1
|
Ben Jemaa S, Cesarani A, Ciani E, Mastrangelo S. Genome-based analysis for the identification of candidate genes associated with skin-photosensitization tolerance in sheep. Vet J 2025; 313:106380. [PMID: 40398667 DOI: 10.1016/j.tvjl.2025.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/14/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
In ruminant livestock, skin photosensitization, caused by the ingestion of toxic plants, is relatively common and affects animal production. In this study, genotyping data from the Illumina OvineSNP50 BeadChip from two Italian local sheep breeds (Leccese and Altamurana) were used to identify putative genomic regions associated with response to skin photosensitization. We identified four genomic regions harbouring several candidate genes related to dermatitis, immune response, and coat color, that could be potentially involved in modulating photosensitization in sheep. These findings enhance our understanding of the genetic mechanisms underlying skin photosensitization in sheep and provide valuable insights into livestock adaptation to local environmental pressure.
Collapse
Affiliation(s)
- Slim Ben Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana 2049, Tunisia; Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo 90128, Italy
| | - Alberto Cesarani
- Dipartimento di Scienze Agrarie, University of Sassari, Sassari 07100, Italy; Department of Animal and Dairy Science, University of Georgia, Athens 30602, USA
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari 70125, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo 90128, Italy.
| |
Collapse
|
2
|
de Lima IA, de Azevedo Lima C, de Annunzio SR, de Oliveira F, da Silva SS, Fontana CR, de Carvalho Santos-Ebinuma V. Fungal derived dye as potential photosensitizer for antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113116. [PMID: 39923640 DOI: 10.1016/j.jphotobiol.2025.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Photodynamic therapy (PDT) combines light with a photosensitizing agent to target and destroy abnormal cells or pathogens, offering a non-invasive and precise approach. Applying microbial dyes in PDT presents a great opportunity because these compounds may absorb specific wavelengths of light, generating reactive oxygen species (ROS) that induce oxidative stress, leading to cell or microbial death. This study evaluated the extract of Talaromyces amestolkiae containing azaphilone red dyes obtained from cultivation process as photosensitizer (PS) in antimicrobial photodynamic therapy (aPDT). Initially the crude extract was obtained in incubator shaker varying the culture media composition. Following, the crude extract containing the red dyes exhibited non-toxicity in dark conditions across all concentrations tested. PDT experiments with different amounts of the crude extract at a light dose of 80 J.cm-2 and upon irradiation at 460 nm was studied. A complete reduction of Escherichia coli and approximately 2 log10 reductions of Staphylococcus aureus, Cutibacterium acnes and Enterococcus faecalis was achieved using 25 % (v.v-1) of the crude extract while 50 % (v.v-1) of the crude extract led to a complete reduction of both E. coli and S. aureus, and around 5 log10 reductions of C. acnes and E. faecalis. Importantly, minimal photodegradation of the PS occurred during irradiation across all concentrations studied. These findings highlight the potential of T. amestolkiae-derived red dyes extract for use in aPDT, demonstrating non-toxicity in the absence of light, good aqueous solubility, high photostability, and strong microbial reduction capabilities under specific light conditions.
Collapse
Affiliation(s)
- Isabelle Almeida de Lima
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Caio de Azevedo Lima
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Sarah Raquel de Annunzio
- Clinical Analysis Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernanda de Oliveira
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP, Brazil
| | - Silvio Silvério da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP, Brazil
| | - Carla Raquel Fontana
- Clinical Analysis Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Kato-Noguchi H, Kato M. Compounds Involved in the Invasive Characteristics of Lantana camara. Molecules 2025; 30:411. [PMID: 39860280 PMCID: PMC11767948 DOI: 10.3390/molecules30020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Lantana camara L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. L. camara infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world's 100 worst invasive alien species. Its infestation reduces species diversity and abundance in the natural ecosystems and reduces agricultural production. The life history characteristics of L. camara, such as its high reproductive ability and high adaptive ability to various environmental conditions, may contribute to its ability to infest and increase its population. Possible evidence of the compounds involved in the defense functions of L. camara against natural enemies, such as herbivore mammals and insects, parasitic nematodes, pathogenic fungi and bacteria, and the allelochemicals involved in its allelopathy against neighboring competitive plant species, have accumulated in the literature over three decades. Lantadenes A and B, oleanonic acid, and icterogenin are highly toxic to herbivore mammals, and β-humulene, isoledene, α-copaene thymol, and hexadecanoic acid have high insecticidal activity. β-Caryophyllene and cis-3-hexen-1-ol may function as herbivore-induced plant volatiles which are involved in sending warning signals to undamaged tissues and the next plants of the same species. Farnesol and farnesal may interrupt insect juvenile hormone biosynthesis and cause abnormal metamorphosis of insects. Several triterpenes, such as lantanolic acid, lantoic acid, pomolic acid, camarin, lantacin, camarinin, ursolic acid, and oleanonic acid, have demonstrated nematocidal activity. Lantadene A, β-caryophyllene, germacrene-D, β-curcumene, eicosapentaenoic acid, and loliolide may possess antimicrobial activity. Allelochemicals, such as caffeic acid, ferulic acid, salicylic acid, α-resorcylic acid, p-hydroxybenzoic acid, vanillic acid, unbelliferone, and quercetin, including lantadenes A and B and β-caryophyllene, suppress the germination and growth of neighboring plant species. These compounds may be involved in the defense functions and allelopathy and may contribute to L. camara's ability to infest and to expand its population as an invasive plant species in new habitats. This is the first review to focus on how compounds enhance the invasive characteristics of L. camara.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | | |
Collapse
|
4
|
Abdisa T, Dilbato Dinbiso T. Toxic Plants and Their Impact on Livestock Health and Economic Losses: A Comprehensive Review. J Toxicol 2024; 2024:9857933. [PMID: 39723202 PMCID: PMC11669433 DOI: 10.1155/jt/9857933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Plants are important components in sustaining the life of humans and animals, balancing ecosystems, providing animal feed and edible food for human consumption, and serving as sources of traditional and modern medicine. However, plants can be harmful to both animals and humans when ingested, leading to poisoning regardless of the quantity consumed. This presents significant risks to livestock health and can impede economic growth. In several developing countries, including Ethiopia, traditional communities have depended on medicinal plants for treating livestock and human diseases. The incidences of livestock poisoning from medicinal and poisonous plants are due to the misuse and lack of dosage standardization. Therefore, this paper aimed to review toxic plants and their effects on livestock health and associated economic losses. Toxic plants contain secondary metabolites that serve as a defense mechanism against predators. The most common secondary metabolites of toxic plants that affect livestock health and the economy include alkaloids (Asteraceae, Convolvulaceae, Lamiaceae, Fabaceae, and Boraginaceae), cyanides (Sorghum spp. and grass spp.), nitrates (Pennisetum purpureum roots, Amaranthus, nightshades, Solanum spp. Chenopodium spp., and weed spp.), oxalates (Poaecea, Amaranthaceae, and Polygonaceae), and glycosides (Pteridium aquiline). The most common effects of toxic plants on livestock health include teratogenic and abortifacient (Locoweeds, Lupines, Poison Hemlock, and Veratrum), hepatoxicity (Crotalaria, Lantana camara, Xanthium, and Senecio), photosensitization (L. camara, Alternanthera philoxeroides, Brachiaria brizantha, and Heracleum sphondylium), and impairing respiratory and circulatory systems (nitrite and cyanide toxic). Toxic plants lead to substantial economic losses, both direct and indirect. Direct losses stem from livestock deaths, abortions, decreased milk quality, and reduced skin and hide production, while indirect losses are associated with the costs of treatment and management of affected animals. Overall, toxic plants negatively impact livestock health and production, resulting in significant economic repercussions. Therefore, it is crucial to prioritize the identification of the most prevalent toxic plants, isolate secondary metabolites, conduct toxicity tests, standardize dosages, and develop effective strategies for managing both the toxic plants and their associated toxicity.
Collapse
Affiliation(s)
- Tagesu Abdisa
- Chelia District Agricultural and Land Office, Animal Health Protection Team, Chelia District, West Shewa, Oromia, Ethiopia
| | - Tegegn Dilbato Dinbiso
- Ambo University, Guder Mamo Mezemir Campus, Department of Veterinary Science, West Shewa Zone, Oromia, Ethiopia
| |
Collapse
|
5
|
Grosu (Dumitrescu) C, Jîjie AR, Manea HC, Moacă EA, Iftode A, Minda D, Chioibaş R, Dehelean CA, Vlad CS. New Insights Concerning Phytophotodermatitis Induced by Phototoxic Plants. Life (Basel) 2024; 14:1019. [PMID: 39202761 PMCID: PMC11355232 DOI: 10.3390/life14081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The present review explores the underlying mechanisms of phytophotodermatitis, a non-immunologic skin reaction triggered by certain plants followed by exposure to ultraviolet radiation emitted by sunlight. Recent research has advanced our understanding of the pathophysiology of phytophotodermatitis, highlighting the interaction between plant-derived photosensitizing compounds (e.g., furanocoumarins and psoralens) and ultraviolet light leading to skin damage (e.g., erythema, fluid blisters, edema, and hyperpigmentation), identifying these compounds as key contributors to the phototoxic reactions causing phytophotodermatitis. Progress in understanding the molecular pathways involved in the skin's response to these compounds has opened avenues for identifying potential therapeutic targets suitable for the management and prevention of this condition. The review emphasizes the importance of identifying the most common phototoxic plant families (e.g., Apiaceae, Rutaceae, and Moraceae) and plant species (e.g., Heracleum mantegazzianum, Ruta graveolens, Ficus carica, and Pastinaca sativa), as well as the specific phytochemical compounds responsible for inducing phytophototoxicity (e.g., limes containing furocoumarin have been linked to lime-induced photodermatitis), underscoring the significance of recognizing the dangerous plant sources. Moreover, the most used approaches and tests for accurate diagnosis such as patch testing, Wood's lamp examination, or skin biopsy are presented. Additionally, preventive measures such as adequate clothing (e.g., long-sleeved garments and gloves) and treatment strategies based on the current knowledge of phytophotodermatitis including topical and systemic therapies are discussed. Overall, the review consolidates recent findings in the field, covering a diverse array of phototoxic compounds in plants, the mechanisms by which they trigger skin reactions, and the implications for clinical management. By synthesizing these insights, we provide a comprehensive understanding of phytophotodermatitis, providing valuable information for both healthcare professionals and researchers working to address this condition.
Collapse
Affiliation(s)
- Cristina Grosu (Dumitrescu)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
| | - Horaţiu Cristian Manea
- University Clinic Clinical Skills, Department I Nursing, Faculty of Nursing, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Timisoara Municipal Emergency Clinical Hospital, 5 Take Ionescu Bv., 300062 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andrada Iftode
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliana Minda
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Research and Processing Center for Medical and Aromatic Plants (Plant-Med), “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Raul Chioibaş
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- CBS Medcom Hospital, 12th Popa Sapca Street, 300047 Timisoara, Romania
| | - Cristina-Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
6
|
Zhou L, Na J, Liu X, Wu P. Chromophore-Assisted Light Inactivation for Protein Degradation and Its Application in Biomedicine. Bioengineering (Basel) 2024; 11:651. [PMID: 39061733 PMCID: PMC11273424 DOI: 10.3390/bioengineering11070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The functional investigation of proteins holds immense significance in unraveling physiological and pathological mechanisms of organisms as well as advancing the development of novel pharmaceuticals in biomedicine. However, the study of cellular protein function using conventional genetic manipulation methods may yield unpredictable outcomes and erroneous conclusions. Therefore, precise modulation of protein activity within cells holds immense significance in the realm of biomedical research. Chromophore-assisted light inactivation (CALI) is a technique that labels photosensitizers onto target proteins and induces the production of reactive oxygen species through light control to achieve precise inactivation of target proteins. Based on the type and characteristics of photosensitizers, different excitation light sources and labeling methods are selected. For instance, KillerRed forms a fusion protein with the target protein through genetic engineering for labeling and inactivates the target protein via light activation. CALI is presently predominantly employed in diverse biomedical domains encompassing investigations into protein functionality and interaction, intercellular signal transduction research, as well as cancer exploration and therapy. With the continuous advancement of CALI technology, it is anticipated to emerge as a formidable instrument in the realm of life sciences, yielding more captivating outcomes for fundamental life sciences and precise disease diagnosis and treatment.
Collapse
Affiliation(s)
- Lvjia Zhou
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (L.Z.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (L.Z.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (L.Z.); (J.N.)
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (L.Z.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
7
|
Shidara H, Jitsuki S, Takemoto K. Chromophore-assisted light inactivation of target proteins for singularity biology. Biophys Physicobiol 2024; 21:e211009. [PMID: 39175862 PMCID: PMC11338683 DOI: 10.2142/biophysico.bppb-v21.s009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/13/2024] [Indexed: 08/24/2024] Open
Abstract
Singularity phenomena are rare events that occur only with a probability of one in tens of thousands and yet play an important role in the fate of the entire system. Recently, an ultra-wide-field microscopy imaging systems, AMATERAS, have been developed to reliably capture singularity phenomena. However, to determine whether a rare phenomenon captured by microscopy is a true singularity phenomenon-one with a significant impact on the entire system-, causal analysis is required. In this section, we introduce the CALI method, which uses light to inactivate molecules as one of the techniques enabling causal analysis. In addition, we discuss the technical innovations of the CALI method that are required to contribute to the future development of singularity biology.
Collapse
Affiliation(s)
- Hisashi Shidara
- Department of Biochemistry, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Susumu Jitsuki
- Department of Biochemistry, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Kiwamu Takemoto
- Department of Biochemistry, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
8
|
Yoon J, Lee J, Hong SP, Park HJ, Kim J, Lee J, Lee C, Oh SG. Fabrication of biodegradable cellulose acetate nanofibers containing Rose Bengal dye by electrospinning technique and their antiviral efficacy under visible light irradiation. CHEMOSPHERE 2024; 349:140897. [PMID: 38070613 DOI: 10.1016/j.chemosphere.2023.140897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/23/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Biodegradable cellulose acetate (CA) nanofibers containing Rose Bengal (RB) dye were fabricated by electrospinning technique. RB dye, an anionic photosensitizer, has been used in photodynamic therapy due to its excellent biocompatibility and ability to absorb light to generate reactive oxygen species (ROS), but has a decisive disadvantage of water solubility on infection prevention. Firstly, water-insoluble RB dye was synthesized through complexation with cationic ionic liquid (IL) for antiviral agents. The synthesized water-insoluble RB dyes were embedded into biodegradable CA nanofibers by electrospinning. The electrospun nanofibers passed both antiviral test for φx174 virus under visible light irradiation and biodegradability-test using enzymes. The fabricated RB nanofibers absorbed light and generated ROS to inactivate the virus. As a result, the log reduction (-Log10(N/N0)) of φx174 titer under visible light reached a detection limit of 5.00 within 30 min. Also, the fabricated nanofibers were degraded up to 34 wt % in 9 weeks by lipase and cellulase enzymes compared with non-biodegradable nanofibers.
Collapse
Affiliation(s)
- Jinsoo Yoon
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Juri Lee
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Pil Hong
- Samsung Research, Samsung Electronics Co., Ltd., Seoul, 06756, Republic of Korea
| | - Hee-Jin Park
- Samsung Research, Samsung Electronics Co., Ltd., Seoul, 06756, Republic of Korea
| | - Joohyun Kim
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeseon Lee
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Changha Lee
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Geun Oh
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
9
|
Petit R, Izambart J, Guillou M, da Silva Almeida JRG, de Oliveira Junior RG, Sol V, Ouk TS, Grougnet R, Quintans-Júnior LJ, Sitarek P, Thiéry V, Picot L. A Review of Phototoxic Plants, Their Phototoxic Metabolites, and Possible Developments as Photosensitizers. Chem Biodivers 2024; 21:e202300494. [PMID: 37983920 DOI: 10.1002/cbdv.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
This study provides a comprehensive overview of the current knowledge regarding phototoxic terrestrial plants and their phototoxic and photosensitizing metabolites. Within the 435,000 land plant species, only around 250 vascular plants have been documented as phototoxic or implicated in phototoxic occurrences in humans and animals. This work compiles a comprehensive catalog of these phototoxic plant species, organized alphabetically based on their taxonomic family. The dataset encompasses meticulous details including taxonomy, geographical distribution, vernacular names, and information on the nature and structure of their phototoxic and photosensitizing molecule(s). Subsequently, this study undertook an in-depth investigation into phototoxic molecules, resulting in the compilation of a comprehensive and up-to-date list of phytochemicals exhibiting phototoxic or photosensitizing activity synthesized by terrestrial plants. For each identified molecule, an extensive review was conducted, encompassing discussions on its phototoxic activity, chemical family, occurrence in plant families or species, distribution within different plant tissues and organs, as well as the biogeographical locations of the producer species worldwide. The analysis also includes a thorough discussion on the potential use of these molecules for the development of new photosensitizers that could be used in topical or injectable formulations for antimicrobial and anticancer phototherapy as well as manufacturing of photoactive devices.
Collapse
Affiliation(s)
- Raphaëlle Petit
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Jonathan Izambart
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Mathieu Guillou
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | | | - Raimundo Gonçalves de Oliveira Junior
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Vincent Sol
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Tan-Sothea Ouk
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Raphaël Grougnet
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Lucindo José Quintans-Júnior
- Franco-Brazilian Network on Natural Products, FB2NP
- LANEF, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil
| | | | - Valérie Thiéry
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| |
Collapse
|
10
|
Bogas AC, Cruz FPN, Lacava PT, Sousa CP. Endophytic fungi: an overview on biotechnological and agronomic potential. BRAZ J BIOL 2024; 84:e258557. [DOI: 10.1590/1519-6984.258557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Endophytic fungi colonize the inter- and/or intracellular regions of healthy plant tissues and have a close symbiotic relationship with their hosts. These microorganisms produce antibiotics, enzymes, and other bioactive compounds that enable them to survive in competitive habitats with other microorganisms. In addition, secondary metabolites confer protection to their host plant against other bacterial and fungal pathogens and/or can promote plant growth. Endophytic fungi are viewed as a promising source of bioactive natural products, which can be optimized through changes in growing conditions. The exploration of novel bioactive molecules produced by these microorganisms has been attracting attention from researchers. The chemical and functional diversity of natural products from endophytic fungi exhibits a broad spectrum of applications in medicine, agriculture, industry and the environment. Fungal endophytes can also enhance the photoprotective effects and photochemical efficiency in the host plants. Modern omic approaches have facilitated research investigating symbiotic plant-endophytic fungi interactions. Therefore, research on endophytic fungi can help discovery novel biomolecules for various biotechnological applications and develop a sustainable agriculture.
Collapse
|
11
|
Pourhajibagher M, Bahador A. Natural photosensitizers potentiate the targeted antimicrobial photodynamic therapy as the Monkeypox virus entry inhibitors: An in silico approach. Photodiagnosis Photodyn Ther 2023; 43:103656. [PMID: 37336465 PMCID: PMC10275794 DOI: 10.1016/j.pdpdt.2023.103656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Monkeypox is a viral zoonotic disease that has emerged as a threat to public health. Currently, there is no treatment approved specifically targeting Monkeypox disease. Hence, it is essential to identify and develop therapeutic approaches to the Monkeypox virus. In the current in silico paper, we comprehensively involve using computer simulations and modeling to insights and predict hypotheses on the potential of natural photosensitizers-mediated targeted antimicrobial photodynamic therapy (aPDT) against D8L as a Monkeypox virus protein involved in viral cell entry. MATERIALS AND METHODS In the current study, computational techniques such as molecular docking were combined with in silico ADMET predictions to examine how Curcumin (Cur), Quercetin (Qct), and Riboflavin (Rib) as the natural photosensitizers bind to the D8L protein in Monkeypox virus, as well as to determine pharmacokinetic properties of these photosensitizers. RESULTS The three-dimensional structure of the D8L protein in the Monkeypox virus was constructed using homology modeling (PDB ID: 4E9O). According to the physicochemical properties and functional characterization, 4E9O was a stable protein with the nature of a hydrophilic structure. The docking studies employing a three-dimensional model of 4E9O with natural photosensitizers exhibited good binding affinity. D8L protein illustrated the best docking score (-7.6 kcal/mol) in relation to the Rib and displayed good docking scores in relation to the Cur (-7.0 kcal/mol) and Qct (-7.5 kcal/mol). CONCLUSIONS The findings revealed that all three photosensitizers were found to obey the criteria of Lipinski's rule of five and displayed drug-likeness. Moreover, all the tested photosensitizers were found to be non-hepatotoxic and non-cytotoxic. In summary, our investigation identified Cur, Qct, and Rib could efficiently interact with D8L protein with a strong binding affinity. It can be concluded that aPDT using these natural photosensitizers may be considered an adjuvant treatment against Monkeypox disease.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
12
|
Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K, Chirumbolo S. Natural Compounds and Products from an Anti-Aging Perspective. Molecules 2022; 27:7084. [PMID: 36296673 PMCID: PMC9610014 DOI: 10.3390/molecules27207084] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is a very complex process that is accompanied by a degenerative impairment in many of the major functions of the human body over time. This inevitable process is influenced by hereditary factors, lifestyle, and environmental influences such as xenobiotic pollution, infectious agents, UV radiation, diet-borne toxins, and so on. Many external and internal signs and symptoms are related with the aging process and senescence, including skin dryness and wrinkles, atherosclerosis, diabetes, neurodegenerative disorders, cancer, etc. Oxidative stress, a consequence of the imbalance between pro- and antioxidants, is one of the main provoking factors causing aging-related damages and concerns, due to the generation of highly reactive byproducts such as reactive oxygen and nitrogen species during the metabolism, which result in cellular damage and apoptosis. Antioxidants can prevent these processes and extend healthy longevity due to the ability to inhibit the formation of free radicals or interrupt their propagation, thereby lowering the level of oxidative stress. This review focuses on supporting the antioxidant system of the organism by balancing the diet through the consumption of the necessary amount of natural ingredients, including vitamins, minerals, polyunsaturated fatty acids (PUFA), essential amino acids, probiotics, plants' fibers, nutritional supplements, polyphenols, some phytoextracts, and drinking water.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ioan Sarac
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Oksana Strus
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Kateryna Smetanina
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| |
Collapse
|
13
|
Review: Assessment of dairy cow welfare at pasture: measures available, gaps to address, and pathways to development of ad-hoc protocols. Animal 2022; 16:100597. [PMID: 35907382 DOI: 10.1016/j.animal.2022.100597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Pasture is generally perceived as positive for dairy cow welfare, but it nevertheless exposes cows to heat, parasites, and other challenges. This review is intended for people ready to design comprehensive protocols for assessing the welfare of dairy cows at pasture. We provide an overview of the benefits and risks of pasture for cows, and then go on to identify the available and feasible measures for assessing cow welfare at pasture and the gaps that need to be addressed to develop specific welfare measures. Some of the measures from on-farm welfare assessment protocols designed for indoor use (e.g. Welfare Quality®) are relevant for cows at pasture (e.g. lameness scoring). However, the timing, location and/or method for certain measures (e.g. observation of social behaviour) need to be adapted to the pasture context, as cows at pasture can roam over a large area. Measures to address specific pasture-related risks (e.g. heat stress, biosecurity) or benefits (e.g. expression of a wide range of behaviours) should be implemented in order to capture all dimensions of cow welfare at pasture. Furthermore, cow welfare is liable to vary over the grazing season due to changes in weather conditions, grass quality and pasture plots that induce variations in lying surface conditions, food availability, distance to walk to the milking parlour, and so on. It is therefore important to investigate the variability in different welfare measures across the pasture season to check whether they hold stable over time and, if not, to determine solutions that can give an overview across the grazing season. Sensors offer a promising complement to animal and environment observations, as they can capture long-term animal monitoring data, which is simply not possible for a one-day welfare-check visit. We conclude that some measures validated for indoor situations can already be used in pasture-based systems, while others need to be validated for their fitness for purpose and/or use in pasture conditions. Furthermore, thresholds should probably be determined for measures to fit with pasture contexts. If all measures can be made adaptable to all situations encountered on farms or variants of the measures can at least be proposed for each criterion, then it should be possible to produce a comprehensive welfare assessment protocol suitable for large-scale use in near future.
Collapse
|
14
|
Winter JC, Thieme K, Eule JC, Saliu EM, Kershaw O, Gehlen H. Photodermatitis and ocular changes in nine horses after ingestion of wild parsnip (pastinaca sativa). BMC Vet Res 2022; 18:80. [PMID: 35219345 PMCID: PMC8881838 DOI: 10.1186/s12917-022-03162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background Primary photosensitization rarely occurs in horses and can easily be misinterpreted. Descriptions of the disease in horses after ingestion of parsnip are lacking. The aim of this case series was to describe the dermatological and ocular changes due to photosensitization and to raise awareness of parsnip being a possible aetiologic agent. Case presentation Nine horses from three different stables in Berlin and Brandenburg, Germany, presented variable degrees of erythema, scaling, crusting and necrosis of unpigmented skin at the head and prepuce. Horses were of different breeds with a median age of 15 ± 5.9 years. A mild leukocytosis was diagnosed in 1/9 horses at admission. Analyzed liver enzymes were within the reference ranges in all horses. Ocular changes were diagnosed as follows: blepharitis (3/9), conjunctivitis (7/9), corneal edema without additional signs of keratitis and/or uveitis (2/9), corneal edema with signs of uveitis (1/9) and photophobia (4/9). One horse developed a fluorescein positive corneal erosion. Skin biopsy (1/9) revealed a moderate to severe acute, eosinophilic and lymphocytic dermatitis with dermal edema and vasculitis. All stables housing these patients fed hay from the same distributer. Analyzed hay samples showed high contents of wild parsnip (plants, seeds, roots). Wild parsnip is widespread in Europe and contains furocoumarins, a family of photodynamic pigments, which may cause primary photodermatitis, keratoconjunctivitis and uveitis. Horses were treated according to severity of clinical symptoms systemically with flunixine meglumine (1.1 mg/kg BW 1-2x/day) or prednisolone (1 mg/kg BW 1x/day). Topically, either gentamicin (3x/day), dexamethasone (2-3x/day) and/or atropine (1x/day) were used. Skin care was provided with almond oil or dexpanthenol (2x/day). All horses were kept in a dark environment or were treated with sunscreen and facemasks. Duration of treatment varied from 6–30 days (median 11.3 days). Conclusion Ingestion of wild parsnip (Pastinaca sativa) can induce primary photosensitization with dermatitis and ocular injury in horses. In times of extreme weather, hay may alter in botanical composition, resulting in high amounts of uncharacteristic plants causing novel problems.
Collapse
|
15
|
Guetat A. The Genus Deverra DC. (Syn. Pituranthos Viv.): A natural valuable source of bioactive phytochemicals: A review of traditional uses, phytochemistry and pharmacological properties. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114447. [PMID: 34737008 DOI: 10.1016/j.jep.2021.114447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The genus Deverra DC. (Apiaceae) comprising only 13 taxa (9 species and 4 subspecies level) with disjunctive distribution in South Africa, in North Africa to Arabian Ecoregion. Thesis, books, Scientific journals, and reports were referred to collect information on the Deverra species. This present work reviewed the literature from 1900 to the end of January 2021. The aim of the review is to highlight traditional uses, phytochemistry and pharmacological properties of the species of the genus. The ethnopharmacologial uses of plant taxa belonging to this genus indicated that plant extracts, Essentail Oils (EOs) and infusion of aerial parts (APs) have been used in traditional popular medicine. The plants are used as a treatment of various purposes, such as asthma, rheumatism, fevers, hepatitis, diabetes and digestive difficulties. This present work focuses on ethnopharmacology of the Deverra species, the phytochemistry, pharmacology, toxicology among other studies on the genus. The present article summarizes on known and potential effects of the Deverra species as well as traditional medicine uses corroborated with pharmacological evidences. By the end of the review, Deverra species have a large application of bioactivities and the most described activities of Deverra plants are attributed to the presence of essential oils, coumarins, furocoumarins, flavonoids and phenolics. CONCLUSIONS: The review confirms that some Deverra taxa have been reported as a valuable source for flavoring and as a condiment as well as in the traditional medicine for the treatment of hypertension, to relief stomach pain and against intestinal parasites against spasms, pains, diabetes, hepatitis, digestive difficulties, urinary infections … etc. Nonetheless, for the valorisation of Deverra species in order to prevent and treat various diseases, further pharmacological investigations are strongly required to determine the mechanism of action, test the safety and the efficacity before starting clinical trials at big scale.
Collapse
Affiliation(s)
- Arbi Guetat
- Northern Border University, College of Sciences, Department of Biological Sciences, Arar, Saudi Arabia; University of Carthage, National Institute of Applied Science and Technology, Department of Biology, Laboratory of Plant Biotechnology, B.P. 676, 1080, Tunis Cedex, Tunisia.
| |
Collapse
|
16
|
Takemoto K. [Optical inactivation of molecular functions in vivo by chromophore-assisted light inactivation]. Nihon Yakurigaku Zasshi 2022; 157:238-243. [PMID: 35781452 DOI: 10.1254/fpj.22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many biological phenomena have spatio-temporal characteristics, such as the expression of molecular activity locally or at a limited time. Such phenomena have been observed in various organisms from slime mold to mammals, and are considered to be one of the basic patterns in biological reactions. Live imaging studies using the fluorescent protein GFP and fluorescence microscopy have become a standard technique in the life sciences to reveal the dynamics of these characteristic biological phenomena. On the other hand, the characteristic behaviors of molecules and cells captured by microscopy only correlate with life phenomena, and the causal relationship of whether they really matter is unknown. It is unclear whether they are really important or not. Therefore, to elucidate their physiological significance, it is important to introduce spatiotemporal manipulation techniques to manipulate molecules and cells locally and at arbitrary timing, and to perform causal analysis in vivo. The chromophore-assisted light inactivation (CALI) method, which uses light to inactivate molecular functions, is an optical technology that enables such spatiotemporal manipulation, and has recently been used in vivo in various model organisms, attracting widespread attention. In this section, we will review the principle of the CALI method, actual research examples, in particular, its in vivo application, and future prospects.
Collapse
Affiliation(s)
- Kiwamu Takemoto
- Department of Biochemistry, Mie University, Graduate School of Medicine
| |
Collapse
|
17
|
Bezerra JJL, Pinheiro AAV, Lucena RB. Phytochemistry and poisoning in ruminants by Enterolobium contortisiliquum (Vell.) Morong (Fabaceae): A systematic review. Toxicon 2021; 201:46-53. [PMID: 34411592 DOI: 10.1016/j.toxicon.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Enterolobium contortisiliquum (Vell.) Morong (Fabaceae) is a plant widely distributed in several regions of Brazil, occurring in the phytogeographic domains of Atlantic Forest, Cerrado, and Caatinga. Cases of serious poisoning in cattle, goats, and sheep in the country caused by the ingestion of beans of this species have been reported by several studies. The present work aimed to carry out a systematic review of cases of poisoning by E. contortisiliquum in ruminants and list the main chemical compounds isolated from this plant. For this, searches were performed in the Google Academic, PubMed®, ScienceDirect®, and SciELO databases. A total of 26 articles published in the last 20 years (2001-2021) were included. Studies on cases of natural and experimental poisoning indicate that this species mainly causes photosensitization, abortions, digestive problems, and acute ruminal lactic acidosis in animals that ingest the pods of the plant. The main chemical compounds that occur in the species belong to the triterpene saponins, monoterpene, phenylpropene, and triterpene classes. It is likely that triterpene saponins isolated from E. contortisiliquum are associated with reported cases of photosensitization in cattle. New studies must be conducted to assess the mechanisms of action of chemical compounds isolated from this species in in vivo systems.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Universidade Federal de Pernambuco, Departamento de Botânica, Av. da Engenharia, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil.
| | - Anderson Angel Vieira Pinheiro
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos - IpeFarM, Cidade Universitária, 58051-970, João Pessoa, PB, Brazil.
| | - Ricardo Barbosa Lucena
- Universidade Federal da Paraíba, Centro de Ciências Agrárias, Rodovia PB 079 - Km 12, 58397-000, Areia, PB, Brazil.
| |
Collapse
|
18
|
Chen Y, Zhu X, Loukopoulos P, Weston LA, Albrecht DE, Quinn JC. Genotypic identification of Panicum spp. in New South Wales, Australia using DNA barcoding. Sci Rep 2021; 11:16055. [PMID: 34362980 PMCID: PMC8346583 DOI: 10.1038/s41598-021-95610-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Australia has over 30 Panicum spp. (panic grass) including several non-native species that cause crop and pasture loss and hepatogenous photosensitisation in livestock. It is critical to correctly identify them at the species level to facilitate the development of appropriate management strategies for efficacious control of Panicum grasses in crops, fallows and pastures. Currently, identification of Panicum spp. relies on morphological examination of the reproductive structures, but this approach is only useful for flowering specimens and requires significant taxonomic expertise. To overcome this limitation, we used multi-locus DNA barcoding for the identification of ten selected Panicum spp. found in Australia. With the exception of P. buncei, other native Australian Panicum were genetically separated at the species level and distinguished from non-native species. One nuclear (ITS) and two chloroplast regions (matK and trnL intron-trnF) were identified with varying facility for DNA barcode separation of the Panicum species. Concatenation of sequences from ITS, matK and trnL intron-trnF regions provided clear separation of eight regionally collected species, with a maximum intraspecific distance of 0.22% and minimum interspecific distance of 0.33%. Two of three non-native Panicum species exhibited a smaller genome size compared to native species evaluated, and we speculate that this may be associated with biological advantages impacting invasion of non-native Panicum species in novel locations. We conclude that multi-locus DNA barcoding, in combination with traditional taxonomic identification, provides an accurate and cost-effective adjunctive tool for further distinguishing Panicum spp. at the species level.
Collapse
Affiliation(s)
- Yuchi Chen
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia ,grid.1008.90000 0001 2179 088XMelbourne Veterinary School, The University of Melbourne, Werribee, VIC Australia
| | - Xiaocheng Zhu
- grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW Australia
| | - Panayiotis Loukopoulos
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1008.90000 0001 2179 088XMelbourne Veterinary School, The University of Melbourne, Werribee, VIC Australia
| | - Leslie A. Weston
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia
| | - David E. Albrecht
- grid.467784.e0000 0001 2231 5722Australian National Herbarium, Centre for Australian National Biodiversity Research (a Joint Venture Between Parks Australia and CSIRO), Canberra, Australian Capital Territory, Australia
| | - Jane C. Quinn
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia
| |
Collapse
|
19
|
Polat E, Kang K. Natural Photosensitizers in Antimicrobial Photodynamic Therapy. Biomedicines 2021; 9:584. [PMID: 34063973 PMCID: PMC8224061 DOI: 10.3390/biomedicines9060584] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Health problems and reduced treatment effectiveness due to antimicrobial resistance have become important global problems and are important factors that negatively affect life expectancy. Antimicrobial photodynamic therapy (APDT) is constantly evolving and can minimize this antimicrobial resistance problem. Reactive oxygen species produced when nontoxic photosensitizers are exposed to light are the main functional components of APDT responsible for microbial destruction; therefore, APDT has a broad spectrum of target pathogens, such as bacteria, fungi, and viruses. Various photosensitizers, including natural extracts, compounds, and their synthetic derivatives, are being investigated. The main limitations, such as weak antimicrobial activity against Gram-negative bacteria, solubility, specificity, and cost, encourage the exploration of new photosensitizer candidates. Many additional methods, such as cell surface engineering, cotreatment with membrane-damaging agents, nanotechnology, computational simulation, and sonodynamic therapy, are also being investigated to develop novel APDT methods with improved properties. In this review, we summarize APDT research, focusing on natural photosensitizers used in in vitro and in vivo experimental models. In addition, we describe the limitations observed for natural photosensitizers and the methods developed to counter those limitations with emerging technologies.
Collapse
Affiliation(s)
- Ece Polat
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
| | - Kyungsu Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
- Division of Bio-Medical Science Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Gangwon-do, Korea
| |
Collapse
|
20
|
TAKEMOTO K. Optical manipulation of molecular function by chromophore-assisted light inactivation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:197-209. [PMID: 33840676 PMCID: PMC8062263 DOI: 10.2183/pjab.97.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In addition to simple on/off switches for molecular activity, spatiotemporal dynamics are also thought to be important for the regulation of cellular function. However, their physiological significance and in vivo importance remain largely unknown. Fluorescence imaging technology is a powerful technique that can reveal the spatiotemporal dynamics of molecular activity. In addition, because imaging detects the correlations between molecular activity and biological phenomena, the technique of molecular manipulation is also important to analyze causal relationships. Recent advances in optical manipulation techniques that artificially perturb molecules and cells via light can address this issue to elucidate the causality between manipulated target and its physiological function. The use of light enables the manipulation of molecular activity in microspaces, such as organelles and nerve spines. In this review, we describe the chromophore-assisted light inactivation method, which is an optical manipulation technique that has been attracting attention in recent years.
Collapse
Affiliation(s)
- Kiwamu TAKEMOTO
- Department of Biochemistry, Mie University, Graduate School of Medicine, Tsu-City, Mie, Japan
| |
Collapse
|
21
|
Hepatogenous Photosensitivity Outbreak after Coccidiosis in Grazing Holstein Steers. Vet Sci 2020; 7:vetsci7040186. [PMID: 33255168 PMCID: PMC7712887 DOI: 10.3390/vetsci7040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Clinical signs of photosensitivity in cattle can occur sporadically and unpredictably. It is believed that cases of photosensitivity may be underreported, causing inaccurate and inflated reports of mortality. Additionally, because secondary photosensitization in grazing cattle occurs with liver damage or dysfunction, photosensitivity can have many potential or associated causes. This case links a previous occurrence of coccidiosis to an outbreak of photosensitivity in grazing Holstein steers. Grazing management staff first observed clinical signs of photosensitivity 17 days after an outbreak of coccidiosis and subsequent turnout to spring pastures. Clinical signs were observed in 25% of the population. The severity of photosensitivity was variable and ranged from blistered skin on the muzzle to sloughing of unpigmented epidermis and thinly haired regions. Severely affected cattle were removed from pasture, housed under shade, monitored for infection, and recovered without treatment. Mild cases remained on pasture and recovered without treatment. Photosensitivity did not reoccur in the cattle that remained on pasture or in mildly affected cattle returned to pasture. Photosensitivity did not appear to be associated with pasture weeds, a specific forage species, or variable or extreme weather conditions that could have resulted in mycotoxin production. The occurrence appears to have been a result of a previous and concurrent coccidiosis outbreak that caused secondary photosensitization through hepatic lipidosis caused by anorexia and dehydration associated with the severe coccidiosis. Although clinical signs appeared suddenly, cattle recovered quickly and without treatment.
Collapse
|
22
|
Toxic Potential and Metabolic Profiling of Two Australian Biotypes of the Invasive Plant Parthenium Weed ( Parthenium hysterophorus L.). Toxins (Basel) 2020; 12:toxins12070447. [PMID: 32664345 PMCID: PMC7404986 DOI: 10.3390/toxins12070447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Parthenium weed (Parthenium hysterophorus L.) is an invasive plant species in around 50 countries and a 'Weed of National Significance' in Australia. This study investigated the relative toxicity of the leaf, shoot and root extracts of two geographically separate and morphologically distinct biotypes of parthenium weed in Queensland, Australia. Parthenium weed exhibited higher phytotoxic, cytotoxic and photocytotoxic activity in leaf tissue extracts in contrast to shoot and root. The germination and seedling growth of a dicot species (garden cress) were inhibited more than those of a monocot species (annual ryegrass) using a phytotoxicity bioassay. The cytotoxicity of leaf extracts was assessed in a mouse fibroblast cell suspension assay and increased under high ultraviolet A(UV-A) radiation. A major secondary metabolite, parthenin, was found in abundance in leaf extracts and was positively correlated with cytotoxicity but not with photocytotoxicity or phytotoxicity. Ambrosin and chlorogenic acid were also detected and were positively correlated with germination inhibition and the inhibition of radicle elongation, respectively. In addition, other currently unidentified compounds in the leaf extracts were positively correlated with phytotoxicity, cytotoxicity and photocytotoxicity with two to three molecules strongly correlated in each case. Both parthenium weed biotypes investigated did not differ with respect to their relative toxicity, despite their reported differences in invasive potential in the field. This suggests that secondary chemistry plays a limited role in their invasion success.
Collapse
|
23
|
Polyak YM, Sukcharevich VI. Allelopathic Interactions between Plants and Microorganisms in Soil Ecosystems. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086419060033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Baazaoui I, McEwan J, Anderson R, Brauning R, McCulloch A, Van Stijn T, Bedhiaf-Romdhani S. GBS Data Identify Pigmentation-Specific Genes of Potential Role in Skin-Photosensitization in Two Tunisian Sheep Breeds. Animals (Basel) 2019; 10:ani10010005. [PMID: 31861491 PMCID: PMC7022847 DOI: 10.3390/ani10010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Tunisian Noire de Thibar sheep breed is a composite breed, recently selected to create animals that are uniformly black in order to avoid skin photosensitization after the ingestion of toxic "hypericum perforatum" weeds, which causes a major economic loss to sheep farmers. We assessed genetic differentiation and estimated marker FST using genotyping-by-sequencing (GBS) data in black (Noire de Thibar) and related white-coated (Queue fine de l'ouest) sheep breeds to identify signals of artificial selection. The results revealed the selection signatures within candidate genes related to coat color, which are assumed to be indirectly involved in the mechanism of photosensitization in sheep. The identified genes could provide important information for molecular breeding.
Collapse
Affiliation(s)
- Imen Baazaoui
- Faculty of Science of Bizerte, University of Carthage, Carthage 1054, Tunisia
| | - John McEwan
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Rayna Anderson
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Rudiger Brauning
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Alan McCulloch
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Tracey Van Stijn
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Sonia Bedhiaf-Romdhani
- National Agricultural Research Institute of Tunisia, Laboratory of Animal and forage Production, University of Carthage, Ariana 1004, Tunisia
- Correspondence: ; Tel.: +216-25-113-344
| |
Collapse
|
25
|
Chen Y, Quinn JC, Weston LA, Loukopoulos P. The aetiology, prevalence and morbidity of outbreaks of photosensitisation in livestock: A review. PLoS One 2019; 14:e0211625. [PMID: 30811417 PMCID: PMC6392228 DOI: 10.1371/journal.pone.0211625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/17/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Photosensitisation is a clinical condition occurring in both humans and animals that causes significant injury to affected individuals. In livestock, outbreaks of photosensitisation caused by ingestion of toxic plants are relatively common and can be associated with significant economic loss. OBJECTIVES The agents that are most commonly implicated in outbreaks of photosensitisation have not been formally investigated on a global scale. To address this question, a systematic review of the literature was undertaken to determine the most common causative agents implicated in outbreaks of photosensitisation in livestock in Australia and globally, as well as the prevalence and morbidity of such outbreaks. METHODS A systematic database search was conducted to identify peer-reviewed case reports of photosensitisation in livestock published worldwide between 1900 and April 2018. Only case reports with a full abstract in English were included. Non peer-reviewed reports from Australia were also investigated. Case reports were then sorted by plant and animal species, type of photosensitisation by diagnosis, location, morbidity and mortality rate and tabulated for further analysis. RESULTS One hundred and sixty-six reports qualified for inclusion in this study. Outbreaks were reported in 20 countries. Australia (20), Brazil (20) and the United States (11) showed the highest number of peer-reviewed photosensitisation case reports from this analysis. Hepatogenous (Type III) photosensitisation was the most frequently reported diagnosis (68.5%) and resulted in higher morbidity. Panicum spp., Brachiaria spp. and Tribulus terrestris were identified as the most common causes of hepatogenous photosensitisation globally. CONCLUSIONS Hepatogenous photosensitisation in livestock represents a significant risk to livestock production, particularly in Australia, Brazil, and the United States. Management of toxic pastures and common pasture weeds may reduce the economic impact of photosensitisation both at a national and global level.
Collapse
Affiliation(s)
- Yuchi Chen
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia
| | - Jane C. Quinn
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia
- * E-mail:
| | - Leslie A. Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia
- School of Agriculture and Wine Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Panayiotis Loukopoulos
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
26
|
Trewin AJ, Berry BJ, Wei AY, Bahr LL, Foster TH, Wojtovich AP. Light-induced oxidant production by fluorescent proteins. Free Radic Biol Med 2018; 128:157-164. [PMID: 29425690 PMCID: PMC6078816 DOI: 10.1016/j.freeradbiomed.2018.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
Oxidants play an important role in the cell and are involved in many redox processes. Oxidant concentrations are maintained through coordinated production and removal systems. The dysregulation of oxidant homeostasis is a hallmark of many disease pathologies. The local oxidant microdomain is crucial for the initiation of many redox signaling events; however, methods to control oxidant product are limited. Some fluorescent proteins, including GFP, TagRFP, KillerRed, miniSOG, and their derivatives, generate oxidants in response to light. These genetically-encoded photosensitizers produce singlet oxygen and superoxide upon illumination and offer spatial and temporal control over oxidant production. In this review, we will examine the photosensitization properties of fluorescent proteins and their application to redox biology. Emerging concepts of selective oxidant species production via photosensitization and the impact of light on biological systems are discussed.
Collapse
Affiliation(s)
- Adam J Trewin
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Brandon J Berry
- University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester 14642, United States
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Laura L Bahr
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester 14642, United States
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States; University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester 14642, United States.
| |
Collapse
|
27
|
Photochemical Treatment of Drosophila APCs Can Eliminate Associated Viruses and Maintain the APC Function for Generating Antigen-Specific CTLs Ex Vivo. Mediators Inflamm 2018; 2018:4167652. [PMID: 30327581 PMCID: PMC6171251 DOI: 10.1155/2018/4167652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Drosophila cells transfected with MHC class I and a number of costimulation molecules including B7.1, ICAM, LFA-3, and CD70 are potent antigen-presenting cells (APCs) for the generation of antigen-specific cytotoxic T cells (CTLs) in vitro. Using Drosophila APCs, CTLs specific for melanoma antigens have been generated in vitro and adoptively transferred to melanoma patients. However, the recent discovery that Drosophila cells can carry insect viruses raises the potential risk of Drosophila APCs transmitting xenogenic viruses to patient CTLs. In this study, we have investigated photoreactive methods to inactivate insect viruses in APC. A clinical grade psoralen compound, 8-MOP (UVADEX) in combination with UVA treatment (5 joules/cm2) can be used to inactivate Drosophila cell viruses. UVADEX treatment is sufficient to inactivate insect viruses but does not affect the expression of MHC class I molecules and costimulation molecules on Drosophila APCs. In fact, UVADEX treatment prevents Drosophila APC growth while maintaining APC function. Furthermore, UVADEX-treated Drosophila APCs maintain or have enhanced APC function as determined by enhanced T cell activation, proliferation, and CTL generation. Thus, the use of UVADEX-treated Drosophila APCs may provide a valuable tool for immunotherapy to generate tumor antigen-specific CTLs.
Collapse
|
28
|
Hussain SM, Herling VR, Rodrigues PHM, Naz I, Khan H, Khan MT. Mini review on photosensitization by plants in grazing herbivores. Trop Anim Health Prod 2018; 50:925-935. [DOI: 10.1007/s11250-018-1583-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 03/20/2018] [Indexed: 01/16/2023]
|
29
|
STEROIDAL SAPONIN TOXICITY IN EASTERN GREY KANGAROOS ( MACROPUS GIGANTEUS): A NOVEL CLINICOPATHOLOGIC PRESENTATION OF HEPATOGENOUS PHOTOSENSITIZATION. J Wildl Dis 2018; 54:491-502. [PMID: 29498896 DOI: 10.7589/2017-03-066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the clinicopathologic features of a mortality event characterized by blindness and dermatitis affecting eastern grey kangaroos ( Macropus giganteus), secondary to hepatogenous photosensitization. Affected animals exhibited photophobic behavior, blindness, ataxia, recumbency, lethargy, ear shaking, and behavior consistent with distress or depression. The photophobia manifested as abnormal shade-seeking during the day, including finding refuge under or in structures used frequently by people. Severely affected kangaroos were jaundiced and had markedly elevated serum bilirubin and gamma glutamyl-transpeptidase concentrations. Blindness in affected animals was attributed to moderate to severe corneal opacity due to corneal edema and inflammation. Skin lesions were typically subtle on gross examination even in cases which had severe necrotizing dermatitis histologically. Histologic lesions in the liver of affected animals included the presence of acicular clefts typical of steroidal saponins. The outbreak was associated with pasture dominated by the invasive grass, Panicum gilvum, which is a recognized source of saponin-induced photosensitization in livestock.
Collapse
|
30
|
Quinn JC, Chen Y, Hackney B, Tufail MS, Weston LA, Loukopoulos P. Acute-onset high-morbidity primary photosensitisation in sheep associated with consumption of the Casbah and Mauro cultivars of the pasture legume Biserrula. BMC Vet Res 2018; 14:11. [PMID: 29325550 PMCID: PMC5765607 DOI: 10.1186/s12917-017-1318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/12/2017] [Indexed: 11/12/2022] Open
Abstract
Background Primary photosensitisation (PS) subsequent to ingestion of the pasture legume Biserrula pelecinus L. (biserrula) has recently been confirmed in grazing livestock. Given the potential utility of this pasture species in challenging climates, a grazing trial was undertaken to examine if both varieties ‘Casbah’ and ‘Mauro’ were able to cause photosensitisation in livestock, and if this could be mitigated by grazing in winter, or in combination with other common pasture species. Results A controlled grazing trial was undertaken in winter in Australia with plots containing a dominant pasture of Biserrula pelecinus L. cv. ‘Casbah’ or ‘Mauro’, or mixed biserrula/perennial ryegrass populations. A photosensitisation grading system was established. 167 prime meat ewe lambs were introduced to the plots and monitored twice daily. Mild clinical signs were observed at 72 h on pasture. All animals were removed from biserrula dominant stands at this point. Four animals grazing ‘Casbah’ dominant pasture rapidly proceeded to severe photosensitisation in the following 12 h. Animals remaining on mixed biserrula/ryegrass stands did not exhibit severe PS but showed an 89% incidence of mild to moderate photosensitisation over the following 14 days. Animals on mixed lucerne showed significantly lower PS score than animals grazing biserrula varieties of any composition. The trial was halted at 14 days as only plots with low biserrula proportion still contained unaffected animals. Necropsy revealed severe multifocal erythematous ulcerations and alopecia of the ear pinnae, severe bilateral periorbital and conjunctival oedema and variably severe subcutaneous facial oedema. No evidence of hepatopathy was present. A diagnosis of acute unseasonal primary photosensitisation caused by biserrula ingestion with no other underlying pathology was confirmed. Conclusions We report an unseasonal outbreak of acute photosensitisation in sheep grazing Biserrula pelecinus L cvs.’Casbah’ and ‘Mauro’ with exceedingly high morbidity. A grading system is also proposed as a tool for objective and consistent clinical appraisal of future PS outbreaks. This finding expands our definition of seasonal and temporal risk periods for biserrula photosensitisation, and is the first to identify that both commercial cultivars of biserrula can cause primary photosensitisation in sheep.
Collapse
Affiliation(s)
- Jane C Quinn
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Graham Centre for Agricultural Innovation; Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, 2650, Australia
| | - Yuchi Chen
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Belinda Hackney
- Graham Centre for Agricultural Innovation; Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, 2650, Australia
| | - Muhammad Shoaib Tufail
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Graham Centre for Agricultural Innovation; Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, 2650, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation; Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, 2650, Australia
| | - Panayiotis Loukopoulos
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia. .,Graham Centre for Agricultural Innovation; Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
31
|
Wainwright M, Stockburn WJ, Lawrence CL, Stevens HJ, Jones AE, Smith RB. Photoactive plants: Botany bad boys or horticultural heroes? Phytother Res 2017; 32:561-563. [PMID: 29214691 DOI: 10.1002/ptr.5997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - William J Stockburn
- School of Forensic and Applied Science, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Clare L Lawrence
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Harry J Stevens
- School of Physical Sciences and Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Allison E Jones
- Faculty of Science and Technology, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Robert B Smith
- School of Physical Sciences and Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
32
|
Ishaq SL, Yeoman CJ, Whitney TR. Ground Juniperus pinchotii and urea in supplements fed to Rambouillet ewe lambs Part 2: Ewe lamb rumen microbial communities1. J Anim Sci 2017; 95:4587-4599. [DOI: 10.2527/jas2017.1731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Durán AG, Gutiérrez MT, Rial C, Torres A, Varela RM, Valdivia MM, Molinillo JMG, Skoneczny D, Weston LA, Macías FA. Bioactivity and quantitative analysis of isohexenylnaphthazarins in root periderm of two Echium spp.: E. plantagineum and E. gaditanum. PHYTOCHEMISTRY 2017. [PMID: 28633108 DOI: 10.1016/j.phytochem.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Isohexenylnaphthazarins are commonly found in the root periderm of several Boraginaceous plants and are known for their broad range of biological activities. The work described herein concerns the biological activity of compounds from the roots of Echium plantagineum L. and Echium gaditanum Boiss (Boraginaceae) collected from field sites in southern Spain and Australia. Bioactivity was assessed using etiolated wheat coleoptile bioassay and in vitro growth inhibitory activity in HeLa and IGROV-1 cells. The quantification of four isohexenylnaphthazarins (shikonin/alkannin, deoxyshikonin/deoxyalkannin, acetylshikonin/acetylalkannin and dimethylacrylshikonin/dimethylacrylalkannin) was performed by LC-MS/MS using juglone as internal standard. Correlation coefficient values for the activities and concentrations of these four analytes were in the linear range and were greater than 0.99. Acetylshikonin/acetylalkannin and dimethylacrylshikonin/dimethylacrylalkannin were present in the highest concentrations in extracts of both species. The results reveal that greatest overall inhibition was observed in both bioassays with E. gaditanum extracts. Strong correlations between time of collection, sampling location and bioactivity were identified.
Collapse
Affiliation(s)
- Alexandra G Durán
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510 Puerto Real, Cadiz, Spain
| | - M Teresa Gutiérrez
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510 Puerto Real, Cadiz, Spain
| | - Carlos Rial
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510 Puerto Real, Cadiz, Spain
| | - Ascensión Torres
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510 Puerto Real, Cadiz, Spain
| | - Rosa M Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510 Puerto Real, Cadiz, Spain
| | - Manuel M Valdivia
- Department of Biomedicine, Biotechnology and Public Health, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, C/República Saharaui, 7, 11510 Puerto Real, Cádiz, Spain
| | - José M G Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510 Puerto Real, Cadiz, Spain
| | - Dominik Skoneczny
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2678, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2678, Australia
| | - Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510 Puerto Real, Cadiz, Spain.
| |
Collapse
|
34
|
Skoneczny D, Weston PA, Zhu X, Gurr GM, Callaway RM, Barrow RA, Weston LA. Metabolic Profiling and Identification of Shikonins in Root Periderm of Two Invasive Echium spp. Weeds in Australia. Molecules 2017; 22:E330. [PMID: 28230806 PMCID: PMC6155885 DOI: 10.3390/molecules22020330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
Metabolic profiling can be successfully implemented to analyse a living system's response to environmental conditions by providing critical information on an organism's physiological state at a particular point in time and allowing for both quantitative and qualitative assessment of a specific subset(s) of key metabolites. Shikonins are highly reactive chemicals that affect various cell signalling pathways and possess antifungal, antibacterial and allelopathic activity. Based on previous bioassay results, bioactive shikonins, are likely to play important roles in the regulation of rhizosphere interactions with neighbouring plants, microbes and herbivores. An effective platform allowing for rapid identification and accurate profiling of numerous structurally similar, difficult-to-separate bioactive isohexenylnaphthazarins (shikonins) was developed using UHPLC Q-TOF MS. Root periderm tissues of the invasive Australian weeds Echium plantagineum and its congener E. vulgare were extracted overnight in ethanol for shikonin profiling. Shikonin production was evaluated at seedling, rosette and flowering stages. Five populations of each species were compared for qualitative and quantitative differences in shikonin formation. Each species showed little populational variation in qualitative shikonin production; however, shikonin was considerably low in one population of E. plantagineum from Western New South Wales. Seedlings of all populations produced the bioactive metabolite acetylshikonin and production was upregulated over time. Mature plants of both species produced significantly higher total levels of shikonins and isovalerylshikonin > dimethylacrylshikonin > shikonin > acetylshikonin in mature E. plantagineum. Although qualitative metabolic profiles in both Echium spp. were nearly identical, shikonin abundance in mature plant periderm was approximately 2.5 times higher in perennial E. vulgare extracts in comparison to those of the annual E. plantagineum. These findings contribute to our understanding of the biosynthesis of shikonins in roots of two related invasive plants and their expression in relation to plant phenological stage.
Collapse
Affiliation(s)
- Dominik Skoneczny
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Paul A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Xiaocheng Zhu
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Geoff M Gurr
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
- Institute of Applied Ecology, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - Ragan M Callaway
- Division of Biological Science, University of Montana, 32 Campus Dr, Missoula, MT 59812, USA.
| | - Russel A Barrow
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia.
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
35
|
Mamone L, Di Venosa G, Sáenz D, Batlle A, Casas A. Methods for the detection of reactive oxygen species employed in the identification of plant photosensitizers. Methods 2016; 109:73-80. [DOI: 10.1016/j.ymeth.2016.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 01/16/2023] Open
|
36
|
Bahadori MB, Dinparast L, Zengin G. The Genus Heracleum
: A Comprehensive Review on Its Phytochemistry, Pharmacology, and Ethnobotanical Values as a Useful Herb. Compr Rev Food Sci Food Saf 2016; 15:1018-1039. [DOI: 10.1111/1541-4337.12222] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Mir Babak Bahadori
- Research Center for Pharmaceutical Nanotechnology; Tabriz Univ. of Medical Sciences; Tabriz Iran
| | - Leila Dinparast
- Biotechnology Research Center; Tabriz Univ. of Medical Sciences; Tabriz Iran
| | - Gokhan Zengin
- Dept. of Biology, Science Faculty; Selcuk Univ; Campus Konya Turkey
| |
Collapse
|
37
|
Pérez AJ, Hussain SM, Pecio Ł, Kowalczyk M, Herling VR, Stochmal A. Ultrahigh-Performance Liquid Chromatography-High-Resolution Quadrupole Time-of-Flight Mass Spectrometry Based Metabolomics Reveals Key Differences between Brachiaria decumbens and B. brizantha, Two Similar Pastures with Different Toxicities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4686-4694. [PMID: 27192362 DOI: 10.1021/acs.jafc.6b01296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Several species of Brachiaria (Poaceae) currently cover extensive grazing areas in Brazil, providing valuable source of feed for a large cattle population. However, numerous cases of toxicity outbreaks in livestock have raised concerns on safety of using these plants, especially B. decumbens. In this study, chemometric analysis of ultrahigh-performance liquid chromatography-high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-HR-QTOF-MS) data has for the first time uncovered qualitative and quantitative differences between metabolomes of toxic B. decumbens and nontoxic B. brizantha. The steroidal saponin protoneodioscin was established as the main biomarker for B. decumbens when compared to B. brizantha, and therefore the key explanation for their phytochemical differentiation. Quantification of protodioscin in both plants showed no significant differences; consequently, the idea that this compound is solely responsible for toxicity outbreaks must be discarded. Instead, we propose that the added occurrence of its stereoisomer, protoneodioscin, in B. decumbens, can be considered as the probable cause of these events. Interestingly, the greatest concentrations of saponins for both species were reached during winter (B. decumbens = 53.6 ± 5.1 mg·g(-1) dry weight (D.W.); B. brizantha = 25.0 ± 1.9 mg·g(-1) D.W.) and spring (B. decumbens = 49.4 ± 5.0 mg·g(-1) D.W.; B. brizantha = 27.9 ± 1.4 mg·g(-1) D.W.), although in the case of B. decumbens these values do not vary significantly among seasons.
Collapse
Affiliation(s)
- Andy J Pérez
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute , ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Syeda M Hussain
- Department of Plant Sciences, College of Animal Sciences and Food Engineering, University of São Paulo , Pirassununga, São Paulo 13635-900, Brazil
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute , ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute , ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Valdo R Herling
- Department of Plant Sciences, College of Animal Sciences and Food Engineering, University of São Paulo , Pirassununga, São Paulo 13635-900, Brazil
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute , ul. Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|
38
|
Zhu X, Skoneczny D, Weidenhamer JD, Mwendwa JM, Weston PA, Gurr GM, Callaway RM, Weston LA. Identification and localization of bioactive naphthoquinones in the roots and rhizosphere of Paterson's curse (Echium plantagineum), a noxious invader. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3777-88. [PMID: 27194735 PMCID: PMC4896362 DOI: 10.1093/jxb/erw182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bioactive plant secondary products are frequently the drivers of complex rhizosphere interactions, including those with other plants, herbivores and microbiota. These chemically diverse molecules typically accumulate in a highly regulated manner in specialized plant tissues and organelles. We studied the production and localization of bioactive naphthoquinones (NQs) in the roots of Echium plantagineum, an invasive endemic weed in Australia. Roots of E. plantagineum produced red-coloured NQs in the periderm of primary and secondary roots, while seedling root hairs exuded NQs in copious quantities. Confocal imaging and microspectrofluorimetry confirmed that bioactive NQs were deposited in the outer layer of periderm cells in mature roots, resulting in red colouration. Intracellular examination revealed that periderm cells contained numerous small red vesicles for storage and intracellular transport of shikonins, followed by subsequent extracellular deposition. Periderm and root hair extracts of field- and phytotron-grown plants were analysed by UHPLC/Q-ToF MS (ultra high pressure liquid chromatography coupled to quadrupole time of flight mass spectrometry) and contained more than nine individual NQs, with dimethylacrylshikonin, and phytotoxic shikonin, deoxyshikonin and acetylshikonin predominating. In seedlings, shikonins were first found 48h following germination in the root-hypocotyl junction, as well as in root hair exudates. In contrast, the root cortices of both seedling and mature root tissues were devoid of NQs. SPRE (solid phase root zone extraction) microprobes strategically placed in soil surrounding living E. plantagineum plants successfully extracted significant levels of bioactive shikonins from living roots, rhizosphere and bulk soil surrounding roots. These findings suggest important roles for accumulation of shikonins in the root periderm and subsequent rhizodeposition in plant defence, interference, and invasion success.
Collapse
Affiliation(s)
- Xiaocheng Zhu
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Wagga Wagga NSW 2678 Australia
| | - Dominik Skoneczny
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Wagga Wagga NSW 2678 Australia
| | - Jeffrey D Weidenhamer
- Department of Chemistry, Geology and Physics, Ashland University, Ashland, OH 44805 USA
| | - James M Mwendwa
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Wagga Wagga NSW 2678 Australia
| | - Paul A Weston
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Wagga Wagga NSW 2678 Australia
| | - Geoff M Gurr
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Wagga Wagga NSW 2678 Australia Institute of Applied Ecology, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Ragan M Callaway
- Division of Biological Science, University of Montana, Missoula, MT 59812, USA
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Wagga Wagga NSW 2678 Australia
| |
Collapse
|
39
|
Puschner B, Chen X, Read D, Affolter V. Alfalfa hay induced primary photosensitization in horses. Vet J 2016; 211:32-8. [DOI: 10.1016/j.tvjl.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/17/2016] [Accepted: 03/05/2016] [Indexed: 11/28/2022]
|
40
|
Kessell AE, Ladmore GE, Quinn JC. An outbreak of primary photosensitisation in lambs secondary to consumption of Biserrula pelecinus (biserrula). Aust Vet J 2016; 93:174-8. [PMID: 25939266 DOI: 10.1111/avj.12318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/15/2014] [Accepted: 09/02/2014] [Indexed: 11/29/2022]
Abstract
CASE REPORT An outbreak of photosensitisation affecting approximately 25% of a flock of 120 meat lambs that was grazing a monoculture of the pasture legume Biserrula pelecinus var. Casbah (biserrula) was investigated. Blood samples were taken from sheep with moderate to severe clinical signs, and from apparently normal animals, for a complete blood count and biochemistry; 5 affected animals were subjected to a full necropsy. Histopathological investigation showed lesions consistent with photosensitisation of the exposed unpigmented skin of the face and ears. No histopathological or clinical pathological abnormalities suggestive of a hepatopathy were detected in any of the cases, indicating that the lesions observed in this flock were caused by a primary photosensitising agent present in B. pelecinus. CONCLUSION This is the first confirmation that photosensitisation caused by ingestion of biserrula is caused by a primary photosensitising agent.
Collapse
Affiliation(s)
- A E Kessell
- School of Animal and Veterinary Sciences, Charles Sturt University, Nathan Cobb Drive, Wagga Wagga, New South Wales, Australia
| | | | | |
Collapse
|
41
|
Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia--A Case of Novel Weapons? Int J Mol Sci 2015; 16:26721-37. [PMID: 26561809 PMCID: PMC4661838 DOI: 10.3390/ijms161125979] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022] Open
Abstract
Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17) by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant’s capacity to deter natural enemies in its invaded range through production of novel weapons.
Collapse
|
42
|
Ceacero F, Landete-Castillejos T, Olguín A, Miranda M, García A, Martínez A, Cassinello J, Miguel V, Gallego L. Avoiding toxic levels of essential minerals: a forgotten factor in deer diet preferences. PLoS One 2015; 10:e0115814. [PMID: 25615596 PMCID: PMC4304801 DOI: 10.1371/journal.pone.0115814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/26/2014] [Indexed: 11/19/2022] Open
Abstract
Ungulates select diets with high energy, protein, and sodium contents. However, it is scarcely known the influence of essential minerals other than Na in diet preferences. Moreover, almost no information is available about the possible influence of toxic levels of essential minerals on avoidance of certain plant species. The aim of this research was to test the relative importance of mineral content of plants in diet selection by red deer (Cervus elaphus) in an annual basis. We determined mineral, protein and ash content in 35 common Mediterranean plant species (the most common ones in the study area). These plant species were previously classified as preferred and non-preferred. We found that deer preferred plants with low contents of Ca, Mg, K, P, S, Cu, Sr and Zn. The model obtained was greatly accurate identifying the preferred plant species (91.3% of correct assignments). After a detailed analysis of these minerals (considering deficiencies and toxicity levels both in preferred and non-preferred plants) we suggest that the avoidance of excessive sulphur in diet (i.e., selection for plants with low sulphur content) seems to override the maximization for other nutrients. Low sulphur content seems to be a forgotten factor with certain relevance for explaining diet selection in deer. Recent studies in livestock support this conclusion, which is highlighted here for the first time in diet selection by a wild large herbivore. Our results suggest that future studies should also take into account the toxicity levels of minerals as potential drivers of preferences.
Collapse
Affiliation(s)
- Francisco Ceacero
- Department of Animal Science and Food Processing, Czech University of Life Sciences, Prague, Czech Republic
- Department of Ethology, Institute of Animal Science, Prague, Czech Republic
- * E-mail:
| | - Tomás Landete-Castillejos
- Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional (IDR), Albacete, Spain
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Augusto Olguín
- Colegio de Postgraduados Campus Córdoba, Veracruz, Mexico
| | - María Miranda
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrés García
- Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional (IDR), Albacete, Spain
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Alberto Martínez
- Laboratorio de Ciencia e Ingeniería de Materiales, Instituto de Desarrollo Regional (IDR), Albacete, Spain
| | - Jorge Cassinello
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Valentín Miguel
- Laboratorio de Ciencia e Ingeniería de Materiales, Instituto de Desarrollo Regional (IDR), Albacete, Spain
| | - Laureano Gallego
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|