1
|
Eyong ED, Iwara IA, Agwupuye EI, Agboola AR, Uti DE, Obio WA, Alum EU, Atangwho IJ. In vitro and in silico pharmaco-nutritional assessments of some lesser-known Nigerian nuts: Persea americana, Tetracarpidium conophorum, and Terminalia catappa. PLoS One 2025; 20:e0319756. [PMID: 40202972 PMCID: PMC11981145 DOI: 10.1371/journal.pone.0319756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/07/2025] [Indexed: 04/11/2025] Open
Abstract
Together with their nutritional qualities, the biosafety, antidiabetic, antioxidant, and anti-inflammatory effects of Tetracarpidium conophorum nuts, Persea americana seeds, and Terminalia cattapa kernels were evaluated in vitro and in silico. RBC membrane stabilisation for anti-inflammatory characteristics, antioxidant activities by ABTS, DPPH, H2O2, and nitric oxide scavenging assays, and α-glucosidase and α-amylase inhibitory assays conducted in vitro were used to evaluate the anti-diabetic activity. With an IC50 value of 208 μg/mL, P. americana showed the maximum amount of inhibition, according to the results, while T. catappa showed a somewhat lower degree of inhibition at 236 μg/mL. P. americana exhibited the highest degree of α-amylase inhibition, with an IC50 value of 312 µg/mL. T. catappa showed the strongest DPPH radical scavenging activity, while T. conophorum showed the highest ABTS radical scavenging activity. T. catappa showed the strongest effectiveness in neutralising hydrogen peroxide. In tests using human red blood cells, T. catappa showed the strongest inhibition of RBC hemolysis. While P. americana showed higher concentrations of copper, manganese, potassium, and calcium, T. catappa showed higher magnesium concentrations. T. catappa had considerably higher levels of ash, proteins, lipids, and carbohydrates than T. conophorum, which had the highest quantity of crude fibre, according to proximate analysis. Molecular docking experiments have revealed that plant extracts from P. americana, T. conophorum, and T. catappa have substantial binding affinities towards α-glucosidase and amylase. Pseudococaine, M-(1-methylbutyl) phenylmethylcarbamate, o-xylene, and 1-deoxynojirimycin were the four compounds that showed binding affinities that were higher than those of acarbose. Acarbose and nitrate were not as compatible with docking scores as compared to the compounds dimethyl phthalate, pseudococaine, M-(1-Methylbutyl)phenyl methylcarbamate, 2-chloro-3-oxohexanedioic acid, and methyl 2-chloro-5-nitrobenzoate. These results suggest that these plant extracts hold great potential for the creation of therapeutic medications that specifically target oxidative stress-related diseases like diabetes.
Collapse
Affiliation(s)
- Efah Denis Eyong
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Iwara Aripko Iwara
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Eyuwa Ignatius Agwupuye
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Abdulhakeem Rotimi Agboola
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, Kampala, Uganda
- Department of Biochemistry, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Otukpo, Benue, Nigeria.
| | - Wilson Arong Obio
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Kampala, Uganda
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| |
Collapse
|
2
|
Low CE, Chew NSM, Rana S, Loke S, Chin RT, Kao SL, Lee ARYB, Tay SH. Vitamin supplementation and its effect on incident type 1 diabetes mellitus and islet autoimmunity: a systematic review and meta-analysis. Front Immunol 2025; 16:1505324. [PMID: 40270966 PMCID: PMC12014702 DOI: 10.3389/fimmu.2025.1505324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction The prevalence of type 1 diabetes mellitus (T1DM) is set to rise annually with long-term implications on the quality-of-life. Supplementation with vitamins has garnered interest in recent years due to its association with the development of islet autoimmunity (IA) and T1DM. This systematic review aims to investigate the relationship between vitamins supplementation on the development of IA or T1DM or progression of IA to T1DM. Methods This PRISMA-adherent systematic review involved a systematic search of PubMed, Embase and Cochrane for all studies that evaluated the odds (pre-calculated pooled OR) and risk (RR) of IA, T1DM, or progression of IA to T1DM after supplementation with vitamins. Random effects meta-analyses were used for primary analysis. Results 15 studies were included. Meta-analyses observed that vitamin D did not modify the odds of developing T1DM (Pooled OR=0.55, 95%CI: 0.22-1.38) or IA (Pooled OR=0.91, 95%CI: 0.67-1.25). The relative risk of developing T1DM was almost significant (RR=0.66, 95%CI: 0.41-1.06), emphasizing the need to conduct further large-scale cohort studies. Systematic review revealed that vitamin B supplementation did not influence the risk of T1DM and progression of IA to T1DM. Additionally, there was an association between higher maternal education levels and higher levels of vitamin D supplementation in their offspring. Conclusion In conclusion, we found no significant benefit with the use of various vitamins in modifying the risk of developing IA, T1DM or progression of IA to T1DM. Our study provides a foundation for future research by contributing to the evolving landscape of nutritional immunology. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024540524.
Collapse
Affiliation(s)
- Chen Ee Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicole Shi Min Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sounak Rana
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sean Loke
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Run Ting Chin
- Division of Endocrinology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Shih Ling Kao
- Division of Endocrinology, Department of Medicine, National University Hospital, Singapore, Singapore
| | | | - Sen Hee Tay
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Rheumatology and Allergy, Department of Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Lazar S, Reurean-Pintilei DV, Ionita I, Avram VF, Herascu A, Timar B. Glycemic Variability and Its Association with Traditional Glycemic Control Biomarkers in Patients with Type 1 Diabetes: A Cross-Sectional, Multicenter Study. J Clin Med 2025; 14:2434. [PMID: 40217883 PMCID: PMC11989622 DOI: 10.3390/jcm14072434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Glycemic variability (GV) is a novel concept in the assessment of the quality of glycemic control in patients with diabetes, with its importance emphasized in patients with type 1 diabetes. Its adoption in clinical practice emerged with the increased availability of continuous glycemic monitoring systems. The aim of this study is to evaluate the GV in patients with type 1 diabetes mellitus (T1DM) and to assess its associations with other parameters used to evaluate the glycemic control. Methods: GV indexes and classical glycemic control markers were analyzed for 147 adult patients with T1DM in a multicentric cross-sectional study. Results: Stable glycemia was associated with a higher time in range (TIR) (78% vs. 63%; p < 0.001) and a lower HbA1c (6.8% vs. 7.1%; p = 0.006). The coefficient of variation (CV) was reversely correlated with TIR (Spearman's r = -0.513; p < 0.001) and positively correlated with hemoglobin A1c (HbA1c) (Spearman's r = 0.349; p < 0.001), while TIR was reversely correlated with HbA1c (Spearman's r = -0.637; p < 0.001). The composite GV and metabolic outcome was achieved by 28.6% of the patients. Conclusions: Stable glycemia was associated with a lower HbA1c, average and SD of blood glucose, and a higher TIR. A TIR higher than 70% was associated with a lower HbA1c, and SD and average blood glucose. Only 28.6% of the patients with T1DM achieved the composite GV and metabolic outcome, despite 53.7% of them achieving the HbA1c target, emphasizing thus the role of GV in the assessment of the glycemic control.
Collapse
Affiliation(s)
- Sandra Lazar
- Doctoral School of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.L.); (A.H.)
- First Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Hematology, Emergency Municipal Hospital, 300254 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.-F.A.); (B.T.)
| | - Delia-Viola Reurean-Pintilei
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University, 720229 Suceava, Romania
- Consultmed Medical Centre, Department of Diabetes, Nutrition and Metabolic Diseases, 700544 Iasi, Romania
| | - Ioana Ionita
- First Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Hematology, Emergency Municipal Hospital, 300254 Timisoara, Romania
- Multidisciplinary Research Center for Malignant Hematological Diseases (CCMHM), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad-Florian Avram
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.-F.A.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania
| | - Andreea Herascu
- Doctoral School of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.L.); (A.H.)
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.-F.A.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania
| | - Bogdan Timar
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.-F.A.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
4
|
Mbye M, Ali AH, Kamal-Eldin A, Banat F. The impact of camel milk and its products on diabetes mellitus management: A review of bioactive components and therapeutic potential. NFS JOURNAL 2025; 38:100204. [DOI: 10.1016/j.nfs.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Zhuo Y, Fu S, Qiu Y. Regulation of the immune microenvironment by SUMO in diabetes mellitus. Front Immunol 2025; 16:1506500. [PMID: 40078991 PMCID: PMC11896877 DOI: 10.3389/fimmu.2025.1506500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Post-translational modifications such as SUMOylation are crucial for the functionality and signal transduction of a diverse array of proteins. Analogous to ubiquitination, SUMOylation has garnered significant attention from researchers and has been implicated in the pathogenesis of various human diseases in recent years, such as cancer, neurological lesions, cardiovascular diseases, diabetes mellitus, and so on. The pathogenesis of diabetes, particularly type 1 and type 2 diabetes, has been closely associated with immune dysfunction, which constitutes the primary focus of this review. This review will elucidate the process of SUMOylation and its impact on diabetes mellitus development and associated complications, focusing on its regulatory effects on the immune microenvironment. This article summarizes various signaling pathways at both cellular and molecular levels that are implicated in these processes. Furthermore, it proposes potential new targets for drug development aimed at the prevention and treatment of diabetes mellitus based on insights gained from the SUMOylation process.
Collapse
Affiliation(s)
- Yuting Zhuo
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shangui Fu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Qiu
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
6
|
Iheagwam FN, Joseph AJ, Adedoyin ED, Iheagwam OT, Ejoh SA. Mitochondrial Dysfunction in Diabetes: Shedding Light on a Widespread Oversight. PATHOPHYSIOLOGY 2025; 32:9. [PMID: 39982365 DOI: 10.3390/pathophysiology32010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 02/22/2025] Open
Abstract
Diabetes mellitus represents a complicated metabolic condition marked by ongoing hyperglycemia arising from impaired insulin secretion, inadequate insulin action, or a combination of both. Mitochondrial dysfunction has emerged as a significant contributor to the aetiology of diabetes, affecting various metabolic processes critical for glucose homeostasis. This review aims to elucidate the complex link between mitochondrial dysfunction and diabetes, covering the spectrum of diabetes types, the role of mitochondria in insulin resistance, highlighting pathophysiological mechanisms, mitochondrial DNA damage, and altered mitochondrial biogenesis and dynamics. Additionally, it discusses the clinical implications and complications of mitochondrial dysfunction in diabetes and its complications, diagnostic approaches for assessing mitochondrial function in diabetics, therapeutic strategies, future directions, and research opportunities.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amarachi Joy Joseph
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | - Eniola Deborah Adedoyin
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | | | - Samuel Akpoyowvare Ejoh
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| |
Collapse
|
7
|
Gómez-Peralta F, Pinés-Corrales PJ, Santos E, Cuesta M, González-Albarrán O, Azriel S, Castaño L, Mathieu C. Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group. J Clin Med 2025; 14:418. [PMID: 39860426 PMCID: PMC11766439 DOI: 10.3390/jcm14020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta-cells, leading to lifelong insulin dependence. This review explores the current understanding of T1D pathogenesis, clinical progression, and emerging therapeutic approaches. We examined the complex interplay between genetic predisposition and environmental factors that could trigger the autoimmune response as well as the immunological mechanisms involved in beta-cell destruction. The clinical phases of T1D are discussed from the preclinical stage through diagnosis and long-term management, highlighting the importance of early detection and intervention. Recent advancements in treatment strategies are presented, including immunomodulatory therapies and potential cell-based treatments aimed at preserving or restoring beta-cell function. Additionally, this review critically evaluates the feasibility and potential benefits of implementing a population-wide screening program for T1D in Spain. The epidemiological, economic, and ethical implications of such an initiative were considered by the national expert panel, focusing on the potential of early diagnosis to improve clinical outcomes in the face of the challenges of large-scale implementation. This comprehensive analysis aims to provide healthcare professionals, researchers, and policymakers with valuable insights into the current landscape of T1D management and prospects for enhanced prevention and treatment strategies in the Spanish context.
Collapse
Affiliation(s)
| | - Pedro J. Pinés-Corrales
- Endocrinology and Nutrition Service, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain;
| | - Estefanía Santos
- Endocrinology and Nutrition Service, Complejo Hospitalario de Burgos, 09006 Burgos, Spain;
| | - Martín Cuesta
- Endocrinology and Nutrition Service, Hospital Clínico San Carlos, 28040 Madrid, Spain;
| | | | - Sharona Azriel
- Endocrinology and Nutrition Service, Hospital Universitario Infanta Sofía, 28702 San Sebastián De Los Reyes, Spain;
| | - Luis Castaño
- Biobizkaia Health Research Institute, Pediatric Endocrinology Department, Cruces University Hospital, UPU/EHU, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Endo-ERN, 48903 Barakaldo, Spain;
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium;
| | | |
Collapse
|
8
|
Sundheim B, Hirani K, Blaschke M, Lemos JRN, Mittal R. Pre-Type 1 Diabetes in Adolescents and Teens: Screening, Nutritional Interventions, Beta-Cell Preservation, and Psychosocial Impacts. J Clin Med 2025; 14:383. [PMID: 39860389 PMCID: PMC11765808 DOI: 10.3390/jcm14020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Type 1 Diabetes (T1D) is a progressive autoimmune disease often identified in childhood or adolescence, with early stages detectable through pre-diabetic markers such as autoantibodies and subclinical beta-cell dysfunction. The identification of the pre-T1D stage is critical for preventing complications, such as diabetic ketoacidosis, and for enabling timely interventions that may alter disease progression. This review examines the multifaceted approach to managing T1D risk in adolescents and teens, emphasizing early detection, nutritional interventions, beta-cell preservation strategies, and psychosocial support. Screening for T1D-associated autoantibodies offers predictive insight into disease risk, particularly when combined with education and family resources that promote lifestyle adjustments. Although nutritional interventions alone are not capable of preventing T1D, certain lifestyle interventions, such as weight management and specific nutritional choices, have shown the potential to preserve insulin sensitivity, reduce inflammation, and mitigate metabolic strain. Pharmacological strategies, including immune-modulating drugs like teplizumab, alongside emerging regenerative and cell-based therapies, offer the potential to delay disease onset by protecting beta-cell function. The social and psychological impacts of a T1D risk diagnosis are also significant, affecting adolescents' quality of life, family dynamics, and mental health. Supportive interventions, including counseling, cognitive-behavioral therapy (CBT), and group support, are recommended for managing the emotional burden of pre-diabetes. Future directions call for integrating universal or targeted screening programs within schools or primary care, advancing research into nutrition and psychosocial support, and promoting policies that enhance access to preventive resources. Advocacy for the insurance coverage of screening, nutritional counseling, and mental health services is also crucial to support families in managing T1D risk. By addressing these areas, healthcare systems can promote early intervention, improve beta-cell preservation, and support the overall well-being of adolescents at risk of T1D.
Collapse
Affiliation(s)
- Brody Sundheim
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Ransom Everglades High School, 3575 Main Hwy, Miami, FL 33133, USA
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krish Hirani
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- American Heritage School, 12200 W Broward Blvd, Plantation, FL 33325, USA
| | - Mateo Blaschke
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Coral Gables High School, 450 Bird Rd, Coral Gables, FL 33146, USA
| | - Joana R. N. Lemos
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Mittal
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Mistry PS, Chorawala MR, Sivamaruthi BS, Prajapati BG, Kumar A, Chaiyasut C. The Role of Dietary Anthocyanins for Managing Diabetes Mellitus-Associated Complications. Curr Diabetes Rev 2025; 21:e15733998322754. [PMID: 39136514 DOI: 10.2174/0115733998322754240802063730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Diabetes mellitus (DM) is an intricate metabolic disorder marked by persistent hyperglycemia, arising from disruptions in glucose metabolism, with two main forms, type 1 and type 2, involving distinct etiologies affecting β-cell destruction or insulin levels and sensitivity. The islets of Langerhans, particularly β-cells and α-cells, play a pivotal role in glucose regulation, and both DM types lead to severe complications, including retinopathy, nephropathy, and neuropathy. Plant-derived anthocyanins, rich in anti-inflammatory and antioxidant properties, show promise in mitigating DM-related complications, providing a potential avenue for prevention and treatment. Medicinal herbs, fruits, and vegetables, abundant in bioactive compounds like phenolics, offer diverse benefits, including glucose regulation and anti-inflammatory, antioxidant, anticancer, anti-mutagenic, and neuroprotective properties. Anthocyanins, a subgroup of polyphenols, exhibit diverse isoforms and biosynthesis involving glycosylation, making them potential natural replacements for synthetic food colorants. Clinical trials demonstrate the efficacy and safety of anthocyanins in controlling glucose, reducing oxidative stress, and enhancing insulin sensitivity in diabetic patients, emphasizing their therapeutic potential. Preclinical studies revealed their multifaceted mechanisms, positioning anthocyanins as promising bioactive compounds for managing diabetes and its associated complications, including retinopathy, nephropathy, and neuropathy.
Collapse
Affiliation(s)
- Priya S Mistry
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India
| | - Akash Kumar
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
- Department of Food Technology, SRM University, Delhi-NCR, Sonepat 131029, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Nieves C, Victoria da Costa Ghignatti P, Aji N, Bertagnolli M. Immune Cells and Infectious Diseases in Preeclampsia Susceptibility. Can J Cardiol 2024; 40:2340-2355. [PMID: 39304126 DOI: 10.1016/j.cjca.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Preeclampsia is a severe pregnancy disorder, affecting approximately 10% of pregnancies worldwide, characterised by hypertension and proteinuria after the 20th week of gestation. The condition poses significant risks to both maternal and fetal health, including cardiovascular complications and impaired fetal development. Recent trends indicate a rising incidence of preeclampsia, correlating with factors such as advanced maternal age and cardiovascular comorbidities. Emerging evidence also highlights a notable increase in the association between autoimmune and infectious diseases with preeclampsia. Autoimmune conditions, such as type 1 diabetes and systemic lupus erythematosus, and infections triggered by global health challenges, including leptospirosis, Zika, toxoplasmosis, and Chagas disease, are now recognised as significant contributors to preeclampsia susceptibility by affecting placental formation and function. This review focuses on the immunologic mechanisms underpinning preeclampsia, exploring how immune system dysregulation and infectious triggers exacerbate the condition. It also discusses the pathologic mechanisms, including galectins, that preeclampsia shares with autoimmune and infectious diseases, and their significant risk for adverse pregnancy outcomes. We emphasise the necessity for accurate diagnosis and vigilant monitoring of immune and infectious diseases during pregnancy to optimise management and reduce risks. By raising awareness about these evolving risks and their impact on pregnancy, we aim to enhance diagnostic practices and preventive strategies, ultimately improving outcomes for pregnant women, especially in regions affected by environmental changes and endemic diseases.
Collapse
Affiliation(s)
- Cecilia Nieves
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| | - Paola Victoria da Costa Ghignatti
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Narjiss Aji
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Mariane Bertagnolli
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
11
|
Shirizadeh A, Razavi Z, Saeedi V, Behzad M, Faradmal J, Solgi G. Potential contribution of gut microbiota in the development of autoantibodies in T1D children carrying HLA-DRB1/DQB1 risk alleles: an experimental and in silico analysis. Immunogenetics 2024; 76:335-349. [PMID: 39276210 DOI: 10.1007/s00251-024-01354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
This study aimed to investigate the prevalence of insulin autoantibody (IAA), glutamic acid decarboxylase antibody (GADA), and insulinoma-associated antigen-2 antibody (IA-2A) in type 1 diabetes (T1D) children based on the presence of predisposing HLA-II alleles. Additionally, to assess the sequence homology between autoantigens of islet cells and selected proteins derived from gut bacteria in terms of their binding capacities to HLA risk alleles, HLA-DRB1/DQB1 alleles were determined by PCR-SSOP in 111 T1D children (probands) along with 222 parents and 133 siblings. Autoantibodies were measured by ELISA, and in silico analysis was run as follows: protein extraction, homology and epitope prediction, peptide alignment, and HLA-peptide docking. Higher significant frequencies of DRB1*03:01, DQB1*02:01, and DQB1*03:02 alleles and DRB1*03:01 ~ DQB1*02:01 haplotype and lower frequencies of DRB1*11:01, DRB1*14:01, and DQB1*03:01 alleles were found in probands compared to parents and siblings. DRB1*11:01 ~ DQB1*03:01, DRB1*14:01 ~ DQB1*05:03, and DRB1*15:01-DQB1*06:02 haplotypes were significantly less frequent in the probands compared to parents. Out of 111 probands, 21 were seronegative, 90 tested positive for one autoantibody, and 15 showed the concurrent presence of three autoantibodies. Logistic regression analysis revealed that DRB1*04 ~ DQB1*03:02 haplotype was associated with the induction of GADA and IA-2A, while DRB1*11:01 ~ DQB1*03:01 was associated with seronegativity. Epitopes derived from GAD and gut bacteria showed strong binding capacities to HLA risk alleles. Due to the sequence similarities between gut bacteria-derived proteins and islet cell autoantigens and their potential for binding to HLA risk alleles, dysbiosis of gut microbiota can be considered another risk factor for the development of T1D, especially in genetically susceptible individuals.
Collapse
Affiliation(s)
- Ata Shirizadeh
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box: 6517838736, Hamadan, Iran
| | - Zahra Razavi
- Pediatrics Department, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vahid Saeedi
- Pediatric Endocrinology and Metabolism Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Behzad
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box: 6517838736, Hamadan, Iran
| | - Javad Faradmal
- Biostatistics Department, Health School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box: 6517838736, Hamadan, Iran.
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Ding Y, Zhang K, Zhang Y, Wu W, Xiao Z, Lai R. Type 1 diabetes mellitus increases the risk of sudden sensorineural hearing loss: A two-sample Mendelian randomization study. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1821-1827. [PMID: 40177765 PMCID: PMC11964811 DOI: 10.11817/j.issn.1672-7347.2024.240375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 04/05/2025]
Abstract
OBJECTIVES Diabetes mellitus is closely associated with sudden sensorineural hearing loss (SSNHL), but no definitive evidence has established a causal relationship between type 1 diabetes mellitus (T1DM) and SSNHL. This study aims to investigate the impact of T1DM on SSNHL from a genetic perspective, providing insights for risk prediction and treatment strategies. METHODS Genetic data related to exposure (T1DM) and outcome (SSNHL) were obtained from publicly available genome-wide association studies (GWAS). Instrumental variables were selected, and Mendelian randomization (MR) analysis was conducted to explore the causal association between T1DM and SSNHL. Inverse variance weighted (IVW) analysis was used as the primary method, with random-effects IVW serving as the main analytical approach. MR-Egger, weighted median, simple mode, and weighted mode analyses were utilized as supplementary methods. Cochran's Q test was applied to evaluate the heterogeneity of the selected instrumental variables, MR-PRESSO was applied to detect outliers, MR-Egger regression was used to assess horizontal pleiotropy and leave-one-out analysis was conducted to examine the robustness of individual single nucleotide polymorphisms (SNPs) on the overall results. RESULTS A total of 127 SNPs were selected as instrumental variables for the MR analysis. IVW analysis demonstrated a genetically determined association between T1DM and SSNHL (OR=1.036, 95% CI 1.002 to 1.071, P=0.038). Forest plots and scatter plots indicated a causal relationship, suggesting that T1DM increases the risk of SSNHL. Cochran's Q test demonstrated no significant heterogeneity among SNPs (MR-Egger: Q=126.030, P=0.356; IVW: Q=126.450, P=0.373). The funnel plot appeared symmetrical, indicating that the selected instrumental variables were primarily related to exposure rather than potential confounding factors. The MR-Egger intercept was not significantly different from zero (P=0.527), indicating no evidence of horizontal pleiotropy among the SNPs. MR-PRESSO analysis did not identify any outlier SNPs (P=0.356). Leave-one-out analysis confirmed the robustness of the findings, as the results remained stable after removing individual SNPs. CONCLUSIONS Two-sample MR analysis supports the conclusion that T1DM patients have an increased risk of developing SSNHL.
Collapse
Affiliation(s)
- Yan Ding
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China.
| | - Kangjia Zhang
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Yong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Weijing Wu
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Zi'an Xiao
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Ruosha Lai
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China.
| |
Collapse
|
13
|
Simachew A, Getnet A, Minwuyelet F, Mitiku HZ, Kebede W, Bizuneh FK, Tiruneh BG, Tsegaye D. Neurocognitive impairment and its associated factors among patients with diabetes mellitus who have follow up at referral hospital in Northwest, Ethiopia. Front Endocrinol (Lausanne) 2024; 15:1459585. [PMID: 39659614 PMCID: PMC11628274 DOI: 10.3389/fendo.2024.1459585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Background Neurocognitive impairment is a condition that makes it difficult for a person to make decisions that affect memory, learning new things, concentration on daily activities, and can range from mild to severe forms. It is a major health problem, less known and less addressed complication of diabetes mellitus. Objectives The aim of the study is to assess prevalence of neurocognitive impairment and associated factors among diabetic mellitus patients. Methods We conducted an institutional-based cross-sectional study involving 512 diabetic patients under follow-up at XXX Specialized Hospital from March 1 to April 30, 2023. Data on cognition, behavior, and depression were collected using standardized tools, including the Mini Mental State Examination for cognition, the CAGE assessment tool for alcohol-related behavior, and the PHQ-9 for depression. These assessments were conducted through face-to-face interviews and chart reviews. A diagnosis of diabetes is confirmed in adults when fasting blood glucose levels exceed 126 mg/dl in three consecutive follow-up measurements. Data entry was performed using Epidata version 4.6, and analysis was conducted using SPSS version 26. Variables with a P-value < 0.25 in bivariate analysis were included in multivariable logistic regression. Statistical significance was set at P ≤ 0.05 with a 95% CI. Results were presented using tables, graphs, and descriptive text. Results The prevalence of neurocognitive impairment among diabetic patients at XXX Comprehensive Specialized Hospital was 28.3% [95% CI: 24.57-32.39]. Factors associated with this impairment included being female (AOR=2.29 [95% CI: 1.43-3.67]), rural residence (AOR=3.16 [95% CI: 2.01-4.95]), comorbidity (AOR=3.30 [95% CI: 2.08-5.23]), diabetes duration of 6-10 years (AOR=1.72 [95% CI: 1.01-2.94]), diabetes duration >10 years, and blood sugar level >126 mg/dl (AOR=2.25 [95% CI: 1.42-3.57]). Patients are encouraged to adhere to proper medication regimens to effectively control their blood glucose levels. This study found a high prevalence of neurocognitive impairment (NCI) among diabetic patients, affecting about one-fourth based on MMSE scores. Key risk factors identified include female gender, rural residence, comorbidities, longer duration of diabetes, and elevated blood glucose levels.
Collapse
Affiliation(s)
- Arefaynie Simachew
- Debre Markos Comprehensive Specialized Hospital, Debre Markos, Amhara, Ethiopia
| | - Asmamaw Getnet
- Department of Nursing, College of Health and Medicine, Debre Markos University, Debre Marqos, Ethiopia
| | - Fentahun Minwuyelet
- Department of Nursing, College of Health and Medicine, Debre Markos University, Debre Marqos, Ethiopia
| | - Haymanot Zeleke Mitiku
- Department of Nursing, College of Health and Medicine, Debre Markos University, Debre Marqos, Ethiopia
| | - Worku Misganaw Kebede
- Department of Nursing, College of Health and Medicine, Debre Markos University, Debre Marqos, Ethiopia
| | - Fassikaw Kebede Bizuneh
- Department of Public Health, College of Health and Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Bekele Getenet Tiruneh
- Department of Critical Care and Emergency Medicine, College of Health and Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Dejen Tsegaye
- Department of Nursing, College of Health and Medicine, Debre Markos University, Debre Marqos, Ethiopia
| |
Collapse
|
14
|
Escobar Vasco MA, Fantaye SH, Raghunathan S, Solis-Herrera C. The potential role of finerenone in patients with type 1 diabetes and chronic kidney disease. Diabetes Obes Metab 2024; 26:4135-4146. [PMID: 39021345 DOI: 10.1111/dom.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
Chronic kidney disease (CKD) represents a global health concern, associated with an increased risk of cardiovascular morbidity and mortality and decreased quality of life. Many patients with type 1 diabetes (T1D) will develop CKD over their lifetime. Uncontrolled glucose levels, which occur in patients with T1D as well as type 2 diabetes (T2D), are associated with substantial mortality and cardiovascular disease burden. T2D and T1D share common pathological features of CKD, which is thought to be driven by haemodynamic dysfunction, metabolic disturbances, and subsequently an influx of inflammatory and profibrotic mediators, both of which are major interrelated contributors to CKD progression. The mineralocorticoid receptor is also involved, and, under conditions of oxidative stress, salt loading and hyperglycaemia, it switches from homeostatic regulator to pathophysiological mediator by promoting oxidative stress, inflammation and fibrosis. Progressive glomerular and tubular injury leads to macroalbuminuria a progressive reduction in the glomerular filtration rate and eventually end-stage renal disease. Finerenone, a non-steroidal, selective mineralocorticoid receptor antagonist, is approved for treatment of patients with CKD associated with T2D; however, the benefit of finerenone in patients with T1D has yet to be determined. This narrative review will discuss treatment of CKD in T1D and the potential future role of finerenone in this setting.
Collapse
Affiliation(s)
| | - Samuel H Fantaye
- Division of Endocrinology, University of Texas Health, San Antonio, Texas, USA
| | - Sapna Raghunathan
- Division of Endocrinology, University of Texas Health, San Antonio, Texas, USA
| | | |
Collapse
|
15
|
Yue M, He X, Min X, Yang H, Xu H, Wu W, Zhong J, Mei A, Chen J. The role of islet autoantigen-specific T cells in the onset and treatment of type 1 diabetes mellitus. Front Immunol 2024; 15:1462384. [PMID: 39380988 PMCID: PMC11458421 DOI: 10.3389/fimmu.2024.1462384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM), a complex chronic disease with an intricate etiology and pathogenesis, involves the recognition of self-antigens by pancreatic islet autoantigen-specific T cells and plays crucial roles in both early- and late-stage destruction of beta cells, thus impacting disease progression. Antigen-specific T cells regulate and execute immune responses by recognizing particular antigens, playing broad roles in the treatment of various diseases. Immunotherapy targeting antigen-specific T cells holds promising potential as a targeted treatment approach. This review outlines the pathogenesis of diabetes, emphasizing the pivotal role of pancreatic islet autoantigen-specific T cells in the progression and treatment of T1DM. Exploring this avenue in research holds promise for identifying novel therapeutic targets for effectively managing diabetes.
Collapse
Affiliation(s)
- Mengmeng Yue
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xianzhen He
- Children’s Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
16
|
Tecce N, Menafra D, Proganò M, Tecce MF, Pivonello R, Colao A. Evaluating the Impact of Continuous Glucose Monitoring on Erectile Dysfunction in Type 1 Diabetes: A Focus on Reducing Glucose Variability and Inflammation. Healthcare (Basel) 2024; 12:1823. [PMID: 39337164 PMCID: PMC11430976 DOI: 10.3390/healthcare12181823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Type 1 diabetes (T1D) severely impairs metabolic control and can lead to erectile dysfunction (ED) through hyperglycemia-induced vascular damage, autonomic neuropathy, and psychological distress. This review examines the role of continuous glucose monitoring (CGM) in ameliorating ED by addressing glucose variability and inflammation. A comprehensive analysis of studies and clinical trials was conducted to evaluate the impact of CGM on metabolic control, inflammatory responses, and vascular health in patients with T1D. Evidence suggests that CGM systems significantly stabilize blood glucose levels and reduce hyper- and hypoglycemic episodes that contribute to endothelial dysfunction and ED. CGM's real-time feedback helps patients optimize metabolic control, improve vascular health, and reduce inflammation. CGM has the potential to redefine ED management in patients with T1D by improving glycemic control and reducing the physiological stressors that cause ED, potentially improving quality of life and sexual health. Further research is warranted to explore the specific benefits of CGM for ED management.
Collapse
Affiliation(s)
- Nicola Tecce
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
| | - Davide Menafra
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
| | - Mattia Proganò
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Rosario Pivonello
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
- UNESCO Chair for Health Education and Sustainable Development, University Federico II of Naples, 80138 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
- UNESCO Chair for Health Education and Sustainable Development, University Federico II of Naples, 80138 Naples, Italy
| |
Collapse
|
17
|
Nóvoa-Medina Y, Marcelino-Rodriguez I, Suárez NM, Barreiro-Bautista M, Rivas-García E, Sánchez-Alonso S, González-Martínez G, Quinteiro-González S, Domínguez Á, Cabrera M, López S, Pavlovic S, Flores C, Wägner AM. Does HLA explain the high incidence of childhood-onset type 1 diabetes in the Canary Islands? The role of Asp57 DQB1 molecules. BMC Pediatr 2024; 24:569. [PMID: 39243072 PMCID: PMC11378579 DOI: 10.1186/s12887-024-04983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
The Canary Islands inhabitants, a recently admixed population with significant North African genetic influence, has the highest incidence of childhood-onset type 1 diabetes (T1D) in Spain and one of the highest in Europe. HLA accounts for half of the genetic risk of T1D. AIMS To characterize the classical HLA-DRB1 and HLA-DQB1 alleles in children from Gran Canaria with and without T1D. METHODS We analyzed classic HLA-DRB1 and HLA-DQB1 alleles in childhood-onset T1D patients (n = 309) and control children without T1D (n = 222) from the island of Gran Canaria. We also analyzed the presence or absence of aspartic acid at position 57 in the HLA-DQB1 gene and arginine at position 52 in the HLA-DQA1 gene. Genotyping of classical HLA-DQB1 and HLA-DRB1 alleles was performed at two-digit resolution using Luminex technology. The chi-square test (or Fisher's exact test) and odds ratio (OR) were computed to assess differences in allele and genotype frequencies between patients and controls. Logistic regression analysis was also used. RESULTS Mean age at diagnosis of T1D was 7.4 ± 3.6 years (46% female). Mean age of the controls was 7.6 ± 1.1 years (55% female). DRB1*03 (OR = 4.2; p = 2.13-13), DRB1*04 (OR = 6.6; p ≤ 2.00-16), DRB1* 07 (OR = 0.37; p = 9.73-06), DRB1*11 (OR = 0.17; p = 6.72-09), DRB1*12, DRB1*13 (OR = 0.38; p = 1.21-05), DRB1*14 (OR = 0.0; p = 0.0024), DRB1*15 (OR = 0.13; p = 7.78-07) and DRB1*16 (OR = 0.21; p = 0.003) exhibited significant differences in frequency between groups. Among the DQB1* alleles, DQB1*02 (OR: 2.3; p = 5.13-06), DQB1*03 (OR = 1.7; p = 1.89-03), DQB1*05 (OR = 0.64; p = 0.027) and DQB1*06 (OR = 0.19; p = 6.25-14) exhibited significant differences. A total of 58% of the studied HLA-DQB1 genes in our control population lacked aspartic acid at position 57. CONCLUSIONS In this population, the overall distributions of the HLA-DRB1 and HLA-DQB1 alleles are similar to those in other European populations. However, the frequency of the non-Asp-57 HLA-DQB1 molecules is greater than that in other populations with a lower incidence of T1D. Based on genetic, historical and epidemiological data, we propose that a common genetic background might help explain the elevated pediatric T1D incidence in the Canary Islands, North-Africa and middle eastern countries.
Collapse
Affiliation(s)
- Yeray Nóvoa-Medina
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Asociación Canaria para la Investigación Pediátrica (ACIP canarias), Las Palmas, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Itahisa Marcelino-Rodriguez
- Preventive Medicine and Public Health Area, University of La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Nicolás M Suárez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marta Barreiro-Bautista
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Eva Rivas-García
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Santiago Sánchez-Alonso
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gema González-Martínez
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sofía Quinteiro-González
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ángela Domínguez
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - María Cabrera
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sara López
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Svetlana Pavlovic
- Servicio de Pediatría Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
18
|
Strati M, Moustaki M, Psaltopoulou T, Vryonidou A, Paschou SA. Early onset type 2 diabetes mellitus: an update. Endocrine 2024; 85:965-978. [PMID: 38472622 DOI: 10.1007/s12020-024-03772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
The incidence and prevalence of type 2 diabetes mellitus (T2DM) in young individuals (aged <40 years) have significantly increased in recent years, approximating two to threefold increase in the respective rates. Numerous risk factors including severe obesity, family history, ethnicity, maternal diabetes or gestational diabetes, and female sex contribute to a younger age of onset. In terms of pathogenesis, impaired insulin secretion is the key operating mechanism, alongside with ectopic adiposity-related insulin resistance. T2DM diagnosis in a young adult requires the exclusion of type 1 diabetes mellitus (T1DM), latent autoimmune diabetes of adults (LADA) and maturity-onset diabetes of the young (MODY). The establishment of such diagnosis is critical for prognosis, because early-onset T2DM is associated with rapid deterioration in pancreatic β-cell secretory function leading to earlier initiation of insulin therapy. Furthermore, mortality and lifetime risk of developing complications, especially microvascular, is increased in these patients compared to both later-onset T2DM and T1DM patients; also, the latter are often developed earlier in the course of disease. The management of early-onset T2DM follows the same guidelines as in later-onset T2DM; yet patients aged 18-39 years are underrepresented in the big clinical trials on which the development of guidelines is based. Finally, young people with T2DM face significant challenges associated with social determinants, which compromise their adherence to therapy and induce diabetes distress. Future research focusing on the pathogenesis of β-cell decline and complications, as well as on specific treatment shall lead to better understanding and management of early-onset T2DM.
Collapse
Affiliation(s)
- Myrsini Strati
- School of Medicine, University of Patras, Patras, Greece
| | - Melpomeni Moustaki
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
19
|
Hussein S, Bandarian F, Salehi N, Mosadegh Khah A, Motevaseli E, Azizi Z. The Effect of Vitamin D Deficiency on Immune-Related Hub Genes: A Network Analysis Associated With Type 1 Diabetes. Cureus 2024; 16:e68611. [PMID: 39371824 PMCID: PMC11452324 DOI: 10.7759/cureus.68611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Background Type 1 diabetes (T1D) is an autoimmune disorder that results in the destruction of pancreatic beta cells, causing a shortage of insulin secretion. The development of T1D is influenced by both genetic predisposition and environmental factors, such as vitamin D. This vitamin is known for its ability to regulate the immune system and has been associated with a decreased risk of T1D. However, the specific ways in which vitamin D affects immune regulation and the preservation of beta cells in T1D are not yet fully understood. Gaining a better understanding of these interactions is essential for identifying potential targets for preventing and treating T1D. Methods The analysis focused on two Gene Expression Omnibus (GEO) datasets, namely, GSE55098 and GSE50012, to detect differentially expressed genes (DEGs). Enrichr (Ma'ayan Laboratory, New York, NY) was used to perform enrichment analysis for the Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The Search Tool for the Retrieval of Interacting Genes 12.0 (STRING) database was used to generate a protein-protein interaction (PPI) network. The Cytoscape 3.10.1 (Cytoscape Team, San Diego, CA) was used to analyze the PPI network and discover the hub genes. Results The DEGs in both datasets were identified using the GEO2R tool, with a particular focus on genes exhibiting contrasting regulations. Enrichment analysis unveiled the participation of these oppositely regulated DEGs in processes relevant to the immune system. Cytoscape analysis of the PPI network revealed five hub genes, MNDA, LILRB2, FPR2, HCK, and FCGR2A, suggesting their potential role in the pathogenesis of T1D and the response to vitamin D. Conclusion The study elucidates the complex interaction between vitamin D metabolism and immune regulation in T1D. The identified hub genes provide important knowledge on the molecular pathways that underlie T1D and have the potential to be targeted for therapeutic intervention. This research underscores the importance of vitamin D in the immune system's modulation and its impact on T1D development.
Collapse
Affiliation(s)
- Safin Hussein
- Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IRN
- Biology, College of Science, University of Raparin, Ranya, IRQ
| | - Fatemeh Bandarian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, IRN
| | - Najmeh Salehi
- School of Biology, College of Science, University of Tehran, Tehran, IRN
| | | | - Elahe Motevaseli
- Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IRN
| | - Zahra Azizi
- Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IRN
| |
Collapse
|
20
|
Motlagh RA, Pipella J, Thompson PJ. Exploring senescence as a modifier of β cell extracellular vesicles in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1422279. [PMID: 39239092 PMCID: PMC11374605 DOI: 10.3389/fendo.2024.1422279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Type 1 Diabetes (T1D) is a chronic metabolic disease resulting from insulin deficiency due to autoimmune loss of pancreatic β cells. In addition to β cell destruction, it is now accepted that β cell stress and dysfunction, such as senescence, plays a crucial role in the development of the disease. Accumulation of senescent β cells occurs during development of T1D in humans and contributes to the progression of T1D in the nonobese diabetic (NOD) mouse model. Senescent β cells are thought to exacerbate the inflammatory response within the islets by production and secretion of senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) from β cells have been shown to carry protein and microRNAs (miRNAs), influencing cellular signaling and may contribute to the development of T1D but it remains to be addressed how senescence impacts β cell EV cargo. In this minireview, we discuss emerging evidence that EV cargo proteins and miRNAs associated with senescence could contribute to the development of T1D and could suggest potential biomarkers and therapeutic targets for the regulation of SASP and elimination of senescent β cells in T1D. Future investigation exploring the intricate relationship between β cell senescence, EVs and miRNAs could pave the way for the development of novel diagnostic techniques and therapeutic interventions.
Collapse
Affiliation(s)
- Roozbeh Akbari Motlagh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Jasmine Pipella
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Vlachou S, Loumé A, Giannopoulou C, Papathanasiou E, Zekeridou A. Investigating the Interplay: Periodontal Disease and Type 1 Diabetes Mellitus-A Comprehensive Review of Clinical Studies. Int J Mol Sci 2024; 25:7299. [PMID: 39000406 PMCID: PMC11242877 DOI: 10.3390/ijms25137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Diabetes mellitus (DM) poses a significant challenge to global health, with its prevalence projected to rise dramatically by 2045. This narrative review explores the bidirectional relationship between periodontitis (PD) and type 1 diabetes mellitus (T1DM), focusing on cellular and molecular mechanisms derived from the interplay between oral microbiota and the host immune response. A comprehensive search of studies published between 2008 and 2023 was conducted to elucidate the association between these two diseases. Preclinical and clinical evidence suggests a bidirectional relationship, with individuals with T1DM exhibiting heightened susceptibility to periodontitis, and vice versa. The review includes recent findings from human clinical studies, revealing variations in oral microbiota composition in T1DM patients, including increases in certain pathogenic species such as Porphyromonas gingivalis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans, along with shifts in microbial diversity and abundance. Molecular mechanisms underlying this association involve oxidative stress and dysregulated host immune responses, mediated by inflammatory cytokines such as IL-6, IL-8, and MMPs. Furthermore, disruptions in bone turnover markers, such as RANKL and OPG, contribute to periodontal complications in T1DM patients. While preventive measures to manage periodontal complications in T1DM patients may improve overall health outcomes, further research is needed to understand the intricate interactions between oral microbiota, host response, periodontal disease, and systemic health in this population.
Collapse
Affiliation(s)
- Stefania Vlachou
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.V.); (A.L.); (C.G.)
| | - Alexandre Loumé
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.V.); (A.L.); (C.G.)
| | - Catherine Giannopoulou
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.V.); (A.L.); (C.G.)
| | - Evangelos Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA;
| | - Alkisti Zekeridou
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.V.); (A.L.); (C.G.)
| |
Collapse
|
22
|
Gomes MB, Dos Santos GC, de Sousa Azulay RS, Santos DC, Silva DA, Carvalho PRVB, Negrato CA, Porto LC. Association between HLA alleles and haplotypes with age at diagnosis of type 1 diabetes in an admixed Brazilian population: A nationwide study. HLA 2024; 104:e15574. [PMID: 38993161 DOI: 10.1111/tan.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
To investigate the potential relationship between HLA alleles and haplotypes and the age at diagnosis of type 1 diabetes (T1DAgeD) in an admixed Brazilian population. This nationwide study was conducted in public clinics across 12 Brazilian cities. We collected demographic and genetic data from 1,600 patients with T1D. DNA samples were utilised to determine genomic ancestry (GA) and perform HLA typings for DRB1, DQA1 and DQB1. We explored allele and haplotype frequencies and GA in patients grouped by T1DAgeD categories (<6 years, ≥6-<11 years, ≥11-<19 years and ≥19 years) through univariate and multivariate analyses and primary component analyses. Additionally, we considered self-reported colour-race and identified a familiar history of T1D in first-degree relatives. The homozygosity index for DRB1~DQA1~DQB1 haplotypes exhibited the highest variation among T1DAgeD groups, and the percentages of Sub-Saharan African and European ancestries showed opposite trends in principal component analysis (PCA) analyses. Regarding the association of alleles and haplotypes with T1DAgeD, risk alleles such as HLA-DQB1*03:02g, -DQA1*03:01g, -02:01g, DRB1*04:05g and -04:02g were more frequently observed in heterozygosity or homozygosity in T1D patients with an early disease onset. Conversely, alleles such as DRB1*07:01g, -13:03g, DQB1*06:02g and DQA1*02:01 were more prevalent in older T1D patients. The combination DR3/DR4.5 was significantly associated with early disease onset. However, gender, GA, familiar history of T1D and self-reported colour-race identity did not exhibit significant associations with the onset of T1D. It is worth noting that the very common risk haplotype DRB1*03:01g~DQA1*05:01g~DQB1*02:01g did not differentiate between T1DAgeD groups. In the admixed Brazilian population, the high-risk haplotype DRB1*04:05~DQA1*03:01~DQB1*03:02 was more prevalent in individuals diagnosed before 6 years of age. In contrast, the protective alleles DQA1*01:02g, DQB1*06:02g, DRB1*07:01g and DRB1*13:03g and haplotypes DRB1*13:03g~DQA1*05:01g~DQB1*03:01g and DRB1*16:02g~DQA1*01:02g~DQB1*05:02g were more frequently observed in patients diagnosed in adulthood. Notably, these associations were independent of factors such as sex, economic status, GA, familiar history of T1D and region of birth in Brazil. These alleles and haplotypes contribute to our understanding of the disease onset heterogeneity and may have implications for early interventions when detected in association with well-known genomic risk or protection factors for T1D.
Collapse
Affiliation(s)
- Marília Brito Gomes
- Department of Internal Medicine, Diabetes Unit, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos
- Laboratory of Metabolomics (LabMet), Department of Genetics, IBRAG, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Deborah Conte Santos
- Department of Internal Medicine, Diabetes Unit, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Dayse Aparecida Silva
- DNA Diagnostic Laboratory (LDD), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | | | - Luís Cristóvão Porto
- Histocompatibility and Cryopreservation Laboratory (HLA-UERJ), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Sutedja JC, de Liyis BG, Saraswati MR. Gamma-aminobutyric acid for delaying type 1 diabetes mellitus: an update. Ann Pediatr Endocrinol Metab 2024; 29:142-151. [PMID: 38956751 PMCID: PMC11220392 DOI: 10.6065/apem.2346184.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
The current gold-standard management of hyperglycemia in individuals with type 1 diabetes mellitus (T1DM) is insulin therapy. However, this therapy is associated with a high incidence of complications, and delaying the onset of this disease produces a substantially positive impact on quality of life for individuals with a predisposition to T1DM, especially children. This review aimed to assess the use of gamma-aminobutyric acid (GABA) to delay the onset of T1DM in children. GABA produces protective and proliferative effects in 2 ways, β cell and immune cell modulation. Various in vitro and in vivo studies have shown that GABA induces proliferation of β cells, increases insulin levels, inhibits β-cell apoptosis, and suppresses T helper 1 cell activity against islet antigens. Oral GABA is safe as no serious adverse effects were reported in any of the studies included in this review. These findings demonstrate promising results for the use of GABA treatment to delay T1DM, specifically in genetically predisposed children, through immunoregulatory effects and the ability to induce β-cell proliferation.
Collapse
Affiliation(s)
| | | | - Made Ratna Saraswati
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University/Prof. IGNG Ngoerah General Hospital, Bali, Indonesia
| |
Collapse
|
24
|
Daamouch S, Blüher M, Vázquez DC, Hackl M, Hofbauer LC, Rauner M. MiR-144-5p and miR-21-5p do not drive bone disease in a mouse model of type 1 diabetes mellitus. JBMR Plus 2024; 8:ziae036. [PMID: 38606150 PMCID: PMC11008730 DOI: 10.1093/jbmrpl/ziae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
The increased risk of fractures in patients with type 1 diabetes mellitus (T1DM) is nowadays well recognized. However, the exact mechanism of action of diabetic bone disease has not been fully elucidated. MicroRNAs (miRNAs) are gene regulators that operate post-transcriptionally and have been implicated in the development of various metabolic disorders including T1DM. Previous studies have implicated a role for miR-144-5p and miR-21-5p, which are involved in controlling oxidative stress by targeting Nrf2, in T1DM. To date, it is unclear whether miR-144-5p and miR-21-5p affect bone health in T1DM. Thus, this study aimed to investigate the influence of miR-144-5p and miR-21-5p knockdown in the development of bone disease in T1DM male mice. Therefore, T1DM was induced in 10-wk-old male mice using streptozotocin (STZ). One week later, after development of hyperglycemia, antagomir-144-5p and antagomir-21-5p or their non-targeting control were administered at 10 mg/kg BW once a week until the end of the experiment. At 14 wk of age, glucose levels, bone, and fat mass were analyzed. The results revealed that treating T1DM male mice with antagomir-144-5p and antagomir-21-5p did not protect against diabetes development or bone loss, despite the successful downregulation of the miRNAs and the normalization of Nrf2 mRNA levels in bone tissue. Histological and serological parameters of bone formation or resorption were not altered by the antagomir treatment. Finally, we measured the expression of miRNA-144-5p or miRNA-21-5p in the serum of 30 individuals with T1DM and compared them to non-diabetic controls, but did not find an altered expression of either miRNA. In conclusion, the knockdown of miR-144-5p and miR-21-5p does not affect STZ-induced diabetes development or loss of bone mass in male mice. However, it does normalize expression of the anti-oxidant factor Nrf2 in diabetic bone tissue.
Collapse
Affiliation(s)
- Souad Daamouch
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Saxony, 04109, Germany
| | | | | | - Lorenz C Hofbauer
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Martina Rauner
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| |
Collapse
|
25
|
Alves Abrantes JJP, Veríssimo de Azevedo JC, Fernandes FL, Duarte Almeida V, Custódio De Oliveira LA, Ferreira de Oliveira MT, Galvão De Araújo JM, Lanza DCF, Bezerra FL, Andrade VS, Araújo de Medeiros Fernandes TA, Fernandes JV. Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomed Rep 2024; 20:81. [PMID: 38628629 PMCID: PMC11019645 DOI: 10.3892/br.2024.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/07/2023] [Indexed: 04/19/2024] Open
Abstract
The etiopathogenesis of type 1 diabetes mellitus (T1DM) is a complex multifactorial process that involves an intricate network of genetic, epigenetic, immunological, and environmental factors. Despite the advances in recent years, some aspects of the mechanisms involved in triggering the disease are still unclear. Infections with certain viruses have been suggested as possible environmental triggers for the autoimmune process that leads to selective and progressive destruction of pancreatic β-cells and insufficiency of insulin production, which is its hallmark. In this review, advances in knowledge and evidence that suggest the participation of certain viruses in the mechanisms of disease initiation and progression are described. It has been accepted that environmental factors, including viruses, can initiate and possibly sustain, accelerate, or slow down the autoimmune process and consequently damage insulin-producing pancreatic β-cells. Although the role of these agents, especially human enteroviruses, has been exhaustively studied as the most likely triggers of the activation of autoimmunity that destroys pancreatic islets and leads to T1DM, certain doubts remain. Clinical epidemiological and experimental studies in humans and animals provide consistent and increasing evidence that persistent viral infections, especially with human enteroviruses and rotavirus infections, are associated with an increased risk of the disease in individuals genetically predisposed to autoimmunity.
Collapse
Affiliation(s)
| | | | - Fernando Liberalino Fernandes
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | - Valéria Duarte Almeida
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | | | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | | | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| |
Collapse
|
26
|
Shirizadeh A, Razavi Z, Saeedi V, Faradmal J, Roshanaei G, Hajilooi M, Morahan G, Solgi G. Family-based association of HLA-DRB1 and DQB1 alleles and haplotypes in a group of Iranian Type 1 diabetes children. HLA 2024; 103:e15446. [PMID: 38575369 DOI: 10.1111/tan.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/06/2024] [Accepted: 03/09/2024] [Indexed: 04/06/2024]
Abstract
This family-based study was conducted in a group of Iranians with Type 1 diabetes (T1D) to investigate the transmission from parents of risk and non-risk HLA alleles and haplotypes, and to estimate the genetic risk score for this disease within this population. A total of 240 T1D subjects including 111 parent-child trios (111 children with T1D, 133 siblings, and 222 parents) and 330 ethnically matched healthy individuals were recruited. High-resolution HLA typing for DRB1/DQB1 loci was performed for all study subjects (n = 925) using polymerase chain reaction-sequence-specific oligonucleotide probe method. The highest predisposing effect on developing T1D was conferred by the following haplotypes both in all subjects and in probands compared to controls: DRB1*04:05-DQB1*03:02 (Pc = 2.97e-06 and Pc = 6.04e-10, respectively), DRB1*04:02-DQB1*03:02 (Pc = 5.94e-17 and Pc = 3.86e-09, respectively), and DRB1*03:01-DQB1*02:01 (Pc = 8.26e-29 and Pc = 6.56e-16, respectively). Conversely, the major protective haplotypes included DRB1*13:01-DQB1*06:03 (Pc = 6.99e-08), DRB1*15:01-DQB1*06:02 (Pc = 2.97e-06) in the cases versus controls. Also, DRB1*03:01-DQB1*02:01/DRB1*04:02|05-DQB1*03:02 and DRB1*03:01-DQB1*02:01/DRB1*03:01-DQB1*02:01 diplotypes conferred the highest predisposing effect in the cases (Pc = 8.65e-17 and Pc = 6.26e-08, respectively) and in probands (Pc = 5.4e-15 and Pc = 0.001, respectively) compared to controls. Transmission disequilibrium test showed that the highest risk was conferred by DRB1*04:02-DQB1*03:02 (Pc = 3.26e-05) and DRB1*03:01-DQB1*02:01 (Pc = 1.78e-12) haplotypes and the highest protection by DRB1*14:01-DQB1*05:03 (Pc = 8.66e-05), DRB1*15:01-DQB1*06:02 (Pc = 0.002), and DRB1*11:01-DQB1*03:01 (Pc = 0.0003) haplotypes. Based on logistic regression analysis, carriage of risk haplotypes increased the risk of T1D development 24.5 times in the Iranian population (p = 5.61e-13). Also, receiver operating characteristic curve analysis revealed a high predictive power of those risk haplotypes in discrimination of susceptible from healthy individuals (area under curve: 0.88, p = 5.5e-32). Our study highlights the potential utility of genetic risk assessment based on HLA diplotypes for predicting T1D risk in individuals, particularly among family members of affected children in our population.
Collapse
Affiliation(s)
- Ata Shirizadeh
- Immunology Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Razavi
- Pediatrics Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vahid Saeedi
- Pediatric Endocrinology and Metabolism Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Faradmal
- Biostatistics Department, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghodratollah Roshanaei
- Biostatistics Department, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hajilooi
- Immunology Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Grant Morahan
- Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | - Ghasem Solgi
- Immunology Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
27
|
Wang J, Wan K, Chang X, Mao RF. Association of autoimmune thyroid disease with type 1 diabetes mellitus and its ultrasonic diagnosis and management. World J Diabetes 2024; 15:348-360. [PMID: 38591076 PMCID: PMC10999045 DOI: 10.4239/wjd.v15.i3.348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 03/15/2024] Open
Abstract
As a common hyperglycemic disease, type 1 diabetes mellitus (T1DM) is a complicated disorder that requires a lifelong insulin supply due to the immune-mediated destruction of pancreatic β cells. Although it is an organ-specific autoimmune disorder, T1DM is often associated with multiple other autoimmune disorders. The most prevalent concomitant autoimmune disorder occurring in T1DM is autoimmune thyroid disease (AITD), which mainly exhibits two extremes of phenotypes: hyperthyroidism [Graves' disease (GD)] and hypo-thyroidism [Hashimoto's thyroiditis, (HT)]. However, the presence of comorbid AITD may negatively affect metabolic management in T1DM patients and thereby may increase the risk for potential diabetes-related complications. Thus, routine screening of thyroid function has been recommended when T1DM is diagnosed. Here, first, we summarize current knowledge regarding the etiology and pathogenesis mechanisms of both diseases. Subsequently, an updated review of the association between T1DM and AITD is offered. Finally, we provide a relatively detailed review focusing on the application of thyroid ultrasonography in diagnosing and managing HT and GD, suggesting its critical role in the timely and accurate diagnosis of AITD in T1DM.
Collapse
Affiliation(s)
- Jin Wang
- Department of Ultrasound Medicine, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| | - Ke Wan
- Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2050, Australia
| | - Xin Chang
- Department of Ultrasound Medicine, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| | - Rui-Feng Mao
- School of Life Science, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| |
Collapse
|
28
|
Hampe CS, Shojaie A, Brooks-Worrell B, Dibay S, Utzschneider K, Kahn SE, Larkin ME, Johnson ML, Younes N, Rasouli N, Desouza C, Cohen RM, Park JY, Florez HJ, Valencia WM, Palmer JP, Balasubramanyam A. GAD65Abs Are Not Associated With Beta-Cell Dysfunction in Patients With T2D in the GRADE Study. J Endocr Soc 2024; 8:bvad179. [PMID: 38333889 PMCID: PMC10853002 DOI: 10.1210/jendso/bvad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 02/10/2024] Open
Abstract
Context Autoantibodies directed against the 65-kilodalton isoform of glutamic acid decarboxylase (GAD65Abs) are markers of autoimmune type 1 diabetes (T1D) but are also present in patients with Latent Autoimmune Diabetes of Adults and autoimmune neuromuscular diseases, and also in healthy individuals. Phenotypic differences between these conditions are reflected in epitope-specific GAD65Abs and anti-idiotypic antibodies (anti-Id) against GAD65Abs. We previously reported that 7.8% of T2D patients in the GRADE study have GAD65Abs but found that GAD65Ab positivity was not correlated with beta-cell function, glycated hemoglobin (HbA1c), or fasting glucose levels. Context In this study, we aimed to better characterize islet autoantibodies in this T2D cohort. This is an ancillary study to NCT01794143. Methods We stringently defined GAD65Ab positivity with a competition assay, analyzed GAD65Ab-specific epitopes, and measured GAD65Ab-specific anti-Id in serum. Results Competition assays confirmed that 5.9% of the patients were GAD65Ab positive, but beta-cell function was not associated with GAD65Ab positivity, GAD65Ab epitope specificity or GAD65Ab-specific anti-Id. GAD65-related autoantibody responses in GRADE T2D patients resemble profiles in healthy individuals (low GAD65Ab titers, presence of a single autoantibody, lack of a distinct epitope pattern, and presence of anti-Id to diabetes-associated GAD65Ab). In this T2D cohort, GAD65Ab positivity is likely unrelated to the pathogenesis of beta-cell dysfunction. Conclusion Evidence for islet autoimmunity in the pathophysiology of T2D beta-cell dysfunction is growing, but T1D-associated autoantibodies may not accurately reflect the nature of their autoimmune process.
Collapse
Affiliation(s)
| | - Ali Shojaie
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
| | - Barbara Brooks-Worrell
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
- Department of Medicine, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sepideh Dibay
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
| | - Kristina Utzschneider
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
- Department of Medicine, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Steven E Kahn
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
- Department of Medicine, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Mary E Larkin
- Massachusetts General Hospital Diabetes Center, Harvard Medical School, Boston, MA 02114, USA
| | - Mary L Johnson
- International Diabetes Center, Minneapolis, MN 55416, USA
| | - Naji Younes
- The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD 20852, USA
| | - Neda Rasouli
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cyrus Desouza
- Division of Diabetes, Endocrinology and Metabolism, University of Nebraska and Omaha VA Medical Center, Omaha, NE 68198, USA
| | - Robert M Cohen
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati and Cincinnati VA Medical Center, Cincinnati, OH 45221, USA
| | | | - Hermes J Florez
- Department of Medicine, University of Miami, Miami, FL 33135, USA
- Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Willy Marcos Valencia
- Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
- Geriatric Research, Education and Clinical Center, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL 33125, USA
- Robert Stempel Department of Public Health, College of Health and Urban Affairs, Florida International University, Miami, FL 33181, USA
| | - Jerry P Palmer
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
- Department of Medicine, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Ashok Balasubramanyam
- Department of Medicine: Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
29
|
Zhang J, Qi J, Li Y, Wang J, Jiang H, Sun Q, Gu Q, Ying Z. Association between type 1 diabetes mellitus and ankylosing spondylitis: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1289104. [PMID: 38173714 PMCID: PMC10762686 DOI: 10.3389/fimmu.2023.1289104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Objective The development of ankylosing spondylitis (AS) is closely related to autoimmune system dysfunction. Type 1 diabetes mellitus (T1DM) is an autoimmune disease that is a risk factor for many diseases. This study aimed to investigate the causal relationship between T1DM mellitus and AS genetically. Methods A genome-wide association study (GWAS) of causal relationships between exposure (T1DM) and outcome (AS) was performed using summary data from the GWAS database. We conducted a two-sample Mendelian randomization (MR) study of these two diseases. Inverse variance weighting (IVW) was used as the primary analysis method, with MR Egger, weighted median, and weighted mode used as supplementary methods. Sensitivity analyses were performed using Cochran's Q test, MR-Egger intercept, MR-Pleiotropy RESidual Sum and outlier methods, leave-one-out analysis, and funnel plots. Results A total of 11 single nucleotide polymorphisms (SNPs)were identified for instrumental variables(IVs) for MR analysis.IVW found that T1DM was causally associated with AS ((IVW: OR = 1.0006 (95% CI 1.0001, 1.0011), p = 0.0057; MR-Egger: OR = 1.0003 (95% CI 0.9995, 1.0012), p = 0.4147; weighted median: OR = 1.0006 (95% CI 1.0003, 1.0008), p = 0.0001; weighted mode: OR = 1.0007 (95% CI 1.0005, 1.0009), p = 0.0001). No horizontal pleiotropy was found for the MR-Egger intercept, and leave -one-out analysis found that the results remained stable after the removal of individual SNPs. Conclusion The results of the two-sample MR analysis supported a causal relationship between T1DM and AS risk.
Collapse
Affiliation(s)
- Ju Zhang
- Jinzhou Medical University Graduate Training Base Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaping Qi
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Yixuan Li
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Wang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Huan Jiang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Qiong Sun
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Qinchen Gu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenhua Ying
- Jinzhou Medical University Graduate Training Base Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Mao R, Wang J, Xu Y, Wang Y, Wu M, Mao L, Chen Y, Li D, Zhang T, Diao E, Chi Z, Wang Y, Chang X. Oral delivery of bi-autoantigens by bacterium-like particles (BLPs) against autoimmune diabetes in NOD mice. Drug Deliv 2023; 30:2173339. [PMID: 36719009 PMCID: PMC9891168 DOI: 10.1080/10717544.2023.2173339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
Induction of oral tolerance by vaccination with type 1 diabetes mellitus (T1DM)-associated autoantigens exhibits great potential in preventing and treating this autoimmune disease. However, antigen degradation in the gastrointestinal tract (GIT) limits the delivery efficiency of oral antigens. Previously, bacterium-like particles (BLPs) have been used to deliver a single-chain insulin (SCI-59) analog (BLPs-SCI-59) or the intracellular domain of insulinoma-associated protein 2 (IA-2ic) (BLPs-IA-2ic). Both monovalent BLPs vaccines can suppress T1DM in NOD mice by stimulating the corresponding antigen-specific oral tolerance, respectively. Here, we constructed two bivalent BLPs vaccines which simultaneously deliver SCI-59 and IA-2ic (Bivalent vaccine-mix or Bivalent vaccine-SA), and evaluated whether there is an additive beneficial effect on tolerance induction and suppression of T1DM by treatment with BLPs-delivered bi-autoantigens. Compared to the monovalent BLPs vaccines, oral administration of the Bivalent vaccine-mix could significantly reduce morbidity and mortality in T1DM. Treatment with the bivalent BLPs vaccines (especially Bivalent vaccine-mix) endowed the mice with a stronger ability to regulate blood glucose and protect the integrity and function of pancreatic islets than the monovalent BLPs vaccines treatment. This additive effect of BLPs-delivered bi-autoantigens on T1DM prevention may be related to that SCI-59- and IA-2-specific Th2-like immune responses could be induced, which was more beneficial for the correction of Th1/Th2 imbalance. In addition, more CD4+CD25+Foxp3+ regulatory T cells (Tregs) were induced by treatment with the bivalent BLPs vaccines than did the monovalent BLPs vaccines. Therefore, multiple autoantigens delivered by BLPs maybe a promising strategy to prevent T1DM by efficiently inducing antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Ruifeng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Jin Wang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing211200, China
| | - Ying Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Yuqi Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Mengmeng Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Lixia Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Yingying Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Dengchao Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Tong Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Zhenjing Chi
- Huai’an First People’s Hospital, Nanjing Medical University, Huai’an223300, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Xin Chang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing211200, China
| |
Collapse
|
31
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
32
|
Basu A, Hooyman A, Richardson LA, Alman AC, Snell-Bergeon JK. Longitudinal Associations of Dietary Fiber Intake with Glycated Hemoglobin and Estimated Insulin Sensitivity in Adults with and without Type 1 Diabetes. Nutrients 2023; 15:4620. [PMID: 37960272 PMCID: PMC10648902 DOI: 10.3390/nu15214620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Dietary fiber, an essential bioactive compound in plant-based diets, is of public health concern based on habitual low intakes in the general population. Not much data are available on how habitual dietary fiber is associated with glycemic control in type 1 diabetes (T1D) as well as in prediabetes and normoglycemic adults. To address this gap, we conducted a six-year longitudinal analysis of an original cohort in adults with and without T1D (n = 1255; T1D: n = 563; non-diabetes mellitus (non-DM): n = 692). Dietary data were collected from a validated food frequency questionnaire, biochemical measures were obtained after an overnight fast, and anthropometric measurements were collected at baseline as well as after three and six years for the follow-up study. Glycated hemoglobin (HbA1c) and estimated insulin sensitivity (eIS) were the main outcomes examined. In adjusted analyses, dietary fiber intake was inversely associated with HbA1c in a minimally adjusted model, but it was positively associated with eIS in a model involving all relevant covariates in non-DM adults. These associations were not significant in the T1D group. Furthermore, when examined by HbA1c cut-offs for glycemic control, an inverse association with dietary fiber was only observed in adults with prediabetes (all p < 0.05). At a six-year mean (±SD) dietary fiber intake of 17.4 ± 8.8 g for non-DM and 17.0 ± 8.2 g for the T1D group, protective associations against poor glycemic control were observed in those without diabetes and in prediabetes.
Collapse
Affiliation(s)
- Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Andrew Hooyman
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
- School of Biological Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Leigh Ann Richardson
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Amy C. Alman
- College of Public Health, University of South Florida, Tampa, FL 33620, USA;
| | - Janet K. Snell-Bergeon
- Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
33
|
Driscoll KA, Melin J, Lynch KF, Smith LB, Johnson SB. SAI-CH-6: Development of a Short Form of the State Anxiety Inventory for Children At-Risk for Type 1 Diabetes. J Pediatr Psychol 2023; 48:861-869. [PMID: 37698990 PMCID: PMC10588971 DOI: 10.1093/jpepsy/jsad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE To develop a reliable and valid short form of the State Anxiety Subscale of the State-Trait Anxiety Inventory for Children (STAI-CH) in the Environmental Determinants of Diabetes in the Young (TEDDY) study. METHODS A Development Sample of 842 10-year-old TEDDY children completed the STAI-CH State Subscale about their type 1 diabetes (T1D) risk. The best 6 items (three anxiety-present and three anxiety-absent) for use in a short form (SAI-CH-6) were identified via item-total correlations. SAI-CH-6 reliability was examined in a Validation Sample (n = 257) of children who completed the full 20-item STAI-CH State Subscale and then again in an Application Sample (n = 2,710) who completed only the SAI-CH-6. Expected associations between the children's SAI-CH-6 scores and country of residence, sex, T1D family history, accuracy of T1D risk perception, worry about getting T1D, and their parents' anxiety scores were examined. RESULTS The SAI-CH-6 was reliable (α = 0.81-0.87) and highly correlated with the full 20-item STAI-CH State Subscale (Development Sample: r = 0.94; Validation Sample: r = 0.92). SAI-CH-6 scores detected significant differences in state anxiety symptoms associated with T1D risk by country, T1D family history, accuracy of T1D risk perception, and worry about getting T1D and were correlated with the child's parent's anxiety. CONCLUSION The SAI-CH-6 appears useful for assessing children's state anxiety symptoms when burden and time limitations prohibit the use of the STAI-CH. The utility of the SAI-CH-6 in older children with and without chronic conditions needs to be assessed.
Collapse
Affiliation(s)
| | - Jessica Melin
- Department of Clinical Sciences, Lund University, Sweden
| | | | - Laura B Smith
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, USA
| | - Suzanne Bennett Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, USA
| |
Collapse
|
34
|
Trebušak Podkrajšek K, Kotnik P. Special Issue "Genetics and Epigenetics in Endocrine Disorders". Genes (Basel) 2023; 14:1763. [PMID: 37761903 PMCID: PMC10530912 DOI: 10.3390/genes14091763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 09/29/2023] Open
Abstract
In the last decade, the development of high-throughput sequencing methodologies has significantly improved the gathering of genomic information and consequent under-standing of the genetic and epigenetic background of complex and monogenetic endocrine disorders [...].
Collapse
Affiliation(s)
- Katarina Trebušak Podkrajšek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Primož Kotnik
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Bohoriceva Ulica 20, 1000 Ljubljana, Slovenia;
- Chair of Pediatrics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
García E. Two putative glutamate decarboxylases of Streptococcus pneumoniae as possible antigens for the production of anti-GAD65 antibodies leading to type 1 diabetes mellitus. Int Microbiol 2023; 26:675-690. [PMID: 37154976 PMCID: PMC10165594 DOI: 10.1007/s10123-023-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been increasing in prevalence in the last decades and has become a global burden. Autoantibodies against human glutamate decarboxylase (GAD65) are among the first to be detected at the onset of T1DM. Diverse viruses have been proposed to be involved in the triggering of T1DM because of molecular mimicry, i.e., similarity between parts of some viral proteins and one or more epitopes of GAD65. However, the possibility that bacterial proteins might also be responsible for GAD65 mimicry has been seldom investigated. To date, many genomes of Streptococcus pneumoniae (the pneumococcus), a prominent human pathogen particularly prevalent among children and the elderly, have been sequenced. A dataset of more than 9000 pneumococcal genomes was mined and two different (albeit related) genes (gadA and gadB), presumably encoding two glutamate decarboxylases similar to GAD65, were found. The various gadASpn alleles were present only in serotype 3 pneumococci belonging to the global lineage GPSC83, although some homologs have also been discovered in two subspecies of Streptococcus constellatus (pharyngis and viborgensis), an isolate of the group B streptococci, and several strains of Lactobacillus delbrueckii. Besides, gadBSpn alleles are present in > 10% of the isolates in our dataset and represent 16 GPSCs with 123 sequence types and 20 different serotypes. Sequence analyses indicated that gadA- and gadB-like genes have been mobilized among different bacteria either by prophage(s) or by integrative and conjugative element(s), respectively. Substantial similarities appear to exist between the putative pneumococcal glutamate decarboxylases and well-known epitopes of GAD65. In this sense, the use of broader pneumococcal conjugate vaccines such as PCV20 would prevent the majority of serotypes expressing those genes that might potentially contribute to T1DM. These results deserve upcoming studies on the possible involvement of S. pneumoniae in the etiopathogenesis and clinical onset of T1DM.
Collapse
Affiliation(s)
- Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
36
|
Chen C, Lin LY, Chen JW, Chang TT. CXCL5 suppression recovers neovascularization and accelerates wound healing in diabetes mellitus. Cardiovasc Diabetol 2023; 22:172. [PMID: 37420254 PMCID: PMC10329364 DOI: 10.1186/s12933-023-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Higher chemokine C-X-C motif ligand 5 (CXCL5) level was observed in type 2 diabetes mellitus (DM) patients; however, its role in diabetic vasculopathy was not clarified. This study aimed to explore the impacts and mechanistic insights of CXCL5 in neovasculogenesis and wound healing in DM. METHODS Endothelial progenitor cells (EPCs) and human aortic endothelial cells (HAECs) were used in vitro. Streptozotocin-induced diabetic mice and Leprdb/JNarl mice were used as type 1 and type 2 DM models. Moreover, CXCL5 knockout mice were used to generate diabetic mice. Hindlimb ischemia surgery, aortic ring assays, matrigel plug assay, and wound healing assay were conducted. RESULTS CXCL5 concentrations were increased in plasma and EPCs culture medium from type 2 DM patients. CXCL5 neutralizing antibody upregulated vascular endothelial growth factor (VEGF)/stromal cell-derived factor-1 (SDF-1) and promoted cell function in EPCs from type 2 DM patients and high glucose-treated EPCs from non-DM subjects as well as HAECs. CXCL5 directly up-regulated interleukin (IL)-1β/IL-6/tumor necrosis factor-α and down-regulated VEGF/SDF-1 via ERK/p65 activation through chemokine C-X-C motif receptor 2 (CXCR2). CXCL5 neutralizing antibody recovered the blood flow after hindlimb ischemia, increased circulating EPC number, and enhanced VEGF and SDF-1 expression in ischemic muscle. CXCL5 suppression promoted neovascularization and wound healing in different diabetic animal models. The above observation could also be seen in streptozotocin-induced CXCL5 knockout diabetic mice. CONCLUSIONS CXCL5 suppression could improve neovascularization and wound healing through CXCR2 in DM. CXCL5 may be regarded as a potential therapeutic target for vascular complications of DM.
Collapse
Affiliation(s)
- Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
37
|
Sorski L, Gidron Y. The Vagal Nerve, Inflammation, and Diabetes-A Holy Triangle. Cells 2023; 12:1632. [PMID: 37371102 DOI: 10.3390/cells12121632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetic mellitus (T2DM) is a common chronic disease and a substantial risk factor of other fatal illnesses. At its core is insulin resistance, where chronic low-level inflammation is among its main causes. Thus, it is crucial to modulate this inflammation. This review paper provides scientific neuroimmunological evidence on the protective roles of the vagal nerve in T2DM. First, the vagus inhibits inflammation in a reflexive manner via neuroendocrine and neuroimmunological routes. This may also occur at the level of brain networks. Second, studies have shown that vagal activity, as indexed by heart-rate variability (HRV), is inversely related to diabetes and that low HRV is a predictor of T2DM. Finally, some emerging evidence shows that vagal nerve activation may reduce biomarkers and processes related to diabetes. Future randomized controlled trials are needed to test the effects of vagal nerve activation on T2DM and its underlying anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yori Gidron
- Department of Nursing, Faculty of Social Welfare and Health Sciences, Haifa University, Haifa 3498838, Israel
| |
Collapse
|
38
|
Oboza P, Ogarek N, Olszanecka-Glinianowicz M, Kocelak P. Can type 1 diabetes be an unexpected complication of obesity? Front Endocrinol (Lausanne) 2023; 14:1121303. [PMID: 37065759 PMCID: PMC10102381 DOI: 10.3389/fendo.2023.1121303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Type 1 diabetes (T1D) is one of the most common chronic autoimmune diseases, characterized by absolute insulin deficiency caused via inflammatory destruction of the pancreatic β-cell. Genetic, epigenetic, and environmental factors play a role in the development of diseases. Almost ⅕ of cases involve people under the age of 20. In recent years, the incidence of both T1D and obesity has been increasing, especially among children, adolescents, and young people. In addition, according to the latest study, the prevalence of overweight or obesity in people with T1D has increased significantly. The risk factors of weight gain included using exogenous insulin, intensifying insulin therapy, fear of hypoglycemia and related decrease in physical activity, and psychological factors, such as emotional eating and binge eating. It has also been suggested that T1D may be a complication of obesity. The relationship between body size in childhood, increase in body mass index values in late adolescence and the development of T1D in young adulthood is considered. Moreover, the coexistence of T1D and T2D is increasingly observed, this situation is called double or hybrid diabetes. This is associated with an increased risk of the earlier development of dyslipidemia, cardiovascular diseases, cancer, and consequently a shortening of life. Thus, the purpose of this review was to summarize the relationships between overweight or obesity and T1D.
Collapse
Affiliation(s)
- Paulina Oboza
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Natalia Ogarek
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Piotr Kocelak
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
- *Correspondence: Piotr Kocelak,
| |
Collapse
|
39
|
Hashemipour M, Mostofizadeh N, Ghasemi M, Behnam M, Rostampour N, Dehkordi EH, Hovsepian S. Molecular genetic analysis of the insulin gene variants in Iranian patients with permanent neonatal diabetes. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|