1
|
Zhu L, Yang W, Luo J, Lu D, Hu Y, Zhang R, Li Y, Qiu L, Chen Z, Chen L, Liu H. Comparison of characteristics and immune responses between paired human nasal and bronchial epithelial organoids. Cell Biosci 2025; 15:18. [PMID: 39920853 PMCID: PMC11806626 DOI: 10.1186/s13578-024-01342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The nasal epithelium, as part of a continuous and integrated airway epithelium, provides a more accessible sample source than the bronchial epithelium. However, the similarities and differences in gene expression patterns and immune responses between these two sites have not been extensively studied. RESULTS Four lines of matched nasal and bronchial airway epithelial cells obtained from the four patients were embedded in Matrigel and cultured in thechemically defined medium to generate patient-derived nasal organoids (NO) and bronchial organoids (BO). Histologic examination of nasal organoid tissue revealed high similarity and a reduced ciliary beat frequency compared to bronchial organoid tissue. Whole exome sequencing revealed that over 99% of single nucleotides were shared between the NO and matched BO and there was a 95% overlap in their RNA transcriptomes. RNA sequencing analysis of differentially expressed genes indicated a significant reduction in the immune response in NO. RSV infection revealed more productive replication in NO, with a downregulated immune pathway identified by RNA sequencing analysis and upregulated levels of pro-inflammatory cytokines in culture supernatants in NO compared to BO. CONCLUSIONS NO and BO serve as robust in vitro models, faithfully recapitulating the biological characteristics of upper respiratory epithelial cells. The different regions of respiratory epithelial cells exhibit distinct immune responses, underscoring their complementary roles in exploring airway immune mechanisms and disease pathophysiology.
Collapse
Affiliation(s)
- Lu Zhu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiaxin Luo
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Danli Lu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanan Hu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Zhang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Qiu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zelian Chen
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Lina Chen
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China.
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China.
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Demchenko A, Balyasin M, Nazarova A, Grigorieva O, Panchuk I, Kondrateva E, Tabakov V, Schagina O, Amelina E, Smirnikhina S. Human Induced Lung Organoids: A Promising Tool for Cystic Fibrosis Drug Screening. Int J Mol Sci 2025; 26:437. [PMID: 39859153 PMCID: PMC11764749 DOI: 10.3390/ijms26020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient in vitro model is needed to screen therapeutic agents under development. This study, on the most common mutation, F508del, investigates the efficacy of human induced pluripotent stem cell-derived lung organoids (hiLOs) from NKX2.1+ lung progenitors and airway basal cells (hiBCs) as a 3D model for CFTR modulator response assessment by a forskolin-induced swelling assay. Weak swelling was observed for hiLOs from NKX2.1+ lung progenitors and hiBCs in response to modulators VX-770/VX-809 and VX-770/VX-661, whereas the VX-770/VX-661/VX-445 combination resulted in the highest swelling response, indicating superior CFTR function restoration. The ROC analysis of the FIS assay results revealed an optimal cutoff of 1.21, with 65.9% sensitivity and 71.8% specificity, and the predictive accuracy of the model was 76.4%. In addition, this study compared the response of hiLOs with the clinical response of patients to therapy and showed similar drug response dynamics. Thus, hiLOs can effectively model the CF pathology and predict patients' specific response to modulators.
Collapse
Affiliation(s)
- Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Maxim Balyasin
- Scientific and Educational Resource Center, Peoples’ Friendship University of Russia, Miklukho-Maklaya, 6, 117198 Moscow, Russia
- Department of Cell Technology, Endocrinology Research Center, Dm. Ulyanova Str., 11, 117292 Moscow, Russia
| | - Aleksandra Nazarova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Olga Grigorieva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Irina Panchuk
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Ekaterina Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Vyacheslav Tabakov
- Moscow Branch of the Biobank “All-Russian Collection of Biological Samples of Hereditary Diseases”, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Olga Schagina
- DNA-Diagnostics Laboratory, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Elena Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, 11th Parkovaya Str., 32/4, 105077 Moscow, Russia
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| |
Collapse
|
3
|
Liu Z, Anderson JD, Rose NR, Baker EH, Dowell AE, Ryan KJ, Acosta EP, Guimbellot JS. Differential distribution of ivacaftor and its metabolites in plasma and human airway epithelia. Pulm Pharmacol Ther 2024; 86:102314. [PMID: 38964603 DOI: 10.1016/j.pupt.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Ivacaftor is the first clinically approved monotherapy potentiator to treat CFTR channel dysfunction in people with cystic fibrosis. Ivacaftor (Iva) is a critical component for all current modulator therapies, including highly effective modulator therapies. Clinical studies show that CF patients on ivacaftor-containing therapies present various clinical responses, off-target effects, and adverse reactions, which could be related to metabolites of the compound. In this study, we reported the concentrations of Iva and two of its major metabolites (M1-Iva and M6-Iva) in capillary plasma and estimated M1-Iva and M6-Iva metabolic activity via the metabolite parent ratio in capillary plasma over 12 h. We also used the ratio of capillary plasma versus human nasal epithelial cell concentrations to evaluate entry into epithelial cells in vivo. M6-Iva was rarely detected by LC-MS/MS in epithelial cells from participants taking ivacaftor, although it was detected in plasma. To further explore this discrepancy, we performed in vitro studies, which showed that M1-Iva, but not M6-Iva, readily crossed 16HBE cell membranes. Our studies also suggest that metabolism of these compounds is unlikely to occur in airway epithelia despite evidence of expression of metabolism enzymes. Overall, our data provide evidence that there are differences between capillary and cellular concentrations of these compounds that may inform future studies of clinical response and off-target effects.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Justin D Anderson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie R Rose
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth H Baker
- Department of Sociology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander E Dowell
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin J Ryan
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward P Acosta
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer S Guimbellot
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
4
|
Burgess JK, Weiss DJ, Westergren-Thorsson G, Wigen J, Dean CH, Mumby S, Bush A, Adcock IM. Extracellular Matrix as a Driver of Chronic Lung Diseases. Am J Respir Cell Mol Biol 2024; 70:239-246. [PMID: 38190723 DOI: 10.1165/rcmb.2023-0176ps] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The extracellular matrix (ECM) is not just a three-dimensional scaffold that provides stable support for all cells in the lungs, but also an important component of chronic fibrotic airway, vascular, and interstitial diseases. It is a bioactive entity that is dynamically modulated during tissue homeostasis and disease, that controls structural and immune cell functions and drug responses, and that can release fragments that have biological activity and that can be used to monitor disease activity. There is a growing recognition of the importance of considering ECM changes in chronic airway, vascular, and interstitial diseases, including 1) compositional changes, 2) structural and organizational changes, and 3) mechanical changes and how these affect disease pathogenesis. As altered ECM biology is an important component of many lung diseases, disease models must incorporate this factor to fully recapitulate disease-driver pathways and to study potential novel therapeutic interventions. Although novel models are evolving that capture some or all of the elements of the altered ECM microenvironment in lung diseases, opportunities exist to more fully understand cell-ECM interactions that will help devise future therapeutic targets to restore function in chronic lung diseases. In this perspective article, we review evolving knowledge about the ECM's role in homeostasis and disease in the lung.
Collapse
Affiliation(s)
- Janette K Burgess
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD, and
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont
| | | | - Jenny Wigen
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
- Centre for Pediatrics and Child Health, Imperial College and Royal Brompton Hospital, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
5
|
Trettner KJ, Hsieh J, Xiao W, Lee JSH, Armani AM. Nondestructive, quantitative viability analysis of 3D tissue cultures using machine learning image segmentation. APL Bioeng 2024; 8:016121. [PMID: 38566822 PMCID: PMC10985731 DOI: 10.1063/5.0189222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Ascertaining the collective viability of cells in different cell culture conditions has typically relied on averaging colorimetric indicators and is often reported out in simple binary readouts. Recent research has combined viability assessment techniques with image-based deep-learning models to automate the characterization of cellular properties. However, further development of viability measurements to assess the continuity of possible cellular states and responses to perturbation across cell culture conditions is needed. In this work, we demonstrate an image processing algorithm for quantifying features associated with cellular viability in 3D cultures without the need for assay-based indicators. We show that our algorithm performs similarly to a pair of human experts in whole-well images over a range of days and culture matrix compositions. To demonstrate potential utility, we perform a longitudinal study investigating the impact of a known therapeutic on pancreatic cancer spheroids. Using images taken with a high content imaging system, the algorithm successfully tracks viability at the individual spheroid and whole-well level. The method we propose reduces analysis time by 97% in comparison with the experts. Because the method is independent of the microscope or imaging system used, this approach lays the foundation for accelerating progress in and for improving the robustness and reproducibility of 3D culture analysis across biological and clinical research.
Collapse
Affiliation(s)
| | - Jeremy Hsieh
- Pasadena Polytechnic High School, Pasadena, California 91106, USA
| | - Weikun Xiao
- Ellison Institute of Technology, Los Angeles, California 90064, USA
| | | | | |
Collapse
|
6
|
Jaber N, Billet S. How to use an in vitro approach to characterize the toxicity of airborne compounds. Toxicol In Vitro 2024; 94:105718. [PMID: 37871865 DOI: 10.1016/j.tiv.2023.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
As part of the development of new approach methodologies (NAMs), numerous in vitro methods are being developed to characterize the potential toxicity of inhalable xenobiotics (gases, volatile organic compounds, polycyclic aromatic hydrocarbons, particulate matter, nanoparticles). However, the materials and methods employed are extremely diverse, and no single method is currently in use. Method standardization and validation would raise trust in the results and enable them to be compared. This four-part review lists and compares biological models and exposure methodologies before describing measurable biomarkers of exposure or effect. The first section emphasizes the importance of developing alternative methods to reduce, if not replace, animal testing (3R principle). The biological models presented are mostly to cultures of epithelial cells from the respiratory system, as the lungs are the first organ to come into contact with air pollutants. Monocultures or cocultures of primary cells or cell lines, as well as 3D organotypic cultures such as organoids, spheroids and reconstituted tissues, but also the organ(s) model on a chip are examples. The exposure methods for these biological models applicable to airborne compounds are submerged, intermittent, continuous either static or dynamic. Finally, within the restrictions of these models (i.e. relative tiny quantities, adhering cells), the mechanisms of toxicity and the phenotypic markers most commonly examined in models exposed at the air-liquid interface (ALI) are outlined.
Collapse
Affiliation(s)
- Nour Jaber
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France.
| |
Collapse
|
7
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
8
|
Gabriel V, Zdyrski C, Sahoo DK, Ralston A, Wickham H, Bourgois-Mochel A, Ahmed B, Merodio MM, Paukner K, Piñeyro P, Kopper J, Rowe EW, Smith JD, Meyerholz D, Kol A, Viall A, Elbadawy M, Mochel JP, Allenspach K. Adult Animal Stem Cell-Derived Organoids in Biomedical Research and the One Health Paradigm. Int J Mol Sci 2024; 25:701. [PMID: 38255775 PMCID: PMC10815683 DOI: 10.3390/ijms25020701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used. Traditional 2D cell lines cannot fully simulate the complexity of the epithelium of healthy organs and limit scientific progress. The One Health Initiative was established to consolidate human, animal, and environmental health while also tackling complex and multifactorial medical problems. Reverse translational research allows for the sharing of knowledge between clinical research in veterinary and human medicine. Recently, organoid technology has been developed to mimic the original organ's epithelial microstructure and function more reliably. While human and murine organoids are available, numerous other organoids have been derived from traditional veterinary animals and exotic species in the last decade. With these additional organoid models, species previously excluded from in vitro research are becoming accessible, therefore unlocking potential translational and reverse translational applications of animals with unique adaptations that overcome common problems in veterinary and human medicine.
Collapse
Affiliation(s)
- Vojtech Gabriel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | | | - Dipak K. Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Abigail Ralston
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Hannah Wickham
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Basant Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Maria M. Merodio
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Karel Paukner
- Atherosclerosis Research Laboratory, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Eric W. Rowe
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Jodi D. Smith
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Amir Kol
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Austin Viall
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Mohamed Elbadawy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| | - Karin Allenspach
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| |
Collapse
|
9
|
Velez Lopez A, Waddell A, Antonacci S, Castillo D, Santucci N, Ollberding NJ, Eshleman EM, Denson LA, Alenghat T. Microbiota-derived butyrate dampens linaclotide stimulation of the guanylate cyclase C pathway in patient-derived colonoids. Neurogastroenterol Motil 2023; 35:e14681. [PMID: 37736865 PMCID: PMC10841278 DOI: 10.1111/nmo.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/25/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND & AIMS Disorders of gut-brain interaction (DGBI) are complex conditions that result in decreased quality of life and a significant cost burden. Linaclotide, a guanylin cyclase C (GCC) receptor agonist, is approved as a DGBI treatment. However, its efficacy has been limited and variable across DGBI patients. Microbiota and metabolomic alterations are noted in DGBI patients, provoking the hypothesis that the microbiota may impact the GCC response to current therapeutics. METHODS Human-derived intestinal organoids were grown from pediatric DGBI, non-IBD colon biopsies (colonoids). Colonoids were treated with 250 nM linaclotide and assayed for cGMP to develop a model of GCC activity. Butyrate was administered to human colonoids overnight at a concentration of 1 mM. Colonoid lysates were analyzed for cGMP levels by ELISA. For the swelling assay, colonoids were photographed pre- and post-treatment and volume was measured using ImageJ. Principal coordinate analyses (PCoA) were performed on the Bray-Curtis dissimilarity and Jaccard distance to assess differences in the community composition of short-chain fatty acid (SCFA) producing microbial species in the intestinal microbiota from pediatric patients with IBS and healthy control samples. KEY RESULTS Linaclotide treatment induced a significant increase in [cGMP] and swelling of patient-derived colonoids, demonstrating a human in vitro model of linaclotide-induced GCC activation. Shotgun sequencing analysis of pediatric IBS patients and healthy controls showed differences in the composition of commensal SCFA-producing bacteria. Butyrate exposure significantly dampened linaclotide-induced cGMP levels and swelling in patient-derived colonoids. CONCLUSIONS & INFERENCES Patient-derived colonoids demonstrate that microbiota-derived butyrate can dampen human colonic responses to linaclotide. This study supports incorporation of microbiota and metabolomic assessment to improve precision medicine for DGBI patients.
Collapse
Affiliation(s)
- Alejandro Velez Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Amanda Waddell
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Simona Antonacci
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Daniel Castillo
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Neha Santucci
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Emily M. Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
10
|
Efficacy and Safety of Elexacaftor-Tezacaftor-Ivacaftor in the Treatment of Cystic Fibrosis: A Systematic Review. CHILDREN 2023; 10:children10030554. [PMID: 36980112 PMCID: PMC10047761 DOI: 10.3390/children10030554] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Elexacaftor/Tezacaftor/Ivacaftor (ELX/TEZ/IVA) is a new CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) modulator treatment, used over the last few years, which has shown an improvement in different clinical outcomes in patients with cystic fibrosis (CF). The objective of this study was a systematic research of the literature on the efficacy and safety of this CFTR modulator on patients with CF. A search of Pubmed was conducted for randomized clinical trials and observational studies published from 2012 to September 2022. The included full manuscripts comprised nine clinical trials and 16 observational studies, whose participants were aged ≥12 years or were children 6–11 years old with at least one Phe508del mutation and/or advanced lung disease (ALD). These studies reported that ELX/TEZ/IVA has a significant positive effect on the lung function of patients with CF, by ameliorating parameters such as FEV1, LCI, pulmonary exacerbations or sweat chloride concentration, increasing BMI and improving quality of their life. Its role in cystic fibrosis-related diabetes (CFRD) is not yet clear. It was found that this new CFTR modulator has an overall favorable safety profile, with mild to moderate adverse events. Further studies are needed for a deeper understanding of the impact of CFTR modulators on other CF manifestations, or the possibility of treating with ELX/TEZ/IVA CF patients with rare CFTR mutations.
Collapse
|
11
|
Skinner WH, Robinson N, Hardisty GR, Fleming H, Geddis A, Bradley M, Gray RD, Campbell CJ. SERS microsensors for pH measurements in the lumen and ECM of stem cell derived human airway organoids. Chem Commun (Camb) 2023; 59:3249-3252. [PMID: 36815668 DOI: 10.1039/d2cc06582g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Patient derived organoids have the potential to improve the physiological relevance of in vitro disease models. However, the 3D architecture of these self-assembled cellular structures makes probing their biochemistry more complex than in traditional 2D culture. We explore the application of surface enhanced Raman scattering microsensors (SERS-MS) to probe local pH gradients within patient derived airway organoid cultures. SERS-MS consist of solid polymer cores decorated with surface immobilised gold nanoparticles which are functionalised with pH sensitive reporter molecule 4-mercaptobenzoic acid (MBA). We demonstrate that by mixing SERS-MS into the extracellular matrix (ECM) of airway organoid cultures the probes can be engulfed by expanding organoids and report on local pH in the organoid lumen and ECM.
Collapse
Affiliation(s)
- William H Skinner
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Nicola Robinson
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Gareth R Hardisty
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Holly Fleming
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Ailsa Geddis
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Joseph Black Building, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK.
| | - Mark Bradley
- Joseph Black Building, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK.
| | - Robert D Gray
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Colin J Campbell
- Joseph Black Building, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
12
|
Qureshi HA, G Franks Z, Gurung A, Ramanathan M. Scientific Advancements That Empower Us to Understand CRS Pathophysiology. Am J Rhinol Allergy 2023; 37:221-226. [PMID: 36848272 DOI: 10.1177/19458924221148026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a multifactorial inflammatory condition that remains poorly understood. Over the past decade, we have witnessed impressive scientific advancements that have allowed us to better understand the molecular and cellular mechanisms that underlie the inflammatory processes in mucosal diseases including asthma, allergic rhinitis, and CRSwNP. OBJECTIVE The present review aims to summarize and highlight the most recent scientific advancements that have enriched our understanding of CRSwNP. METHODS A comprehensive review of the available literature on the use of new scientific techniques in CRSwNP was performed. We evaluated the most recent evidence from studies using animal models, cell cultures, and genome sequencing techniques and their impact on our understanding of CRSwNP pathophysiology. RESULTS Our understanding of CRSwNP has rapidly progressed with the development of newer scientific techniques to interrogate various pathways involved in its pathogenesis. Animal models remain powerful tools and have elucidated the mechanisms behind esinophilic inflammation in CRSwNP; however, animal models reproducing polyp formation are relatively sparse. 3D cell cultures have significant potential to better dissect the cellular interactions with the sinonasal epithelium and other cell types in CRS. Additionally, some groups are starting to utilize single-cell RNA sequencing to investigate RNA expression in individual cells with high resolution and on a genomic scale. CONCLUSION These emerging scientific technologies represent outstanding opportunities to identify and develop more targeted therapeutics for different pathways that lead to CRSwNP. An additional understanding of these mechanisms will be critical for developing future therapies for CRSwNP.
Collapse
Affiliation(s)
- Hannan A Qureshi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zechariah G Franks
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Asiana Gurung
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Hughes T, Dijkstra KK, Rawlins EL, Hynds RE. Open questions in human lung organoid research. Front Pharmacol 2023; 13:1083017. [PMID: 36712670 PMCID: PMC9880211 DOI: 10.3389/fphar.2022.1083017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Organoids have become a prominent model system in pulmonary research. The ability to establish organoid cultures directly from patient tissue has expanded the repertoire of physiologically relevant preclinical model systems. In addition to their derivation from adult lung stem/progenitor cells, lung organoids can be derived from fetal tissue or induced pluripotent stem cells to fill a critical gap in modelling pulmonary development in vitro. Recent years have seen important progress in the characterisation and refinement of organoid culture systems. Here, we address several open questions in the field, including how closely organoids recapitulate the tissue of origin, how well organoids recapitulate patient cohorts, and how well organoids capture diversity within a patient. We advocate deeper characterisation of models using single cell technologies, generation of more diverse organoid biobanks and further standardisation of culture media.
Collapse
Affiliation(s)
- Tessa Hughes
- Wellcome Trust/CRUK Gurdon Institute and Department Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Krijn K. Dijkstra
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Emma L. Rawlins
- Wellcome Trust/CRUK Gurdon Institute and Department Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert E. Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, United Kingdom
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
14
|
Organoid Technology and Its Role for Theratyping Applications in Cystic Fibrosis. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010004. [PMID: 36670555 PMCID: PMC9856584 DOI: 10.3390/children10010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Cystic fibrosis (CF) is a autosomal recessive, multisystemic disease caused by different mutations in the CFTR gene encoding CF transmembrane conductance regulator. Although symptom management is important to avoid complications, the approval of CFTR modulator drugs in the clinic has demonstrated significant improvements by targeting the primary molecular defect of CF and thereby preventing problems related to CFTR deficiency or dysfunction. CFTR modulator therapies have positively changed the patients' quality of life, especially for those who start their use at the onset of the disease. Due to early diagnosis with the implementation of newborn screening programs and considerable progress in the treatment options, nowadays pediatric mortality was dramatically reduced. In any case, the main obstacle to treat CF is to predict the drug response of patients due to genetic complexity and heterogeneity. Advances in 3D culture systems have led to the extrapolation of disease modeling and individual drug response in vitro by producing mini organs called "organoids" easily obtained from nasal and rectal mucosa biopsies. In this review, we focus primarily on patient-derived intestinal organoids used as in vitro model for CF disease. Organoids combine high-validity of outcomes with a high throughput, thus enabling CF disease classification, drug development and treatment optimization in a personalized manner.
Collapse
|
15
|
The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun 2022; 13:7635. [PMID: 36496442 PMCID: PMC9735280 DOI: 10.1038/s41467-022-35253-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation and infective exacerbations, however, in-vitro model systems for the study of host-pathogen interaction at the individual level are lacking. Here, we describe the establishment of nasopharyngeal and bronchial organoids from healthy individuals and COPD that recapitulate disease at the individual level. In contrast to healthy organoids, goblet cell hyperplasia and reduced ciliary beat frequency were observed in COPD organoids, hallmark features of the disease. Single-cell transcriptomics uncovered evidence for altered cellular differentiation trajectories in COPD organoids. SARS-CoV-2 infection of COPD organoids revealed more productive replication in bronchi, the key site of infection in severe COVID-19. Viral and bacterial exposure of organoids induced greater pro-inflammatory responses in COPD organoids. In summary, we present an organoid model that recapitulates the in vivo physiological lung microenvironment at the individual level and is amenable to the study of host-pathogen interaction and emerging infectious disease.
Collapse
|
16
|
Guimbellot JS, Nichols DP, Brewington JJ. Novel Applications of Biomarkers and Personalized Medicine in Cystic Fibrosis. Clin Chest Med 2022; 43:617-630. [PMID: 36344070 DOI: 10.1016/j.ccm.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As routine care in cystic fibrosis (CF) becomes increasingly personalized, new opportunities to further focus care on the individual have emerged. These opportunities are increasingly filled through research in tools aiding drug selection, drug monitoring and titration, disease-relevant biomarkers, and evaluation of therapeutic benefits. Herein, we will discuss such research tools presently being translated into the clinic to improve the personalization of care in CF.
Collapse
Affiliation(s)
- Jennifer S Guimbellot
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham; 1600 7th Avenue South, ACC 620, Birmingham, AL 35233, USA
| | - David P Nichols
- Department of Pediatrics, Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington School of Medicine, Building Cure, 1920 Terry Avenue, Office 4-209, Seattle, WA 98109, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2021, Cincinnati, OH 45229, USA.
| |
Collapse
|
17
|
Cramer N, Nawrot ML, Wege L, Dorda M, Sommer C, Danov O, Wronski S, Braun A, Jonigk D, Fischer S, Munder A, Tümmler B. Competitive fitness of Pseudomonas aeruginosa isolates in human and murine precision-cut lung slices. Front Cell Infect Microbiol 2022; 12:992214. [PMID: 36081773 PMCID: PMC9446154 DOI: 10.3389/fcimb.2022.992214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic respiratory infections with the gram-negative bacterium Pseudomonas aeruginosa are an important co-morbidity for the quality of life and prognosis of people with cystic fibrosis (CF). Such long-term colonization, sometimes lasting up to several decades, represents a unique opportunity to investigate pathogen adaptation processes to the host. Our studies aimed to resolve if and to what extent the bacterial adaptation to the CF airways influences the fitness of the pathogen to grow and to persist in the lungs. Marker-free competitive fitness experiments of serial P. aeruginosa isolates differentiated by strain-specific SNPs, were performed with murine and human precision cut lung slices (PCLS). Serial P. aeruginosa isolates were selected from six mild and six severe CF patient courses, respectively. MPCLS or hPCLS were inoculated with a mixture of equal numbers of the serial isolates of one course. The temporal change of the composition of the bacterial community during competitive growth was quantified by multi-marker amplicon sequencing. Both ex vivo models displayed a strong separation of fitness traits between mild and severe courses. Whereas the earlier isolates dominated the competition in the severe courses, intermediate and late isolates commonly won the competition in the mild courses. The status of the CF lung disease rather than the bacterial genotype drives the adaptation of P. aeruginosa during chronic CF lung infection. This implies that the disease status of the lung habitat governed the adaptation of P. aeruginosa more strongly than the underlying bacterial clone-type and its genetic repertoire.
Collapse
Affiliation(s)
- Nina Cramer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- *Correspondence: Nina Cramer,
| | - Marie Luise Nawrot
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lion Wege
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Medical School, Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Charline Sommer
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Olga Danov
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Sabine Wronski
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sebastian Fischer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
19
|
Ramezanpour M, Bolt H, Hon K, Shaghayegh G, Rastin H, Fenix KA, Psaltis Alkis J, Wormald PJ, Vreugde S. Characterization of human nasal organoids from chronic rhinosinusitis patients. Biol Open 2022; 11:bio059267. [PMID: 35452072 PMCID: PMC9399817 DOI: 10.1242/bio.059267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/06/2022] [Indexed: 12/05/2022] Open
Abstract
Patient-derived organoids grown in three-dimensional cultures provide an excellent platform for phenotypic high-throughput screening and drug-response research. Organoid technology has been applied to study stem cell biology and various human pathologies. This study investigates the characteristics and cellular morphology of organoids derived from primary human nasal epithelial cells (HNECs) of chronic rhinosinusitis (CRS) patients. Nasal organoids were cultured up to 20 days and morphological, cell composition and functional parameters were measured by immunofluorescence, RT-qPCR, western blot and FACS analysis. The results showed that nasal organoids expressed the stem cell marker leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), and markers for apical junction genes, goblet cells and ciliated cells. Moreover, we were able to regrow and expand the nasal organoids well after freezing and thawing. This study provides an effective and feasible method for development of human nasal organoids, suitable for the phenotypic high-throughput screening and drug response research.
Collapse
Affiliation(s)
- Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology, Head and Neck Surgery, Central Adelaide Local Health Network (Basil Hetzel Institute), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, Australia
| | - Harrison Bolt
- Department of Surgery-Otolaryngology, Head and Neck Surgery, Central Adelaide Local Health Network (Basil Hetzel Institute), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Karen Hon
- Department of Surgery-Otolaryngology, Head and Neck Surgery, Central Adelaide Local Health Network (Basil Hetzel Institute), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, Australia
| | - Gohar Shaghayegh
- Department of Surgery-Otolaryngology, Head and Neck Surgery, Central Adelaide Local Health Network (Basil Hetzel Institute), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, Australia
| | - Hadi Rastin
- Department of Surgery-Otolaryngology, Head and Neck Surgery, Central Adelaide Local Health Network (Basil Hetzel Institute), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, Australia
- School of Chemical Engineering, The University of Adelaide, South Australia 5005, Australia
| | - Kevin Aaron Fenix
- Department of Surgery-Otolaryngology, Head and Neck Surgery, Central Adelaide Local Health Network (Basil Hetzel Institute), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, Australia
| | - James Psaltis Alkis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, Central Adelaide Local Health Network (Basil Hetzel Institute), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology, Head and Neck Surgery, Central Adelaide Local Health Network (Basil Hetzel Institute), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology, Head and Neck Surgery, Central Adelaide Local Health Network (Basil Hetzel Institute), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, Australia
| |
Collapse
|
20
|
Amatngalim GD, Rodenburg LW, Aalbers BL, Raeven HH, Aarts EM, Sarhane D, Spelier S, Lefferts JW, Silva IA, Nijenhuis W, Vrendenbarg S, Kruisselbrink E, Brunsveld JE, van Drunen CM, Michel S, de Winter-de Groot KM, Heijerman HG, Kapitein LC, Amaral MD, van der Ent CK, Beekman JM. Measuring cystic fibrosis drug responses in organoids derived from 2D differentiated nasal epithelia. Life Sci Alliance 2022; 5:e202101320. [PMID: 35922154 PMCID: PMC9351388 DOI: 10.26508/lsa.202101320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis is caused by genetic defects that impair the CFTR channel in airway epithelial cells. These defects may be overcome by specific CFTR modulating drugs, for which the efficacy can be predicted in a personalized manner using 3D nasal-brushing-derived airway organoids in a forskolin-induced swelling assay. Despite of this, previously described CFTR function assays in 3D airway organoids were not fully optimal, because of inefficient organoid differentiation and limited scalability. In this report, we therefore describe an alternative method of culturing nasal-brushing-derived airway organoids, which are created from an equally differentiated airway epithelial monolayer of a 2D air-liquid interface culture. In addition, we have defined organoid culture conditions, with the growth factor/cytokine combination neuregulin-1<i>β</i> and interleukin-1<i>β</i>, which enabled consistent detection of CFTR modulator responses in nasal-airway organoid cultures from subjects with cystic fibrosis.
Collapse
Affiliation(s)
- Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lisa W Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bente L Aalbers
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henriette Hm Raeven
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen M Aarts
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dounia Sarhane
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sacha Spelier
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Juliet W Lefferts
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Iris Al Silva
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Wilco Nijenhuis
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Sacha Vrendenbarg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sabine Michel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
| | - Harry G Heijerman
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Magarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| |
Collapse
|
21
|
Asadi Jozani K, Kouthouridis S, Hirota JA, Zhang B. Next generation preclinical models of lung development, physiology and disease. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kimia Asadi Jozani
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
| | - Sonya Kouthouridis
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Jeremy Alexander Hirota
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Medicine, Division of Respirology McMaster University Hamilton Ontario Canada
- Firestone Institute for Respiratory Health St. Joseph’s Hospital, Hamilton Ontario Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| |
Collapse
|
22
|
Wang K, Yu Y, Han R, Wang X, Zhao Y, Tang H, Li G. [Establishment of a culture system for human nasal mucosa organoids with controllable differentiation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:868-877. [PMID: 35790437 DOI: 10.12122/j.issn.1673-4254.2022.06.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To establish a culture system for human nasal mucosal organoids with controllable differentiation to reproduce the structure and function of the source tissue through staged expansion-differentiation culture. METHODS Fresh samples of surgically resected middle turbinate and nasal polyp tissues were collected, from which the nasal mucosa epithelial cells were isolated by enzymatic digestion and filtration for continuous culture at the air-liquid interface for expansion (EO group) or staged culture for expansion and differentiation (DO group). Immunohistochemical staining was used to characterize the structure, cellular composition and ciliary function of nasal mucosal organoids in the two groups. The secretion function of the differentiated nasal mucosal organoids in DO group was evaluated using PAS staining. RESULTS Both of the two organoid culture systems yielded vacuolar or solid spherical 3D organoids, and their diameters increased progressively with time. On day 16 of culture, more vacuolar organoids occurred in DO group, while more solid spherical organoids were seen in EO group, and the proportion of vacuoles was significantly greater in DO group than in EO group [(54.67±13.26)% vs (21.67±8.57)%, P < 0.05]. Short tandem repeat (STR) test of the nasal mucosal organoids and the source tissue showed a 100% match between them. On day 21 of culture, scanning and transmission electron microscopy of the nasal mucosal organoids identified ultrastructure of cilia in DO group and short villi structure in most of the organoids in EO group. Immunohistochemical staining showed positivity for P63 (basal cells), β-tubulin (ciliated columnar cells), and MUC5AC (goblet cells) in the organoids. Compared with those in EO group, the organoids in DO group showed significantly greater percentages of ciliated cells [(7.95±1.81)% vs (27.04±5.91)%, P < 0.05] and goblet cells [(14.46±0.93)% vs (39.85±5.43)%, P < 0.05) with a similar percentage of basal cells [(56.91±14.12)% vs (53.42±15.77)%, P > 0.05]. The differentiated nasal mucosal organoids in DO group were positively stained for glycogen. CONCLUSION The staged expansion-differentiation culture method allows more stable and prolonged growth of the cultured cells in vitro to produce organoids with controllable differentiation closely resembling the morphological structure and functions (ciliary function and secretory function) of the source tissue.
Collapse
Affiliation(s)
- K Wang
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y Yu
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - R Han
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X Wang
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y Zhao
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - H Tang
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - G Li
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
23
|
Zhou M, Liu Y, Cao J, Dong S, Hou Y, Yu Y, Zhang Q, Zhang Y, Jia X, Zhang B, Xiao G, Li G, Wang W. Bergamottin, a bioactive component of bergamot, inhibits SARS-CoV-2 infection in golden Syrian hamsters. Antiviral Res 2022; 204:105365. [PMID: 35732228 PMCID: PMC9212731 DOI: 10.1016/j.antiviral.2022.105365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused an ongoing pandemic, coronavirus disease-2019 (COVID-19), which has become a major global public health event. Antiviral compounds remain the predominant means of treating COVID-19. Here, we reported that bergamottin, a furanocoumarin originally found in bergamot, exhibited inhibitory activity against SARS-CoV-2 in vitro, ex vivo, and in vivo. Bergamottin interfered with multiple stages of virus life cycles, specifically blocking the SARS-CoV-2 spike-mediated membrane fusion and effectively reducing viral RNA synthesis. Oral delivery of bergamottin to golden Syrian hamsters at dosages of both 50 mg/kg and 75 mg/kg reduced the SARS-CoV-2 load in nasal turbinates and lung tissues. Pathological damage caused by viral infection was also ameliorated after bergamottin treatment. Overall, our study provides evidence of bergamottin as a promising natural compound, with broad-spectrum anti-coronavirus activity, that could be further developed in the fight against COVID-19 infection during the current pandemic.
Collapse
Affiliation(s)
- Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxia Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Yu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Centre of Organoid, Guangzhou, 510515, China
| | - Qiuyan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Li
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Boecking CA, Walentek P, Zlock LT, Sun DI, Wolters PJ, Ishikawa H, Jin BJ, Haggie PM, Marshall WF, Verkman AS, Finkbeiner WE. A simple method to generate human airway epithelial organoids with externally orientated apical membranes. Am J Physiol Lung Cell Mol Physiol 2022; 322:L420-L437. [PMID: 35080188 PMCID: PMC8917940 DOI: 10.1152/ajplung.00536.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organoids, which are self-organizing three-dimensional cultures, provide models that replicate specific cellular components of native tissues or facets of organ complexity. We describe a simple method to generate organoid cultures using isolated human tracheobronchial epithelial cells grown in mixed matrix components and supplemented at day 14 with the Wnt pathway agonist R-spondin 2 (RSPO2) and the bone morphogenic protein antagonist Noggin. In contrast to previous reports, our method produces differentiated tracheobronchospheres with externally orientated apical membranes without pretreatments, providing an epithelial model to study cilia formation and function, disease pathogenesis, and interaction of pathogens with the respiratory mucosa. Starting from 3 × 105 cells, organoid yield at day 28 was 1,720 ± 302. Immunocytochemistry confirmed the cellular localization of airway epithelial markers, including CFTR, Na+/K+ ATPase, acetylated-α-tubulin, E-cadherin, and ZO-1. Compared to native tissues, expression of genes related to bronchial differentiation and ion transport were similar in organoid and air-liquid interface (ALI) cultures. In matched primary cultures, mean organoid cilia length was 6.1 ± 0.2 µm, similar to that of 5.7 ± 0.1 µm in ALI cultures, and ciliary beating was vigorous and coordinated with frequencies of 7.7 ± 0.3 Hz in organoid cultures and 5.3 ± 0.8 Hz in ALI cultures. Functional measurement of osmotically induced volume changes in organoids showed low water permeability. The generation of numerous single testable units from minimal starting material complements prior techniques. This culture system may be useful for studying airway biology and pathophysiology, aiding diagnosis of ciliopathies, and potentially for high-throughput drug screening.
Collapse
Affiliation(s)
- Carolin A. Boecking
- 1Department of Pathology, University of California, San Francisco, California
| | - Peter Walentek
- 2Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California,3Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany,4CIBSS – Centre for Integrative Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Lorna T. Zlock
- 1Department of Pathology, University of California, San Francisco, California
| | - Dingyuan I. Sun
- 1Department of Pathology, University of California, San Francisco, California
| | - Paul J. Wolters
- 5Department of Medicine, University of California, San Francisco, California
| | - Hiroaki Ishikawa
- 6Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Byung-Ju Jin
- 5Department of Medicine, University of California, San Francisco, California
| | - Peter M. Haggie
- 5Department of Medicine, University of California, San Francisco, California
| | - Wallace F. Marshall
- 6Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Alan S. Verkman
- 5Department of Medicine, University of California, San Francisco, California,7Department of Physiology, University of California, San Francisco, California
| | - Walter E. Finkbeiner
- 1Department of Pathology, University of California, San Francisco, California,8Innovative Genomics Institute, University of California, Berkeley, California
| |
Collapse
|
25
|
van der Vaart J, Böttinger L, Geurts MH, van de Wetering WJ, Knoops K, Sachs N, Begthel H, Korving J, Lopez‐Iglesias C, Peters PJ, Eitan K, Gileles‐Hillel A, Clevers H. Modelling of primary ciliary dyskinesia using patient-derived airway organoids. EMBO Rep 2021; 22:e52058. [PMID: 34693619 PMCID: PMC8647008 DOI: 10.15252/embr.202052058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Patient-derived human organoids can be used to model a variety of diseases. Recently, we described conditions for long-term expansion of human airway organoids (AOs) directly from healthy individuals and patients. Here, we first optimize differentiation of AOs towards ciliated cells. After differentiation of the AOs towards ciliated cells, these can be studied for weeks. When returned to expansion conditions, the organoids readily resume their growth. We apply this condition to AOs established from nasal inferior turbinate brush samples of patients suffering from primary ciliary dyskinesia (PCD), a pulmonary disease caused by dysfunction of the motile cilia in the airways. Patient-specific differences in ciliary beating are observed and are in agreement with the patients' genetic mutations. More detailed organoid ciliary phenotypes can thus be documented in addition to the standard diagnostic procedure. Additionally, using genetic editing tools, we show that a patient-specific mutation can be repaired. This study demonstrates the utility of organoid technology for investigating hereditary airway diseases such as PCD.
Collapse
Affiliation(s)
- Jelte van der Vaart
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Lena Böttinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | | | - Kèvin Knoops
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Norman Sachs
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Present address:
Vertex IncSan DiegoCAUSA
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Carmen Lopez‐Iglesias
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Kerem Eitan
- Division of Cell Biology, Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Alex Gileles‐Hillel
- Division of Cell Biology, Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
- Department of Paediatrics, Paediatric Pulmonology and SleepHadassah Hebrew University Medical CentreJerusalemIsrael
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| |
Collapse
|
26
|
Dumas MP, Xia S, Bear CE, Ratjen F. Perspectives on the translation of in-vitro studies to precision medicine in Cystic Fibrosis. EBioMedicine 2021; 73:103660. [PMID: 34740114 PMCID: PMC8577330 DOI: 10.1016/j.ebiom.2021.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Recent strides towards precision medicine in Cystic Fibrosis (CF) have been made possible by patient-derived in-vitro assays with the potential to predict clinical response to small molecule-based therapies. Here, we discuss the status of primary and stem-cell derived tissues used to evaluate the preclinical efficacy of CFTR modulators highlighting both their potential and limitations. Validation of these assays requires correlation of in-vitro responses to in-vivo measures of clinical biomarkers of disease outcomes. While initial efforts have shown some success, this translation requires methodologies that are sensitive enough to capture treatment responses in a CF population that now predominantly has mild lung disease. Future development of in-vitro and in-vivo biomarkers will facilitate the generation of new therapeutics particularly for those patients with rare mutations where clinical trials are not feasible so that in the future every CF patient will have access to effective targeted therapies.
Collapse
Affiliation(s)
- Marie-Pier Dumas
- Respiratory Medicine, Hospital for Sick Children, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sunny Xia
- Molecular Medicine, Hospital for Sick Children, Toronto, Canada.; Department of Physiology, University of Toronto, Toronto, Canada
| | - Christine E Bear
- Molecular Medicine, Hospital for Sick Children, Toronto, Canada.; Department of Physiology, University of Toronto, Toronto, Canada; Department of Biochemistry University of Toronto, Toronto, Canada
| | - Felix Ratjen
- Respiratory Medicine, Hospital for Sick Children, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
27
|
Three-Dimensional Airway Spheroids and Organoids for Cystic Fibrosis Research. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive multi-organ disease caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, with morbidity and mortality primacy related to the lung disease. The CFTR protein, a chloride/bicarbonate channel, is expressed at the apical side of airway epithelial cells and is mainly involved in appropriate ion and fluid transport across the epithelium. Although many animal and cellular models have been developed to study the pathophysiological consequences of the lack/dysfunction of CFTR, only the three-dimensional (3D) structures termed “spheroids” and “organoids” can enable the reconstruction of airway mucosa to model organ development, disease pathophysiology, and drug screening. Airway spheroids and organoids can be derived from different sources, including adult lungs and induced pluripotent stem cells (iPSCs), each with its advantages and limits. Here, we review the major features of airway spheroids and organoids, anticipating that their potential in the CF field has not been fully shown. Further work is mandatory to understand whether they can accomplish better outcomes than other culture conditions of airway epithelial cells for CF personalized therapies and tissue engineering aims.
Collapse
|
28
|
Sette G, Lo Cicero S, Blaconà G, Pierandrei S, Bruno SM, Salvati V, Castelli G, Falchi M, Fabrizzi B, Cimino G, De Maria R, Biffoni M, Eramo A, Lucarelli M. Theratyping cystic fibrosis in vitro in ALI-culture and organoid models generated from patient-derived nasal epithelial Conditionally Reprogrammed Stem Cells. Eur Respir J 2021; 58:13993003.00908-2021. [PMID: 34413153 PMCID: PMC8675295 DOI: 10.1183/13993003.00908-2021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022]
Abstract
QUESTION Cystic Fibrosis (CF) is due to pathogenic variants in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Recent improvement enabled pharmacologic therapy aiming at restoring mutated CFTR expression and function. CFTR "modulators" have revolutionised the CF therapeutic landscape, particularly the last approved Trikafta. This drug-combination is indicated by FDA and very recently by EMA for genotypes carrying at least one copy of CFTR with F508del pathogenic variant. However, several genotypes, are not eligible for Trikafta treatment, yet. MATERIALS/PATIENTS AND METHODS We exploited an innovative cellular approach allowing highly efficient in vitro-expansion of airway epithelial stem cells (AESC) through conditional reprogramming (CRC) from nasal brushing of CF patients. This approach, coupled to development of AESC-derived personalised disease models, as organoids and air liquid interface (ALI) cultures, revealed highly suitable for CFTR pharmacological-testing. RESULTS AND ANSWER TO THE QUESTION We fully validated the experimental models and implemented the CFTR functional assays and biochemical CFTR protein characterisation, that allowed to evaluate the efficacy of clinically available modulators in restoring CFTR maturation and function of each patient-derived "avatar" (theratyping). F508del homozygous genotypes, used as controls, confirmed the higher clinical activity of Trikafta in comparison with older modulators. Trikafta showed its efficacy also on three rare genotypes previously not eligible for modulators-treatment, opening the way to clinical translation. Finally, encouraging results for innovative drug combinations were also obtained.
Collapse
Affiliation(s)
- Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Co-first authors
| | - Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Co-first authors
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvati
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Benedetta Fabrizzi
- Cystic Fibrosis Care Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, AOU Policlinico Umberto I, Rome, Italy
| | - Ruggero De Maria
- U.O.C. Medical Oncology, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy .,Co-last authors
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.,Co-last authors
| |
Collapse
|
29
|
Calucho M, Gartner S, Barranco P, Fernández-Álvarez P, Pérez RG, Tizzano EF. Validation of nasospheroids to assay CFTR functionality and modulator responses in cystic fibrosis. Sci Rep 2021; 11:15511. [PMID: 34330959 PMCID: PMC8324871 DOI: 10.1038/s41598-021-94798-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The availability of a simple, robust and non-invasive in vitro airway model would be useful to study the functionality of the cystic fibrosis transmembrane regulator (CFTR) protein and to personalize modulator therapy for cystic fibrosis (CF) patients. Our aim was to validate a CFTR functional study using nasospheroids, a patient-derived nasal cell 3D-culture. We performed live-cell experiments in nasospheroids obtained from wild-type individuals and CF patients with different genotypes and phenotypes. We extended the existing method and expanded the analysis to upgrade measurements of CFTR activity using forskolin-induced shrinking. We also tested modulator drugs in CF samples. Immobilizing suspended-nasospheroids provided a high number of samples for live-cell imaging. The diversity observed in basal sizes of nasospheroids did not affect the functional analysis of CFTR. Statistical analysis with our method was simple, making this protocol easy to reproduce. Moreover, we implemented the measurement of inner fluid reservoir areas to further differentiate CFTR functionality. In summary, this rapid methodology is helpful to analyse response to modulators in CF samples to allow individualized treatment for CF patients.
Collapse
Affiliation(s)
- Maite Calucho
- Medicine Genetics Group, Vall D'Hebron Research Institute, 08035, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron , 08035, Barcelona, Spain
| | - Silvia Gartner
- Cystic Fibrosis Unit, Hospital Universitari Vall d'Hebron, 08035, Barcelona, Spain
| | - Paula Barranco
- Medicine Genetics Group, Vall D'Hebron Research Institute, 08035, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron , 08035, Barcelona, Spain
| | - Paula Fernández-Álvarez
- Medicine Genetics Group, Vall D'Hebron Research Institute, 08035, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron , 08035, Barcelona, Spain
| | | | - Eduardo F Tizzano
- Medicine Genetics Group, Vall D'Hebron Research Institute, 08035, Barcelona, Spain. .,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron , 08035, Barcelona, Spain.
| |
Collapse
|
30
|
Terlizzi V, Colangelo C, Marsicovetere G, D’Andria M, Francalanci M, Innocenti D, Masi E, Avarello A, Taccetti G, Amato F, Comegna M, Castaldo G, Salvatore D. Effectiveness of Elexacaftor/Tezacaftor/Ivacaftor Therapy in Three Subjects with the Cystic Fibrosis Genotype Phe508del/Unknown and Advanced Lung Disease. Genes (Basel) 2021; 12:genes12081178. [PMID: 34440351 PMCID: PMC8391133 DOI: 10.3390/genes12081178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
We evaluated the effectiveness and safety of elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) in three subjects carrying the Phe508del/unknown CFTR genotype. An ex vivo analysis on nasal epithelial cells (NEC) indicated a significant improvement of CFTR gating activity after the treatment. Three patients were enrolled in an ELX/TEZ/IVA managed-access program, including subjects with the highest percent predicted Forced Expiratory Volume in the 1st second (ppFEV1) < 40 in the preceding 3 months. Data were collected at baseline and after 8, 12 and 24 weeks of follow-up during treatment. All patients showed a considerable decrease of sweat chloride (i.e., meanly about 60 mmol/L as compared to baseline), relevant improvement of ppFEV1 (i.e., >8) and six-minute walk test, and an increase in body mass index after the first 8 weeks of treatment. No pulmonary exacerbations occurred during the 24 weeks of treatment and all domains of the CF Questionnaire-Revised improved. No safety concerns related to the treatment occurred. This study demonstrates the benefit from the ELX/TEZ/IVA treatment in patients with CF with the Phe508del and one unidentified CFTR variant. The preliminary ex vivo analysis of the drug response on NEC helps to predict the in vivo therapeutic endpoints.
Collapse
Affiliation(s)
- Vito Terlizzi
- Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Anna Meyer Children’s University, 50139 Florence, Italy; (M.F.); (D.I.); (E.M.); (G.T.)
- Correspondence: ; Tel.: +39-0555-662474
| | - Carmela Colangelo
- Cystic Fibrosis Center, AOR Ospedale San Carlo, 19104 Potenza, Italy; (C.C.); (G.M.); (M.D.); (D.S.)
| | - Giovanni Marsicovetere
- Cystic Fibrosis Center, AOR Ospedale San Carlo, 19104 Potenza, Italy; (C.C.); (G.M.); (M.D.); (D.S.)
| | - Michele D’Andria
- Cystic Fibrosis Center, AOR Ospedale San Carlo, 19104 Potenza, Italy; (C.C.); (G.M.); (M.D.); (D.S.)
| | - Michela Francalanci
- Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Anna Meyer Children’s University, 50139 Florence, Italy; (M.F.); (D.I.); (E.M.); (G.T.)
| | - Diletta Innocenti
- Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Anna Meyer Children’s University, 50139 Florence, Italy; (M.F.); (D.I.); (E.M.); (G.T.)
| | - Eleonora Masi
- Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Anna Meyer Children’s University, 50139 Florence, Italy; (M.F.); (D.I.); (E.M.); (G.T.)
| | - Angelo Avarello
- Infectious and Tropical Diseases Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy;
| | - Giovanni Taccetti
- Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Anna Meyer Children’s University, 50139 Florence, Italy; (M.F.); (D.I.); (E.M.); (G.T.)
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, 20122 Naples, Italy; (F.A.); (M.C.); (G.C.)
- CEINGE—Advanced Biotechnology, 20122 Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, 20122 Naples, Italy; (F.A.); (M.C.); (G.C.)
- CEINGE—Advanced Biotechnology, 20122 Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, 20122 Naples, Italy; (F.A.); (M.C.); (G.C.)
- CEINGE—Advanced Biotechnology, 20122 Naples, Italy
| | - Donatello Salvatore
- Cystic Fibrosis Center, AOR Ospedale San Carlo, 19104 Potenza, Italy; (C.C.); (G.M.); (M.D.); (D.S.)
| |
Collapse
|
31
|
Sun AM, Hoffman T, Luu BQ, Ashammakhi N, Li S. Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review. Biodes Manuf 2021; 4:757-775. [PMID: 34178414 PMCID: PMC8213042 DOI: 10.1007/s42242-021-00136-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
There is a pressing need for effective therapeutics for coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The process of drug development is a costly and meticulously paced process, where progress is often hindered by the failure of initially promising leads. To aid this challenge, in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening, thereby saving valuable time and resources during a pandemic crisis. The SARS-CoV-2 virus attacks the lung, an organ where the unique three-dimensional (3D) structure of its functional units is critical for proper respiratory function. The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types. Current model systems include Transwell, organoid and organ-on-a-chip or microphysiological systems (MPSs). We review models that have direct relevance toward modeling the pathology of COVID-19, including the processes of inflammation, edema, coagulation, as well as lung immune function. We also consider the practical issues that may influence the design and fabrication of MPS. The role of lung MPS is addressed in the context of multi-organ models, and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Argus M. Sun
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- UC San Diego Healthcare, UCSD, La Jolla, CA 92037 USA
| | - Tyler Hoffman
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
| | - Bao Q. Luu
- Pulmonary Diseases and Critical Care, Scripps Green Hospital, Scripps Health, La Jolla, CA 92037 USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Song Li
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 USA
| |
Collapse
|
32
|
Anderson JD, Liu Z, Odom LV, Kersh L, Guimbellot JS. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L119-L129. [PMID: 34009038 DOI: 10.1152/ajplung.00639.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients' cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.
Collapse
Affiliation(s)
- Justin D Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - L Victoria Odom
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Latona Kersh
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
33
|
Nasal Epithelial Cell-Based Models for Individualized Study in Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms22094448. [PMID: 33923202 PMCID: PMC8123210 DOI: 10.3390/ijms22094448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.
Collapse
|
34
|
Terlizzi V, Amato F, Castellani C, Ferrari B, Galietta LJV, Castaldo G, Taccetti G. Ex vivo model predicted in vivo efficacy of CFTR modulator therapy in a child with rare genotype. Mol Genet Genomic Med 2021; 9:e1656. [PMID: 33713579 PMCID: PMC8123755 DOI: 10.1002/mgg3.1656] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND New drugs that target the basic defect in cystic fibrosis (CF) patients may now be used in a large number of patients carrying responsive mutations. Nevertheless, further research is needed to extend the benefit of these treatments to patients with rare mutations that are still uncharacterized in vitro and that are not included in clinical trials. For this purpose, ex vivo models are necessary to preliminary assessing the effect of CFTR modulators in these cases. METHOD We report the clinical effectiveness of lumacaftor/ivacaftor therapy prescribed to a CF child with a rare genetic profile (p.Phe508del/p.Gly970Asp) after testing the drug on nasal epithelial cells. We observed a significant drop of the sweat chloride value, as of the lung clearance index. A longer follow-up period is needed to define the effects of therapy on pancreatic status, although an increase of the fecal elastase values was found. CONCLUSION Drug response obtained on nasal epithelial cells correlates with changes in vivo therapeutic endpoints and can be a predictor of clinical efficacy of novel drugs especially in pediatric patients.
Collapse
Affiliation(s)
- Vito Terlizzi
- Cystic Fibrosis Regional Reference Center,Department of Paediatric MedicineAnna Meyer Children's UniversityFlorenceItaly
| | - Felice Amato
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico II
- CEINGE – Advanced BiotechnologiesNaplesItaly
| | - Chiara Castellani
- Cystic Fibrosis Regional Reference Center,Department of Paediatric MedicineAnna Meyer Children's UniversityFlorenceItaly
| | - Beatrice Ferrari
- Cystic Fibrosis Regional Reference Center,Department of Paediatric MedicineAnna Meyer Children's UniversityFlorenceItaly
| | - Luis J. V. Galietta
- Telethon Institute of Genetics and Medicine (TIGEMPozzuoliItaly)
- Department of Translational Medical SciencesUniversity of Naples Federico IINapoliItaly
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico II
- CEINGE – Advanced BiotechnologiesNaplesItaly
| | - Giovanni Taccetti
- Cystic Fibrosis Regional Reference Center,Department of Paediatric MedicineAnna Meyer Children's UniversityFlorenceItaly
| |
Collapse
|
35
|
From Submerged Cultures to 3D Cell Culture Models: Evolution of Nasal Epithelial Cells in Asthma Research and Virus Infection. Viruses 2021; 13:v13030387. [PMID: 33670992 PMCID: PMC7997270 DOI: 10.3390/v13030387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the response to viral infection in the context of respiratory diseases is of significant importance. Recently, there has been more focus on the role of the nasal epithelium in disease modeling. Here, we provide an overview of different submerged, organotypic 3D and spheroid cell culture models of nasal epithelial cells, which were used to study asthma and allergy with a special focus on virus infection. In detail, this review summarizes the importance, benefits, and disadvantages of patient-derived cell culture models of nasal- and bronchial epithelial cells, including a comparison of these cell culture models and a discussion on why investigators should consider using nasal epithelial cells in their research. Exposure experiments, simple virus transduction analyses as well as genetic studies can be performed in these models, which may provide first insights into the complexity of molecular signatures and may open new doors for drug discovery and biomarker research.
Collapse
|
36
|
PROMISE: Working with the CF community to understand emerging clinical and research needs for those treated with highly effective CFTR modulator therapy. J Cyst Fibros 2021; 20:205-212. [PMID: 33619012 DOI: 10.1016/j.jcf.2021.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Highly effective CFTR modulator drug therapy is increasingly available to those with cystic fibrosis. Multiple observational research studies are now being conducted to better understand the impacts of this important therapeutic milestone on long-term outcomes, patient care needs, and future research priorities. PROMISE is a large, multi-disciplinary academic study focused on the broad impacts of starting elexacaftor/tezacaftor/ivacaftor in the US population age 6 years and older. The many areas of investigation and rationale for each are discussed by organ systems, along with recognition of remaining important questions that will not be addressed by this study alone. Knowledge gained through this and multiple complementary studies around the world will help to understand important health outcomes, clinical care priorities, and research needs for a large majority of people treated with these or similarly effective medications targeting the primary cellular impairment in cystic fibrosis.
Collapse
|
37
|
Cidem A, Bradbury P, Traini D, Ong HX. Modifying and Integrating in vitro and ex vivo Respiratory Models for Inhalation Drug Screening. Front Bioeng Biotechnol 2020; 8:581995. [PMID: 33195144 PMCID: PMC7644812 DOI: 10.3389/fbioe.2020.581995] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
For the past 50 years, the route of inhalation has been utilized to administer therapies to treat a variety of respiratory and pulmonary diseases. When compared with other drug administration routes, inhalation offers a targeted, non-invasive approach to deliver rapid onset of drug action to the lung, minimizing systemic drug exposure and subsequent side effects. However, despite advances in inhaled therapies, there is still a need to improve the preclinical screening and the efficacy of inhaled therapeutics. Innovative in vitro models of respiratory physiology to determine therapeutic efficacy of inhaled compounds have included the use of organoids, micro-engineered lung-on-chip systems and sophisticated bench-top platforms to enable a better understanding of pulmonary mechanisms at the molecular level, rapidly progressing inhaled therapeutic candidates to the clinic. Furthermore, the integration of complementary ex vivo models, such as precision-cut lung slices (PCLS) and isolated perfused lung platforms have further advanced preclinical drug screening approaches by providing in vivo relevance. In this review, we address the challenges and advances of in vitro models and discuss the implementation of ex vivo inhaled drug screening models. Specifically, we address the importance of understanding human in vivo pulmonary mechanisms in assessing strategies of the preclinical screening of drug efficacy, toxicity and delivery of inhaled therapeutics.
Collapse
Affiliation(s)
- Aylin Cidem
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Peta Bradbury
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|