them is the association of type 2 diabetes with microbiota. Through the enteric nervous system and the gut-microbiota axis, the microbiota affects the functioning of the body. It has been proven to have a real impact on influencing glucose and lipid metabolism and insulin sensitivity. With dysbiosis, there is increased bacterial translocation through the disrupted intestinal barrier and increased inflammation in the body. In diabetes, the microbiota's composition is altered with, for example, a more abundant class of Betaproteobacteria. The consequences of these disorders are linked to mechanisms involving short-chain fatty acids, branched-chain amino acids, and bacterial lipopolysaccharide, among others. Interventions focusing on the gut microbiota are gaining traction as a promising approach to diabetes management. Studies are currently being conducted on the effects of the supply of probiotics and prebiotics, as well as fecal microbiota transplantation, on the course of diabetes. Further research will allow us to fully develop our knowledge on the subject and possibly best treat and prevent type 2 diabetes.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Greta Steć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Jasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
25
|
Osawa R, Fukuda I, Shirai Y. Evaluating functionalities of food components by a model simulating human intestinal microbiota constructed at Kobe University. Curr Opin Biotechnol 2024; 87:103103. [PMID: 38447326 DOI: 10.1016/j.copbio.2024.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
In this era of pandemics, reducing the risk of lifestyle-related diseases (LRD) by functional foods is of paramount importance. The conventional process of functional food development almost invariably involves in vitro, animal, and human intervention trials, but differences in intestinal environments between humans and experimental animals make it difficult to develop functional foods that are truly effective in humans. Thus, it is necessary to construct a model that simulates the human intestinal environment to evaluate the functionality of any food component before subjecting it to a human intervention trial. In this review, we provide an overview of a model simulating human intestinal microbiota constructed at Kobe University and its use as a tool to identify food components that contribute to the prevention and treatment of LRD.
Collapse
Affiliation(s)
- Ro Osawa
- Department of Agrobioscience, Graduate School of Agricultural Science & Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Itsuko Fukuda
- Department of Agrobioscience, Graduate School of Agricultural Science & Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasuhito Shirai
- Department of Agrobioscience, Graduate School of Agricultural Science & Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
26
|
Yin D, Zhong Y, Liu H, Hu J. Lipid metabolism regulation by dietary polysaccharides with different structural properties. Int J Biol Macromol 2024; 270:132253. [PMID: 38744359 DOI: 10.1016/j.ijbiomac.2024.132253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Lipid metabolism plays an important role in energy homeostasis maintenance in response to stress. Nowadays, hyperlipidemia-related chronic diseases such as obesity, diabetes, atherosclerosis, and fatty liver pose significant health challenges. Dietary polysaccharides (DPs) have gained attention for their effective lipid-lowering properties. This review examines the multifaceted mechanisms that DPs employ to lower lipid levels in subjects with hyperlipidemia. DPs could directly inhibit lipid intake and absorption, promote lipid excretion, and regulate key enzymes involved in lipid metabolism pathways, including triglyceride and cholesterol anabolism and catabolism, fatty acid oxidation, and bile acid synthesis. Additionally, DPs indirectly improve lipid homeostasis by modulating gut microbiota composition and alleviating oxidative stress. Moreover, the lipid-lowering mechanisms of particular structural DPs (including β-glucan, pectin, glucomannan, inulin, arabinoxylan, and fucoidan) are summarized. The relationship between the structure and lipid-lowering activity of DPs is also discussed based on current researches. Finally, potential breakthroughs and future directions in the development of DPs in lipid-lowering activity are discussed. The paper could provide a reference for further exploring the mechanism of DPs for lipid regulations and utilizing DPs as lipid-lowering dietary ingredients.
Collapse
Affiliation(s)
- Dafang Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Huan Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
27
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
28
|
Raj ST, Bruce AW, Anbalagan M, Srinivasan H, Chinnappan S, Rajagopal M, Khanna K, Chandramoorthy HC, Mani RR. COVID-19 influenced gut dysbiosis, post-acute sequelae, immune regulation, and therapeutic regimens. Front Cell Infect Microbiol 2024; 14:1384939. [PMID: 38863829 PMCID: PMC11165100 DOI: 10.3389/fcimb.2024.1384939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has garnered unprecedented global attention. It caused over 2.47 million deaths through various syndromes such as acute respiratory distress, hypercoagulability, and multiple organ failure. The viral invasion proceeds through the ACE2 receptor, expressed in multiple cell types, and in some patients caused serious damage to tissues, organs, immune cells, and the microbes that colonize the gastrointestinal tract (GIT). Some patients who survived the SARS-CoV-2 infection have developed months of persistent long-COVID-19 symptoms or post-acute sequelae of COVID-19 (PASC). Diagnosis of these patients has revealed multiple biological effects, none of which are mutually exclusive. However, the severity of COVID-19 also depends on numerous comorbidities such as obesity, age, diabetes, and hypertension and care must be taken with respect to other multiple morbidities, such as host immunity. Gut microbiota in relation to SARS-CoV-2 immunopathology is considered to evolve COVID-19 progression via mechanisms of biochemical metabolism, exacerbation of inflammation, intestinal mucosal secretion, cytokine storm, and immunity regulation. Therefore, modulation of gut microbiome equilibrium through food supplements and probiotics remains a hot topic of current research and debate. In this review, we discuss the biological complications of the physio-pathological effects of COVID-19 infection, GIT immune response, and therapeutic pharmacological strategies. We also summarize the therapeutic targets of probiotics, their limitations, and the efficacy of preclinical and clinical drugs to effectively inhibit the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Sterlin T. Raj
- Department of Molecular Biology, Ekka Diagnostics, Chennai, Tamil Nadu, India
| | - Alexander W. Bruce
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Muralidharan Anbalagan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hemalatha Srinivasan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Sasikala Chinnappan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Kushagra Khanna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Harish C. Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Gulnaz A, Lew LC, Park YH, Sabir JSM, Albiheyri R, Rather IA, Hor YY. Efficacy of Probiotic Strains Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 in Management of Obesity: An In Vitro and In Vivo Analysis. Pharmaceuticals (Basel) 2024; 17:676. [PMID: 38931347 PMCID: PMC11206994 DOI: 10.3390/ph17060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of obesity, characterized by an excessive accumulation of adipose tissue and adipocyte hypertrophy, presents a major public health challenge. This study investigates the therapeutic potential of two probiotic strains, Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093, in the context of obesity. Utilizing 3T3-L1 cell-derived human adipocytes, we assessed Probio65's and Probio-093's capacity to mitigate triglyceride accumulation and influence adipocytokine production in vitro. Subsequently, an in vivo trial with male C57BL/6J mice examined the effects of both probiotic strains on adipose tissue characteristics, body weight, fat mass, and obesity-related gene expression. This study employed both live and ethanol-extracted bacterial cells. The results demonstrated significant reductions in the triglyceride deposition, body weight, and adipose tissue mass in the treated groups (p < 0.05). Furthermore, both strains modulated adipokine profiles by downregulating proinflammatory markers such as PAI-1, leptin, TNF-α, STAMP2, F4/80, resistin, and MCP-1, and upregulating the insulin-sensitive transporter GLUT4 and the anti-inflammatory adiponectin (p < 0.05). Our findings suggest that Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 are promising agents for microbiome-targeted anti-obesity therapies, offering the effective mitigation of obesity and improvement in adipocyte function in a murine model.
Collapse
Affiliation(s)
- Aneela Gulnaz
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Lee-Ching Lew
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| | - Yong-Ha Park
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| |
Collapse
|
30
|
Yu JX, Chen X, Zang SG, Chen X, Wu YY, Wu LP, Xuan SH. Gut microbiota microbial metabolites in diabetic nephropathy patients: far to go. Front Cell Infect Microbiol 2024; 14:1359432. [PMID: 38779567 PMCID: PMC11109448 DOI: 10.3389/fcimb.2024.1359432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the main complications of diabetes and a major cause of end-stage renal disease, which has a severe impact on the quality of life of patients. Strict control of blood sugar and blood pressure, including the use of renin-angiotensin-aldosterone system inhibitors, can delay the progression of diabetic nephropathy but cannot prevent it from eventually developing into end-stage renal disease. In recent years, many studies have shown a close relationship between gut microbiota imbalance and the occurrence and development of DN. This review discusses the latest research findings on the correlation between gut microbiota and microbial metabolites in DN, including the manifestations of the gut microbiota and microbial metabolites in DN patients, the application of the gut microbiota and microbial metabolites in the diagnosis of DN, their role in disease progression, and so on, to elucidate the role of the gut microbiota and microbial metabolites in the occurrence and prevention of DN and provide a theoretical basis and methods for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-Pei Wu
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| | - Shi-Hai Xuan
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| |
Collapse
|
31
|
Ren SJ, Feng JT, Xiang T, Liao CL, Zhou YP, Xuan RR. Expression and clinical significance of short-chain fatty acids in patients with intrahepatic cholestasis of pregnancy. World J Hepatol 2024; 16:601-611. [PMID: 38689740 PMCID: PMC11056904 DOI: 10.4254/wjh.v16.i4.601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 04/24/2024] Open
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy. Short-chain fatty acids (SCFAs), prominent metabolites of the gut microbiota, have significant connections with various pregnancy complications, and some SCFAs hold potential for treating such complications. However, the metabolic profile of SCFAs in patients with ICP remains unclear. AIM To investigate the metabolic profiles and differences in SCFAs present in the maternal and cord blood of patients with ICP and determine the clinical significance of these findings. METHODS Maternal serum and cord blood samples were collected from both patients with ICP (ICP group) and normal pregnant women (NP group). Targeted metabolomics was used to assess the SCFA levels in these samples. RESULTS Significant differences in maternal SCFAs were observed between the ICP and NP groups. Most SCFAs exhibited a consistent declining trend in cord blood samples from the ICP group, mirroring the pattern seen in maternal serum. Correlation analysis revealed a positive correlation between maternal serum SCFAs and cord blood SCFAs [r (Pearson) = 0.88, P = 7.93e-95]. In both maternal serum and cord blood, acetic and caproic acids were identified as key metabolites contributing to the differences in SCFAs between the two groups (variable importance for the projection > 1). Receiver operating characteristic analysis demonstrated that multiple SCFAs in maternal blood have excellent diagnostic capabilities for ICP, with caproic acid exhibiting the highest diagnostic efficacy (area under the curve = 0.97). CONCLUSION Compared with the NP group, significant alterations were observed in the SCFAs of maternal serum and cord blood in the ICP group, although they displayed distinct patterns of change. Furthermore, the SCFA levels in maternal serum and cord blood were significantly positively correlated. Notably, certain maternal serum SCFAs, specifically caproic and acetic acids, demonstrated excellent diagnostic efficiency for ICP.
Collapse
Affiliation(s)
- Shuai-Jun Ren
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo 315100, Zhejiang Province, China
| | - Jia-Ting Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo 315100, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Ting Xiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo 315100, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Cai-Lian Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo 315100, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang Province, China
- Institute of Digestive Disease, Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Rong-Rong Xuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo 315100, Zhejiang Province, China.
| |
Collapse
|
32
|
Song S, Zhang Q, Zhang L, Zhou X, Yu J. A two-sample bidirectional Mendelian randomization analysis investigates associations between gut microbiota and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1313651. [PMID: 38495787 PMCID: PMC10940336 DOI: 10.3389/fendo.2024.1313651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Objective This study sought to elucidate the causal association between gut microbiota (GM) composition and type 2 diabetes mellitus (T2DM) through a comprehensive two-sample bidirectional Mendelian randomization analysis. Method T2DM data were sourced from the IEU OpenGWAS Project database, complemented by 211 gut microbiota (GM) datasets from the MiBioGen Federation. The primary analytical approach employed was inverse variance weighted (IVW), supplemented by MR-Egger regression and weighted median (WME) methods to investigate their potential interplay. Results were assessed using odds ratios (OR) and 95% confidence intervals (CI). The robustness and reliability of the findings were confirmed through leave-one-out analysis, heterogeneity testing, and assessment of horizontal pleiotropy. Furthermore, we explored the potential mediating role of metabolites in the pathway linking GM to T2DM. Result A set of 11 Single Nucleotide Polymorphisms (SNPs) linked to GM were identified as instrumental variables (IVs). The IVW analysis revealed that increased abundance of the genus Actinomyces, genus Bilophila, genus Lachnoclostridium, genus Ruminococcus gnavus group, and genus Streptococcus corresponded to a heightened risk of T2DM. Conversely, higher levels of genus Eubacterium oxidoreducens group, genus Oscillospira, genus Ruminococcaceae UCG003, genus Ruminococcaceae UCG010, and genus Sellimonas were associated with a reduced risk of T2DM. However, following false discovery rate (FDR) correction, only the abundance of genus Lachnoclostridium retained a significant positive correlation with T2DM risk (OR = 1.22, q value = 0.09), while the other ten GM showed suggestive associations with T2DM. Reverse MR analysis did not reveal any causal relationship between T2DM and the increased risk associated with the identified GM. Additionally, metabolites did not exhibit mediating effects in this context. Conclusion This study effectively pinpointed specific GM associated with T2DM, potentially paving the way for novel biomarkers in the prevention and treatment of this condition. The findings suggested that probiotics could emerge as a promising avenue for managing T2DM in the future. Furthermore, the analysis indicated that metabolites do not appear to act as mediators in the pathway from GM to T2DM.
Collapse
Affiliation(s)
| | | | | | | | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
Liu X, Tang H, Huang X, Xu M. Butyrate affects bacterial virulence: a new perspective on preventing enteric bacterial pathogen invasion. Future Microbiol 2024; 19:73-84. [PMID: 38085176 DOI: 10.2217/fmb-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 02/15/2024] Open
Abstract
Enteric bacterial pathogens are a major threat to intestinal health. With the widespread use of antibiotics, bacterial resistance has become a problem, and there is an urgent need for a new treatment to reduce dependence on antibiotics. Butyrate can control enteric bacterial pathogens by regulating the expression of their virulence genes, promoting the posttranslational modification of their proteins, maintaining an anaerobic environment, regulating the host immune system and strengthening the intestinal mucosal barrier. Here, this review describes the mechanisms by which butyrate regulates the pathogenicity of enteric bacterial pathogens from various perspectives and discusses the prospects and limitations of butyrate as a new option for the control of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiucheng Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Hao Tang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
34
|
Zanfirescu A, Avram I, Gatea F, Roșca R, Vamanu E. In Vitro and In Vivo Antihyperglycemic Effects of New Metabiotics from Boletus edulis. Life (Basel) 2023; 14:68. [PMID: 38255683 PMCID: PMC10817235 DOI: 10.3390/life14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing incidence of diabetes has prompted the need for new treatment strategies, including natural products that reduce glycemia values. This work examined the in vitro and in vivo antihyperglycemic effects of new metabiotics derived from Boletus edulis extracts. The metabiotics were obtained from 100% B. edulis, and two other products, CARDIO and GLYCEMIC, from Anoom Laboratories SRL, which contain other microbial species related to B. edulis. Our in vitro investigations (simulations of the microbiota of patients with type 2 diabetes (T2D)) demonstrated that B. edulis extracts modulate the microbiota, normalizing its pattern. The effects were further tested in vivo, employing a mouse model of T2D. The tested extracts decreased glycemia values compared to the control and modulated the microbiota. The metabiotics had positive effects on T2D in vitro and in vivo, suggesting their potential to alleviate diabetes-associated microbiota dysbiosis.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Ionela Avram
- Department of Genetics, University of Bucharest, 36–46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania;
| | - Răzvan Roșca
- Anoom Laboratories SRL, 18th Resita Str., ap. 58, 4th District, 024023 Bucharest, Romania;
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| |
Collapse
|
35
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023; 65:575-611. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
36
|
Ayala-García JC, García-Vera AM, Lagunas-Martínez A, Orbe-Orihuela YC, Castañeda-Márquez AC, Díaz-Benítez CE, Bermúdez-Morales VH, Cruz M, Bahena-Román M, Burguete-García AI. Interaction between Akkermansia muciniphila and Diet Is Associated with Proinflammatory Index in School-Aged Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1799. [PMID: 38002890 PMCID: PMC10670599 DOI: 10.3390/children10111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Imbalance in the intestinal microbiota can lead to chronic low-grade inflammation. Diet may influence this association. In this study, we aimed to evaluate the interaction between Akkermansia muciniphila (A. muciniphila) and dietary patterns using a proinflammatory index. METHODS We conducted a cross-sectional study with school-aged children. We quantified the relative abundance (RA) of A. muciniphila in feces using a polymerase chain reaction. We collected dietary information through employing a food frequency questionnaire and generated dietary patterns using principal component analysis. We generated a proinflammatory index from serum levels of interleukin-6, interleukin-10, tumor necrosis factor alpha, and adiponectin validated by receptor operating characteristic curves. We evaluated the association between A. muciniphila and the proinflammatory index using logistic regression, including an interaction term with dietary patterns. RESULTS We found that children with a low RA of A. muciniphila and a high intake of simple carbohydrates and saturated fats had increased odds of being high on the proinflammatory index. However, when the consumption of this dietary pattern is low, children with a low RA of A. muciniphila had decreased odds of being high on the proinflammatory index. CONCLUSIONS Our results suggest that the simultaneous presence of A. muciniphila and diet have a more significant impact on the presence of being high on the proinflammatory index compared to both factors separately.
Collapse
Affiliation(s)
- Juan Carlos Ayala-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Alba Mariel García-Vera
- Escuela de Salud Pública de México, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Alfredo Lagunas-Martínez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Yaneth Citlalli Orbe-Orihuela
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | | | - Cinthya Estefhany Díaz-Benítez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Víctor Hugo Bermúdez-Morales
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico;
| | - Margarita Bahena-Román
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Ana Isabel Burguete-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| |
Collapse
|
37
|
Liu L, Mahalak KK, Bobokalonov JT, Narrowe AB, Firrman J, Lemons JMS, Bittinger K, Hu W, Jones SM, Moustafa AM. Impact of Ivermectin on the Gut Microbial Ecosystem. Int J Mol Sci 2023; 24:16125. [PMID: 38003317 PMCID: PMC10671733 DOI: 10.3390/ijms242216125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Ivermectin is a an anti-helminthic that is critical globally for both human and veterinary care. To the best of our knowledge, information available regarding the influence of ivermectin (IVM) on the gut microbiota has only been collected from diseased donors, who were treated with IVM alone or in combination with other medicines. Results thus obtained were influenced by multiple elements beyond IVM, such as disease, and other medical treatments. The research presented here investigated the impact of IVM on the gut microbial structure established in a Triple-SHIME® (simulator of the human intestinal microbial ecosystem), using fecal material from three healthy adults. The microbial communities were grown using three different culture media: standard SHIME media and SHIME media with either soluble or insoluble fiber added (control, SF, ISF). IVM introduced minor and temporary changes to the gut microbial community in terms of composition and metabolite production, as revealed by 16S rRNA amplicon sequencing analysis, flow cytometry, and GC-MS. Thus, it was concluded that IVM is not expected to induce dysbiosis or yield adverse effects if administered to healthy adults. In addition, the donor's starting community influences the relationship between IVM and the gut microbiome, and the soluble fiber component in feed could protect the gut microbiota from IVM; an increase in short-chain fatty acid production was predicted by PICRUSt2 and detected with IVM treatment.
Collapse
Affiliation(s)
- LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Jamshed T. Bobokalonov
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Johanna M. S. Lemons
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weiming Hu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven M. Jones
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ahmed M. Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Wang T, Xiao Z, Li T, Guo G, Chen S, Huang X. Improving the quality of soluble dietary fiber from Poria cocos peel residue following steam explosion. Food Chem X 2023; 19:100829. [PMID: 37780304 PMCID: PMC10534144 DOI: 10.1016/j.fochx.2023.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Poria cocos peel residue (PCPR) still contains much soluble dietary fiber (SDF), steam explosion (SE) treatment was applied to PCPR to create a superior SDF. Steam pressure of 1.2 MPa, residence period of 120 s, and moisture content of 13% were the optimized parameters for SE treatment of PCPR. Under optimized circumstances, SE treatment of PCPR enhanced its SDF yield from 5.24% to 23.86%. Compared to the original SDF, the SE-treated SDF displayed improved enzyme inhibition, including the inhibition of α-amylase and pancreatic lipase, also enhanced water holding, oil holding, water swelling, nutrient adsorption including cholesterol, nitrite ions, and glucose and antioxidant abilities. Additionally, it had a decreased molecular weight, improved thermal stability, and a rough surface with many pores of different sizes. Given that SDF had been improved physiochemical and functional characteristics thanks to SE treatment, it might be the excellent functional ingredient for the food business.
Collapse
Affiliation(s)
- Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zhongshan Xiao
- Department of Pharmacy, Puyang Medical College, Puyang 457000, Henan, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Ge Guo
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Suyun Chen
- College of Economics and Management, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| |
Collapse
|
39
|
Moraitis I, Guiu J, Rubert J. Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab 2023:S1043-2760(23)00108-X. [PMID: 37336645 DOI: 10.1016/j.tem.2023.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Cancer remains the second leading cause of mortality, with nearly 10 million deaths worldwide in 2020. In many cases, radiotherapy is used for its anticancer effects. However, radiation causes healthy tissue toxicity as a side effect. In intra-abdominal and pelvic malignancies, the healthy bowel is inevitably included in the radiation field, causing radiation-induced enteritis and dramatically affecting the gut microbiome. This condition is associated with significant morbidity and mortality that impairs cancer patients' and survivors' quality of life. This Review provides a critical overview of the main drivers in modulating the gut microenvironment in homeostasis, disease, and injury, focusing on gut microbial metabolites and microorganisms that influence epithelial regeneration upon radiation injury.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain.
| | - Josep Rubert
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, Wageningen, 6708, WE, Netherlands; Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708, WG, Netherlands.
| |
Collapse
|