1
|
Luo L, Huang J, Fu C, Hu Y, Chen J, Jiang L, Zeng Q. The efficacy of combined phototherapy with topical therapy in vitiligo: a network meta-analysis. J DERMATOL TREAT 2025; 36:2483808. [PMID: 40197106 DOI: 10.1080/09546634.2025.2483808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND The comparative effects of phototherapy and topical therapy in patients with vitiligo remain unclear. A network meta-analysis (NMA) was conducted to assess which combination therapy was more beneficial for patients with vitiligo. METHODS This study analyzed phototherapy, including narrowband ultraviolet B (NB-UVB) and 308-nm excimer laser/light (EL) combined with topical therapies. Randomized controlled trials were sourced from PubMed, Embase, and Cochrane Library. Data analysis was based on a random-effects model, and surface under the cumulative ranking (SUCRA) curves employed to assess the efficacy of the interventions. RESULTS This NMA included 27 trials, with a total of 2417 lesions (patches). According to the results of the SUCRA, for achieving ≥50% repigmentation, the top three combination therapies were phototherapy combined with antioxidants (SUCRA 87.7), corticosteroids (SUCRA 69.6), and calcineurin inhibitors (SUCRA 52.5), while for ≥75% repigmentation, the leading therapies were phototherapy combined with antioxidants (SUCRA 89.0), calcineurin inhibitors (SUCRA 70.3), and fractional CO2 laser (SUCRA 63.6). CONCLUSIONS This meta-analysis suggests that combining phototherapy with topical antioxidants, corticosteroids, or calcineurin inhibitors may offer superior outcomes for vitiligo patients. This study provides a reference for clinicians to develop personalized treatment plans for patients with vitiligo.
Collapse
Affiliation(s)
- Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yibo Hu
- Clinical Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Wongkarn S, Chewonarin T, Ruangsuriya J, Taya S, Dejkriengkraikul P, Yodkeeree S. Biochemical Mechanism of Thai Fermented Soybean Extract on UVB-Induced Skin Keratinocyte Damage and Inflammation. Int J Mol Sci 2025; 26:3418. [PMID: 40244292 PMCID: PMC11989635 DOI: 10.3390/ijms26073418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Ultraviolet B (UVB) radiation is a key factor contributing to photodamage in epidermal cells. This study investigated the protective effects of Thua Nao, a Thai fermented soybean product, against UVB-induced damage in human epidermal keratinocytes (HaCaT) and the underlying mechanisms. Thua Nao extract fractions were prepared using a solvent partition method. We found that the dichloromethane fraction (TN-DC), along with its isoflavones daidzein and glycitein, significantly protected against UVB-induced HaCaT cell death. This protection involved inhibiting caspase-9 and caspase-3 activation, thus preventing apoptosis. Additionally, treatment with TN-DC, daidzein, and glycitein suppressed the UVB-induced production of inflammatory mediators, including interleukin-6 (IL-6), IL-8, inducible nitric oxide synthase, and cyclooxygenase-2. These protective effects were associated with reduced intracellular reactive oxygen species and enhanced the levels of antioxidant enzymes, including superoxide dismutase and glutathione peroxidase 4. Signaling pathway analysis revealed that TN-DC activated the pro-survival ERK1/2 and Akt pathways while decreased the phosphorylation of JNK in UVB-exposed cells. On the other hand, daidzein and glycitein enhanced ERK1/2 activation and reduced the phosphorylation of JNK and p38 MAPKs. The involvement of ERK1/2 and Akt activation in cell survival was confirmed using specific inhibitors. Thus, TN-DC and its isoflavones protects keratinocytes from UVB-induced oxidative damage and inflammation by modulating MAPKs and Akt signaling.
Collapse
Affiliation(s)
- Supapit Wongkarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.W.); (T.C.); (J.R.); (P.D.)
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.W.); (T.C.); (J.R.); (P.D.)
| | - Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.W.); (T.C.); (J.R.); (P.D.)
| | - Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.W.); (T.C.); (J.R.); (P.D.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.W.); (T.C.); (J.R.); (P.D.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Pannakal ST, Durand S, Gizard J, Sextius P, Planel E, Warrick E, Lelievre D, Lelievre C, Eilstein J, Beaumard F, Prasad A, Shetty S, Duraisamy A, Gaurav K, John S, Benazzouz A, Fastinger X, Roy D, Sharma V. A Proprietary Punica granatum pericarp Extract, Its Antioxidant Properties Using Multi-Radical Assays and Protection Against UVA-Induced Damages in a Reconstructed Human Skin Model. Antioxidants (Basel) 2025; 14:301. [PMID: 40227287 PMCID: PMC11939174 DOI: 10.3390/antiox14030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Within the solar ultraviolet (UV) spectrum, ultraviolet A rays (UVA, 320-400 nm), although less energetic than ultraviolet B rays (UVB, 280-320 nm), constitute at least 95% of solar UV radiation that penetrates deep into the skin The UV rays are associated with both epidermal and dermal damage resulting from the generation of reactive oxygen species (ROS). Among them, the longest UVA wavelengths (UVA1, 340-400 nm) can represent up to 75% of the total UV energy. Therefore, UVA radiation is linked to various acute and chronic conditions, including increased skin pigmentation and photoaging. Despite many advances in the skin photoprotection category, there is still a growing demand for natural daily photoprotection active ingredients that offer broad protection against skin damage caused by UVA exposure. In our quest to discover new, disruptive, next generation of photoprotective ingredients, we were drawn to pomegranate, based on its diverse polyphenolic profile. We investigated the pericarp of the fruit, so far considered as byproducts of the pomegranate supply chain, to design a novel patented extract "POMAOX" with a desired spectrum of phenolic components comprising of αβ-punicalagins, αβ-punicalins and ellagic acid. Methods: Antioxidant properties of POMAOX were measured using in-tubo standard tests capable of revealing a battery of radical oxygen species (ROS): peroxyl radical (ORAC), singlet oxygen (SOAC), superoxide anion (SORAC), peroxynitrite (NORAC), and hydroxyl radical (HORAC). In vitro, confirmation of antioxidant properties was first performed by evaluating protection against UVA-induced lipid peroxidation in human dermal fibroblasts (HDF), via the release of 8 iso-prostanes. The protection offered by POMAOX was further validated in a 3D in vitro reconstructed T-SkinTM model, by analyzing tissue viability/morphology and measuring the release of Matrix Metallopeptidase 1 (MMP-1) & pro-inflammatory mediators (IL-1α, IL-1ra, IL-6, IL-8, GM-CSF, and TNF-α) after UVA1 exposure. Results: POMAOX displayed strong antioxidant activity against peroxynitrite (NORAC) at 1.0-3.0 ppm, comparable to the reference vitaminC, as well as singlet oxygen (SOAC) at 220 ppm, and superoxide radicals with a SORAC value of 500 ppm. Additionally, POMAOX demonstrated strong photoprotection benefit at 0.001% concentration, offering up to 74% protection against UVA-induced lipid peroxidation on HDF, in a similar range as the positive reference, Vitamin E at 0.002% (50 µM), and with higher efficacy than ellagic acid alone at 5 µM. Moreover, our pomegranate-derived extract delivered photoprotection at 0.001%, mitigating dermal damages induced by UVA1, through inhibition of MMP-1 and significant inhibition of pro-inflammatory mediators release (including IL-1α, IL-1ra, IL-6, IL-8, GM-CSF, and TNFα) on an in vitro reconstructed full-thickness human skin model with a similar level of protection to that of Vitamin C tested at 0.035% (200 µM). Conclusions: Overall, the novel pomegranate-derived extract "POMAOX" significantly reduced the impact of UVA on human skin, due to its broad-spectrum antioxidant profile. These findings suggest that POMAOX could offer enhanced protection against the detrimental effects of UV exposure, addressing the growing consumer demand for strong photoprotection with skincare benefits.
Collapse
Affiliation(s)
| | - Steven Durand
- Episkin, 4 Rue Alexander Fleming, 69007 Lyon, France
| | - Julie Gizard
- L’Oréal Research and Innovation, 93600 Aulnay Sous-Bois, France
| | - Peggy Sextius
- L’Oréal Research and Innovation, 93600 Aulnay Sous-Bois, France
| | - Emilie Planel
- L’Oréal Research and Innovation, 93600 Aulnay Sous-Bois, France
| | - Emilie Warrick
- L’Oréal Research and Innovation, 93600 Aulnay Sous-Bois, France
| | | | | | - Joan Eilstein
- L’Oréal Research and Innovation, 93600 Aulnay Sous-Bois, France
| | | | - Arpita Prasad
- L’Oréal Research and Innovation, Bangalore 560067, India
| | - Sanketh Shetty
- L’Oréal Research and Innovation, Bangalore 560067, India
| | - Arun Duraisamy
- L’Oréal Research and Innovation, Bangalore 560067, India
| | - Kumar Gaurav
- L’Oréal Research and Innovation, Mumbai 400043, India
| | - Sherluck John
- L’Oréal Research and Innovation, Bangalore 560067, India
| | | | | | - Dhimoy Roy
- L’Oréal Research and Innovation, Mumbai 400043, India
| | - Vishal Sharma
- L’Oréal Research and Innovation, Mumbai 400043, India
| |
Collapse
|
4
|
Zhai Z, Yang C, Yin W, Liu Y, Li S, Ye Z, Xie M, Song X. Engineered Strategies to Interfere with Macrophage Fate in Myocardial Infarction. ACS Biomater Sci Eng 2025; 11:784-805. [PMID: 39884780 DOI: 10.1021/acsbiomaterials.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myocardial infarction (MI), a severe cardiovascular condition, is typically triggered by coronary artery disease, resulting in ischemic damage and the subsequent necrosis of the myocardium. Macrophages, known for their remarkable plasticity, are capable of exhibiting a range of phenotypes and functions as they react to diverse stimuli within their local microenvironment. In recent years, there has been an increasing number of studies on the regulation of macrophage behavior based on tissue engineering strategies, and its regulatory mechanisms deserve further investigation. This review first summarizes the effects of key regulatory factors of engineered biomaterials (including bioactive molecules, conductivity, and some microenvironmental factors) on macrophage behavior, then explores specific methods for inducing macrophage behavior through tissue engineering materials to promote myocardial repair, and summarizes the role of macrophage-host cell crosstalk in regulating inflammation, vascularization, and tissue remodeling. Finally, we propose some future challenges in regulating macrophage-material interactions and tailoring personalized biomaterials to guide macrophage phenotypes.
Collapse
Affiliation(s)
- Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Ambagaspitiya SS, Appuhamillage GA, Wimalawansa SJ. Impact of Vitamin D on Skin Aging, and Age-Related Dermatological Conditions. FRONT BIOSCI-LANDMRK 2025; 30:25463. [PMID: 39862075 DOI: 10.31083/fbl25463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 01/27/2025]
Abstract
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases. Intrinsic factors associated with advanced age gradually degrade the dermal collagen matrix, resulting in fine wrinkles and reduced elasticity; this is accelerated in post-menopausal women due to estrogen deficiency. In contrast, extrinsic factors associated with advanced age, primarily caused by exposure to ultraviolet (UV) radiation, lead to coarse wrinkles, solar elastosis, hyperkeratosis, irregular pigmentation, and skin cancers. UVB radiation, while contributing to skin photo-aging, also induces the cutaneous synthesis of vitamin D. Vitamin D, in turn, protects the skin from oxidative stress, inflammation, and DNA damage, thereby delaying both chronological and photo-aging. Moreover, research has demonstrated an association between lower vitamin D levels and a higher prevalence of certain cutaneous diseases. This review explores and summarizes the critical role of vitamin D in skin aging and age-related skin diseases. The data presented highlight the importance of maintaining vitamin D adequacy throughout life.
Collapse
Affiliation(s)
- Sankalya S Ambagaspitiya
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, 10206 Homagama, Sri Lanka
| | - Gayan A Appuhamillage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, 10206 Homagama, Sri Lanka
| | | |
Collapse
|
6
|
Rangsinth P, Sharika R, Sillapachaiyaporn C, Nilkhet S, Chaikhong K, Verma K, Prasansuklab A, Ng ST, Tan CS, Fung SY, Tencomnao T, Chuchawankul S. Protective effects of tiger milk mushroom extract (xLr®) against UVB irradiation in Caenorhabditis elegans via DAF-16 anti-oxidant regulation. J Tradit Complement Med 2025; 15:73-83. [PMID: 39807264 PMCID: PMC11725124 DOI: 10.1016/j.jtcme.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background and aim A critical causative factor of oxidative stress and inflammation leading to several skin complications is ultraviolet-B (UVB) irradiation. Lignosus rhinocerus (LR), or tiger milk mushroom, is native to Southeast Asia. Cold water extract of an LR cultivar, TM02® (xLr®) is a promising anti-oxidant and anti-inflammatory source. However, the effects of xLr® on UVB-induced photoaging have never been elucidated. Experimental procedure This study investigated the protective effects of xLr® and its high, medium, and low molecular weight (HLR, MLR, and LLR, respectively) fractions against UVB irradiation using in vivo Caenorhabditis elegans (C. elegans) model. Results and conclusion The investigation revealed a significant lifespan extension of xLr® and its fractions in UVB-irradiated C. elegans, which could be mediated by the regulation of genes associated with anti-oxidant (daf-16 and sod-3) and apoptosis (cep-1, hus-1, ced-13, and egl-1) pathways. xLr® significantly reduced the ROS production in C. elegans and increased the DAF-16 nuclear translocation compared to untreated worms. Additionally, the SOD-3 expression was increased in the xLr®-treated worms. Hence, it suggests that the different components in xLr® work synergistically to protect against UVB irradiation. Our findings may be beneficial for the application of xLr® as a treatment against UVB-induced cellular damage and photoaging.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kamonwan Chaikhong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Szu-Ting Ng
- LiGNO Biotech Sdn Bhd., Jalan Perindustrian Balakong Jaya 2/2, Taman Perindustrian Balakong Jaya 2, 43300 Balakong jaya, Selangor, Malaysia
| | - Chon-Seng Tan
- LiGNO Biotech Sdn Bhd., Jalan Perindustrian Balakong Jaya 2/2, Taman Perindustrian Balakong Jaya 2, 43300 Balakong jaya, Selangor, Malaysia
| | - Shin-Yee Fung
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Patel P, Garala K, Bagada A, Singh S, Prajapati BG, Kapoor D. Phyto-pharmaceuticals as a safe and potential alternative in management of psoriasis: a review. Z NATURFORSCH C 2024:znc-2024-0153. [PMID: 39529585 DOI: 10.1515/znc-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Psoriasis is a chronic autoimmune skin disease with a worldwide prevalence of 1-3 % results from uncontrolled proliferation of keratinocytes and affects millions of people. While there are various treatment options available, some of them may come with potential side effects and limitations. Recent research has shown that using bioactive compounds that originate from natural sources with a lower risk of side effects are relatively useful in safe management psoriasis. Bioactive compounds are molecules that are naturally available with potential therapeutic efficacy. Some of bioactive compounds that have shown promising results in the management of psoriasis include curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, etc., possess anti-inflammatory, antioxidant, immunomodulatory, and anti-proliferative properties, with capabilities to suppress overall pathogenesis of psoriasis. Moreover, these bioactive compounds are generally considered as safe and are well-tolerated, making them potential options for long-term use in the management of various conditions linked with psoriasis. In addition, these natural products may also offer a more holistic approach to treat the disease, which is appealing to many patients. This review explores the bioactive compounds in mitigation of psoriasis either in native or incorporated within novel drug delivery. Moreover, recent clinical findings in relation to natural product usage have been also explored.
Collapse
Affiliation(s)
- Priya Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat 360005, India
| | - Kevinkumar Garala
- School of Pharmaceutical Sciences, Atmiya University, Rajkot, Gujarat 360005, India
| | - Arti Bagada
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat 360005, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, 79233 Ganpat University , Kherva, Gujarat 384012, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Devesh Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| |
Collapse
|
8
|
Chen W, Byun J, Kang HC, Lee HS, Lee JY, Kwon YJ, Cho YY. Karyoptosis as a novel type of UVB-induced regulated cell death. Free Radic Res 2024; 58:796-810. [PMID: 39625813 DOI: 10.1080/10715762.2024.2433986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Karyoptosis is a type of regulated cell death (RCD) characterized by explosive nuclear rupture caused by a loss of nuclear membrane integrity, resulting in the release of genomic DNA and other nuclear components into the cytosol and extracellular environment. The mechanism underlying karyoptosis involves a delicate balance between the following forces: the expansion force exerted by the tightly packed DNA in the nucleus, the resistance provided by the nuclear lamina at the inner nuclear membrane (INM), and the tensile force from the cytoskeleton that helps position the nucleus at the center of the cytoplasm, allowing it to remain maximally expanded. In addition, CREB3, a type II integral membrane protein with DNA-binding ability, tethers chromatin to the INM, providing a tightening force through chromatin interactions that prevent nuclear membrane rupture. UVB radiation can trigger this process, inducing CREB3-FL cleavage and producing CREB3-CF. Therefore, UVB acts as an intrinsic factor in the induction of karyoptosis. Importantly, biochemical analysis of RCD markers shows that karyoptosis is distinct from other forms of cell death, such as apoptosis, autophagy, necroptosis, and pyroptosis. This review explores the mechanisms involved in maintaining nuclear membrane integrity and the role of CREB3 in triggering karyoptosis and provides brief suggestions on the potential implications for targeting cancer cells.
Collapse
Affiliation(s)
- Weidong Chen
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Jiin Byun
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Hye Suk Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Joo Young Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Young Jik Kwon
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Yong-Yeon Cho
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| |
Collapse
|
9
|
Niedźwiedź M, Skibińska M, Ciążyńska M, Noweta M, Czerwińska A, Krzyścin J, Narbutt J, Lesiak A. Psoriasis and Seasonality: Exploring the Genetic and Epigenetic Interactions. Int J Mol Sci 2024; 25:11670. [PMID: 39519223 PMCID: PMC11547062 DOI: 10.3390/ijms252111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Psoriasis is a multifactorial, chronic, and inflammatory disease that severely impacts patients' quality of life. The disease is caused by genetic irregularities affected by epigenetic and environmental factors. Some of these factors may include seasonal changes, such as solar radiation, air pollution, and humidity, and changes in circadian rhythm, especially in the temporal and polar zones. Thus, some psoriasis patients report seasonal variability of symptoms. Through a comprehensive review, we aim to delve deeper into the intricate interplay between seasonality, environmental factors, and the genetic and epigenetic landscape of psoriasis. By elucidating these complex relationships, we strive to provide insights that may inform targeted interventions and personalized management strategies for individuals living with psoriasis.
Collapse
Affiliation(s)
- Michał Niedźwiedź
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Małgorzata Skibińska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Magdalena Ciążyńska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Marcin Noweta
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Agnieszka Czerwińska
- Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland; (A.C.); (J.K.)
| | - Janusz Krzyścin
- Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland; (A.C.); (J.K.)
| | - Joanna Narbutt
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Aleksandra Lesiak
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
- Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
10
|
Zhang J, Wu F, Wang J, Qin Y, Pan Y. Unveiling the Metabolomic Profile of Oily Sensitive Skin: A Non-Invasive Approach. Int J Mol Sci 2024; 25:11033. [PMID: 39456816 PMCID: PMC11507585 DOI: 10.3390/ijms252011033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Skin barrier impairment is becoming increasingly common due to changes in lifestyle and modern living environments. Oily sensitive skin (OSS) is a condition that is characterized by an impaired skin barrier. Thus, examining the differences between OSS and healthy skin will enable a more objective evaluation of the characteristics of OSS and facilitate investigations of potential treatments. Initially, a self-assessment questionnaire was used to identify patients with OSS. Biophysical measurements and LAST scores were used to determine whether skin barrier function was impaired. Epidermal biophysical properties, including skin hydration, transepidermal water loss (TEWL), sebum content, erythema index (EI), and a* value, were measured with noninvasive instruments. We subsequently devised a noninvasive D-square sampling technique to identify changes in the skin metabolome in conjunction with an untargeted metabolomics analysis with an Orbitrap Q ExactiveTM series mass spectrometer. In the stratum corneum of 47 subjects, 516 skin metabolites were identified. In subjects with OSS, there was an increase in the abundance of 15 metabolites and a decrease in the abundance of 48 metabolites. The participants with OSS were found to have the greatest disruptions in sphingolipid and amino acid metabolism. The results revealed that an impaired skin barrier is present in patients with OSS and offers a molecular target for screening for skin barrier damage.
Collapse
Affiliation(s)
| | | | | | | | - Yao Pan
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (F.W.); (J.W.); (Y.Q.)
| |
Collapse
|
11
|
Phuphanitcharoenkun S, Louis F, Sowa Y, Uchida K, Katsuyama M, Waditee-Sirisattha R, Kageyama H, Matsusaki M, Palaga T. Characterization of macrophages associated with human skin models exposed to UV radiation. Commun Biol 2024; 7:1284. [PMID: 39379484 PMCID: PMC11461876 DOI: 10.1038/s42003-024-06975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Skin macrophages play important roles in the response to external stimuli. Human skin equivalents (HSEs) incorporating the human monocytic cell line THP-1 were fabricated to generate immunocompetent human skin models. These HSEs were used to investigate the influence of the skin microenvironment and ultraviolet A (UVA) on macrophages. Transcriptomic analysis revealed that THP-1 cells in HSEs were enriched in extracellular matrix interaction hallmark but downregulated in DNA replication hallmark. Upon UVA exposure, immunocompetent HSEs presented epidermal distortion and increased DNA double-strand breaks (DSBs). The genes associated with oxidative stress and the inflammatory response were significantly upregulated in THP-1 cells. When the photoprotective agent mycosporine-2-glycine from cyanobacteria was applied to HSEs, the incidence of UVA-induced DSBs was significantly lower, and inflammatory and UV response hallmarks were downregulated in THP-1 cells. Taken together, these results suggest that immunocompetent HSEs can be used to investigate the responses of skin-resident macrophages to external stimuli.
Collapse
Affiliation(s)
- Suphanun Phuphanitcharoenkun
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Plastic Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation Kadoma, Osaka, 571-8686, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation Kadoma, Osaka, 571-8686, Japan
| | | | - Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Kim Y, Kim BJ, Seok J, Han HS, Yoo KH, Choi SY. Cold Plasma Ameliorates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice. Skin Res Technol 2024; 30:e70071. [PMID: 39349353 PMCID: PMC11442018 DOI: 10.1111/srt.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
OBJECTIVES Cold plasma has shown efficacy in various dermatological applications by reduces inflammatory responses and modulating cytokine expression. Therefore, this study aimed to investigate the therapeutic effects of cold plasma on psoriasis. METHODS In psoriasis HaCaT cells with cold plasma, we confirmed the expression of inflammatory cytokines involved in psoriasis formation and MAPK pathway, cell cycle, and apoptosis-related factors. In psoriasis-like BALB/c mice model, the effects of cold plasma treatment on skin were visually assessed. The expression of psoriasis-related factors was confirmed through qPCR, Western blotting, and Immunohistochemistry. RESULTS Cold plasma led to a reduction in inflammatory cytokines including IL-17A, IL-23A, IL-24, IL-1β, and TNF-α in the psoriasis cell line. It also modulated factors involved in the MAPK pathway and the cell cycle. In the psoriasis-like mice model, cold plasma resulted in improvements in skin thickness, erythema, scaling, and PASI. Additionally, decreases in inflammatory cytokines like INF-γ, IL-23, and S100a7 were observed, along with improvements in MAPK pathway activation, apoptosis, and other psoriasis-related factors. CONCLUSION Through in vitro and in vivo studies, our research highlights the potential of cold plasma as a novel therapeutic approach for psoriasis. Furthermore, cold plasma could serve as an adjunctive treatment for skin immunological diseases.
Collapse
Affiliation(s)
- Yu‐Jin Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulRepublic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung‐Ang University HospitalChung‐Ang University College of MedicineSeoulRepublic of Korea
| | - Joon Seok
- Department of Dermatology, Chung‐Ang University HospitalChung‐Ang University College of MedicineSeoulRepublic of Korea
| | - Hye Sung Han
- Department of Dermatology, Chung‐Ang University Gwangmyeong HospitalChung‐Ang University College of MedicineGyeonggi‐doRepublic of Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung‐Ang University Gwangmyeong HospitalChung‐Ang University College of MedicineGyeonggi‐doRepublic of Korea
| | - Sun Young Choi
- Department of Dermatology, Chung‐Ang University Gwangmyeong HospitalChung‐Ang University College of MedicineGyeonggi‐doRepublic of Korea
| |
Collapse
|
13
|
Doğan A, Akocak S. Natural products as tyrosinase inhibitors. Enzymes 2024; 56:85-109. [PMID: 39304292 DOI: 10.1016/bs.enz.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinase is a crucial copper-containing enzyme involved in the production of melanin. Melasma, age spots, and freckles are examples of hyperpigmentation diseases caused by excess production of melanin. Inhibiting tyrosinase activity is a crucial method for treating these disorders along with various applications such as cosmetics, food technology, and medicine. Natural products have proven a rich source of tyrosinase inhibitors, with several molecules from plant, marine, and microbial sources showing potential inhibitory action. This chapter provides a complete overview of natural compounds that have been found as tyrosinase inhibitors, with emphasis on their structures, modes of action, and prospective applications.
Collapse
Affiliation(s)
- Aslınur Doğan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye.
| |
Collapse
|
14
|
Hegde AR, Kunder MU, Narayanaswamy M, Murugesan S, Furtado SC, Veerabhadraiah BB, Srinivasan B. Advancements in sunscreen formulations: integrating polyphenolic nanocarriers and nanotechnology for enhanced UV protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38061-38082. [PMID: 38806984 DOI: 10.1007/s11356-024-33712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Sunscreens are essential in protecting the skin from harmful effects of ultraviolet radiation (UVR). These formulations, designed to absorb, block, or scatter UVR, offer vital protection against skin aging, sunburns, and the development of skin cancers like melanomas. However, some sunscreens, especially those containing organic/chemical compounds, can cause allergic reactions. To address this, researchers are extensively investigating formulations that incorporate plant extracts rich in polyphenols, such as flavonoids and carotenoids, which can be considered safer alternatives. Products derived from plants are commonly used in cosmetics to counteract skin aging due to their antioxidant activity that combat harmful free radicals. This review focuses on evaluating the advancements in chemical and natural sunscreens, exploring the integration of polyphenolic nanocarriers within sunscreen formulas, their interaction with UVR, and utilizing nanotechnology to enhance their effectiveness. An attempt has been made to highlight the concerns related to toxicity associated with their use and notable advancements in the regulatory aspects governing their utilization.
Collapse
Affiliation(s)
- Aswathi Raju Hegde
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India.
| | - Manisha Uday Kunder
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Megha Narayanaswamy
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Shruthi Murugesan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Sharon Caroline Furtado
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Basavaraj Basappa Veerabhadraiah
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Bharath Srinivasan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| |
Collapse
|
15
|
Gary AS, Amouret S, Montoni A, Rochette PJ. MLKL, a new actor of UVB-induced apoptosis in human diploid dermal fibroblasts. Cell Death Discov 2024; 10:232. [PMID: 38744823 PMCID: PMC11093999 DOI: 10.1038/s41420-024-02004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Ultraviolet radiation (UVR) is a major environmental mutagen. In skin, UVR can initiate cancer through the induction of mutagenic DNA damage and promote its progression. An important cancer prevention mechanism is the regulated cell death (RCD), which can safely dispose of damaged cells. Apoptosis, a well-known RCD, is known to be activated by UVR, but part of the mechanism and proteins involved in UVR-induced apoptosis are still to be discovered. Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) are two proteins involved in necroptosis, a form of RCD. Here, we have evaluated the implication of RIPK3 and MLKL in UVB-induced cell death in human diploid dermal fibroblasts. Our results show that RIPK3 and MLKL play opposite roles in UVB-induced cell death, in a necroptosis independent pathway. We showed that RIPK3 protects cells from UVB cell death, while MLKL sensitizes cells to UVB-induced apoptosis. Taken together these results are the first to show the implication of RIPK3 and MLKL in survival and apoptosis, respectively, bringing two new actors in UVB-induced cell death pathway.
Collapse
Affiliation(s)
- Anne-Sophie Gary
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
| | - Sophie Amouret
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
| | - Alicia Montoni
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
| | - Patrick J Rochette
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada.
- Département d'Ophtalmologie et ORL - chirurgie cervico-faciale, Université Laval, Québec, QC, Canada.
| |
Collapse
|
16
|
Truong VL, Bae YJ, Bang JH, Jeong WS. Combination of red ginseng and velvet antler extracts prevents skin damage by enhancing the antioxidant defense system and inhibiting MAPK/AP-1/NF-κB and caspase signaling pathways in UVB-irradiated HaCaT keratinocytes and SKH-1 hairless mice. J Ginseng Res 2024; 48:323-332. [PMID: 38707646 PMCID: PMC11068995 DOI: 10.1016/j.jgr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 05/07/2024] Open
Abstract
Background Studies have reported that the combination of two or more therapeutic compounds at certain ratios has more noticeable pharmaceutical properties than single compounds and requires reduced dosage of each agent. Red ginseng and velvet antler have been extensively used in boosting immunity and physical strength and preventing diseases. Thus, this study was conducted to elucidate the skin-protective potentials of red ginseng extract (RGE) and velvet antler extract (VAE) alone or in combination on ultraviolet (UVB)-irradiated human keratinocytes and SKH-1 hairless mice. Methods HaCaT cells were preincubated with RGE/VAE alone or in combination for 2 h before UVB (30 mJ/cm2) irradiation. SKH-1 mice were orally given RGE/VAE alone or in combination for 15 days before exposure to single dose of UVB (600 mJ/cm2). Treated cells and treated skin tissues were collected and subjected to subsequent experiments. Results RGE/VAE pretreatment alone or in combination significantly prevented UVB-induced cell death, apoptosis, reactive oxygen species production, and DNA damage in keratinocytes and SKH-1 mouse skins by downregulating mitogen-activated protein kinases/activator protein 1/nuclear factor kappa B and caspase signaling pathways. These extracts also strengthened the antioxidant defense systems and skin barriers in UVB-irradiated HaCaT cells and SKH-1 mouse skins. Furthermore, RGE/VAE co-administration appeared to be more effective in preventing UVB-caused skin injury than these extracts used alone. Conclusion Overall, these findings suggest that the consumption of RGE/VAE, especially in combination, offers a protective ability against UVB-caused skin injury by preventing inflammation and apoptosis and enhancing antioxidant capacity.
Collapse
Affiliation(s)
| | | | | | - Woo-Sik Jeong
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
17
|
Patrignoni L, Hurtier A, Orlacchio R, Joushomme A, Poulletier de Gannes F, Lévêque P, Arnaud-Cormos D, Revzani HR, Mahfouf W, Garenne A, Percherancier Y, Lagroye I. Evaluation of mitochondrial stress following ultraviolet radiation and 5G radiofrequency field exposure in human skin cells. Bioelectromagnetics 2024; 45:110-129. [PMID: 38115173 DOI: 10.1002/bem.22495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.5 GHz radiofrequency (RF) EMF on mitochondrial stress in human fibroblasts and keratinocytes that were exposed for 24 h at specific absorption rate of 0.25, 1, and 4 W/kg. We assessed cell viability, mitochondrial reactive oxygen species (ROS) production, and membrane polarization. Knowing that human skin is the main target of environmental ultraviolet (UV), using the same read-out, we investigated whether subsequent exposure to 5G signal could alter the capacity of UV-B to damage skin cells. We found a statistically significant reduction in mitochondrial ROS concentration in fibroblasts exposed to 5G signal at 1 W/kg. On the contrary, the RF exposure slightly but statistically significantly enhanced the effects of UV-B radiation specifically in keratinocytes at 0.25 and 1 W/kg. No effect was found on mitochondrial membrane potential or apoptosis in any cell types or exposure conditions suggesting that the type and amplitude of the observed effects are very punctual.
Collapse
Affiliation(s)
- Lorenza Patrignoni
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | - Annabelle Hurtier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Rosa Orlacchio
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | | | | | - Philippe Lévêque
- Univ. Limoges, CNRS, XLIM / UMR 7252, RF-ELITE team, Limoges, France
| | | | | | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC / UMR 1312, TRIO2 team, Bordeaux, France
| | - André Garenne
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Yann Percherancier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Isabelle Lagroye
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| |
Collapse
|
18
|
Lalremtluangi R, Dangore-Khasbage S. Non-Habit-Related Oral Squamous Cell Carcinoma: A Review. Cureus 2024; 16:e54594. [PMID: 38523993 PMCID: PMC10959472 DOI: 10.7759/cureus.54594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a serious and potentially life-threatening condition that can have a profound impact on an individual's health and well-being. Its etiology is commonly known to be habit induced, such as tobacco consumption, smoking, or alcohol abuse. Apart from these etiologies, certain factors that lead to OSCC are also present but are less frequently encountered in hospitals and clinics. However, these non-habitual factors, with their pathogenesis, can lead to OSCC, which may be confusing to certain medical practitioners. This article discusses the various non-habitual causes that can lead to OSCC, as well as their pathophysiology, molecular expression, and related indicators and prognostic factors.
Collapse
Affiliation(s)
- Rosalyn Lalremtluangi
- Oral Medicine and Radiology, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | | |
Collapse
|
19
|
Wei M, He X, Liu N, Deng H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div 2024; 19:1. [PMID: 38217019 PMCID: PMC10787507 DOI: 10.1186/s13008-024-00107-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Reactive oxygen species (ROS), such as superoxides (O2 •-) and hydroxyl groups (OH·), are short-lived molecules containing unpaired electrons. Intracellular ROS are believed to be mainly produced by the mitochondria and NADPH oxidase (NOX) and can be associated with various physiological processes, such as proliferation, cell signaling, and oxygen homeostasis. In recent years, many studies have indicated that ROS play crucial roles in regulating ultraviolet (UV)-induced photodamage of the skin, including exogenous aging, which accounts for 80% of aging. However, to the best of our knowledge, the detailed signaling pathways, especially those related to the mechanisms underlying apoptosis in which ROS are involved have not been reviewed previously. In this review, we elaborate on the biological characteristics of ROS and its role in regulating UV-induced photodamage of the skin.
Collapse
Affiliation(s)
- Min Wei
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin He
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Na Liu
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Deng
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Chen J, Yin Z, Yu N, Ou S, Wang X, Li H, Zhu H. Tanshinone Alleviates UVA-induced Melanogenesis in Melanocytes via the Nrf2-regulated Antioxidant Defense Signaling Pathway. Curr Mol Med 2024; 24:1529-1539. [PMID: 37921187 DOI: 10.2174/0115665240263196230920161019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND As a complex of natural plant compounds, tanshinone is renowned for its remarkable antioxidant properties. However, the potential impact of tanshinone on melanocyte pigmentation regulation has yet to be elucidated. This study aimed to explore the protective effects of tanshinone I (T-I) and dihydrotanshinone (DHT) on melanogenesis by modulating nuclear factor E2-related factor 2 (Nrf2) signaling and antioxidant defenses in human epidermal melanocyte (HEM) cells. METHODS HEM cells and Nrf2 knockdown HEM cells were subjected to ultraviolet A (UVA) and treated with T-I and/or DHT. Then, the anti-melanogenic properties of T-I and DHT were examined by assessing tyrosinase activity, melanogenesis-related proteins, and melanin content in UVA-irradiated HEM cells. Furthermore, the antioxidant activities of T-I and DHT were evaluated by assessing oxidant formation and modulation of Nrf2-related antioxidant defenses, including reactive oxygen species (ROS), glutathione (GSH) content, and the activity and expression of antioxidant enzymes, such as catalase (CAT), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD). RESULTS Our findings revealed that T-I and DHT diminished melanogenesis in UVAirradiated HEM cells, activated Nrf2-antioxidant response element signaling, and enhanced antioxidant defenses in the irradiated cells. Furthermore, Nrf2 knockdown by shRNA abolished the anti-melanogenesis effects of T-I and DHT on HEM cells against oxidative damage. CONCLUSION These results suggest that T-I and DHT inhibit UVA-induced melanogenesis in HEM cells, possibly through redox mechanisms involving Nrf2 signaling activation and increased antioxidant defenses. This indicates that T-I and DHT have potential as whitening agents in cosmetics and medical treatments for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Jiaoquan Chen
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong 510095, China
| | - Zonghao Yin
- Department of Dermatology, The third People's Hospital of ShenZhen, Shenzhen, Guangdong, 518112, China
| | - Nanji Yu
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong 510095, China
| | - Shanshan Ou
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong 510095, China
| | - Xue Wang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong 510095, China
| | - Huaping Li
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong 510095, China
| | - Huilan Zhu
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong 510095, China
| |
Collapse
|
21
|
Schleusener J, Lohan SB, Busch L, Zamudio Díaz DF, Opitz N, Sicher C, Lichtenthäler T, Danker K, Dommerich S, Filler T, Meinke MC, Zwicker P. Irradiation of human oral mucosa by 233 nm far UV-C LEDs for the safe inactivation of nosocomial pathogens. Sci Rep 2023; 13:22391. [PMID: 38104221 PMCID: PMC10725486 DOI: 10.1038/s41598-023-49745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The inactivation of multi resistant pathogens is an important clinical need. One approach is UV-C irradiation, which was previously not possible in vivo due to cytotoxicity. Recently, far UV-C irradiation at λ < 240 nm was successfully used on skin with negligible damage. A potential application site is the nasal vestibule, where MRSA accumulates and cannot be treated using antiseptics. We irradiated 3D mucosa models and excised human mucosa with 222 and 233 nm far UV-C in comparison to 254 nm and broadband UV-B. Eradication efficiency was evaluated by counting colony forming units; irritation potential was evaluated by hen's egg-chorioallantoic membrane assay and trans epithelial electrical resistance; cell viability was assessed by MTT. DNA damage and cell protective mechanisms were evaluated immunohistopathologically. On mucosa models, MRSA reduced by ≈ 5 log10 for 60 mJ/cm2 irradiation at 233 nm. A slightly increased cell viability was observed after 24 h. Lower doses showed lower irritation potential than the positive controls or commercial mouthwash, while 80 mJ/cm2 had strong irritation potential. DNA damage occurred only superficially and decreased after 24 h. On excised human mucosa, < 10% of keratinocytes were affected after 150 mJ/cm2 222 nm or 60 mJ/cm2 233 nm.
Collapse
Affiliation(s)
- Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Silke B Lohan
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Loris Busch
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert‑Koch‑Str. 4, 35032, Marburg, Germany
| | - Daniela F Zamudio Díaz
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Nevin Opitz
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand‑Sauerbruch‑Str., 17475, Greifswald, Germany
| | - Claudia Sicher
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand‑Sauerbruch‑Str., 17475, Greifswald, Germany
| | - Tom Lichtenthäler
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand‑Sauerbruch‑Str., 17475, Greifswald, Germany
| | - Kerstin Danker
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Steffen Dommerich
- Department of Otorhinolaryngology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas Filler
- Ferdinand-Braun-Institut (FBH), Gustav‑Kirchhoff‑Str. 4, 12489, Berlin, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paula Zwicker
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand‑Sauerbruch‑Str., 17475, Greifswald, Germany
| |
Collapse
|
22
|
Lin X, Chu J, Xiang Y, He M, Ma Q, Duan J, Wang Y, Sun S. Kangfuxin liquid reduces the ultraviolet B-induced photodamage of HaCaT cells by regulating autophagy. Biosci Biotechnol Biochem 2023; 87:1485-1494. [PMID: 37682519 DOI: 10.1093/bbb/zbad130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Kangfuxin liquid (KFX), an extract of the American cockroach, has been clinically proven to be effective in various skin damage disorders, but there are no reports on its use in photodamage. We explored the effect of KFX on ultraviolet B (UVB)-induced photodamage and whether its mechanism was related to autophagy. We found that KFX treatment reduced UVB-induced reactive oxygen species production and improved the vitality of cells inhibited by UVB irradiation. The expression of LC3 (A/B), which was inhibited after UVB irradiation, could be rescued by KFX treatment. Furthermore, KFX may upregulate the level of cellular autophagy by regulating the AMPK-mTOR signaling pathway. When the autophagy inhibitor wortmannin was used to inhibit autophagy, the protective effect of KFX on cells was diminished or even disappeared. Our study suggests that KFX may resist UVB-mediated oxidative stress damage of HaCaT through the induction of autophagy.
Collapse
Affiliation(s)
- Xianghong Lin
- College of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Jimin Chu
- Department of Skin Medical Beauty, People's Hospital of Pengshui County, Pengshui, Chongqing, China
| | - Yang Xiang
- Key Laboratory of Human Aging in Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Miao He
- College of Pharmacy and Chemistry, Dali University, Dali, Yunnan, China
| | - Qiong Ma
- Department of Medical Cosmetology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Jingxian Duan
- Department of Medical Cosmetology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Yan Wang
- Department of Medical Cosmetology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Sujiao Sun
- Department of Medical Cosmetology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| |
Collapse
|
23
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
24
|
Sharma AA, Rakshita M, Pradhan PP, Prasad KAKD, Mishra S, Jayanthi K, Haranath D. Noninvasive treatment of psoriasis and skin rejuvenation using an akermanite-type narrowband emitting phosphor. LUMINESCENCE 2023; 38:1668-1677. [PMID: 37434298 DOI: 10.1002/bio.4554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Psoriasis is a noncontagious, long-lasting skin infection that affects many people around the world. Numerous therapeutic artificial treatments are available for the treatment of psoriasis, such as photodynamic therapy using broadband ultraviolet (UV) lamps, which have harmful effects on human skin. Similarly, the natural healing systems such as sunlight have a higher risk of sunburn and can cause dangerous forms of skin cancer. Significant light emission of a specific wavelength (in the UV range), and phosphor-based devices demonstrate the effectiveness of treating psoriasis without damaging the skin. Gd3+ -doped calcium magnesium silicate [Ca2 MgSi2 O7 :Gd3+ ,(CMS:Gd3+ )] phosphor is one of the ideal phosphors that emit specific narrow UV wavelengths for curing psoriasis and is in great demand in the field of dermatology. Photoluminescence analysis at room temperature (~25°C) shows that the synthesized CMS:Gd3+ phosphor emits narrowband UV-B light with a peak intensity at 314 nm. Comparative studies of the standard action spectrum of psoriasis with the emission spectrum of the CMS:Gd3+ phosphor show that the synthesized phosphor was the most suitable material for treating a variety of diseases, including psoriasis, vitiligo, type-1 diabetes, dental disease, sleep and mood disorders, and other skin diseases.
Collapse
Affiliation(s)
- Aachal A Sharma
- Luminescence Materials and Devices (LMD) Group, Department of Physics, National Institute of Technology Warangal, Telangana, India
| | - M Rakshita
- Luminescence Materials and Devices (LMD) Group, Department of Physics, National Institute of Technology Warangal, Telangana, India
| | - Payal P Pradhan
- Luminescence Materials and Devices (LMD) Group, Department of Physics, National Institute of Technology Warangal, Telangana, India
| | - K A K Durga Prasad
- Luminescence Materials and Devices (LMD) Group, Department of Physics, National Institute of Technology Warangal, Telangana, India
| | - Siju Mishra
- Luminescence Materials and Devices (LMD) Group, Department of Physics, National Institute of Technology Warangal, Telangana, India
| | - K Jayanthi
- Department of Physical and Chemical Sciences, Sri Satya Sai University of Human Excellence, Kalaburagi, Karnataka, India
| | - D Haranath
- Luminescence Materials and Devices (LMD) Group, Department of Physics, National Institute of Technology Warangal, Telangana, India
| |
Collapse
|
25
|
Lundsgaard NU, Hird C, Doody KA, Franklin CE, Cramp RL. Carryover effects from environmental change in early life: An overlooked driver of the amphibian extinction crisis? GLOBAL CHANGE BIOLOGY 2023; 29:3857-3868. [PMID: 37310166 DOI: 10.1111/gcb.16726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 06/14/2023]
Abstract
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280-400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Coen Hird
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Kathleen A Doody
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
26
|
Sreya R, Nene S, Pathade V, Singh SB, Srivastava S. Emerging trends in combination strategies with phototherapy in advanced psoriasis management. Inflammopharmacology 2023:10.1007/s10787-023-01257-2. [PMID: 37326755 DOI: 10.1007/s10787-023-01257-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
Psoriasis is a non-contagious, chronic, relapsing inflammatory skin disease with cutaneous manifestations such as red, raised scaly plaques. Current treatment approaches for psoriasis comprise topical therapy, systemic therapy, phototherapy, psoralen with UVA(PUVA) and biologics. Regardless of the progression in therapeutic approaches (novel therapies like biologics) in psoriasis, phototherapy is also an economical, compelling and safe treatment option that lacks the immunosuppressive properties as well as the toxicities of traditional modalities. It can be combined safely with other therapeutic options such as topical therapies and novel biologics and provide effective therapy. The aim of the current review is to analyze the literature on the safety as well as the efficacy of phototherapy with various treatment modalities in the management of psoriasis. This review summarizes randomized controlled clinical trials addressing combinations of phototherapy with other treatment modalities for the management of psoriasis. The findings of these clinical studies are elaborated.
Collapse
Affiliation(s)
- Ratnam Sreya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Shweta Nene
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Vrushali Pathade
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
27
|
Long Y, Wang W, Zhang Y, Du F, Zhang S, Li Z, Deng J, Li J. Photoprotective Effects of Dendrobium nobile Lindl. Polysaccharides against UVB-Induced Oxidative Stress and Apoptosis in HaCaT Cells. Int J Mol Sci 2023; 24:ijms24076120. [PMID: 37047098 PMCID: PMC10094248 DOI: 10.3390/ijms24076120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Acute ultraviolet (UV)-B radiation is the major external factor causing photodamage. In this study, we aimed to determine the effects of Dendrobium nobile Lindl. polysaccharides (DNPs) on photodamage in HaCaT keratinocytes after UVB irradiation and the underlying mechanisms. We found that DNPs significantly attenuated the decline in the viability and proliferation of HaCaT cells after UVB irradiation. Moreover, DNPs scavenged reactive oxygen species (ROS), improved the activities of endogenous antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, and reduced the levels of malondialdehyde, while partially attenuating cell cycle arrest, suggesting their antioxidant and anti-apoptotic properties. The mitogen-activated protein kinase (MAPK) pathway was found to be important for the attenuation of UVB-induced photodamage in the HaCaT cells. Furthermore, DNPs exerted cytoprotective effects by downregulating UVB-induced ROS-mediated phosphorylation of MAPKs, including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase, and by inhibiting p53 expression as well as the apoptotic cascade response. Therefore, DNPs ameliorated UVB-induced oxidative damage and apoptosis in HaCaT cells via the regulation of MAPKs. Our findings thus highlight the Dendrobium nobile Lindl polysaccharides as promising therapeutic candidates for UVB-induced photodamage.
Collapse
Affiliation(s)
- Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yanyan Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
28
|
New-Aaron M, Koganti SS, Ganesan M, Kanika S, Kumar V, Wang W, Makarov E, Kharbanda KK, Poluektova LY, Osna NA. Hepatocyte-Specific Triggering of Hepatic Stellate Cell Profibrotic Activation by Apoptotic Bodies: The Role of Hepatoma-Derived Growth Factor, HIV, and Ethanol. Int J Mol Sci 2023; 24:5346. [PMID: 36982417 PMCID: PMC10049507 DOI: 10.3390/ijms24065346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Liver disease is one of the leading comorbidities in HIV infection. The risk of liver fibrosis development is potentiated by alcohol abuse. In our previous studies, we reported that hepatocytes exposed to HIV and acetaldehyde undergo significant apoptosis, and the engulfment of apoptotic bodies (ABs) by hepatic stellate cells (HSC) potentiates their pro-fibrotic activation. However, in addition to hepatocytes, under the same conditions, ABs can be generated from liver-infiltrating immune cells. The goal of this study is to explore whether lymphocyte-derived ABs trigger HSC profibrotic activation as strongly as hepatocyte-derived ABs. ABs were generated from Huh7.5-CYP2E1 (RLW) cells and Jurkat cells treated with HIV+acetaldehyde and co-culture with HSC to induce their pro-fibrotic activation. ABs cargo was analyzed by proteomics. ABs generated from RLW, but not from Jurkat cells activated fibrogenic genes in HSC. This was driven by the expression of hepatocyte-specific proteins in ABs cargo. One of these proteins is Hepatocyte-Derived Growth Factor, for which suppression attenuates pro-fibrotic activation of HSC. In mice humanized with only immune cells but not human hepatocytes, infected with HIV and fed ethanol, liver fibrosis was not observed. We conclude that HIV+ABs of hepatocyte origin promote HSC activation, which potentially may lead to liver fibrosis progression.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Siva Sankar Koganti
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Sharma Kanika
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Vikas Kumar
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Weimin Wang
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Edward Makarov
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
29
|
Melo CPB, Saito P, Martinez RM, Staurengo-Ferrari L, Pinto IC, Rodrigues CCA, Badaro-Garcia S, Vignoli JA, Baracat MM, Bussmann AJC, Georgetti SR, Verri WA, Casagrande R. Aspirin-Triggered Resolvin D1 (AT-RvD1) Protects Mouse Skin against UVB-Induced Inflammation and Oxidative Stress. Molecules 2023; 28:molecules28052417. [PMID: 36903662 PMCID: PMC10005614 DOI: 10.3390/molecules28052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.
Collapse
Affiliation(s)
- Cristina P. B. Melo
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Priscila Saito
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Renata M. Martinez
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Immunology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ingrid C. Pinto
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Camilla C. A. Rodrigues
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Stephanie Badaro-Garcia
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Allan J. C. Bussmann
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| |
Collapse
|
30
|
Azadeh SS, Esmaeeli Djavid G, Nobari S, Keshmiri Neghab H, Rezvan M. Light-Based Therapy: Novel Approach to Treat COVID-19. TANAFFOS 2023; 22:279-289. [PMID: 38638386 PMCID: PMC11022193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/01/2023] [Indexed: 04/20/2024]
Abstract
The pandemic outbreak of Coronavirus disease 2019 (COVID-19) which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), is a new viral infection in all countries around the world. An increase in inflammatory cytokines, fever, dry cough, and pneumonia are the main symptoms of COVID-19. A shared of growing clinical evidence confirmed that cytokine storm correlates with COVID-19 severity which is also a crucial cause of death from COVID-19. The success of anti-inflammatory therapies in the recovery process of COVID-19 patients has been well established. Over the years, phototherapy (PhT) has been identified as a promising non-invasive treatment approach for inflammatory conditions. New evidence suggests that PhT as an anti-inflammatory therapy may be effective in treating acute respiratory distress syndrome (ARDS) and COVID-19. This review aims to a comprehensive overview of the direct and indirect effects of anti-inflammatory mechanisms of PhT in ARDS and COVID-19 patients.
Collapse
Affiliation(s)
- Seyedeh Sara Azadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Sima Nobari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hoda Keshmiri Neghab
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Motahareh Rezvan
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Porrawatkul P, Nuengmatcha P, Kuyyogsuy A, Pimsen R, Rattanaburi P. Effect of Na and Al doping on ZnO nanoparticles for potential application in sunscreens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 240:112668. [PMID: 36774718 DOI: 10.1016/j.jphotobiol.2023.112668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
This study investigated the environment-friendly production and characterization of zinc oxide nanoparticles (ZnO NPs) doped with sodium (Na) and aluminum (Al) metals to decrease the photocatalytic activity of ZnO for use in sunscreen. The metal-doped zinc oxide (ZnO) materials were prepared by the microwave method using extracts of Averrhoa carambola, also known as star fruit, as a reducing agent. The effects of metal-ion doping on the crystal structure, morphology, and optical characteristics of ZnO were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), and ultraviolet-visible (UV-Vis) spectroscopy. The sun protection factor (SPF) of the sunscreen formulations containing undoped ZnO, Na-doped ZnO (Na/ZnO), and Al-doped ZnO (Al/ZnO) NPs were found to be 10.10, 25.10, and 43.08, respectively. Therefore, Na/ZnO and Al/ZnO showed increased SPF. Additionally, the prepared nanomaterials and sunscreens were effective against Gram-positive and Gram-negative bacteria and showed antioxidant activities. The methylene blue (MB) degradation was used to evaluate the photocatalytic activities of the undoped ZnO, Na/ZnO, and Al/ZnO NPs, which were found to be 66%, 46%, and 38%, respectively. Therefore, due to the structural defects of ZnO NPs, their photocatalytic activity was decreased with Na- and Al- doping. Additionally, Al/ZnO is an ideal candidate as an ingredient in sunscreens.
Collapse
Affiliation(s)
| | - Prawit Nuengmatcha
- Creative Innovation in Science and Technology; Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand.
| | - Arnannit Kuyyogsuy
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Rungnapa Pimsen
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Parintip Rattanaburi
- Department of General Science, Faculty of Education, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| |
Collapse
|
32
|
The Biological Role of Dead Sea Water in Skin Health: A Review. COSMETICS 2023. [DOI: 10.3390/cosmetics10010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Applying natural mineral water to skin care is a popular tendency and many cosmetics products based on thermal spring water have been developed. The special location and environmental conditions provide Dead Sea water (DSW) with unique ion composition and concentrations, which bring comprehensive positive effects on skin health. This article reviews two potential action modes of DSW, and the biological function of DSW and its related complex in dermatology and skin care. Previous studies have proved the functions of skin moisturization, anti-inflammation, skin barrier repair, and anti-pollution. Especially, the anti-aging effect of DSW and related complexes can act in three different ways: keratinocyte rejuvenation, photo-protection, and cellular energy elevation. Additionally, the issues that need further investigation are also discussed. We hope that this review will help to improve the understanding of DSW and its related complex, and further contribute to product development in the skincare industry.
Collapse
|
33
|
Bai F, Fan C, Lin X, Wang HY, Wu B, Feng CL, Zhou R, Wu YW, Tang W. Hemin protects UVB-induced skin damage through inhibiting keratinocytes apoptosis and reducing neutrophil infiltration. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112604. [PMID: 36525776 DOI: 10.1016/j.jphotobiol.2022.112604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Ultraviolet-B (UVB) exposure on the skin triggers apoptosis, oxidative stress and acute inflammatory responses, which eventually increases the risk of various skin disorders. Hemin, an iron-binding porphyrin, has been clinically used for porphyria treatment. However, whether hemin contributes to the skin protection against UVB injury remains to be elucidated. Here, we found that hemin treatment (10 and 20 mg/kg) by intraperitoneal administration could dramatically relieve UVB irradiation-induced skin damage featured by erythema, edema, epidermal hyperplasia and collagen loss in C57BL/6 J mice. Importantly, hemin treatment attenuated UVB irradiation-triggered cell apoptosis in skin epidermis. Consistently, hemin (10, 20 μM) treatment decreased Caspase-3 activation and protected against UVB-induced apoptosis in HaCaT cells. Besides, hemin treatment reduced the infiltration of neutrophils in skin under UVB irradiation, thus restrained neutrophil extracellular traps (NET) formation and myeloperoxidase (MPO) release. We further revealed that hemin inhibited the expression of inflammation associated cytokines and chemokines in UVB-induced HaCaT cells and blocked the chemotaxis of dHL-60 cells to preconditioned media from HaCaT culture upon UVB irradiation. Furthermore, hemin inhibited the excessive maturation and mobilization of bone marrow neutrophils and rectified the proportion of abnormally elevated neutrophils in the blood under UVB irradiation. In conclusion, our study showed that hemin treatment protects against UVB-induced skin damage through inhibiting keratinocytes apoptosis, and suppressing neutrophils infiltration in the skin via externally restraining the keratinocyte attraction and internally regulating bone marrow neutrophil maturation and mobilization, suggesting that hemin is an effective drug candidate for the therapy of UVB damage.
Collapse
Affiliation(s)
- Fang Bai
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Fan
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Lin
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao-Yu Wang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Lan Feng
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zhou
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Wei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wei Tang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Geniposidic Acid from Eucommia ulmoides Oliver Staminate Flower Tea Mitigates Cellular Oxidative Stress via Activating AKT/NRF2 Signaling. Molecules 2022; 27:molecules27238568. [PMID: 36500666 PMCID: PMC9739628 DOI: 10.3390/molecules27238568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides Oliver staminate flower (ESF) tea enjoys a good reputation in folk medicine and displays multiple bioactivities, such as antioxidant and antifatigue properties. However, the underlying biological mechanisms remain largely unknown. In this study, we aimed to investigate whether ESF tea can mitigate cellular oxidative stress. Crude ethyl alcohol extract and its three subfractions prepared by sequential extraction with chloroform, n-butyl alcohol and residual water were prepared from ESF tea. The results of antioxidant activity tests in vitro manifested n-butyl alcohol fraction (n-BUF) showed the strongest antioxidant capacity (DPPH: IC50 = 24.45 ± 0.74 μg/mL, ABTS: IC50 = 17.25 ± 0.04 μg/mL). Moreover, all subfractions of ESF tea, especially the n-BUF, exhibited an obvious capacity to scavenge the reactive oxygen species (ROS) and stimulate the NRF2 antioxidative response in human keratinocytes HaCaT treated by H2O2. Using ultra-high-performance liquid chromatography, we identified geniposidic acid (GPA) as the most abundant component in ESF tea extract. Furthermore, it was found that GPA relieved oxidative stress in H2O2-induced HaCaT cells by activating the Akt/Nrf2/OGG1 pathway. Our findings indicated that ESF tea may be a source of natural antioxidants to protect against skin cell oxidative damage and deserves further development and utilization.
Collapse
|
35
|
Lim HS, Simon SE, Yow YY, Saidur R, Tan KO. Photoprotective activities of Lignosus rhinocerus in UV-irradiated human keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115621. [PMID: 35987413 DOI: 10.1016/j.jep.2022.115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lignosus rhinocerus, also known as Tiger Milk Mushroom has been used traditionally to treat a variety of human conditions, including asthma, diabetes, respiratory disease, skin allergy, and food poisoning. The reported activities of Lignosus rhinocerus extracts include anti-inflammatory, anti-oxidant, anti-asthmatic, anti-microbial, anti-cancer, neuroprotection, and immune modulation effects. However, its effect on human skin is not well documented, including human skin exposed to ultraviolet light (UV). Exposure to UV can trigger various cellular responses, including inflammation, oxidative stress, DNA damage, cell death, and cellular aging. AIM OF THE STUDY The study aims to investigate the effects of methanolic extract prepared from cultured Lignosus rhinocerus (herein referred to as TM02 and its methanol extract as TM02-ME) on UV-irradiated human keratinocytes. MATERIALS AND METHODS Powdered stock of TM02 was dissolved and sequentially extracted with different solvents to prepare the extracts and the methanol extract was subsequently characterized based on its bio-activities on HaCaT human keratinocytes. The keratinocytes were pre-treated with the methanol extract followed by UV-irradiation. Cellular responses of the HaCaT cells such as cell viability, DNA damage, as well as gene and protein expressions that were responsive to the treatments, were characterized by using bio-assays, including reverse-transcription based PCR, Western blot, cell viability, and mitochondrial Cytochrome C release assays. RESULTS TM02-ME protected HaCaT cells from UV-induced DNA damage and cell death in a dose-dependent manner. Pre-treatment of HaCaT cells with TM02-ME led to a 39% reduction of cyclobutane pyrimidine dimers (CPD) and up-regulated the gene expression of REV1 and SPINK5 in UVB-irradiated HaCaT cells when compared to the control. In addition, TM-02-ME treated HaCaT cells increased the expression of BCL-XL and BCL-2 proteins which coincided with the down-regulation of mitochondrial Cyt. C release in the UV-B irradiated HaCaT cells. The results were further supported by data that showed the stable clones of HaCaT cells stably expressed BCL-XL were resistant to UVB-induced cell death. CONCLUSIONS __The results showed that TM02-ME confers photoprotective activities to UVB-irradiated HaCaT cells, leading to a reduction in DNA damage and cell death as well as up-regulated the expression of REV1 and SPINK5 which are involved in DNA repair and skin barrier function, respectively. The up-regulation of pro-survival members of the BCL-2 family by TM02-ME confers protection against UVB-induced cell death.
Collapse
Affiliation(s)
- Hui Sin Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Samson Eugin Simon
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - R Saidur
- Research Centre for Nano-materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
36
|
Lizardo MP, Tavaria FK. Probiotic growth in skin-like conditions. AIMS Microbiol 2022; 8:388-402. [PMID: 36694578 PMCID: PMC9834086 DOI: 10.3934/microbiol.2022027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Although probiotics' main known effects are in the digestive system, over the last years several benefits that come from their topical use, have been investigated. Several studies have reported beneficial effects on different skin disorders, such as atopic dermatitis, acne, eczema, psoriasis, wound healing, skin aging and reactive skin. Their main action is assigned to the inhibition of skin colonization by pathogens. In this work, the growths of three probiotic strains were evaluated in the presence of abiotic factors similar to those found in skin, namely, UV radiation, temperature, pH, NaCl and fatty acids. Lactobacillus rhamnosus showed increased growth under the pH of 6, but no differences in its growth were found for the various NaCl concentrations tested. Lactobacillus delbrueckii increased the number of bacterial cells in 88.8% when grown in 10 mM NaCl concentration, while Propioniferax innocua showed increased growth at 45 °C. All tested probiotic bacteria were able to grow under skin-like conditions. However, L. rhamnosus was the probiotic that showed the best results. The results obtained in this study indicate that the used probiotics may be beneficial in the treatment of skin diseases, since they are able to successfully thrive in skin-like conditions.
Collapse
|
37
|
Maz MP, Martens JWS, Hannoudi A, Reddy AL, Hile GA, Kahlenberg JM. Recent advances in cutaneous lupus. J Autoimmun 2022; 132:102865. [PMID: 35858957 PMCID: PMC10082587 DOI: 10.1016/j.jaut.2022.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.
Collapse
Affiliation(s)
- Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alayka L Reddy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
Protective Function of Malus baccata (L.) Borkh Methanol Extract against UVB/Hydrogen Peroxide-Induced Skin Aging via Inhibition of MAPK and NF-κB Signaling. PLANTS 2022; 11:plants11182368. [PMID: 36145769 PMCID: PMC9500733 DOI: 10.3390/plants11182368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Ultraviolet (UV) irradiation induces ROS production, which activates activator protein (AP)-1 and nuclear factor (NF)-κB signaling and downstream molecules, ultimately triggering the generation of matrix metalloproteinases (MMPs) and degradation of collagen. The aim of this study was to investigate the protective effect of methanol extract from Malus baccata (L.) Borkh (Mb-ME) against aging. DPPH and ABTS assays showed that Mb-ME had a significant antioxidant capacity. Flow cytometry results indicated that Mb-ME attenuated UVB and H2O2-stimulated apoptosis and reactive oxygen species (ROS) generation. RT-PCR analysis in HaCaT and HDF cells suggested that Mb-ME treatment blocked the expression of MMPs, COX-2, IL-1β, IL-6, HYALs, and p53 while promoting the levels of TGM1, FLG, HASs, Sirt1, and Col1A1. Mechanically, Mb-ME inhibited the phosphorylation of MAP kinases and NF-κB signaling. Overall, these results strongly suggest that Mb-ME can be developed as an antiaging therapy.
Collapse
|
39
|
Luan C, Hu Y, Ju M, Huang D, Zhang RL, Zhang XH, Tian PP, Zhu Y, Zhuang C, Zhang JA, Chen K. Treatment of vitiligo with 308-nm light emitting diode: Our experience from a two-year follow-up of Chinese patients. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:489-494. [PMID: 35075714 DOI: 10.1111/phpp.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/01/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A light emitting diode (LED), with a wavelength of 308 nm, has been utilized in the dermatologic treatment of vitiligo. OBJECTIVES We investigated the efficacy and safety of 308-nm LED for use in the treatment of vitiligo. METHODS We conducted a retrospective study of 70 stable-stage vitiligo patients (with a total of 99 lesions) who received 308-nm LED treatment at the Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College from June 2018 to June 2020. Treatment efficacy was evaluated after 8 treatment sessions, 16 treatment sessions, and the final treatment session, to estimate the percentage of re-pigmentation in the treated area. The Kruskal-Wallis test was used for data analysis. RESULTS Based on the final treatment session analysis of all 99 lesions, 0 lesions showed no response, 21 lesions showed poor response, 29 lesions showed moderate response, 23 lesions showed good response, and 26 lesions showed excellent response. The efficacy rate was 49.49%, and there was a significant correlation between the six distinct anatomical regions treated and re-pigmentation grade (χ2 = 13.419, p = .009). Among these regions, facial lesions showed the best response to treatment, while the hands and feet lesions showed the poorest response. CONCLUSIONS The clinical efficacy of 308-nm LED treatment is limited based on the treatment area. It demonstrated significant practical application in the treatment of vitiligo.
Collapse
Affiliation(s)
- Chao Luan
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yu Hu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Mei Ju
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Dan Huang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Rong-Lin Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xiao-Hua Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Pan-Pan Tian
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yan Zhu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chen Zhuang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jia-An Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Kun Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Ellistasari EY, Kariosentono H, Purwanto B, Wasita B, Riswiyant RCA, Pamungkasari EP, Soetrisno S. Exosomes Derived from Secretome Human Umbilical Vein Endothelial Cells (Exo-HUVEC) Ameliorate the Photo-Aging of Skin Fibroblast. Clin Cosmet Investig Dermatol 2022; 15:1583-1591. [PMID: 35967916 PMCID: PMC9374532 DOI: 10.2147/ccid.s371330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022]
Abstract
Purpose This is an in-vitro experimental study to analyze the effect of Exo-HUVEC on endothelial cell (CD31), cell proliferation, matrix metalloproteinase 1 (MMP-1) and collagen type 1 on irradiated fibroblast with UVB as photo-aging model. Patients and Methods Fibroblast cultures were divided into 5 groups, namely without UVB exposure, UVB exposure 600mJ/cm2 for 80 seconds as photo-aging model, and UVB exposure +Exo-HUVEC exposure 0.1%, 0.5% and 1%. The endothelial cell was stained with a CD31 marker, MMP-1 were examined with ELISA, cell proliferation is detected using an MTT assay; meanwhile, collagen type 1 deposition and endothelial cell were measured using flowcytometry. Results This study found positive endothelial cell marker CD31. Significant difference was found in cell proliferation, MMP-1 and collagen type 1 level between the control group with UVB irradiation and the treatment group with Exo-HUVEC (p < 0.05). Conclusion Exo-HUVEC significantly increases cell proliferation and collagen type 1 level, while decrease MMP-1 levels on irradiated fibroblast; therefore, Exo-HUVEC ameliorate the photo-aging of skin fibroblast.
Collapse
Affiliation(s)
| | - Harijono Kariosentono
- Dermatology and Venereology Department, Sebelas Maret University, Surakarta, Indonesia
| | - Bambang Purwanto
- Internal Medicine Department, Sebelas Maret University, Surakarta, Indonesia
| | - Brian Wasita
- Anatomical Pathology Department, Sebelas Maret University, Surakarta, Indonesia
| | | | | | - Soetrisno Soetrisno
- Obstetric and Gynecology Department, Sebelas Maret University, Surakarta, Indonesia
| |
Collapse
|
41
|
Photo-Protective and Anti-Inflammatory Effects of Antidesma thwaitesianum Müll. Arg. Fruit Extract against UVB-Induced Keratinocyte Cell Damage. Molecules 2022; 27:molecules27155034. [PMID: 35956984 PMCID: PMC9370488 DOI: 10.3390/molecules27155034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The main cause of most skin cancers is damage from UVB from sunlight, which penetrate the skin surface and induce inflammation. For this reason, this study aims to identify natural products with photo-protection properties and their mode of action by using the UVB-irradiated HaCaT keratinocyte model. Antidesma thwaitesianum fruit extracts at 25, 50, and 100 µg/mL recovered cell viability following UVB exposure in a dose-dependent manner. Cell survival was associated with the reduction in intracellular ROS and NO. In addition, we showed that the pre-treatment with the fruit extract lowered the phosphorylation level of two MAPK-signaling pathways: p38 MAPKs and JNKs. The resulting lower MAPK activation decreased their downstream pro-inflammatory cascade through COX-2 expression and subsequently reduced the PGE2 proinflammatory mediator level. The photoprotective effects of the fruit extract were correlated with the presence of polyphenolic compounds, including cyanidin, ferulic acid, caffeic acid, vanillic acid, and protocatechuic acid, which have been previously described as antioxidant and anti-inflammation. Together, we demonstrated that the pre-treatment with the fruit extract had photo-protection by inhibiting oxidative stress and subsequently lowered stress-induced MAPK responses. Therefore, this fresh fruit is worthy of investigation to be utilized as a skincare ingredient for preventing UVB-induced skin damage.
Collapse
|
42
|
Ellistasari EY, Kariosentono H, Purwanto B, Wasita B, Riswiyant RCA, Pamungkasari EP, Soetrisno S. Role of Exosomes Derived from Secretome Human Umbilical Vein Endothelial Cells (Exo-HUVEC) as Anti-Apoptotic, Anti-Oxidant, and Increasing Fibroblast Migration in Photoaging Skin Models. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Prolonged skin exposure to ultraviolet light rays leads to photoaging, which is characterized molecularly by an increase in reactive oxygen species (ROS), cell apoptosis, and a decrease in collagen. Photoaging therapy has been a challenge until recently. Fibroblasts exposed to ultraviolet B (UVB) light proved to be a good model for photoaging skin. They are also the primary dermal cells that stimulate collagen production and extracellular matrix (ECM), which contribute to skin aging. Exo-HUVEC is rich in growth factors, cytokines, and miRNAs, and they all play a vital role in cell-to-cell communication. The migration of fibroblasts is crucial for the development, repair, and regeneration of skin tissue during the repair of skin aging.
Objective: An in vitro experimental study was conducted to analyze the effect of Exo-HUVEC on oxidative stress levels, cell apoptosis, and fibroblast migration rate after UVB ray exposure on fibroblasts.
Methods: The fibroblast cultures were divided into five groups, including one without UVB exposure, one with UVB exposure, and one with UVB+Exo-HUVEC exposure at 0.1%, 0.5%, and 1%, respectively. Oxidative stress levels were measured using the ELISA test for malondialdehyde (MDA). Furthermore, flow cytometry was used to measure apoptosis using PI/Annexin markers, while a scratch assay examination was used to measure fibroblast migration rate using imaging readings.
Results: There were significant differences in the levels of MDA, PI/Annexin, and the rate of fibroblast migration between the UVB-irradiated control group and the Exo-HUVEC treatment group (p<0.001).
Conclusion: Exo-HUVEC is a marker of photoaging improvement, which has anti-apoptotic effects and reduces oxidative stress, as well as increases fibroblast migration rate.
Collapse
|
43
|
Wójcik P, Biernacki M, Domian N, Žarković N, Skrzydlewska E. Influence of Inhibition of COX-2-Dependent Lipid Metabolism on Regulation of UVB-Induced Keratinocytes Apoptosis by Cannabinoids. Biomolecules 2022; 12:biom12060842. [PMID: 35740969 PMCID: PMC9220871 DOI: 10.3390/biom12060842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation and apoptosis are regulated by similar factors, including ultraviolet B (UVB) radiation and cannabinoids, which are metabolized by cyclooxygenase-2 (COX-2) into pro-apoptotic prostaglandin derivatives. Thus, the aim of this study was to evaluate the impact of cyclooxygenase-2 inhibition by celecoxib on the apoptosis of keratinocytes modulated by UVB, anandamide (AEA) and cannabidiol (CBD). For this purpose, keratinocytes were non-treated/treated with celecoxib and/or with UVB and CBD and AEA. Apoptosis was evaluated using microscopy, gene expressions using quantitate reverse-transcriptase polymerase chain reaction; prostaglandins using liquid chromatography tandem mass spectrometry and cyclooxygenase activity using spectrophotometry. UVB enhances the percentage of apoptotic keratinocytes, which can be caused by the increased prostaglandin generation by cyclooxygenase-2, or/and induced cannabinoid receptor 1/2 (CB1/2) expression. AEA used alone intensifies apoptosis by affecting caspase expression, and in UVB-irradiated keratinocytes, cyclooxygenase-2 activity is increased, while CBD acts as a cytoprotective when used with or without UVB. After COX-2 inhibition, UVB-induced changes are partially ameliorated, when anandamide becomes an anti-apoptotic agent. It can be caused by observed reduced generation of anandamide pro-apoptotic derivative prostaglandin-ethanolamide by COX. Therefore, products of cyclooxygenase-dependent lipid metabolism seem to play an important role in the modulation of UVB-induced apoptosis by cannabinoids, which is particularly significant in case of AEA as inhibition of cyclooxygenase reduces the generation of pro-apoptotic lipid mediators and thus prevents apoptosis.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland; (M.B.); (E.S.)
- Correspondence: ; Tel.: +48-85-748-5721
| | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland; (M.B.); (E.S.)
| | - Natalia Domian
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Rudjer Boskovic Institute, Bijenicka 54, HR-1000 Zagreb, Croatia;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland; (M.B.); (E.S.)
| |
Collapse
|
44
|
Eco-evolutionary impact of ultraviolet radiation (UVR) exposure on microorganisms, with a special focus on our skin microbiome. Microbiol Res 2022; 260:127044. [DOI: 10.1016/j.micres.2022.127044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
|
45
|
Coppola S, Avagliano C, Sacchi A, Laneri S, Calignano A, Voto L, Luzzetti A, Berni Canani R. Potential Clinical Applications of the Postbiotic Butyrate in Human Skin Diseases. Molecules 2022; 27:1849. [PMID: 35335213 PMCID: PMC8949901 DOI: 10.3390/molecules27061849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Human skin is the largest organ and the most external interface between the environment and the body. Vast communities of viruses, bacteria, archaea, fungi, and mites, collectively named the skin microbiome (SM), cover the skin surface and connected structures. Skin-resident microorganisms contribute to the establishment of cutaneous homeostasis and can modulate host inflammatory responses. Imbalances in the SM structure and function (dysbiosis) are associated with several skin conditions. Therefore, novel target for the skincare field could be represented by strategies, which restore or preserve the SM natural/individual balance. Several of the beneficial effects exerted by the SM are aroused by the microbial metabolite butyrate. Since butyrate exerts a pivotal role in preserving skin health, it could be used as a postbiotic strategy for preventing or treating skin diseases. Herein, we describe and share perspectives of the potential clinical applications of therapeutic strategies using the postbiotic butyrate against human skin diseases.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Luana Voto
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Luzzetti
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
46
|
Osmotic Stress Interferes with DNA Damage Response and H2AX Phosphorylation in Human Keratinocytes. Cells 2022; 11:cells11060959. [PMID: 35326410 PMCID: PMC8946833 DOI: 10.3390/cells11060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/07/2022] Open
Abstract
The human skin and in particular its outermost layer, the epidermis, protects the body from potentially harmful substances, radiation as well as excessive water loss. However, the interference between the various stress responses of the epidermal keratinocytes, which often occur simultaneously, is largely unknown. The focus of this study was to investigate the interference between osmotic stress and DNA damage response. In addition to revealing the already well-described regulation of diverse gene sets, for example, cellular processes such as transcription, translation, and metabolic pathways (e.g., the KEGG citrate cycle and Reactome G2/M checkpoints), gene expression analysis of osmotically stressed keratinocytes revealed an influence on the transcription of genes also related to UV-induced DNA damage response. A gene network regulating the H2AX phosphorylation was identified to be regulated by osmotic stress. To analyze and test the interference between osmotic stress and DNA damage response, which can be triggered by UV stress on the one hand and oxidative stress on the other, in more detail, primary human keratinocytes were cultured under osmotic stress conditions and subsequently exposed to UV light and H2O2, respectively. γH2AX measurements revealed lower γH2AX levels in cells previously cultured under osmotic stress conditions.
Collapse
|
47
|
Four-Octyl Itaconate Attenuates UVB-Induced Melanocytes and Keratinocytes Apoptosis by Nrf2 Activation-Dependent ROS Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9897442. [PMID: 35308171 PMCID: PMC8933077 DOI: 10.1155/2022/9897442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 12/30/2022]
Abstract
Vitiligo is an acquired skin depigmentation disease in which excessive reactive oxygen species (ROS) play a critical pathogenic role in melanocyte destruction. The complex crosstalk between melanocytes and keratinocytes in vitiligo suggests that treatments aimed at protecting both the cells might be meaningful. In this study, we investigated the effect of 4-octyl itaconate (4-OI), an itaconate derivative, on ultraviolet B- (UVB-) induced apoptosis in HaCaT and PIG1 cells and the underlying mechanisms. HaCaT and PIG1 cells were pretreated with 4-OI (50 or 100 μM) for 24 h and then exposed to 300 mJ/cm2 UVB (emission range 290–320 nm, emission peak 310 nm). ROS levels and cell apoptosis were investigated using fluorescence microscopy and flow cytometry 24 h after irradiation. In addition, nuclear translocation and the expression of pathway-related proteins and mRNAs were detected using confocal microscopy, western blotting, and qRT-PCR, respectively. Our results demonstrated that UVB induced apoptosis in HaCaT and PIG1 cells, whereas inhibition of ROS production could reverse this effect. Furthermore, 4-OI attenuated UVB-induced apoptosis in HaCaT and PIG1 cells in a concentration-dependent manner by reducing the ROS levels. Moreover, 4-OI induced nuclear translocation and activation of nuclear factor erythroid 2-related factor 2 (Nrf2), and Nrf2 silencing reversed the inhibitory effect of 4-OI on the UVB-induced increase in ROS production and apoptosis in HaCaT and PIG1 cells. In addition, in vivo experiments using the Institute of Cancer Research mouse model showed that 4-OI via tail vein injection (10 mg/kg/day for six consecutive days) could reduce skin damage induced by UVB (400 mJ/cm2/day for five consecutive days). In conclusion, 4-OI can protect melanocytes and keratinocytes from UVB-induced apoptosis by Nrf2 activation-dependent ROS inhibition and can potentially treat skin disorders associated with oxidative stress, such as vitiligo.
Collapse
|
48
|
Hong AY, Lee SJ, Lee KB, Shin JW, Jeong EM, Kim IG. Double-Stranded RNA Enhances Matrix Metalloproteinase-1 and -13 Expressions through TLR3-Dependent Activation of Transglutaminase 2 in Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23052709. [PMID: 35269849 PMCID: PMC8911030 DOI: 10.3390/ijms23052709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
UV-irradiation induces the secretion of double-stranded RNA (dsRNA) derived from damaged noncoding RNAs in keratinocytes, which enhance the expression of matrix metalloproteinases (MMP) in non-irradiated dermal fibroblasts, leading to dysregulation of extracellular matrix homeostasis. However, the signaling pathway responsible for dsRNA-induced MMP expression has not been fully understood. Transglutaminase 2 (TG2) is an enzyme that modifies substrate proteins by incorporating polyamine or crosslinking of proteins, thereby regulating their functions. In this study, we showed that TG2 mediates dsRNA-induced MMP-1 expression through NF-κB activation. Treatment of poly(I:C), a synthetic dsRNA analogue binding to toll-like receptor 3 (TLR3), generates ROS, which in turn activates TG2 in dermal fibroblast. Subsequently, TG2 activity enhances translocation of p65 into the nucleus, where it augments transcription of MMP. We confirmed these results by assessing the level of MMP expression in Tlr3−/−, TG2-knockdowned and Tgm2−/− dermal fibroblasts after poly(I:C)-treatment. Moreover, treatment with quercetin showed dose-dependent suppression of poly(I:C)-induced MMP expression. Furthermore, ex vivo cultured skin from Tgm2−/− mice exhibited a significantly reduced level of MMP mRNA compared with those from wild-type mice. Our results indicate that TG2 is a critical regulator in dsRNA-induced MMP expression, providing a new target and molecular basis for antioxidant therapy in preventing collagen degradation.
Collapse
Affiliation(s)
- Ah-Young Hong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Seok-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul 03127, Korea
| | - Ji-Woong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju 63243, Korea;
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul 03127, Korea
- Department of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence:
| |
Collapse
|
49
|
Application of 233 nm far-UVC LEDs for eradication of MRSA and MSSA and risk assessment on skin models. Sci Rep 2022; 12:2587. [PMID: 35173210 PMCID: PMC8850561 DOI: 10.1038/s41598-022-06397-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/25/2022] [Indexed: 11/08/2022] Open
Abstract
A newly developed UVC LED source with an emission wavelength of 233 nm was proved on bactericidal efficacy and skin tolerability. The bactericidal efficacy was qualitatively analysed using blood agar test. Subsequently, quantitative analyses were performed on germ carrier tests using the MRSA strain DSM11822, the MSSA strain DSM799, S. epidermidis DSM1798 with various soil loads. Additionally, the compatibility of the germicidal radiation doses on excised human skin and reconstructed human epidermis was proved. Cell viability, DNA damage and production of radicals were assessed in comparison to typical UVC radiation from discharge lamps (222 nm, 254 nm) and UVB (280–380 nm) radiation for clinical assessment. At a dose of 40 mJ/cm2, the 233 nm light source reduced the viable microorganisms by a log10 reduction (LR) of 5 log10 levels if no soil load was present. Mucin and protein containing soil loads diminished the effect to an LR of 1.5–3.3. A salt solution representing artificial sweat (pH 8.4) had only minor effects on the reduction. The viability of the skin models was not reduced and the DNA damage was far below the damage evoked by 0.1 UVB minimal erythema dose, which can be regarded as safe. Furthermore, the induced damage vanished after 24 h. Irradiation on four consecutive days also did not evoke DNA damage. The radical formation was far lower than 20 min outdoor visible light would cause, which is classified as low radical load and can be compensated by the antioxidant defence system.
Collapse
|
50
|
Faraj S, Kemp EH, Gawkrodger DJ. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Clin Exp Immunol 2022; 207:27-43. [PMID: 35020865 PMCID: PMC8802175 DOI: 10.1093/cei/uxab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermal melanocyte loss in vitiligo, triggered by stresses ranging from trauma to emotional stress, chemical exposure or metabolite imbalance, to the unknown, can stimulate oxidative stress in pigment cells, which secrete damage-associated molecular patterns that then initiate innate immune responses. Antigen presentation to melanocytes leads to stimulation of autoreactive T-cell responses, with further targeting of pigment cells. Studies show a pathogenic basis for cellular stress, innate immune responses and adaptive immunity in vitiligo. Improved understanding of the aetiological mechanisms in vitiligo has already resulted in successful use of the Jak inhibitors in vitiligo. In this review, we outline the current understanding of the pathological mechanisms in vitiligo and locate loci to which therapeutic attack might be directed.
Collapse
Affiliation(s)
- Safa Faraj
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - David John Gawkrodger
- Department of Infection, Immunology and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|