1
|
Boonhok R, Senghoi W, Sangkanu S, Lim CL, Pudla M, Pereira MDL, Wilairatana P, Mahboob T, Rahman MA, Utaisincharoen P, Hiransai P, Nissapatorn V. Acanthamoeba castellanii-Mediated Reduction of Interleukin-1β Secretion and Its Association With Macrophage Autophagy. SCIENTIFICA 2025; 2025:3430892. [PMID: 40109888 PMCID: PMC11922611 DOI: 10.1155/sci5/3430892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Noncanonical autophagy including unconventional protein secretion has been extensively studied. Our work focused on a leaderless IL-1β protein secretion from human macrophage in response to Acanthamoeba castellanii components, Acanthamoeba culture supernatant (CS) and cell lysate (CL), as well as its association with macrophage autophagy. Phorbol 12-myristate 13-acetate (PMA)-induced THP-1 macrophages were treated with Acanthamoeba components of pathogenic (ATCC50739) and nonpathogenic (ATCC30010) strains in vitro. The data showed that Acanthamoeba treatment resulted in low IL-1β secretion from macrophages. In addition, Acanthamoeba CL of both strains was able to upregulate autophagy-related (Atg) protein 8, an autophagy marker, whereas Acanthamoeba CS downregulated Atg8 expression. We further manipulated autophagy and found that autophagy induction by starvation diminished IL-1β secretion while autophagy inhibition by 3-methyladenine (3MA) increased IL-1β secretion. Interestingly, in the presence of Acanthamoeba components either under starvation or 3MA treatment, IL-1β secretion was significantly reduced. Transcriptional expression of other ATG genes, i.e., ATG6, ATG7, and ATG5, were investigated and showed that their mRNA expression was maintained at the basal level under A. castellanii CS or CL treatment. Inflammasome-related genes, NLRP3 and CASPASE1, were upregulated following A. castellanii 50739 CS treatment but not in A. castellanii 50739 CL-treated condition. However, both conditions were able to increase IL-1β mRNA expression. TEM micrographs revealed that 3MA treatment induced the formation of large vacuoles and accumulation of autophagosome at the edge of THP-1 macrophages. However, the number and size of their structures were declined in the presence of A. castellanii 50739 CS with 3MA. Furthermore, immunofluorescence staining demonstrated the association between Atg8/LC3 and IL-1β expression, where downregulation of Atg8 by A. castellanii 50739 CS led to the upregulation of IL-1β. Altogether, the data indicate that Acanthamoeba can manipulate macrophage autophagy, thereby controlling low IL-1β secretion. The expression of autophagy- and inflammasome-related genes also indicates multiple mechanisms in IL-1β secretion in response to Acanthamoeba components. However, further characterization of Atg proteins and investigations into other intracellular pathways or defense mechanisms are needed to fully understand the unconventional secretion of IL-1β in macrophages. This knowledge could eventually lead to the development of innovative therapeutic strategies against Acanthamoeba infection by modulating autophagy or macrophage responses.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Wilaiwan Senghoi
- Department of Medical Technology, School of Allied Health Sciences, and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Suthinee Sangkanu
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Matsayapan Pudla
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tooba Mahboob
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Pongsak Utaisincharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Poonsit Hiransai
- Department of Medical Technology, School of Allied Health Sciences, and Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
2
|
de Jesus Ramires M, Hummel K, Hatfaludi T, Hess M, Bilic I. Host-specific targets of Histomonas meleagridis antigens revealed by immunoprecipitation. Sci Rep 2025; 15:5800. [PMID: 39962091 PMCID: PMC11832935 DOI: 10.1038/s41598-025-88855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
Histomonas meleagridis, a protozoan parasite responsible for histomonosis (syn. Blackhead disease, histomoniasis), presents an increasing challenge for poultry health, particularly with the ban of licensed prophylactic and treatment options. Recent studies have explored H. meleagridis proteome, exoproteome, and surfaceome, linking molecular data to virulence and in vitro attenuation. Nevertheless, proteins involved in interactions with hosts remain largely unknown. In this study, we conducted immunoproteome analyses to identify key antigens involved in the humoral immune response of the parasite's main hosts, turkeys and chickens. Immunogenic proteins were isolated via immunoprecipitation using sera from chickens and turkeys that were vaccinated with a single attenuated strain and challenged with virulent strains of the protozoan, respectively. Mass spectrometry identified 155 putative H. meleagridis immunogenic proteins, of which 43 were recognized by sera from both hosts. In silico antigenicity screening (VaxElan) identified 33 pan-reactive antigens, with VaxiDL further highlighting 10 as potential vaccine candidates. Comparative analysis revealed host-specific immune responses, with 16 differential immunogenic proteins in chickens (6 specific to virulent and 10 to attenuated preparations) and 19 unique proteins in turkeys, all associated with virulent strains. These results enhance our understanding of H. meleagridis immunogenic protein dynamics and host-pathogen specificities, supporting the development of improved diagnostic tools and potential protective measures against the infection.
Collapse
Affiliation(s)
- Marcelo de Jesus Ramires
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Tamas Hatfaludi
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria.
| |
Collapse
|
3
|
Salazar-Ardiles C, Paredes Valencia K, Andrade DC. Amoebas: the omnipotent organism and silent assassin. Mol Biol Rep 2025; 52:160. [PMID: 39856439 DOI: 10.1007/s11033-025-10256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Amoebas are characterized by their unique ability to exist both as free-living organisms and, occasionally, as parasites within host tissues, earning them the designation 'amphizoic amoebae'. While amoebic infections are less prevalent, their health impact can be tremendous, leading to several diseases. In low-income countries, poor sanitation and socioeconomic conditions significantly increase the risk of amoebic infections, particularly E. histolytica, which affects up to 50 million people and causes over 100,000 deaths each year. Diagnostic methods, including microscopy, serological tests, polymerase chain reaction, and the loop-mediated isothermal amplification assay, have improved the accuracy and timeliness of amoeba diagnosis. However, these methodologies are often cost-prohibitive for developing countries. Conversely, current treatments involve aggressive protocols using antibiotics, antifungals, and anticancer agents. However, the prognosis for severe infections such as Primary Amoebic Meningoencephalitis and Granulomatous Amebic Encephalitis remains poor. Despite advancements, effective treatments, and new low-cost therapeutic options are still being researched. Thus, the current review sought to provide a description of molecular aspects such as amoeba virulence factors and invasion processes, focusing on recent advances in the detection, identification, and treatment of associated diseases.
Collapse
Affiliation(s)
- Camila Salazar-Ardiles
- Laboratory of Molecular Biology and Applied Microbiology, Biomedical Department, Research Center in High Altitude Medicine and Physiology, Faculty of Health Science, Universidad de Antofagasta, 1240000, Antofagasta, Chile.
- Exercise Applied Physiology Laboratory, Biomedical Department, Research Center in High Altitude Medicine and Physiology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile.
- Navarrabiomed, Hospital Universitario de Navarra (UHN), IdiSNA, Universidad Pública de Navarra (UPNA), Pamplona, Navarra, Spain.
| | - Kristell Paredes Valencia
- Laboratory of Molecular Biology and Applied Microbiology, Biomedical Department, Research Center in High Altitude Medicine and Physiology, Faculty of Health Science, Universidad de Antofagasta, 1240000, Antofagasta, Chile
| | - David C Andrade
- Exercise Applied Physiology Laboratory, Biomedical Department, Research Center in High Altitude Medicine and Physiology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
4
|
Dinda SK, Hazra S, De A, Datta A, Das L, Pattanayak S, Kumar K, Dey MD, Basu A, Manna D. Amoebae: beyond pathogens- exploring their benefits and future potential. Front Cell Infect Microbiol 2024; 14:1518925. [PMID: 39744153 PMCID: PMC11688213 DOI: 10.3389/fcimb.2024.1518925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Amoebae, fascinatingly diverse protists, showcase a dual nature that positions them as both friends and foes in our world. These organisms, defined by their distinctive pseudopodia, span a spectrum from harmful to helpful. On the darker side, species like Entamoeba histolytica pose serious health risks, causing intestinal and liver diseases, while the infamous "brain-eating" Naegleria fowleri leads to fatal primary amoebic meningoencephalitis (PAM), with a daunting 97% mortality rate. Other free-living amoebae, including Acanthamoeba castellanii and Balamuthia mandrillaris, also threaten the human central nervous system. Yet, beyond these dangers, amoebae play critical ecological roles. They function as nature's recyclers, decomposing organic material and nourishing aquatic ecosystems, while also serving as food for various organisms. Moreover, certain amoebae help control plant pathogens and offer insight into human disease, proving valuable as model organisms in biomedical research. This review sheds light on the complex, multifaceted world of amoebae, highlighting their dual role as pathogens and as key contributors to vital ecological processes, as well as their significant impact on research and their promising potential for enhancing human well-being.
Collapse
Affiliation(s)
- Suman Kalyan Dinda
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Shreyasee Hazra
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Anwesha De
- Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Annurima Datta
- Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Lipika Das
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Santanu Pattanayak
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Kishor Kumar
- Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, India
| | - Manash Deep Dey
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Arnab Basu
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Dipak Manna
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
5
|
Vidal AS, Zauli RC, Batista WL, Xander P. Extracellular vesicles release from protozoa parasite and animal model. CURRENT TOPICS IN MEMBRANES 2024; 94:85-106. [PMID: 39370214 DOI: 10.1016/bs.ctm.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Diseases caused by protozoan parasites, such as leishmaniasis, trypanosomiasis, and malaria, are highly complex and together continue to cause high annual morbidity and mortality. The search for new compounds in environmental biodiversity, repositioning known drugs, and developing vaccines using old and innovative technologies have been employed to discover vaccines and new and alternative treatments. Extracellular vesicles (EVs) can carry parasite antigens, creating a new possibility to develop an effective and affordable platform for treatment, vaccines, and drug delivery. Thus, the evaluation of EVs in animal models can and should be explored among the countless biomedical applications. Herein, we will address the concept of EVs, their acquisition and characterization in protozoan parasite models, and the primary studies using these vesicles in therapeutic applications.
Collapse
Affiliation(s)
- Andrey Sladkevicius Vidal
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil
| | - Rogéria Cristina Zauli
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil
| | - Wagner Luiz Batista
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil
| | - Patricia Xander
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil; Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil.
| |
Collapse
|
6
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Ilyas M, Stapleton F, Willcox MDP, Henriquez F, Peguda HK, Rayamajhee B, Zahid T, Petsoglou C, Carnt NA. Epidemiology of and Genetic Factors Associated with Acanthamoeba Keratitis. Pathogens 2024; 13:142. [PMID: 38392880 PMCID: PMC10892102 DOI: 10.3390/pathogens13020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Acanthamoeba keratitis (AK) is a severe, rare protozoal infection of the cornea. Acanthamoeba can survive in diverse habitats and at extreme temperatures. AK is mostly seen in contact lens wearers whose lenses have become contaminated or who have a history of water exposure, and in those without contact lens wear who have experienced recent eye trauma involving contaminated soil or water. Infection usually results in severe eye pain, photophobia, inflammation, and corneal epithelial defects. The pathophysiology of this infection is multifactorial, including the production of cytotoxic proteases by Acanthamoeba that degrades the corneal epithelial basement membrane and induces the death of ocular surface cells, resulting in degradation of the collagen-rich corneal stroma. AK can be prevented by avoiding risk factors, which includes avoiding water contact, such as swimming or showering in contact lenses, and wearing protective goggles when working on the land. AK is mostly treated with an antimicrobial therapy of biguanides alone or in combination with diaminidines, although the commercial availability of these medicines is variable. Other than anti-amoeba therapies, targeting host immune pathways in Acanthamoeba disease may lead to the development of vaccines or antibody therapeutics which could transform the management of AK.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Primary & Secondary Healthcare Department, Punjab 54000, Pakistan; (M.I.)
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Fiona Henriquez
- School of Health and Life Sciences, The University of the West of Scotland, Glasgow G72 0LH, UK
| | - Hari Kumar Peguda
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Binod Rayamajhee
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Tasbiha Zahid
- Primary & Secondary Healthcare Department, Punjab 54000, Pakistan; (M.I.)
| | | | - Nicole A. Carnt
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
- Centre for Vision Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| |
Collapse
|
8
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
9
|
Sharma C, Khurana S, Bhatia A, Arora A, Gupta A. The gene expression and proteomic profiling of Acanthamoeba isolates. Exp Parasitol 2023; 255:108630. [PMID: 37820893 DOI: 10.1016/j.exppara.2023.108630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The free-living protozoan Acanthamoeba can cause severe keratitis known as Acanthamoeba Keratitis (AK) and granulomatous amoebic encephalitis (GAE). The pathogenesis of Acanthamoeba includes intricate interactions between the organism and the host's immune system. The downstream analysis of a well-annotated genome assembly along with proteomic analysis can unravel several biological processes and aid in the identification of potential genes involved in pathogenicity. METHODS Based on the next-generation sequencing data analysis, genes including lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein were selected as probable pathogenic targets that were validated by conventional PCR in a total of 30 Acanthamoeba isolates. This was followed by real-time PCR for the evaluation of relative gene expression in the keratitis and amoebic encephalitis animal model induced using keratitis (CHA5), encephalitis (CHA24) and non-pathogenic environmental isolate (CHA36). In addition, liquid chromatography-mass spectrometry (LC-MS/MS) was performed for keratitis, encephalitis, and non-pathogenic environmental isolate before and after treatment with polyhexamethylene biguanide (PHMB). RESULTS The conventional PCR demonstrated the successful amplification of lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein genes in clinical and environmental isolates. The expression analysis revealed phospholipase, lysophospholipase, and mannose-binding genes to be significantly upregulated in the keratitis isolate (CHA 5) during AK in the animal model. In the case of the amoebic encephalitis model, phospholipase, lysophospholipase, S8/S53 peptidase, and carboxylesterase were significantly upregulated in the encephalitis isolate compared to the keratitis isolate. The proteomic data revealed differential protein expression in pathogenic versus non-pathogenic isolates in the pre and post-treatment with PHMB. CONCLUSION The gene expression data suggests that lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein (MBP) could play a role in the contact-dependent and independent mechanisms of Acanthamoeba pathogenesis. In addition, the proteomic profiling of the 3 isolates revealed differential protein expression crucial for parasite growth, survival, and virulence. Our results provide baseline data for selecting possible pathogenic targets that could be utilized for designing knockout experiments in the future.
Collapse
Affiliation(s)
- Chayan Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Sumeeta Khurana
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Amit Arora
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Amit Gupta
- Advanced Eye Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| |
Collapse
|
10
|
Fernandez‐Becerra C, Xander P, Alfandari D, Dong G, Aparici‐Herraiz I, Rosenhek‐Goldian I, Shokouhy M, Gualdron‐Lopez M, Lozano N, Cortes‐Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva A, Santarém N, Fernandez‐Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira‐Chioccola VL, Alves LR, Portillo HD, Regev‐Rudzki N, de Almeida IC, Schenkman S, Olivier M, Torrecilhas AC. Guidelines for the purification and characterization of extracellular vesicles of parasites. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e117. [PMID: 38939734 PMCID: PMC11080789 DOI: 10.1002/jex2.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 06/29/2024]
Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.
Collapse
Affiliation(s)
- Carmen Fernandez‐Becerra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- CIBERINFECISCIII‐CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Patrícia Xander
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Daniel Alfandari
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - George Dong
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Iris Aparici‐Herraiz
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | | | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Melisa Gualdron‐Lopez
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Nicholy Lozano
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Nuria Cortes‐Serra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Paula Meneghetti
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Rafael Pedro Madeira
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Ziv Porat
- Flow Cytometry UnitLife Sciences Core Facilities, WISRehovotIsrael
| | | | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrasil
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Anabela‐Cordeiro da Silva
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | - Nuno Santarém
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | | | - Marcel I. Ramirez
- EVAHPI ‐ Extracellular Vesicles and Host‐Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de TripanossomatideosInstituto Carlos Chagas‐FiocruzCuritibaParanáBrasil
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i ParasitologiaUniversitat de ValènciaBurjassotValenciaSpain
| | - Vera Lucia Pereira‐Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e MicologiaInstituto Adolfo Lutz (IAL)São PauloBrasil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão GênicaInstituto Carlos ChagasFiocruz ParanáCuritibaBrazil
- Research Center in Infectious DiseasesDivision of Infectious Disease and Immunity CHU de Quebec Research CenterDepartment of MicrobiologyInfectious Disease and ImmunologyFaculty of MedicineUniversity LavalQuebec CityQuebecCanada
| | - Hernando Del Portillo
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- ICREA Institució Catalana de Recerca i Estudis Avanc¸ats (ICREA)BarcelonaSpain
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Igor Correia de Almeida
- Department of Biological SciencesBorder Biomedical Research CenterThe University of Texas at El PasoEl PasoTexasUSA
| | - Sergio Schenkman
- Departamento de MicrobiologiaImunologia e Parasitologia, UNIFESPSão PauloBrazil
| | - Martin Olivier
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
11
|
Chao-Pellicer J, Arberas-Jiménez I, Fuchs F, Sifaoui I, Piñero JE, Lorenzo-Morales J, Scheid P. Repurposing of Nitroxoline as an Alternative Primary Amoebic Meningoencephalitis Treatment. Antibiotics (Basel) 2023; 12:1280. [PMID: 37627700 PMCID: PMC10451279 DOI: 10.3390/antibiotics12081280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Among the pathogenic free-living amoebae (FLA), Naegleria fowleri is the etiological agent of a fatal disease known as primary amoebic meningoencephalitis (PAM). Once infection begins, the lesions generated in the central nervous system (CNS) result in the onset of symptoms leading to death in a short period of time. Currently, there is no standardized treatment against the infection, which, due to the high virulence of the parasite, results in a high case fatality rate (>97%). Therefore, it is essential to search for new therapeutic sources that can generate a rapid elimination of the parasite. In recent years, there have already been several successful examples of drug repurposing, such as Nitroxoline, for which, in addition to its known bioactive properties, anti-Balamuthia activity has recently been described. Following this approach, the anti-Naegleria activity of Nitroxoline was tested. Nitroxoline displayed low micromolar activity against two different strains of N. fowleri trophozoites (IC50 values of 1.63 ± 0.37 µM and 1.17 ± 0.21 µM) and against cyst stages (IC50 of 1.26 ± 0.42 μM). The potent anti-parasitic activity compared to the toxicity produced (selectivity index of 3.78 and 5.25, respectively) in murine macrophages and human cell lines (reported in previous studies), together with the induction of programmed cell death (PCD)-related events in N. fowleri make Nitroxoline a great candidate for an alternative PAM treatment.
Collapse
Affiliation(s)
- Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (J.C.-P.); (I.A.-J.); (I.S.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (J.C.-P.); (I.A.-J.); (I.S.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
| | - Frieder Fuchs
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56072 Koblenz, Germany;
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50935 Cologne, Germany
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (J.C.-P.); (I.A.-J.); (I.S.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (J.C.-P.); (I.A.-J.); (I.S.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (J.C.-P.); (I.A.-J.); (I.S.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Patrick Scheid
- Parasitology Lab., Central Military Hospital Koblenz, 56072 Koblenz, Germany
- Department of Biology, Working Group Parasitology and Infection Biology, University Koblenz, 56070 Koblenz, Germany
| |
Collapse
|
12
|
Morán P, Serrano-Vázquez A, Rojas-Velázquez L, González E, Pérez-Juárez H, Hernández EG, Padilla MDLA, Zaragoza ME, Portillo-Bobadilla T, Ramiro M, Ximénez C. Amoebiasis: Advances in Diagnosis, Treatment, Immunology Features and the Interaction with the Intestinal Ecosystem. Int J Mol Sci 2023; 24:11755. [PMID: 37511519 PMCID: PMC10380210 DOI: 10.3390/ijms241411755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
This review of human amoebiasis is based on the most current knowledge of pathogenesis, diagnosis, treatment, and Entamoeba/microbiota interactions. The most relevant findings during this last decade about the Entamoeba parasite and the disease are related to the possibility of culturing trophozoites of different isolates from infected individuals that allowed the characterization of the multiple pathogenic mechanisms of the parasite and the understanding of the host-parasite relationship in the human. Second, the considerable advances in molecular biology and genetics help us to analyze the genome of Entamoeba, their genetic diversity, and the association of specific genotypes with the different amoebic forms of human amoebiasis. Based on this knowledge, culture and/or molecular diagnostic strategies are now available to determine the Entamoeba species and genotype responsible for invasive intestinal or extraintestinal amoebiasis cases. Likewise, the extensive knowledge of the immune response in amoebiasis with the appearance of new technologies made it possible to design diagnostic tools now available worldwide. Finally, the understanding of the interaction between the Entamoeba species and the intestinal microbiota aids the understanding of the ecology of this parasite in the human environment. These relevant findings will be discussed in this review.
Collapse
Affiliation(s)
- Patricia Morán
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Angélica Serrano-Vázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Liliana Rojas-Velázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Enrique González
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Horacio Pérez-Juárez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Eric G Hernández
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Maria de Los Angeles Padilla
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Martha E Zaragoza
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Tobías Portillo-Bobadilla
- Unidad de Bioinformática, Bioestadística y Biología Computacional, Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Manuel Ramiro
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Cecilia Ximénez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| |
Collapse
|
13
|
Arberas-Jiménez I, Cen-Pacheco F, Chao-Pellicer J, Sifaoui I, Rizo-Liendo A, Morales EQ, Daranas AH, Díaz-Marrero AR, Piñero JE, Fernández JJ, Lorenzo-Morales J. Identification and characterization of novel marine oxasqualenoid yucatecone against Naegleria fowleri. Int J Parasitol Drugs Drug Resist 2023; 22:61-71. [PMID: 37270868 PMCID: PMC10258243 DOI: 10.1016/j.ijpddr.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Naegleria fowleri is an opportunistic protozoan, belonging to the free-living amoeba group, that can be found in warm water bodies. It is causative agent the primary amoebic meningoencephalitis, a fulminant disease with a rapid progression that affects the central nervous system. However, no 100% effective treatments are available and those that are currently used involve the appearance of severe side effects, therefore, there is an urgent need to find novel antiamoebic compounds with low toxicity. In this study, the in vitro activity of six oxasqualenoids obtained from the red algae Laurencia viridis was evaluated against two different strains of N. fowleri (ATCC® 30808 and ATCC® 30215) as well as their cytotoxicity against murine macrophages. Yucatecone was the molecule with the highest selectivity index (>2.98 and 5.23 respectively) and it was selected to continue with the cell death type determination assays. Results showed that yucatone induced programmed cell death like responses in treated amoebae causing DNA condensation and cellular membrane damage among others. In this family of oxasqualenoids, it seems that the most significative structural feature to induce activity against N. fowleri is the presence of a ketone at C-18. This punctual oxidation transforms an inactive compound into a lead compound as the yucatecone and 18-ketodehydrotyrsiferol with IC50 values of 16.25 and 12.70 μM, respectively. The assessment of in silico ADME/Tox analysis revealed that the active compounds showed good Human Oral Absorption and demonstrate that are found to be within the limit of approved drug parameter range. Hence, the study highlights promising potential of yucatone to be tested for therapeutic use against primary amoebic meningoencephalitis.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Francisco Cen-Pacheco
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Facultad de Bioanálisis, Universidad Veracruzana (UV), Agustín de Iturbide s/n, Centro, Veracruz, 91700, Mexico
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Ezequiel Q Morales
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain
| | - Antonio H Daranas
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain.
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain.
| |
Collapse
|
14
|
Serrat J, Torres-Valle M, López-García M, Becerro-Recio D, Siles-Lucas M, González-Miguel J. Molecular Characterization of the Interplay between Fasciola hepatica Juveniles and Laminin as a Mechanism to Adhere to and Break through the Host Intestinal Wall. Int J Mol Sci 2023; 24:8165. [PMID: 37175870 PMCID: PMC10179147 DOI: 10.3390/ijms24098165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Fasciola hepatica is the main causative agent of fasciolosis, a zoonotic parasitic disease of growing public health concern. F. hepatica metacercariae are ingested by the host and excyst in the intestine, thereby releasing the newly excysted juveniles (FhNEJ), which traverse the gut wall and migrate towards the biliary ducts. Since blocking F. hepatica development is challenging after crossing of the intestinal wall, targeting this first step of migration might result in increased therapeutic success. The intestinal extracellular matrix (ECM) is constituted by a network of structural proteins, including laminin (LM) and fibronectin (FN), that provide mechanical support while acting as physical barrier against intestinal pathogens. Here, we employed ELISA and immunofluorescent assays to test for the presence of LM- and FN-binding proteins on a tegument-enriched antigenic fraction of FhNEJ, and further determined their identity by two-dimensional electrophoresis coupled to mass spectrometry. Additionally, we performed enzymatic assays that revealed for the first time the capability of the juvenile-specific cathepsin L3 to degrade LM, and that LM degradation by FhNEJ proteins is further potentiated in the presence of host plasminogen. Finally, a proteomic analysis showed that the interaction with LM triggers protein changes in FhNEJ that may be relevant for parasite growth and adaptation inside the mammalian host. Altogether, our study provides valuable insights into the molecular interplay between FhNEJ and the intestinal ECM, which may lead to the identification of targetable candidates for the development of more effective control strategies against fasciolosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain; (J.S.); (M.T.-V.); (M.L.-G.); (D.B.-R.); (M.S.-L.)
| |
Collapse
|
15
|
Ledbetter EC, Dong L. Susceptibility of the Intact and Traumatized Feline Cornea to In Vitro Binding and Invasion by Acanthamoeba castellanii. Cornea 2023; 42:624-629. [PMID: 36518074 PMCID: PMC10060048 DOI: 10.1097/ico.0000000000003220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Acanthamoeba castellanii ( A. castellanii ) displays host specificity at the level of the ocular surface. This study determined the susceptibility of the intact and traumatized feline cornea to A. castellanii binding and invasion relative to other host species with established susceptibility and resistance to Acanthamoeba binding. METHODS Full-thickness buttons of fresh feline, porcine, and canine corneas were prepared. The corneal epithelium was confirmed intact by fluorescein staining or lightly scarified with a 25-G needle to simulate corneal trauma. Acanthamoeba castellanii was axenically cultivated. Corneal buttons were incubated with the parasite suspension or parasite-free medium for 18 hours at 35°C. Corneal buttons were rinsed, fixed, and processed for histopathology and immunohistochemistry using immunoperoxidase and immunofluorescence methods of amoeba detection. RESULTS Numerous amoebae were bound to feline and porcine corneas incubated with parasites. In both intact and traumatized corneas, amoebae were detected at all levels in the corneal epithelium and within the anterior stroma. In traumatized corneal sections, amoebae were frequently present in regions of epithelial damage. Corneal architecture was well-preserved in sections incubated with parasite-free medium; however, epithelial cell sloughing, separation of epithelial layers, and epithelial detachment from the stroma were observed in corneas incubated with amoebae. Intact and traumatized canine corneas were relatively free of adherent amoebae, and corneal architecture was indistinguishable between sections incubated with the parasite suspension and parasite-free medium. CONCLUSIONS The feline cornea is highly susceptible to in vitro binding and invasion by A. castellanii . Acanthamoeba binding to the feline cornea does not require a previous epithelial defect.
Collapse
Affiliation(s)
- Eric C. Ledbetter
- Departments of Clinical Sciences; and Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Longying Dong
- Departments of Clinical Sciences; and Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
16
|
Bañuelos C, Betanzos A, Javier-Reyna R, Galindo A, Orozco E. Molecular interplays of the Entamoeba histolytica endosomal sorting complexes required for transport during phagocytosis. Front Cell Infect Microbiol 2022; 12:855797. [PMID: 36389174 PMCID: PMC9647190 DOI: 10.3389/fcimb.2022.855797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/06/2022] [Indexed: 08/23/2024] Open
Abstract
Entamoeba histolytica, the causative agent of human amoebiasis, exhibits a continuous membrane remodelling to exert its virulence properties. During this dynamic process, the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is a key player, particularly in phagocytosis, a virulence hallmark of this parasite. In addition to ESCRT, other molecules contribute to membrane remodelling, including the EhADH adhesin, EhRabs, actin, and the lysobisphosphatidic acid (LBPA). The endocytosis of a prey or molecules induces membrane invaginations, resulting in endosome and multivesicular bodies (MVBs) formation for cargo delivery into lysosomes. Alternatively, some proteins are recycled or secreted. Most of these pathways have been broadly characterized in other biological systems, but poorly described in protozoan parasites. Here, we encompass 10 years of ESCRT research in E. histolytica, highlighting the role of the ESCRT-I and ESCRT-III components and the EhADH and EhVps4-ATPase accessory proteins during phagocytosis. In particular, EhADH exhibits a multifunctional role along the endocytic pathway, from cargo recognition to endosome maturation and lysosomal degradation. Interestingly, the interaction of EhADH with EhVps32 seems to shape a concurrent route to the conventional one for MVBs biogenesis, that could optimize their formation. Furthermore, this adhesin is secreted, but its role in this event remains under study. Other components from the endosomal pathway, such as EhVps23 and LBPA, are also secreted. A proteomic approach performed here, using an anti-LBPA antibody, revealed that some proteins related to membrane trafficking, cellular transport, cytoskeleton dynamics, and transcriptional and translational functions are secreted and associated to LBPA. Altogether, the accumulated knowledge around the ESCRT machinery in E. histolytica, points it out as a dynamic platform facilitating the interaction of molecules participating in different cellular events. Seen as an integrated system, ESCRTs lead to a better understanding of E. histolytica phagocytosis.
Collapse
Affiliation(s)
- Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Abigail Betanzos
- Investigadores por Mexico, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
17
|
Rodríguez-Mera IB, Carrasco-Yépez MM, Vásquez-Moctezuma I, Correa-Basurto J, Salinas GR, Castillo-Ramírez DA, Rosales-Cruz É, Rojas-Hernández S. Role of cathepsin B of Naegleria fowleri during primary amebic meningoencephalitis. Parasitol Res 2022; 121:3287-3303. [PMID: 36125528 PMCID: PMC9485797 DOI: 10.1007/s00436-022-07660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
Naegleria fowleri causes primary amoebic meningoencephalitis in humans and experimental animals. It has been suggested that cysteine proteases of parasites play key roles in metabolism, nutrient uptake, host tissue invasion, and immune evasion. The aim of this work was to evaluate the presence, expression, and role of cathepsin B from N. fowleri in vitro and during PAM. Rabbit-specific polyclonal antibodies against cathepsin B were obtained from rabbit immunization with a synthetic peptide obtained by bioinformatic design. In addition, a probe was designed from mRNA for N. fowleri cathepsin B. Both protein and messenger were detected in fixed trophozoites, trophozoites interacted with polymorphonuclear and histological sections of infected mice. The main cathepsin B distribution was observed in cytoplasm or membrane mainly pseudopods and food-cups while messenger was in nucleus and cytoplasm. Surprisingly, both the messenger and enzyme were observed in extracellular medium. To determine cathepsin B release, we used trophozoites supernatant recovered from nasal passages or brain of infected mice. We observed the highest release in supernatant from recovered brain amoebae, and when we analyzed molecular weight of secreted proteins by immunoblot, we found 30 and 37 kDa bands which were highly immunogenic. Finally, role of cathepsin B during N. fowleri infection was determined; we preincubated trophozoites with E-64, pHMB or antibodies with which we obtained 60%, 100%, and 60% of survival, respectively, in infected mice. These results suggest that cathepsin B plays a role during pathogenesis caused by N. fowleri mainly in adhesion and contributes to nervous tissue damage.
Collapse
Affiliation(s)
- Itzel Berenice Rodríguez-Mera
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología Ambiental, Estado de México, Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Tlalnepantla de Baz, México
| | - Ismael Vásquez-Moctezuma
- Laboratorio de Bioquímica, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Gema Ramírez- Salinas
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Diego Arturo Castillo-Ramírez
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - Érika Rosales-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México.
| |
Collapse
|
18
|
Retana Moreira L, Steller Espinoza MF, Chacón Camacho N, Cornet-Gomez A, Sáenz-Arce G, Osuna A, Lomonte B, Abrahams Sandí E. Characterization of Extracellular Vesicles Secreted by a Clinical Isolate of Naegleria fowleri and Identification of Immunogenic Components within Their Protein Cargo. BIOLOGY 2022; 11:983. [PMID: 36101365 PMCID: PMC9312180 DOI: 10.3390/biology11070983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) are small lipid vesicles released by both prokaryotic and eukaryotic cells, involved in intercellular communication, immunomodulation and pathogenesis. In this study, we performed a characterization of the EVs produced by trophozoites of a clinical isolate of the free-living amoeba Naegleria fowleri (N. fowleri). Size distribution, zeta potential, protein profile and protease activity were analyzed. Under our incubation conditions, EVs of different sizes were observed, with a predominant population ranging from 206 to 227 nm. SDS-PAGE revealed protein bands of 25 to 260 KDa. The presence of antigenic proteins was confirmed by Western blot, which evidenced strongest recognition by rat polyclonal antibodies raised against N. fowleri in the region close to 80 KDa and included peptidases, as revealed by zymography. Proteins in selected immunorecognized bands were further identified using nano-ESI-MS/MS. A preliminary proteomic profile of the EVs identified at least 184 proteins as part of the vesicles' cargo. Protease activity assays, in combination with the use of inhibitors, revealed the predominance of serine proteases. The present characterization uncovers the complexity of EVs produced by N. fowleri, suggesting their potential relevance in the release of virulence factors involved in pathogenicity. Owing to their cargo's diversity, further research on EVs could reveal new therapeutic targets or biomarkers for developing rapid and accurate diagnostic tools for lethal infections such as the one caused by this amoeba.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| | - María Fernanda Steller Espinoza
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Natalia Chacón Camacho
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | | | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
19
|
Arberas-Jiménez I, Rizo-Liendo A, Nocchi N, Sifaoui I, Chao-Pellicer J, Souto ML, Suárez-Gómez B, Díaz-Marrero AR, Fernández JJ, Piñero JE, Lorenzo-Morales J. Sesquiterpene lactones as potential therapeutic agents against Naegleria fowleri. Pharmacotherapy 2022; 147:112694. [DOI: 10.1016/j.biopha.2022.112694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 02/09/2023]
|
20
|
Rizo-Liendo A, Arberas-Jiménez I, Sifaoui I, Gkolfi D, Santana Y, Cotos L, Tejedor D, García-Tellado F, Piñero JE, Lorenzo-Morales J. The therapeutic potential of novel isobenzofuranones against Naegleria fowleri. Int J Parasitol Drugs Drug Resist 2021; 17:139-149. [PMID: 34627024 PMCID: PMC8501684 DOI: 10.1016/j.ijpddr.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
The Free-Living Amoeba species, Naegleria fowleri is the causative agent of a lethal encephalitis known as Primary Amoebic Encephalitis (PAM). Moreover, most of the reported cases are often related to swimming and/or diving in aquatic environments. In addition, the current therapeutic options against PAM are not fully effective and hence, there is an urgent need to develop novel therapeutic agents against this disease. Previously isobenzofuranones compounds have been reported to present antiprotozoal and antifungal activity among others. However, to the best of our knowledge, these molecules have not been previously tested against N. fowleri. Therefore, the aim of this study was to evaluate the activity of 14 novel isobenzofuranones against this pathogenic amoeba. The most active and less toxic molecules, were assayed in order to check induction of Programmed Cell Death (PCD) in the treated amoebae. The obtained results showed that these molecules were able to eliminate N. fowleri trophozoites and also induced PCD. Therefore, the tested isobenzofuranones could be potential therapeutic candidates for the treatment of PAM.
Collapse
Affiliation(s)
- Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain; Consorcio Centro De Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas, Inst. de Salud Carlos III, Madrid, Spain
| | - Dimitra Gkolfi
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - Yiset Santana
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - Leandro Cotos
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain.
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain; Consorcio Centro De Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas, Inst. de Salud Carlos III, Madrid, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain; Consorcio Centro De Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas, Inst. de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
22
|
Salgado-Martínez AI, Avila-Bonilla RG, Ramírez-Moreno E, Castañón-Sánchez CA, López-Camarillo C, Marchat LA. Unraveling the relevance of the polyadenylation factor EhCFIm25 in Entamoeba histolytica through proteomic analysis. FEBS Open Bio 2021; 11:2819-2835. [PMID: 34486252 PMCID: PMC8487052 DOI: 10.1002/2211-5463.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
We recently reported that silencing of the polyadenylation factor EhCFIm25 in Entamoeba histolytica, the protozoan which causes human amoebiasis, affects trophozoite proliferation, death, and virulence, suggesting that EhCFIm25 may have potential as a new biochemical target. Here, we performed a shotgun proteomic analysis to identify modulated proteins that could explain this phenotype. Data are available via ProteomeXchange with identifier PXD027784. Our results revealed changes in the abundance of 75 proteins. Interestingly, STRING analysis, functional GO‐term annotations, KEGG analyses, and literature review showed that modulated proteins are mainly related to glycolysis and carbon metabolism, cytoskeleton dynamics, and parasite virulence, as well as gene expression and protein modifications. Further studies are needed to confirm the hypotheses emerging from this proteomic analysis, to thereby acquire a comprehensive view of the molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Esther Ramírez-Moreno
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico
| | - Laurence A Marchat
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
23
|
Lima PC, Hartley-Tassell L, Wynne JW. The ability of Neoparamoeba perurans to bind to and digest non-fish-derived mucin: Insights into the amoeba's mechanism of action to overcome gill mucus production. JOURNAL OF FISH DISEASES 2021; 44:1355-1367. [PMID: 33990985 DOI: 10.1111/jfd.13394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Amoebic gill disease (AGD) is caused by the marine amoeba Neoparamoeba perurans, a facultative parasite. Despite the significant impact this disease has on production of Atlantic salmon worldwide, the mechanisms involved in host-parasite interaction remains unknown. Excessive gill mucus secretion is reported as a host defence mechanism to prevent microbial colonization in the gill epithelium. Despite this response, N. perurans still attaches and proliferates. The present study aimed to investigate the interaction between N. perurans and mucin, the most abundant component in mucus. An in vitro adhesion assay using bovine submaxillary mucin (BSM) demonstrated that amoeba binding to mucin-coated substrate was significantly higher than to the BSA control. This binding interaction is likely glycan-mediated as pre-incubation with galactose, galactosamine, N-acetylgalactosamine and fucose reduced mucin adhesion to control levels. The ability of N. perurans to secrete proteases that target mucin was also investigated. Protease activity was detected in the amoeba culture media in the presence of BSM, but not when protease inhibitor was added. Mucin degradation was visually assessed on protein gels. This study provides preliminary evidence that N. perurans has developed mechanisms to interact with and evade mucus by binding to mucin glycan receptors and secreting proteases with mucolytic activity.
Collapse
Affiliation(s)
- Paula C Lima
- CSIRO Livestock & Aquaculture Program, Queensland, Australia
| | | | - James W Wynne
- CSIRO Livestock & Aquaculture Program, Tasmania, Australia
| |
Collapse
|
24
|
Wiser MF. Unique Endomembrane Systems and Virulence in Pathogenic Protozoa. Life (Basel) 2021; 11:life11080822. [PMID: 34440567 PMCID: PMC8401336 DOI: 10.3390/life11080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virulence in pathogenic protozoa is often tied to secretory processes such as the expression of adhesins on parasite surfaces or the secretion of proteases to assisted in tissue invasion and other proteins to avoid the immune system. This review is a broad overview of the endomembrane systems of pathogenic protozoa with a focus on Giardia, Trichomonas, Entamoeba, kinetoplastids, and apicomplexans. The focus is on unique features of these protozoa and how these features relate to virulence. In general, the basic elements of the endocytic and exocytic pathways are present in all protozoa. Some of these elements, especially the endosomal compartments, have been repurposed by the various species and quite often the repurposing is associated with virulence. The Apicomplexa exhibit the most unique endomembrane systems. This includes unique secretory organelles that play a central role in interactions between parasite and host and are involved in the invasion of host cells. Furthermore, as intracellular parasites, the apicomplexans extensively modify their host cells through the secretion of proteins and other material into the host cell. This includes a unique targeting motif for proteins destined for the host cell. Most notable among the apicomplexans is the malaria parasite, which extensively modifies and exports numerous proteins into the host erythrocyte. These modifications of the host erythrocyte include the formation of unique membranes and structures in the host erythrocyte cytoplasm and on the erythrocyte membrane. The transport of parasite proteins to the host erythrocyte involves several unique mechanisms and components, as well as the generation of compartments within the erythrocyte that participate in extraparasite trafficking.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
25
|
Rosales C. Neutrophils vs. amoebas: Immunity against the protozoan parasite Entamoeba histolytica. J Leukoc Biol 2021; 110:1241-1252. [PMID: 34085314 DOI: 10.1002/jlb.4mr0521-849rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite with high prevalence in developing countries, and causes amoebiasis. This disease affects the intestine and the liver, and is the third leading cause of human deaths among parasite infections. E. histolytica infection of the intestine or liver is associated with a strong inflammation characterized by a large number of infiltrating neutrophils. Consequently, several reports suggest that neutrophils play a protective role in amoebiasis. However, other reports indicate that amoebas making direct contact with neutrophils provoke lysis of these leukocytes, resulting in the release of their lytic enzymes, which in turn provoke tissue damage. Therefore, the role of neutrophils in this parasitic infection remains controversial. Neutrophils migrate from the circulation to sites of infection, where they display several antimicrobial functions, including phagocytosis, degranulation, and formation of neutrophil extracellular traps (NET). Recently, it was found that E. histolytica trophozoites are capable of inducing NET formation. Neutrophils in touch with amoebas launched NET in an explosive manner around the amoebas and completely covered them in nebulous DNA and cell aggregates where parasites got immobilized and killed. In addition, the phenotype of neutrophils can be modified by the microbiome resulting in protection against amoebas. This review describes the mechanisms of E. histolytica infection and discusses the novel view of how neutrophils are involved in innate immunity defense against amoebiasis. Also, the mechanisms on how the microbiome modulates neutrophil function are described.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
26
|
Burzyńska P, Sobala ŁF, Mikołajczyk K, Jodłowska M, Jaśkiewicz E. Sialic Acids as Receptors for Pathogens. Biomolecules 2021; 11:831. [PMID: 34199560 PMCID: PMC8227644 DOI: 10.3390/biom11060831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrates have long been known to mediate intracellular interactions, whether within one organism or between different organisms. Sialic acids (Sias) are carbohydrates that usually occupy the terminal positions in longer carbohydrate chains, which makes them common recognition targets mediating these interactions. In this review, we summarize the knowledge about animal disease-causing agents such as viruses, bacteria and protozoa (including the malaria parasite Plasmodium falciparum) in which Sias play a role in infection biology. While Sias may promote binding of, e.g., influenza viruses and SV40, they act as decoys for betacoronaviruses. The presence of two common forms of Sias, Neu5Ac and Neu5Gc, is species-specific, and in humans, the enzyme converting Neu5Ac to Neu5Gc (CMAH, CMP-Neu5Ac hydroxylase) is lost, most likely due to adaptation to pathogen regimes; we discuss the research about the influence of malaria on this trait. In addition, we present data suggesting the CMAH gene was probably present in the ancestor of animals, shedding light on its glycobiology. We predict that a better understanding of the role of Sias in disease vectors would lead to more effective clinical interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Jaśkiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (P.B.); (Ł.F.S.); (K.M.); (M.J.)
| |
Collapse
|
27
|
Lima PC, Hartley-Tassell L, Cooper O, Wynne JW. Searching for the sweet spot of amoebic gill disease of farmed Atlantic salmon: the potential role of glycan-lectin interactions in the adhesion of Neoparamoeba perurans. Int J Parasitol 2021; 51:545-557. [PMID: 33675796 DOI: 10.1016/j.ijpara.2020.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 01/25/2023]
Abstract
One of the first critical steps in the pathogenesis of amoebic gill disease (AGD) of farmed salmon is the adhesion of the causative amoeba to the host. The current study aimed to investigate the potential involvement of glycan-binding proteins expressed on the extracellular surface of Neoparamoeba perurans in gill tissue recognition and binding. The glycan-binding properties of the surface membrane of N. perurans and the carbohydrate binding profile of Atlantic salmon gill-derived epithelial cells were identified through the use of glycan and lectin microarrays, respectively. The occurrence of specific carbohydrate-mediated binding was then further assessed by in vitro attachment assays using microtitre plates pre-coated with the main glycan candidates. Adhesion assays were also performed in the presence of exogenous saccharides with the aim of blocking glycan-specific binding activity. Comparative analysis of the results from both lectin and glycan arrays showed significant overlap, as some glycans to which binding by the amoeba was seen were reflected as being present on the gill epithelial cells. The two main candidates proposed to be involved in amoeba attachment to the gills are mannobiose and N-acetylgalactosamine (GalNAc). Adhesion of amoebae significantly increased by 33.5 and 23% when cells were added to α1,3-Mannobiose-BSA and GalNAc-BSA coated plates. The observed increased in attachment was significantly reduced when the amoebae were incubated with exogenous glycans, further demonstrating the presence of mannobiose- and GalNAc-binding sites on the surfaces of the cells. We believe this study provides the first evidence for the presence of a highly specific carbohydrate recognition and binding system in N. perurans. These preliminary findings could be of extreme importance given that AGD is an external parasitic infestation and much of the current research on the development of alternative treatment strategies relies on either instant amoeba detachment or blocking parasite attachment.
Collapse
Affiliation(s)
- P C Lima
- CSIRO Agriculture and Food, Livestock & Aquaculture, Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, QLD 4067, Australia.
| | - L Hartley-Tassell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - O Cooper
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - J W Wynne
- CSIRO Agriculture and Food, Livestock & Aquaculture, Castray Esplanade, Battery Point, TAS 7004, Australia
| |
Collapse
|
28
|
The type 2 statins, cerivastatin, rosuvastatin and pitavastatin eliminate Naegleria fowleri at low concentrations and by induction of programmed cell death (PCD). Bioorg Chem 2021; 110:104784. [PMID: 33684715 DOI: 10.1016/j.bioorg.2021.104784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Primary Amoebic Encephalitis due to Naegleria fowleri species is a fatal infection of the Central Nervous System mostly affecting children and young adults. Infections often occur after performance of risk activities in aquatic habitats such as swimming and splashing. PAḾs therapy remain a key issue to be solved which needs an urgent development. Recently, statins have been highlighted as possible novel compounds to treat PAM. Furthermore, type 2 statins due to improved pharmacological properties and lower toxicity could be use in the future. In the present work, three type 2 statins were checked for their activity against two type strains of N. fowleri. In addition, the effects at the cellular level triggered in treated amoebae were checked in order to evaluate if programmed cell death was induced. The obtained results showed that the tested statins, rosuvastatin, pitavastatin and cerivastatin were able to eliminate N. fowleri trophozoites and also induced PCD. Therefore, type 2 statins could be used in the near future for the treatment of PAM.
Collapse
|
29
|
Carvalho-Silva AC, Coelho CH, Cirelli C, Crepaldi F, Rodrigues-Chagas IA, Furst C, Pimenta DC, Toledo JSD, Fernandes AP, Costa AO. Differential expression of Acanthamoeba castellanii proteins during amoebic keratitis in rats. Exp Parasitol 2020; 221:108060. [PMID: 33338467 DOI: 10.1016/j.exppara.2020.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/04/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022]
Abstract
Amoebic keratitis (AK) is a sight-threatening infection characterized by a severe inflammation of the cornea, caused by the free-living protozoan of the genus Acanthamoeba. Identification of amoebic proteins involved in AK pathogenesis may help to elucidate molecular mechanisms of infection and contribute to indicate diagnostic and therapeutic targets. In this study, we evaluated changes in the expression profile of Acanthamoeba proteins triggered by the invasive process, using an approach involving two-dimensional polyacrylamide gel electrophoresis (2DE PAGE), followed by mass spectrometry identification (ESI-IT-TOF LC-MSn). AK was induced by intrastromal inoculation in Wistar rats, using trophozoites from a T4 genotype, human case-derived A. castellanii strain under prolonged axenic culture. Cultures re-isolated from the lesions after two successive passages in the animals were used as biological triplicate for proteomic experiments. Analysis of the protein profile comparing long-term and re-isolated cultures indicated 62 significant spots, from which 27 proteins could be identified in the Acanthamoeba proteome database. Five of them (Serpin, Carboxypeptidase A1, Hypothetical protein, Calponin domain-containing protein, aldo/keto reductase) were exclusively found in the re-isolated trophozoites. Our analysis also revealed that a concerted modulation of several biochemical pathways is triggered when A. castellanii switches from a free-living style to a parasitic mode, including energetic metabolism, proteolytic activity, control of gene expression, protein degradation and methylation of DNA, which may be also involved in gain of virulence in an animal model of AK.
Collapse
Affiliation(s)
- Ana Carolina Carvalho-Silva
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila H Coelho
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cecília Cirelli
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Frederico Crepaldi
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Cinthia Furst
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Juliano Simões de Toledo
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Fernandes
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana Oliveira Costa
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
30
|
Wang Z, Wu D, Tachibana H, Feng M, Cheng XJ. Identification and biochemical characterisation of Acanthamoeba castellanii cysteine protease 3. Parasit Vectors 2020; 13:592. [PMID: 33228764 PMCID: PMC7685649 DOI: 10.1186/s13071-020-04474-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acanthamoeba spp. are free-living amoeba that are ubiquitously distributed in the environment. This study examines pathogenic Acanthamoeba cysteine proteases (AcCPs) belonging to the cathepsin L-family and explores the mechanism of AcCP3 interaction with host cells. METHODS Six AcCP genes were amplified by polymerase chain reaction (PCR). Quantitative real-time PCR was used to analyse the relative mRNA expression of AcCPs during the encystation process and between pre- and post-reactivated trophozoites. To further verify the role of AcCP3 in these processes, AcCP3 recombinant proteins were expressed in Escherichia coli, and the hydrolytic activity of AcCP3 was determined. The influence of the AcCP3 on the hydrolytic activity of trophozoites and the toxicity of trophozoites to human corneal epithelial cells (HCECs) was examined by inhibiting AcCP3 expression using siRNA. Furthermore, the levels of p-Raf and p-Erk were examined in HCECs following coculture with AcCP3 gene knockdown trophozoites by Western blotting. RESULTS During encystation, five out of six AcCPs exhibited decreased expression, and only AcCP6 was substantially up-regulated at the mRNA level, indicating that most AcCPs were not directly correlated to encystation. Furthermore, six AcCPs exhibited increased expression level following trophozoite reactivation with HEp-2 cells, particularly AcCP3, indicating that these AcCPs might be virulent factors. After refolding of recombinant AcCP3 protein, the 27 kDa mature protein from the 34 kDa pro-protein hydrolysed host haemoglobin, collagen and albumin and showed high activity in an acidic environment. After AcCP3 knockdown, the hydrolytic activity of trophozoite crude protein against gelatin was decreased, suggesting that these trophozoites had decreased toxicity. Compared with untreated trophozoites or negative control siRNA-treated trophozoites, AcCP3-knockdown trophozoites were less able to penetrate and damage monolayers of HCECs. Western blot analysis showed that the activation levels of the Ras/Raf/Erk/p53 signalling pathways in HCECs decreased after inhibiting the expression of trophozoite AcCP3. CONCLUSIONS AcCP6 was correlated to encystation. Furthermore, AcCP3 was a virulent factor in trophozoites and participated in the activation of the Ras/Raf/Erk/p53 signalling pathways of host cells.
Collapse
Affiliation(s)
- Zhixin Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Duo Wu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xun-Jia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Laurinterol from Laurencia johnstonii eliminates Naegleria fowleri triggering PCD by inhibition of ATPases. Sci Rep 2020; 10:17731. [PMID: 33082417 PMCID: PMC7576160 DOI: 10.1038/s41598-020-74729-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
Primary amoebic encephalitis (PAM) is a lethal disease caused by the opportunistic pathogen, Naegleria fowleri. This amoebic species is able to live freely in warm aquatic habitats and to infect children and young adults when they perform risk activities in these water bodies such as swimming or splashing. Besides the need to increase awareness of PAM which will allow an early diagnosis, the development of fully effective therapeutic agents is needed. Current treatment options are amphotericin B and miltefosine which are not fully effective and also present toxicity issues. In this study, the in vitro activity of various sesquiterpenes isolated from the red alga Laurencia johnstonii were tested against the trophozoite stage of a strain of Naegleria fowleri. Moreover, the induced effects (apoptotic cell death) of the most active compound, laurinterol (1), was evaluated by measuring DNA condensation, damages at the mitochondrial level, cell membrane disruption and production of reactive oxygen species (ROS). The obtained results demonstrated that laurinterol was able to eliminate the amoebae at concentrations of 13.42 ± 2.57 µM and also to induced programmed cell death (PCD) in the treated amoebae. Moreover, since ATP levels were highly affected and laurinterol has been previously reported as an inhibitor of the Na+/K+-ATPase sodium–potassium ion pump, comparison with known inhibitors of ATPases were carried out. Our results points out that laurinterol was able to inhibit ENA ATPase pump at concentrations 100 times lower than furosemide.
Collapse
|
32
|
Rizo-Liendo A, Sifaoui I, Arberas-Jiménez I, Reyes-Batlle M, Piñero JE, Lorenzo-Morales J. Fluvastatin and atorvastatin induce programmed cell death in the brain eating amoeba Naegleria fowleri. Biomed Pharmacother 2020; 130:110583. [DOI: 10.1016/j.biopha.2020.110583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022] Open
|
33
|
Huerta M, Reyes L, García-Rivera G, Bañuelos C, Betanzos A, Díaz-Hernández M, Galindo A, Bolaños J, Cárdenas H, Azuara-Liceaga E, Chávez-Munguía B, Orozco E. A noncanonical GATA transcription factor of Entamoeba histolytica modulates genes involved in phagocytosis. Mol Microbiol 2020; 114:1019-1037. [PMID: 32808689 DOI: 10.1111/mmi.14592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
In this paper, we explored the presence of GATA in Entamoeba histolytica and their function as regulators of phagocytosis-related genes. Bioinformatics analyses evidenced a single 579 bp sequence encoding for a protein (EhGATA), smaller than GATA factors of other organisms. EhGATA appeared phylogenetically close to Dictyostelium discoideum and Schistosoma mansoni GATA proteins. Its sequence predicts the presence of a zinc-finger DNA binding domain and an AT-Hook motif; it also has two nuclear localization signals. By transmission electron and confocal microscopy, anti-EhGATA antibodies revealed the protein in the cytoplasm and nucleus, and 65% of nuclear signal was in the heterochromatin. EhGATA recombinant protein and trophozoites nuclear extracts bound to GATA-DNA consensus sequence. By in silico scrutiny, 1,610 gene promoters containing GATA-binding sequences appeared, including Ehadh and Ehvps32 promoters, whose genes participate in phagocytosis. Chromatin immunoprecipitation assays showed that EhGATA interact with Ehadh and Ehvps32 promoters. In EhGATA-overexpressing trophozoites (NeoGATA), the Ehadh and Ehvps32 mRNAs amount was modified, strongly supporting that EhGATA could regulate their transcription. NeoGATA trophozoites exhibited rounded shapes, high proliferation rates, and diminished erythrophagocytosis. Our results provide new insights into the role of EhGATA as a noncanonical transcription factor, regulating genes associated with phagocytosis.
Collapse
Affiliation(s)
- Miriam Huerta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Reyes
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Cecilia Bañuelos
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.,Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Mitzi Díaz-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Jeni Bolaños
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Helios Cárdenas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
34
|
Martínez-Ocaña J, Maravilla P, Olivo-Díaz A. Interaction between human mucins and parasite glycoproteins: the role of lectins and glycosidases in colonization by intestinal protozoa. Rev Inst Med Trop Sao Paulo 2020; 62:e64. [PMID: 32901761 PMCID: PMC7477959 DOI: 10.1590/s1678-9946202062064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 08/30/2023] Open
Abstract
Intestinal mucins are the first line of defense against microorganisms. Although knowledge about the mechanisms involved in the establishment of intestinal protozoa is limited, there is evidence that these parasites produce lectin-like molecules and glycosidases, that exert both, constitutive and secretory functions, promoting the establishment of these microorganisms. In the present review, we analyse the main interactions between mucins of the host intestine and the four main protozoan parasites in humans and their implications in intestinal colonization. There are lectin-like molecules that contain complex oligosaccharide structures and N-acetylglucosamine (GlcNAc), mannose and sialic acid as main components, which are excreted/secreted by Giardia intestinalis, and recognized by the host using mannose-binding lectins (MBL). Entamoeba histolytica and Cryptosporidium spp. express the lectin galactose/N-acetyl-D-galactosamine, which facilitates their adhesion to cells. In Cryptosporidium, the glycoproteins gp30, gp40/15 and gp900 and the glycoprotein lectin CpClec are involved in protozoan adhesion to intestinal cells, forming an adhesion-attack complex. G. intestinalis and E. histolytica can also produce glycosidases such as β-N-acetyl-D-glucosaminidase, α-d-glucosidase, β-d-galactosidase, β-l-fucosidase, α-N-acetyl-d-galactosaminidase and β-mannosidase. In Blastocystis, α-D-mannose, α-D-glucose, GlcNAc, α-D-fucose, chitin and sialic acid that have been identified on their surface. Fucosidases, hexosaminidases and polygalacturonases, which may be involved in the mucin degradation process, have also been described in the Blastocystis secretoma. Similarly, symbiotic coexistence with the intestinal microbiota promotes the survival of parasites facilitating cell invasion and nutrients obtention. Furthermore, it is necessary to identify and characterize more glycosidases, which have been only partially described by in silico analyses of the parasite genome.
Collapse
Affiliation(s)
- Joel Martínez-Ocaña
- Hospital General "Dr. Manuel Gea González", Departamento de Ecología de Agentes Patógenos, Ciudad de México, Mexico
| | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea González", Subdirección de Investigación, Ciudad de México, Mexico
| | - Angélica Olivo-Díaz
- Hospital General "Dr. Manuel Gea González", Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, Mexico
| |
Collapse
|
35
|
Marchat LA, Hernández-de la Cruz ON, Ramírez-Moreno E, Silva-Cázares MB, López-Camarillo C. Proteomics approaches to understand cell biology and virulence of Entamoeba histolytica protozoan parasite. J Proteomics 2020; 226:103897. [PMID: 32652218 DOI: 10.1016/j.jprot.2020.103897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
Entamoeba histolytica is the primitive eukaryotic parasite responsible of human amoebiasis, a disease characterized by bloody intestinal diarrhea and invasive extraintestinal illness. The knowledge of the complete genome sequence of virulent E. histolytica and related non-pathogenic species allowed the development of novel genome-wide methodological approaches including protein expression profiling and cellular proteomics in the so called post-genomic era. Proteomics studies have greatly increased our understanding of the cell biology of this ancient parasite. This review summarizes the current works concerning proteomics studies on cell biology, life cycle, virulence and pathogenesis, novel therapies, and protein expression regulation mechanisms in E. histolytica parasite. Also, we discuss the use of proteomics data for the development of novel therapies, the identification of potential disease biomarkers and differential diagnosis between species. SIGNIFICANCE: Entamoeba histolytica is the unicellular protozoan parasite responsible of human amoebiasis, a serious disease with worldwide distribution characterized by bloody intestinal diarrhea and invasive extraintestinal illness including peritonitis and liver, pulmonary and brain abscesses. The post-genomic era allowed the development of proteomic studies including protein expression profiling and cellular proteomics. These proteomics studies have greatly increased our understanding on cell biology, life cycle (cyst-trophozoite conversion), virulence, pathogenesis, novel therapies, and protein expression regulation mechanisms in E. histolytica. Importantly, proteomics has revealed the identity of proteins related to novel therapies, and the identification of potential disease biomarkers and proteins with use in diagnosis between species. Hopefully in the coming years, and through the use of more sophisticated omics tools, including deep proteomics, a more complete set of proteins involved in the aforementioned cellular processes can be obtained to understand the biology of this ancient eukaryote.
Collapse
Affiliation(s)
- Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, ENMH-Instituto Politécnico Nacional, CDMX, México.
| | | | - Esther Ramírez-Moreno
- Programa en Biomedicina Molecular y Red de Biotecnología, ENMH-Instituto Politécnico Nacional, CDMX, México
| | - Macrina B Silva-Cázares
- Doctorado Institucional en Ingeniería y Ciencias de Materiales, Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, México.
| |
Collapse
|
36
|
Castelan-Ramírez I, Salazar-Villatoro L, Chávez-Munguía B, Salinas-Lara C, Sánchez-Garibay C, Flores-Maldonado C, Hernández-Martínez D, Anaya-Martínez V, Ávila-Costa MR, Méndez-Cruz AR, Omaña-Molina M. Schwann Cell Autophagy and Necrosis as Mechanisms of Cell Death by Acanthamoeba. Pathogens 2020; 9:E458. [PMID: 32526974 PMCID: PMC7350333 DOI: 10.3390/pathogens9060458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/30/2022] Open
Abstract
Amoebae of the genus Acanthamoeba are etiological agents of granulomatous amoebic encephalitis (GAE). Recently, through an in vivo GAE model, Acanthamoeba trophozoites were immunolocalized in contact with the peripheral nervous system (PNS) cells-Schwann cells (SC). In this study, we analyzed in greater detail the in vitro early morphological events (1, 2, 3, and 4 h) during the interaction of A. culbertsoni trophozoites (ATCC 30171) with SC from Rattus norvegicus (ATCC CRL-2941). Samples were processed for scanning and transmission electron microscopy as well as confocal microscopy. After 1 h of interaction, amoebae were observed to be adhered to the SC cultures, emitting sucker-like structures associated with micro-phagocytic channels. In addition, evidence of necrosis was identified since edematous organelles as well as multivesicular and multilamellar bodies characteristics of autophagy were detected. At 2 h, trophozoites migrated beneath the SC culture in which necrosis and autophagy persisted. By 3 and 4 h, extensive lytic zones were observed. SC necrosis was confirmed by confocal microscopy. We reported for the first time the induction of autophagic and necrotic processes in PNS cells, associated in part with the contact-dependent pathogenic mechanisms of A. culbertsoni trophozoites.
Collapse
Affiliation(s)
- Ismael Castelan-Ramírez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico (UNAM), Av. Ciudad Universitaria 3000, Coyoacán P.C. 04510, Mexico;
- Laboratorio de Amibas Anfizoicas, Facultad de Estudios Superiores Iztacala (FESI), Medicina, UNAM, Tlalnepantla 54090, Mexico;
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de Mexico 07360, Mexico; (L.S.-V.); (B.C.-M.)
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de Mexico 07360, Mexico; (L.S.-V.); (B.C.-M.)
| | - Citlaltepetl Salinas-Lara
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de Mexico 14269, Mexico; (C.S.-L.); (C.S.-G.)
- Laboratorio de Histología y Patología, FESI, Medicina, UNAM, Tlalnepantla 54090, Mexico
| | - Carlos Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de Mexico 14269, Mexico; (C.S.-L.); (C.S.-G.)
| | - Catalina Flores-Maldonado
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV–IPN, Ciudad de Mexico 07360, Mexico;
| | - Dolores Hernández-Martínez
- Laboratorio de Amibas Anfizoicas, Facultad de Estudios Superiores Iztacala (FESI), Medicina, UNAM, Tlalnepantla 54090, Mexico;
| | - Verónica Anaya-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac, Huixquilucan C.P. 52786, Mexico;
| | | | | | - Maritza Omaña-Molina
- Laboratorio de Amibas Anfizoicas, Facultad de Estudios Superiores Iztacala (FESI), Medicina, UNAM, Tlalnepantla 54090, Mexico;
| |
Collapse
|
37
|
Rizo-Liendo A, Sifaoui I, Cartuche L, Arberas-Jiménez I, Reyes-Batlle M, Fernández JJ, Piñero JE, Díaz-Marrero AR, Lorenzo-Morales J. Evaluation of Indolocarbazoles from Streptomyces sanyensis as a Novel Source of Therapeutic Agents against the Brain-Eating Amoeba Naegleria fowleri. Microorganisms 2020; 8:microorganisms8050789. [PMID: 32466301 PMCID: PMC7285321 DOI: 10.3390/microorganisms8050789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Naegleria fowleri is an opportunistic pathogenic free-living amoeba which is able to rapidly colonize the central nervous system (CNS) and causes a lethal infection known as primary amoebic meningoencephalitis (PAM). Furthermore, more than 98% of the known cases of PAM are fatal and affect mainly children under 12 and young adults. Until now, no fully effective therapeutic agents against N. fowleri are available and hence the urgent need to find novel agents to treat PAM. At present, PAM therapy is based on the combination of amphotericin B, miltefosine, among others, with unwanted toxic effects. Recently, our team isolated various indolocarbazoles (ICZs) from the culture of a mangrove strain of Streptomyces sanyensis which showed activity against kinetoplastids and the Acanthamoeba genus. Hence, in this study, the activity of the previously isolated ICZs, staurosporine (STS), 7-oxostaurosporine (7OSTS), 4′-demethylamino-4′-oxostaurosporine, and streptocarbazole B, was evaluated against two type strains of N. fowleri. Furthermore, the performed activity assays revealed that STS was the most active ICZ presenting an inhibitory concentration 50 (IC50) of 0.08 ± 0.02 µM (SI 109.3). Moreover, STS induced programmed cell death (PCD) in the treated amoebae by triggering DNA condensation, mitochondrial disfunction, cell membrane disruption, and reactive oxygen species (ROS) generation. Therefore, STS could be a promising therapeutic agent against PAM.
Collapse
Affiliation(s)
- Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
| | - Luis Cartuche
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain; (L.C.); (J.J.F.); (A.R.D.-M.)
- Departamento de Química y Ciencias Exactas, Sección Química Básica y Aplicada, Universidad Técnica Particular de Loja (UTPL), San Cayetano alto s/n, 1101608 Loja, Ecuador
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain; (L.C.); (J.J.F.); (A.R.D.-M.)
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (J.L.-M.)
| | - Ana R. Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain; (L.C.); (J.J.F.); (A.R.D.-M.)
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (J.L.-M.)
| |
Collapse
|
38
|
Identification of T3 and T4 Genotypes of Acanthamoeba sp. in Dust Samples Isolated from Air Conditioning Equipment of Public Hospital of Ituiutaba-MG. Curr Microbiol 2020; 77:890-895. [PMID: 31960093 DOI: 10.1007/s00284-019-01869-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
The free-living amoebae are currently considered an emerging parasitic infection. The infection by this protozoan can generate serious infection and even cause death. Due to their amphizoic and opportunistic characters of these microorganisms, one should give more attention, not only in swimming pools but also where there are immunologically susceptible patients such as those found in intensive care units and surgical centers. Due to their difficult diagnosis often postmortem, because they are considered to be an emerging parasitic infection and their diagnosis is difficult, often performed post mortem. This study aimed to evaluate the safety of these protozoa in air conditioners by taking samples of dust from both the surgical center and the intensive therapy unit. We analyzed 48 dust samples that were collected from six air conditioners equipment located in the Intensive Care Unit (ICU) and Surgical Center (SC) of a public hospital. We found 10.4% of the samples collected in the SC, and 75% of the samples collected in the ICU presented free-living amoeba cysts by light microscopy analysis. In total, 35.4% (17/48) of the air conditioning samples of the hospital were positive and, by PCR, were identified to belong to the genus Acanthamoeba spp and Balamuthia mandrillaris species. By DNA sequencing analysis, it was possible to classify the Acanthamoeba samples as belonging to the T3 and T4 genotypes. These genotypes are the main cause of keratitis in humans, and Balamuthia may cause amoebic encephalitis, and together are emerging parasitic infections. Our results show the presence of the two most important amoebas Acanthamoeba (T3 and T4 genotypes) and Balamuthia in the SC and the ICU, and these necessary precautions these sites could be propagating cysts of these amoebas and patients during their stay or discharge could present ocular and NSC alterations without perhaps arriving to the diagnosis of free-living amoeba infection.
Collapse
|
39
|
Wanderley JLM, DaMatta RA, Barcinski MA. Apoptotic mimicry as a strategy for the establishment of parasitic infections: parasite- and host-derived phosphatidylserine as key molecule. Cell Commun Signal 2020; 18:10. [PMID: 31941500 PMCID: PMC6964003 DOI: 10.1186/s12964-019-0482-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
The establishment of parasitic infection is dependent on the development of efficient strategies to evade the host defense mechanisms. Phosphatidylserine (PS) molecules are pivotal for apoptotic cell recognition and clearance by professional phagocytes. Moreover, PS receptors are able to trigger anti-inflammatory and immunosuppressive responses by phagocytes, either by coupled enzymes or through the induction of regulatory cytokine secretion. These PS-dependent events are exploited by parasites in a mechanism called apoptotic mimicry. Generally, apoptotic mimicry refers to the effects of PS recognition for the initiation and maintenance of pathogenic infections. However, in this context, PS molecules can be recognized on the surface of the infectious agent or in the surface of apoptotic host debris, leading to the respective denomination of classical and non-classical apoptotic mimicry. In this review, we discuss the role of PS in the pathogenesis of several human infections caused by protozoan parasites. Video Abstract
Collapse
Affiliation(s)
- João Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Campus UFRJ Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual Norte-Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Marcello André Barcinski
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|