1
|
Garabet L, Rangberg A, Eriksson AM, Jonassen CM, Teruel-Montoya R, Lozano ML, Martinez C, Pettersen HH, Mathisen ÅB, Tjønnfjord E, Tran H, Brodin E, Tsykunova G, Gebhart J, Bussel J, Ghanima W. MicroRNA-199a-5p may be a diagnostic biomarker of primary ITP. Br J Haematol 2025; 206:1443-1449. [PMID: 39776057 DOI: 10.1111/bjh.19987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
There is no diagnostic test for primary immune thrombocytopenia (ITP). Certain microRNAs have shown to have diagnostic potential in ITP. We validated 12 microRNAs identified from two previous studies to find a diagnostic biomarker. The study included two ITP cohorts (n = 61) and healthy controls (n = 28). The first ITP cohort involved 24 patients from the Prolong study, patients with newly diagnosed/persistent ITP (<1 year) treated with corticosteroids ± IVIG but relapsed/failed to respond. The second cohort comprised 37 patients from ITP biobank, Østfold Hospital, Norway, patients had different disease stages and therapies. Twelve microRNAs were measured: miR-199a-5p, miR-33a-5p, miR-195-5p, miR-130a-3p, miR-144-3p, miR-146a-5p, miR-222-3p, miR-374b-5p, miR-486-5p, miR-1341-5p, miR-766-3p and miR-409-3p. miR-199a-5p, miR-33a-5p, miR-374b-5p, miR-146a-5p and miR-409-3p were expressed differentially in the entire ITP cohort compared to controls; of those only miR-199a-5p showed good discriminative ability between ITP and controls with area under the curve (AUC) of 0.718 (95% CI: 0.599-0.836). In the Prolong cohort (ITP < 1 year), miR-199a-5p and miR-374b-5p showed very good discriminative ability between ITP and controls with AUC of 0.824 (0.708-0.940) and 0.806 (0.688-0.924) respectively. This study confirmed that miR-199a-5p has good discriminative ability between primary ITP and healthy controls, thus may be a diagnostic biomarker of ITP.
Collapse
Affiliation(s)
- Lamya Garabet
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
- Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Lørenskog, Norway
| | - Anbjørg Rangberg
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
| | | | - Christine Monceyron Jonassen
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Raul Teruel-Montoya
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - Maria Luisa Lozano
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - Constantino Martinez
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | | | | | | | - Hoa Tran
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Ellen Brodin
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Galina Tsykunova
- Department of Haematology, Haukeland University Hospital, Bergen, Norway
| | - Johanna Gebhart
- Department of Medicine, Medical University of Vienna, Vianna, Austria
| | - James Bussel
- Department of Pediatrics, Division of Hematology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Waleed Ghanima
- Department of Research, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Tang B, Bi Y, Zheng X, Yang Y, Huang X, Yang K, Zhong H, Han L, Lu C, Chen H. The Role of Extracellular Vesicles in the Development and Treatment of Psoriasis: Narrative Review. Pharmaceutics 2024; 16:1586. [PMID: 39771564 PMCID: PMC11677080 DOI: 10.3390/pharmaceutics16121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Psoriasis is a chronic inflammatory polygenic disease with significant impacts on skin and joints, leading to substantial treatment challenges and healthcare costs. The quest for novel therapeutic avenues has recently highlighted extracellular vesicles (EVs) due to their potential as biomarkers and therapeutic agents in autoimmune diseases, including psoriasis. EVs are nano-sized, lipid membrane-bound particles secreted by cells that have emerged as promising tools for targeted drug delivery, owing to their unique structure. This review delves into how EVs, either as mediators of cell communication or via their cargo (such as miRNA), directly participate in the pathology of psoriasis, influencing processes such as immune regulation, cell proliferation, and differentiation. Furthermore, this review explores the innovative application of EVs in psoriasis treatment, both as direct therapeutic agents and as vehicles for drug delivery, offering a novel approach to overcoming the current treatment limitations.
Collapse
Affiliation(s)
- Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xuwei Zheng
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiaobing Huang
- Hospital of Osteopathy The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, China
| | - Kexin Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haixin Zhong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
3
|
Xiang Q, Wu Z, Zhao Y, Tian S, Lin J, Wang L, Jiang S, Sun Z, Li W. Cellular and molecular mechanisms underlying obesity in degenerative spine and joint diseases. Bone Res 2024; 12:71. [PMID: 39658574 PMCID: PMC11632072 DOI: 10.1038/s41413-024-00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Longjie Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
4
|
Skrzyńska K, Zachurzok A, Pietrusik A, Jakubowska-Kowal K, Gawlik-Starzyk A. Visfatin and VEGF levels are not increased in adolescent girls with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1488249. [PMID: 39600944 PMCID: PMC11588468 DOI: 10.3389/fendo.2024.1488249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction PCOS is one of the most commonly occurring endocrinopathies among women and increasingly affects adolescent populations. The connection between PCOS and various endocrinological, psychological, and CVD is increasingly recognized. Some studies have shown elevated levels of visfatin and VEGF among patients with PCOS, which are markers of vascular endothelial dysfunction. In our study, we evaluated the concentration of these parameters, focusing solely on a group of adolescents with PCOS, to assess whether these early markers of CVD are present at an early stage of diagnosis. Material and methods In total, 80 adolescent girls participated in the study. 47 adolescents diagnosed with PCOS were included in the study group (mean age 15.68 ± 1.18 years, BMI 26.66 ± 6.41 kg/m2), while the remaining 33 regularly menstruating individuals (mean age 15.79 ± 1.22 years, BMI 25.44 ± 7.24 kg/m2) were assigned to the control group. Each participant underwent imaging, biochemical, and hormonal tests. Additionally, markers of endothelial dysfunction: VEGF and visfatin, were measured in all adolescents. Results Both VEGF and visfatin levels did not differ significantly between PCOS and control group (p=0.30 and p=0.15, respectively). In the group of adolescent girls with PCOS, visfatin was significantly correlated with HDL, FSH, cortisol, and testosterone levels >55 ng/dl. VEGF was significantly correlated with fasting glucose, glucose levels after OGTT, estradiol, and waist circumference >80 cm. Conclusion It can be indirectly inferred that both visfatin and VEGF should not be used as early markers for cardiometabolic complications among adolescent patients with PCOS. On the other hand, low visfatin levels, through their negative correlation with HDL, may have a protective effect on cardiovascular complications, while low VEGF levels, through their positive correlation with glucose levels, may have a protective influence on carbohydrate metabolism disorders.
Collapse
Affiliation(s)
- Karolina Skrzyńska
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Agnieszka Pietrusik
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Jakubowska-Kowal
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aneta Gawlik-Starzyk
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Hu SL, Liu SC, Lin CY, Fong YC, Wang SS, Chen LC, Yang SF, Tang CH. Genetic associations of visfatin polymorphisms with clinicopathologic characteristics of prostate cancer in Taiwanese males. Int J Med Sci 2024; 21:2494-2501. [PMID: 39439457 PMCID: PMC11492887 DOI: 10.7150/ijms.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
The most general cancer in men is prostate cancer (PCa), with its risk increasing due to age and obesity. Visfatin, a member of adipokines, is related to cancer progression and metastasis, but its relationship in PCa remains undetermined. In addition, no knowledge is available regarding relations between visfatin polymorphisms and clinicopathological characteristics in PCa. We sought to investigate the functions of four visfatin gene polymorphisms and clinicopathological characteristics on the hazard of developing PCa in 695 Taiwanese males with PCa. Carriers of the GA+AA heterozygote of SNP rs61330082 were at a markedly higher risk of biochemical recurrence than those with the GG genotype. Visfatin rs61330082 and rs11977021 were related with a high risk of perineural invasion, lymphovascular invasion, and biochemical recurrence in prostate-specific antigen (PSA) > 10 PCa patients. The Cancer Genome Atlas database noted that visfatin mRNA level did not prominently differ with pathological T/N stage and overall survival. This finding is the first to document a connection between visfatin polymorphisms and clinicopathological characteristics of PCa in Taiwanese males.
Collapse
Affiliation(s)
- Sung-Lin Hu
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Shan-Chi Liu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chia-Yen Lin
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Li-Chai Chen
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
6
|
Zhou Q, Zhang LY, Dai MF, Li Z, Zou CC, Liu H. Thyroid-stimulating hormone induces insulin resistance in adipocytes via endoplasmic reticulum stress. Endocr Connect 2024; 13:e230302. [PMID: 38904465 PMCID: PMC11301544 DOI: 10.1530/ec-23-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 06/21/2024] [Indexed: 06/22/2024]
Abstract
Graphical abstract Abstract Subclinical hypothyroidism (SCH) is closely related to insulin resistance, and thyroid-stimulating hormone (TSH) level is an independent factor for insulin resistance associated with subclinical hypothyroidism. This study aims to explore the effects of TSH levels on insulin signal transduction in adipocytes and to establish the role of endoplasmic reticulum (ER) stress in this process. In this study, the SCH mouse model was established, and 3T3-L1 adipocytes were treated with TSH or tunicamycin (TM), with or without 4-phenylbutyric acid (4-PBA), an inhibitor of ER stress. Subclinical hypothyroidism mice exhibited impaired glucose tolerance, inactivation of the IRS-1/AKT pathway, and activation of the IRE1/JNK pathway in adipose tissue, which can all be alleviated by 4-PBA. Supplementation with levothyroxine restored the TSH to normal, alongside alleviated ER stress and insulin resistance in SCH mice, which is characterized by improved glucose tolerance, decreased mRNA expression of IRE1, and decreased phosphorylation of JNK in adipose tissue. In 3T3-L1 adipocytes, TSH induces insulin resistance, leading to a decrease in glucose uptake. This effect is mediated by the downregulation of IRS-1 tyrosine phosphorylation, reduced AKT phosphorylation, and inhibited GLUT4 protein expression. Notably, all these effects can be effectively reversed by 4-PBA. Moreover, TSH induced TNF-α and IL-6 production and upregulated the expression of ER stress markers. Similarly, these changes can be recovered by 4-PBA. These findings indicate that TSH has the capability to induce insulin resistance in adipocytes. The mechanism through which TSH disrupts insulin signal transduction appears to involve the ER stress-JNK pathway.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Endocrinology, Fujian Maternity and Child Health Hospital, Fujian Children’s Hospital, Fuzhou, China
| | - Li Yong Zhang
- Department of Thyroid Surgery, Minimal Invasive Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mei Feng Dai
- Department of Clinical Lab, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Zhen Li
- Department of Endocrinology, Fujian Maternity and Child Health Hospital, Fujian Children’s Hospital, Fuzhou, China
| | - Chao Chun Zou
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Liu
- Department of Endocrinology, Fujian Maternity and Child Health Hospital, Fujian Children’s Hospital, Fuzhou, China
| |
Collapse
|
7
|
Shaorong Z, Xiaodong L, Qiong P, Zhaodong X, Zhuo L, Hechen H, Yuancheng W. SNHG12/NFYC-AS1 Acted as the Sponge for hsa-miR-199a-5p to Promote the Expression of S100A8/S100A7/XDH and was Involved in the Progression of Diabetic Foot Ulcers. Mol Biotechnol 2023; 65:2038-2048. [PMID: 36920714 DOI: 10.1007/s12033-023-00692-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2023] [Indexed: 03/16/2023]
Abstract
Traditional Chinese medicine has been used to treat diabetic foot ulcer (DFU) for a long time. However, the underlying mechanism of Radix arnebiae seu lithospermi ointment (RAS-ointment) has not been revealed. Effects of RAS-ointment treatment were observed in DFU patients. The endogenous competitive RNA mechanism was constructed based on micro-array sequencing and bioinformatics analysis. RT-PCR was used to detected the expression of genes in DFU ulcerated skins and non-ulcerated skins. Dual luciferase and RT-PCR experiments were used to investigate the endogenous competitive RNA mechanism. Based on micro-array sequencing and bioinformatics analysis, we found that SNHG12/NFYC-AS1, hsa-miR-199a-5p and S100A8/S100A7/XDH might form an endogenous competitive RNA mechanism. RT-PCR assay shown that SNHG12, NFYC-AS1, S100A8, S100A7 and XDH were significantly up-regulated, while hsa-miR-199a-5p was significantly down-regulated in DFU ulcerated skins (N = 10) compared with non-ulcerated skins (N = 10). Dual luciferase and RT-PCR experiments showed that SNHG12 or NFYC-AS1 up-regulated the expression of S100A8, S100A7 and XDH by inhibiting hsa-miR-199a-5p in a direct binding way. After 35 days of RAS-ointment treatment, the wound healing of DFU patients was substantially improved and the expression of S100A7 and XDH were reduced expression in DFU patients. In addition, the monomer composition of RAS-ointment, 49070_FLUKA or auraptenol inhibited the expression of S100A7 and XDH in Te317.sk cells. In conclusion, RAS-ointment may be used as an adjunctive therapy for DFU patients.
Collapse
Affiliation(s)
- Zhou Shaorong
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Xiaodong
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pan Qiong
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Zhaodong
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhuo
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huang Hechen
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Yuancheng
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
9
|
Zou Z, Li H, Yu K, Ma K, Wang Q, Tang J, Liu G, Lim K, Hooper G, Woodfield T, Cui X, Zhang W, Tian K. The potential role of synovial cells in the progression and treatment of osteoarthritis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220132. [PMID: 37933282 PMCID: PMC10582617 DOI: 10.1002/exp.20220132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/15/2023] [Indexed: 11/08/2023]
Abstract
Osteoarthritis (OA), the commonest arthritis, is characterized by the progressive destruction of cartilage, leading to disability. The Current early clinical treatment strategy for OA often centers on anti-inflammatory or analgesia medication, weight loss, improved muscular function and articular cartilage repair. Although these treatments can relieve symptoms, OA tends to be progressive, and most patients require arthroplasty at the terminal stages of OA. Recent studies have shown a close correlation between joint pain, inflammation, cartilage destruction and synovial cells. Consequently, understanding the potential mechanisms associated with the action of synovial cells in OA could be beneficial for the clinical management of OA. Therefore, this review comprehensively describes the biological functions of synovial cells, the synovium, together with the pathological changes of synovial cells in OA, and the interaction between the cartilage and synovium, which is lacking in the present literature. Additionally, therapeutic approaches based on synovial cells for OA treatment are further discussed from a clinical perspective, highlighting a new direction in the treatment of OA.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Han Li
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Kai Yu
- Department of Bone and JointCentral Hospital of Zhuang He CityDalianLiaoningChina
| | - Ke Ma
- Department of Clinical MedicineChina Medical UniversityShenyangLiaoningChina
| | - Qiguang Wang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuanChina
| | - Junnan Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Guozhen Liu
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Xiaolin Cui
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Weiguo Zhang
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| | - Kang Tian
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| |
Collapse
|
10
|
Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr Obes Rep 2023; 12:308-331. [PMID: 37578613 DOI: 10.1007/s13679-023-00520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS), also called the 'deadly quartet' comprising obesity, diabetes, dyslipidemia, and hypertension, has been ascertained to have a causal role in the pathogenesis of osteoarthritis (OA). This review is aimed at discussing the current knowledge on the contribution of metabolic syndrome and its various components to OA pathogenesis and progression. RECENT FINDINGS Lately, an increased association identified between the various components of metabolic syndrome (obesity, diabetes, dyslipidemia, and hypertension) with OA has led to the identification of the 'metabolic phenotype' of OA. These metabolic perturbations alongside low-grade systemic inflammation have been identified to inflict detrimental effects upon multiple tissues of the joint including cartilage, bone, and synovium leading to complete joint failure in OA. Recent epidemiological and clinical findings affirm that adipokines significantly contribute to inflammation, tissue degradation, and OA pathogenesis mediated through multiple signaling pathways. OA is no longer perceived as just a 'wear and tear' disease and the involvement of the metabolic components in OA pathogenesis adds up to the complexity of the disease. Given the global surge in obesity and its allied metabolic perturbations, this review aims to throw light on the current knowledge on the pathophysiology of MetS-associated OA and the need to address MetS in the context of metabolic OA management. Better regulation of the constituent factors of MetS could be profitable in preventing MetS-associated OA. The identification of key roles for several metabolic regulators in OA pathogenesis has also opened up newer avenues in the recognition and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India.
| | | | - Sudip Ghosh
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India
| | - Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School Teaching Hospital, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Mao J, Zhang L. MiR-320a upregulation improves IL-1β-induced osteoarthritis via targeting the DAZAP1 and MAPK pathways. J Orthop Surg Res 2023; 18:541. [PMID: 37507717 PMCID: PMC10386766 DOI: 10.1186/s13018-023-03984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE Osteoarthritis (OA), a constant illness described by articular cartilage degeneration, usually manifested by joint pain and helpless development. Numerous literatures suggest that microRNAs play an important regulatory role in OA, yet the role of miR-320a in OA remains largely obscure. MATERIALS AND METHODS To evaluate the expression of miR-320a mRNA, quantitative real-time polymerase chain reaction was used. Cell counting kit-8 assay, Edu staining, Annexin V-FITC/PI apoptosis detection assay, Caspases 3 staining, and trypan staining were conducted to monitor cell proliferation and apoptosis. Western blot was applied to examine DAZAP1 and ERK/JNK/MAPK associated protein expression. Luciferase reporter gene experiments were performed to confirm the relationships between miR-320a and DAZAP1. ELISA assay was adopted to analyze the secretion of inflammation cytokines IL-6, IL-8, and TNF-α. RESULTS In an in vitro osteoarthritis model caused by IL-1β, miR-320a expression was markedly reduced. Overexpression of miR-320a restored IL-1β-inhibited chondrocyte proliferation, induced apoptosis and inflammatory response. Mechanistically, miR-320a affected HC-A cell proliferation, apoptosis and inflammatory response by regulating DAZAPI. Meanwhile, the ERK/JNK/MAPK pathway is also involved in the regulatory role of miR-320a on OA. CONCLUSION Our results show an important role for miR-320a and provide new therapeutic targets for avoiding and treating osteoarthritis.
Collapse
Affiliation(s)
- Jing Mao
- Department of Rheumatology and Immunology, Jingzhou First People's Hospital, Yangtze University, Jingzhou, Hubei, China.
| | - Lei Zhang
- Department of Dermatology, Jingzhou First People's Hospital, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
12
|
Huang L, Jin M, Gu R, Xiao K, Lu M, Huo X, Sun M, Yang Z, Wang Z, Zhang W, Zhi L, Meng Z, Ma J, Ma J, Zhang R. miR-199a-5p Reduces Chondrocyte Hypertrophy and Attenuates Osteoarthritis Progression via the Indian Hedgehog Signal Pathway. J Clin Med 2023; 12:jcm12041313. [PMID: 36835852 PMCID: PMC9959662 DOI: 10.3390/jcm12041313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Osteoarthritis (OA), the most common type of arthritis, is an age-associated disease, characterized by the progressive degradation of articular cartilage, synovial inflammation, and degeneration of subchondral bone. Chondrocyte proliferation is regulated by the Indian hedgehog (IHH in humans, Ihh in animals) signaling molecule, which regulates hypertrophy and endochondral ossification in the development of the skeletal system. microRNAs (miRNAs, miRs) are a family of about 22-nucleotide endogenous non-coding RNAs, which negatively regulate gene expression. In this study, the expression level of IHH was upregulated in the damaged articular cartilage tissues among OA patients and OA cell cultures, while that of miR-199a-5p was the opposite. Further investigations demonstrated that miR-199a-5p could directly regulate IHH expression and reduce chondrocyte hypertrophy and matrix degradation via the IHH signal pathway in the primary human chondrocytes. The intra-articular injection of synthetic miR-199a-5p agomir attenuated OA symptoms in rats, including the alleviation of articular cartilage destruction, subchondral bone degradation, and synovial inflammation. The miR-199a-5p agomir could also inhibit the Ihh signaling pathway in vivo. This study might help in understanding the role of miR-199a-5p in the pathophysiology and molecular mechanisms of OA and indicate a potential novel therapeutic strategy for OA patients.
Collapse
Affiliation(s)
- Lei Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Meng Jin
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ruiying Gu
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Kunlin Xiao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Mengnan Lu
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Xinyu Huo
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Mengyao Sun
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhiyuan Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Weijie Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ziang Meng
- Department of Mathematics and Computing Science, Simon Fraser University, Vancouver, BC V6B 5K3, Canada
| | - Jie Ma
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (J.M.); (R.Z.)
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (J.M.); (R.Z.)
| |
Collapse
|
13
|
Shi Y, Shao J, Zhang Z, Zhang J, Lu H. Effect of condylar chondrocyte exosomes on condylar cartilage osteogenesis in rats under tensile stress. Front Bioeng Biotechnol 2022; 10:1061855. [PMID: 36561044 PMCID: PMC9766957 DOI: 10.3389/fbioe.2022.1061855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Functional orthoses are commonly used to treat skeletal Class II malocclusion, but the specific mechanism through which they do this has been a challenging topic in orthodontics. In the present study, we aimed to explore the effect of tensile stress on the osteogenic differentiation of condylar chondrocytes from an exosomal perspective. Methods: We cultured rat condylar chondrocytes under resting and tensile stress conditions and subsequently extracted cellular exosomes from them. We then screened miRNAs that were differentially expressed between the two exosome extracts by high-throughput sequencing and performed bioinformatics analysis and osteogenesis-related target gene prediction using the TargetScan and miRanda softwares. Exosomes cultured under resting and tensile stress conditions were co-cultured with condylar chondrocytes for 24 h to form the Control-Exo and Force-Exo exosome groups, respectively. Quantitative real time PCR(RT-qPCR) and western blotting were then used to determine the mRNA and protein expression levels of Runx2 and Sox9 in condylar chondrocytes. Results: The mRNA and protein expression levels of Runx2 and Sox9 in the Force-Exo group were significantly higher than those in the Control-Exo group (p < 0.05). The differential miRNA expression results were consistent with our sequencing results. Bioinformatics analysis and target gene prediction results showed that the main biological processes and molecular functions involved in differential miRNA expression in exosomes under tensile stress were biological processes and protein binding, respectively. Kyoto Gene and Genome Data Bank (KEGG) pathway enrichment analysis showed significant enrichment of differentially expressed miRNAs in the mTOR signaling pathway. The differentially expressed miRNAs were found to target osteogenesis-related genes. Conclusion: These results suggest that stimulation of rat condylar chondrocytes with tensile stress can alter the expression levels of certain miRNAs in their exosomes and promote their osteogenic differentiation. Exosomes under tensile stress culture conditions thus have potential applications in the treatment of Osteoarthritis (OA).
Collapse
Affiliation(s)
- Yuan Shi
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Shao
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zanzan Zhang
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianan Zhang
- Department of Dentistry, Center of Orthodontics, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Haiping Lu
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Haiping Lu,
| |
Collapse
|
14
|
Xu Y, Wang Q, Wang XX, Xiang XN, Peng JL, He CQ, He HC. The Effect of Different Frequencies of Pulsed Electromagnetic Fields on Cartilage Repair of Adipose Mesenchymal Stem Cell-Derived Exosomes in Osteoarthritis. Cartilage 2022; 13:200-212. [PMID: 36377077 PMCID: PMC9924977 DOI: 10.1177/19476035221137726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The intra-articular injection of mesenchymal stem cell (MSC)-derived exosomes has already been proved to reverse osteoarthritic cartilage degeneration. Pulsed electromagnetic field (PEMF) has been found to regulate the biogenic function of MSCs. However, the effect of PEMF on MSC-derived exosomes has not yet been characterized. The aim of this study was to elucidate the regulatory role of different frequencies of PEMF in promoting the osteoarthritic cartilage regeneration of MSC-derived exosomes. METHODS The adipose tissue-derived MSCs (AMSCs) were extracted from the epididymal fat of healthy rats and further exposed to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. The chondrocytes were treated with interlukin-1β (IL-1β) and the regenerative effect of co-culturing with PEMF-exposed AMSC-derived exosomes was assessed via Western blot, quantitative polymerase chain reaction, and ELISA assays. A rat model of osteoarthritis was established by anterior cruciate ligament transection (ACLT) surgery and received 4 times intra-articular injection of PEMF-exposed AMSC-derived exosomes once a week. After 8 weeks, the knee joint specimens of rats were collected for micro-computed tomography and histologic analyses. RESULTS PEMF-exposed AMSC-derived exosomes could be endocytosed with IL-1β-induced chondrocytes. Compared with the AMSC-derived exosomes alone, the PEMF-exposed AMSC-derived exosomes substantially suppressed the inflammation and extracellular matrix degeneration of IL-1β-induced chondrocytes as shown by higher expression of transcripts and proteins of COL2A1, SOX9, and ACAN and lower expression of MMP13 and caspase-1. Of these, the 75-Hz PEMF presented a more significant inhibitive effect than the 15-Hz and 45-Hz PEMFs. Furthermore, the intra-articular injection of 75-Hz PEMF-exposed exosomes could obviously increase the number of tibial epiphyseal trabeculae, lead to a remarkable decrease in Osteoarthritis Research Society International score, and upregulate the COL2A1 and ACAN protein level of the degenerated cartilage. CONCLUSION The present study demonstrated that PEMF stimulation could effectively promote the regeneration effects of AMSC-derived exosomes on osteoarthritic cartilage. Compared with other frequency parameters, the PEMF at a frequency of 75 Hz showed a superior positive effect on AMSC-derived exosomes in suppressing the IL-1β-induced chondrocyte inflammation and extracellular matrix catabolism, as well as the osteoarthritic cartilage degeneration.
Collapse
Affiliation(s)
- Yang Xu
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Qian Wang
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Xiang-Xiu Wang
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Xiao-Na Xiang
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Jia-Lei Peng
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Cheng-Qi He
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Hong-Chen He
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China,Hong-Chen He, Rehabilitation Medicine
Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R.
China.
| |
Collapse
|
15
|
Zhang GY, Gao Y, Guo XY, Wang GH, Guo CX. MiR-199a-5p promotes ferroptosis-induced cardiomyocyte death responding to oxygen-glucose deprivation/reperfusion injury via inhibiting Akt/eNOS signaling pathway. Kaohsiung J Med Sci 2022; 38:1093-1102. [PMID: 36254861 DOI: 10.1002/kjm2.12605] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is associated with the poor outcome and higher mortality after myocardial infarction. Recent studies have revealed that miR-199a-5p participates in the process of myocardial I/R injury, but the precise roles and molecular mechanisms of miR-199a-5p in myocardial I/R injury remain not well-studied. Ferroptosis has been proposed to promote cardiomyocyte death, closely associated with myocardial I/R injury. Herein, the present study aimed to explore the function and mechanisms by which miR-199a-5p regulates whether miR-199a-5p contributes to ferroptosis-induced cardiomyocyte death responding to oxygen-glucose deprivation/reoxygenation (OGD/R) injury, an in vitro model of myocardial I/R injury focusing on Akt/eNOS signaling pathway. The results found that ferroptosis-induced cardiomyocyte death occurs and is accompanied by an increase in miR-199a-5p level in OGD/R-treated H9c2 cells. MiR-199a-5p inhibitor ameliorated ferroptosis-induced cardiomyocyte death as evidenced by the increased cell viability, the reduced reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) activity, malondialdehyde (MDA) and Fe2+ contents, and the up-regulated glutathione (GSH)/glutathione disulphide (GSSG) ratio as well as glutathione peroxidase 4 (Gpx4) protein expression in H9c2 cells-exposed to OGD/R, while miR-199a-5p mimic had the opposite effects. In addition, OGD/R led to the inhibition of Akt/eNOS signaling pathway, which was also blocked by miR-199a-5p inhibitor and aggravated by miR-199a-5p mimic. Furthermore, LY294002, an inhibitor of Akt/eNOS signaling pathway, abrogated miR-199a-5p inhibitor-induced the reduction of ferroptosis-induced cardiomyocyte death. In summary, our findings demonstrated that miR-199a-5p plays a central role in stimulating ferroptosis-induced cardiomyocyte death during ischemic/hypoxic injury via inhibiting Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Guo-Yong Zhang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Gao
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin-Ying Guo
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guo-Hong Wang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Cai-Xia Guo
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Tan Y, Zou YF, Zhang HB, Liu X, Qian CY, Liu MW. The protective mechanism of salidroside modulating miR-199a-5p/TNFAIP8L2 on lipopolysaccharide-induced MLE-12 cells. Int J Immunopathol Pharmacol 2022; 36:3946320221132712. [PMID: 36214213 PMCID: PMC9551330 DOI: 10.1177/03946320221132712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Salidroside is used for treating inflammation-based diseases; however, its molecular mechanism is unclear. In this study, we determined the protective role of salidroside on the endotoxin-induced damage caused to the mouse alveolar epithelial type II (MLE-12) cells and its underlying mechanism. METHODS An in vitro model for acute lung injury was constructed by inducing the MLE-12 cells using lipopolysaccharide (lipopolysaccharides, 1 mg/L). Then, The MTT assay was conducted to assess the survival rate of the MLE-12 cells in the different groups. After the treatment, apoptosis of MLE-12 cells was determined, and the mRNA and protein expression of miR-199a-5p, HMGB1, NF-kB65, TNFAIP8L2, p-IkB-α, and TLR4 was estimated by Western Blotting and RT-PCR. ELISA was also used to measure the concentration of inflammatory cytokine molecules IL-1β, IL-6, TNF-α, and IL-18 in the cell-free supernatant. Lastly, cell morphology was examined using the AO/EB technique. RESULTS We showed that salidroside reduced the protein and gene expression of HMGB1, NF-kB65, miR-199a-5p, p-IkB-α, and TLR4, whereas it increased the gene and protein expression of TNFAIP8L2. Furthermore, it decreased the concentrations of cytokine molecules like IL-1β, IL-6, TNF-α, and IL-18 in the cell-free supernatant. MLE-12 also showed a lower apoptosis rate, higher survival rate, and better cell morphology. CONCLUSION Salidroside significantly inhibited the LPS-induced MLE-12 cell damage. Our results suggest that this could be by reducing miR-199a-5p and enhancing TNFAIP8L2 expression.
Collapse
Affiliation(s)
- Yang Tan
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Yong-fan Zou
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Huang-bo Zhang
- Trauma Center,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Xu Liu
- Department of Infectious Diseases,
Yan-an Hospital
of Kunming City, Kunming, China
| | - Chuan-yun Qian
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Ming-Wei Liu
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
- Ming-Wei Liu, Department of Emergency
Medicine, The First Affiliated Hospital of Kunming Medical University, 295
Xichang Road, Wuhua District, Kunming 650032, China.
| |
Collapse
|
17
|
Cheleschi S, Tenti S, Lorenzini S, Seccafico I, Barbagli S, Frati E, Fioravanti A. Synovial Fluid Regulates the Gene Expression of a Pattern of microRNA via the NF-κB Pathway: An In Vitro Study on Human Osteoarthritic Chondrocytes. Int J Mol Sci 2022; 23:ijms23158334. [PMID: 35955467 PMCID: PMC9369022 DOI: 10.3390/ijms23158334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Synovial fluid (SF) represents the primary source of nutrients of articular cartilage and is implicated in maintaining cartilage metabolism. We investigated the effects of SF, from patients with osteoarthritis (OA), rheumatoid arthritis (RA), and controls, on a pattern of microRNA (miRNA) in human OA chondrocytes. Cells were stimulated with 50% or 100% SF for 24 h and 48 h. Apoptosis and superoxide anion production were detected by cytometry; miRNA (34a, 146a, 155, 181a), cytokines, metalloproteinases (MMPs), type II collagen (Col2a1), antioxidant enzymes, B-cell lymphoma (BCL)2, and nuclear factor (NF)-κB by real-time PCR. The implication of the NF-κB pathway was assessed by the use of NF-κB inhibitor (BAY-11-7082). RA and OA SF up-regulated miR-34a, -146a, -155, -181a, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, MMP-1, MMP-13, and ADAMTs-5 gene expression, while it down-regulated Col2a1. Pathological SF also induced apoptosis, reduced viability, and decreased BCL2 mRNA, whereas it increased superoxide anions, the expression of antioxidant enzymes, p65 and p50 NF-κB. Opposite and positive results were obtained with 100% control SF. Pre-incubation with BAY-11-7082 counteracted SF effects on miRNA. We highlight the role of the SF microenvironment in regulating some miRNA involved in inflammation and cartilage degradation during OA and RA, via the NF-κB pathway.
Collapse
|
18
|
IL-17 Facilitates VCAM-1 Production and Monocyte Adhesion in Osteoarthritis Synovial Fibroblasts by Suppressing miR-5701 Synthesis. Int J Mol Sci 2022; 23:ijms23126804. [PMID: 35743247 PMCID: PMC9224118 DOI: 10.3390/ijms23126804] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is characterized by the infiltration and adhesion of monocytes into the inflamed joint synovium. Interleukin (IL)-17 is a critical inflammatory mediator that participates in the progression of OA, although the mechanisms linking IL-17 and monocyte infiltration are not well understood. Our analysis of synovial tissue samples retrieved from the Gene Expression Omnibus (GEO) dataset exhibited higher monocyte marker (CD11b) and vascular cell adhesion molecule 1 (VCAM-1) levels in OA samples than in normal, healthy samples. The stimulation of human OA synovial fibroblasts (OASFs) with IL-17 increased VCAM-1 production and subsequently enhanced monocyte adhesion. IL-17 affected VCAM-1-dependent monocyte adhesion by reducing miR-5701 expression through the protein kinase C (PKC)-α and c-Jun N-terminal kinase (JNK) signaling cascades. Our findings improve our understanding about the effect of IL-17 on OA progression and, in particular, VCAM-1 production and monocyte adhesion, which may help with the design of more effective OA treatments.
Collapse
|
19
|
Tsai CH, Huang PJ, Lee IT, Chen CM, Wu MH. Endothelin-1-mediated miR-let-7g-5p triggers interlukin-6 and TNF-α to cause myopathy and chronic adipose inflammation in elderly patients with diabetes mellitus. Aging (Albany NY) 2022; 14:3633-3651. [PMID: 35468098 PMCID: PMC9085227 DOI: 10.18632/aging.204034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Background: Diabetes and sarcopenia are verified as mutual relationships, which seriously affect the quality of life of the elderly. Endothelin-1 is well investigated, is elevated in patients with diabetes, and is related to muscle cellular senescence and fibrosis. However, the mechanism of ET-1 between diabetes and myopathy is still unclear. The aim of this study was to evaluate the prevalence of sarcopenia in the elderly with diabetes and to clarify its relationship with ET-1 molecular biological mechanism, progress as well as changes in muscle and fat. Methods: We recruited 157 type 2 diabetes patients over 55 years old and investigated the prevalence of sarcopenia in diabetes patients and examined the association of ET-1 alterations with HbA1c, creatinine, or AMS/ht2. Next, sought to determine how ET-1 regulates inflammation in muscle cells by western blot and qPCR assay. Using XF Seahorse Technology, we directly quantified mitochondrial bioenergetics in 3T3-L1 cells. Results: ET-1 was positively correlated with HbA1c, creatinine levels, and duration of disease, and negatively correlated with AMS/ht2. We found that ET-1 dose-dependently induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6β expression through the PI3K/AKT, and NF-κB signaling pathways in C2C12 cells. Also identified that TNF-α, IL-6β, and visfatin releases were found in co-cultured with conditioned medium of ET-1/C2C12 in 3T3-L1 cells. ET-1 also reduces the energy metabolism of fat and induces micro-environment inflammation which causes myopathy. ET-1 also suppresses miR-let-7g-5p expression in myocytes and adipocytes. Conclusion: We describe a new mechanism of ET-1 triggering chronic inflammation in patients with hyperglycemia.
Collapse
Affiliation(s)
- Chung-Huang Tsai
- Department of Family Medicine, Chung-Kang Branch, Cheng Ching Hospital, Taichung, Taiwan.,Center for General Education, Tunghai University, Taiwan.,Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan
| | - Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - I T Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Traditional Chinese Medical, Sinying Hospital, Tainan, Taiwan
| | - Min Huan Wu
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan.,Senior Life and Innovation Technology Center, Tunghai University, Taiwan.,Life Science Research Center, Tunghai University, Taiwan
| |
Collapse
|
20
|
Yu T, Zhang L, Wang Y, Shen X, Lin L, Tang Y. Effect of visfatin on K ATP channel upregulation in colonic smooth muscle cells in diabetic colon dysmotility. Aging (Albany NY) 2022; 14:1292-1306. [PMID: 35113808 PMCID: PMC8876906 DOI: 10.18632/aging.203871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The mechanisms of diabetes-related gastrointestinal dysmotility remains unclear. This study aimed to investigate the effect and mechanisms of proinflammatory adipokine visfatin (VF) in the contractile dysfunction of diabetic rat colonic smooth muscle. Twenty Sprague-Dawley rats were randomly divided into control and type 2 diabetes mellitus groups. VF levels in the serum and colonic muscle tissues were tested, the time of the bead ejection and contractility of colonic smooth muscle strips were measured, and the expression of ATP-sensitive potassium (KATP) channels in the colonic muscle tissues was analyzed. In vitro, we tested VF's effects on intracellular reactive oxygen species (ROS) levels, NF-κB's nuclear transcription, KATP channel expression, intracellular Ca2+ concentrations, and myosin light chain (MLC) phosphorylation in colonic smooth muscle cells (CSMCs). The effects of NAC (ROS inhibitor) and BAY 11-7082 (NF-κB inhibitor) on KATP expression were also tested. Diabetic rats showed elevated VF levels in serum and colonic muscle tissues, a delayed distal colon ejection response time, weakened contractility of colonic smooth muscle strips, and increased KATP channel expression in colonic muscle tissues. VF significantly inhibited the contractility of colonic smooth muscle strips from normal rats. In cultured CSMCs, VF caused ROS overload, increased NF-κB nuclear transcription activity and increased expression of Kir6.1, eventually reducing intracellular Ca2+ levels and MLC phosphorylation. NAC and BAY 11-7082 inhibited the VF-induced Kir6.1 upregulation. In conclusion, VF may cause contractile dysfunction of CSMCs by upregulating the expression of the Kir6.1 subunit of KATP channels via the ROS/NF-κB pathway and interfering with Ca2+ signaling.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lin Zhang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210029, Jiangsu Province, China
| | - Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoxue Shen
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
21
|
Sueda Y, Okazaki R, Funaki Y, Hasegawa Y, Ishikawa H, Hirayama Y, Inui G, Harada T, Takata M, Morita M, Yamasaki A. Specialized Pro-Resolving Mediators Do Not Inhibit the Synthesis of Inflammatory Mediators Induced by Tumor Necrosis Factor-α in Synovial Fibroblasts. Yonago Acta Med 2022; 65:111-125. [DOI: 10.33160/yam.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yuriko Sueda
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yoshihiro Funaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yasuyuki Hasegawa
- Rheumatology/ Collagen Disease Medicine, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Hiroki Ishikawa
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yuki Hirayama
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Genki Inui
- Respiratory Medicine, National Hospital Organization Yonago Medical Center, Yonago 683-0006, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Miki Takata
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Masato Morita
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
22
|
Cui H, Du X, Liu C, Chen S, Cui H, Liu H, Wang J, Zheng Z. Visfatin promotes intervertebral disc degeneration by inducing IL-6 expression through the ERK/JNK/p38 signalling pathways. Adipocyte 2021; 10:201-215. [PMID: 33853482 PMCID: PMC8057091 DOI: 10.1080/21623945.2021.1910155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Visfatin reportedly induces the expression of proinflammatory cytokines. Severe grades of intervertebral disc disease (IVDD) exhibit higher expression of visfatin than mild ones. However, the direct relationship between visfatin and IVDD remains to be elucidated. This study aimed to clarify whether stimulation of visfatin in IVDD is mediated by IL-6. To investigate the role of visfatin in IVDD, a rat model of anterior disc puncture was established by injecting visfatin or PBS using a 27-gauge needle. Results revealed an obvious aggravation of the histological morphology of IVDD in the visfatin group. On treating human NP cellswith visfatin, the levels of collagenII and aggrecan decreased and those of matrix metallopeptidase 3 and IL-6 gradually increased. A rapid increase in ERK, JNK, and p38 phosphorylation was also noted after visfatin treatment. Compared to those treated with visfatin alone, NP cells pretreated with ERK1/2, JNK, and p38 inhibitors or siRNA targeting p38, ERK, and JNK exhibited a significant suppression of IL-6. Our data represent the first evidence that visfatin promotes IL-6 expression in NP cells via the JNK/ERK/p38-MAPK signalling pathways. Further, our findings suggest epidural fat and visfatin as potential therapeutic targets for controlling IVDD-associated inflammation.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xianfa Du
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Caijun Liu
- The Third Affiliated Hospital of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Shunlun Chen
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Haowen Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hui Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jianru Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhaomin Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Pain Research Center, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
23
|
Erten M. Visfatin as a Promising Marker of Cardiometabolic Risk. ACTA CARDIOLOGICA SINICA 2021; 37:464-472. [PMID: 34584379 DOI: 10.6515/acs.202109_37(5).20210323b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue is an endocrine organ that produces molecules with important functions in the human body called adipokines. Visfatin can be secreted from various sources, such as macrophages, chondrocytes and amniotic epithelial cells other than adipose tissue. The main effect of visfatin is to promote inflammatory processes. In addition, visfatin has pivotal effects on the entire cardiovascular system, such as endothelial dysfunction, atherosclerosis, plaque rupture and mobilization, myocardial damage, fibrosis and new vessel formation. Vascular pathologies in other tissues also mediate its effects. Visfatin changes in a similar manner to cardiac markers in acute myocardial infarction, and the most cited feature in research studies is that it may be a cardiovascular risk marker. Visfatin is therefore expected to be widely used in cardiovascular pathology in the near future. Visfatin has many target tissues and various effects that occur in relatively complex biological pathways, making it difficult to understand visfatin adequately. In this review, we provide comprehensive information about this promising molecule.
Collapse
Affiliation(s)
- Mehmet Erten
- Laboratory of Medical Biochemistry, Public Health Lab., Malatya, Turkey
| |
Collapse
|
24
|
Lee KT, Chen BC, Liu SC, Lin YY, Tsai CH, Ko CY, Tang CH, Tung KC. Nesfatin-1 facilitates IL-1β production in osteoarthritis synovial fibroblasts by suppressing miR-204-5p synthesis through the AP-1 and NF-κB pathways. Aging (Albany NY) 2021; 13:22490-22501. [PMID: 34560673 PMCID: PMC8507299 DOI: 10.18632/aging.203559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
The progression of osteoarthritis (OA) is mediated by adipokines, one of which is nesfatin-1, which is responsible for the production of inflammatory cytokines. However, how this molecule may affect the synthesis of the proinflammatory cytokine interleukin 1 beta (IL-1β) in OA is unclear. Our analyses of records from the Gene Expression Omnibus (GEO) dataset and clinical specimens of synovial tissue revealed higher levels of nesfatin-1 and IL-1β in OA samples compared with normal healthy tissue. We found that nesfatin-1 facilitates IL-1β synthesis in human OA synovial fibroblasts (OASFs) and suppresses the generation of micro-RNA (miR)-204-5p, as the miR-204-5p levels in OA patients were lower than those in healthy controls. Nesfatin-1-induced stimulation of IL-1β in human OASFs occurred via the suppression of miR-204-5p synthesis by the PI3K, Akt, AP-1 and NF-κB pathways. We suggest that nesfatin-1 is worth targeting in OA treatment.
Collapse
Affiliation(s)
- Kun-Tsan Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan.,Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Bo-Cheng Chen
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Yen-You Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
25
|
Blanton HL, Pietrzak A, McHann MC, Guindon J. Sex and dose-dependent antinociceptive effects of the JNK (c-Jun N-terminal kinase) inhibitor SU 3327 are mediated by CB 2 receptors in female, and CB 1/CB 2 receptors in male mice in an inflammatory pain model. Brain Res Bull 2021; 177:39-52. [PMID: 34530070 DOI: 10.1016/j.brainresbull.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Activation of c-Jun N-terminal kinases (JNKs) has been implicated in the development and persistence of inflammatory and neuropathic pain in animal models. Moreover, JNKs have been involved in the maintenance of chronic pain, as well as development of tolerance to antinociceptive agents in the opioid and cannabinoid class of compounds. In this study, we evaluated the antinociceptive effects of the JNK inhibitor SU 3327 (0.3-30 mg/kg) in the formalin pain model with an emphasis on the sex-specific actions of this compound. In wild-type C57BL6J mice, SU 3327 produced strong antinociceptive effects in the formalin pain model which were mediated by CB2 receptors in females, and both CB1 and CB2 receptors in males. SU 3327 at a dose of 10 mg/kg produced antinociception, hypothermia, motor impairment, and hypolocomotion to a similar extent in both males and females. The antinociceptive effects of SU 3327 were more potent in males at lower doses (1 and 3 mg/kg), while females were more sensitive to the hypothermic, and motor-suppression effects at lower (3 mg/kg) doses versus males. Analysis of spinal cords, using qPCR following SU 3327 administration in the formalin test, revealed changes in cannabinoid, tolerance and inflammatory markers in females only, and only in the high (10-30 mg/kg) dose conditions. Indeed, females showed an increase in mRNA levels of cannabinoid (CB2), but a decrease in tolerance (β-arrestin 1) and inflammatory (TNF-α, IL-1β, IL-6)-associated markers. The differences between males and females, in this study, support sex as an important factor in nociception and antinociceptive responses mediated by JNK and the endocannabinoid system.
Collapse
Affiliation(s)
- Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX 79430, USA
| | - Agata Pietrzak
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX 79430, USA
| | - Melissa C McHann
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX 79430, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
26
|
Systemic versus local adipokine expression differs in a combined obesity and osteoarthritis mouse model. Sci Rep 2021; 11:17001. [PMID: 34417537 PMCID: PMC8379250 DOI: 10.1038/s41598-021-96545-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage loss and reduced joint function. OA risk factors are age and obesity. Many adipokines are altered by obesity but also OA although systemic adipokine regulation in OA is not always clear. Therefore, metabolic effects of diet-induced obesity on OA development as well as the influence of obesity and OA progression on systemic vs. local adipokine expression in joints were compared. C57Bl/6-mice fed with HFD (high fat diet) or normal diet prior to destabilization of the medial meniscus (DMM) were sacrificed 4/6/8 weeks after surgery. Sera were evaluated for adiponectin, leptin, visfatin, cytokines. Liver grading and staging for non-alcoholic steatohepatitis (NASH) was performed and crown-like structures (CLS) in adipose tissue measured. OA progression was scored histologically. Adipokine-expressing cells and types were evaluated by immunohistochemistry. Time-dependent changes in DMM-progression were reflected by increased systemic adiponectin levels in DMM especially combined with HFD. While HFD increased serum leptin, DMM reduced systemic leptin significantly. OA scores correlated with bodyweight, leptin and hepatic scoring. Locally, increased numbers of adiponectin- and leptin-producing fibroblasts were observed in damaged menisci but visfatin was not changed. Local adipokine expression was independent from systemic levels, suggesting different mechanisms of action.
Collapse
|
27
|
Law YY, Lee WF, Hsu CJ, Lin YY, Tsai CH, Huang CC, Wu MH, Tang CH, Liu JF. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts. Aging (Albany NY) 2021; 13:17227-17236. [PMID: 34198264 PMCID: PMC8312412 DOI: 10.18632/aging.203201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two of the most common types of arthritis. Both are characterized by the infiltration of a number of proinflammatory cytokines into the joint microenvironment. miRNAs play critical roles in the disease processes of arthritic disorders. However, little is known about the effects of miRNAs on critical inflammatory cytokine production with OA and RA progression. Here, we found higher levels of proinflammatory cytokines including interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in human OA and RA synovial fibroblasts (SFs) compared with normal SFs. Searches of open-source microRNA (miRNA) software determined that miR-let-7c-5p and miR-149-5p interfere with IL-1β, IL-6 and TNF-α transcription; levels of all three proinflammatory cytokines were lower in human OA and RA patients compared with normal controls. Anti-inflammatory agents dexamethasone, celecoxib and indomethacin reduced proinflammatory cytokine production by promoting the expression of miR-let-7c-5p and miR-149-5p. Similarly, ibuprofen and methotrexate also enhanced miR-let-7c-5p and miR-149-5p expression in human SFs. The evidence suggests that increasing miR-let-7c-5p and miR-149-5p expression is a novel strategy for OA and RA.
Collapse
Affiliation(s)
- Yat-Yin Law
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yen-You Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Min-Huan Wu
- Bachelor of Science in Senior Wellness and Sports Science, Tunghai University, Taichung, Taiwan.,Tunghai University Sports Recreation and Health Management Degree Program, Tunghai University, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther 2021; 23:142. [PMID: 33990219 PMCID: PMC8120707 DOI: 10.1186/s13075-021-02512-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Background To investigate the role and regulatory mechanisms of fargesin, one of the main components of Magnolia fargesii, in macrophage reprogramming and crosstalk across cartilage and synovium during osteoarthritis (OA) development. Methods Ten-week-old male C57BL/6 mice were randomized and assigned to vehicle, collagenase-induced OA (CIOA), or CIOA with intra-articular fargesin treatment groups. Articular cartilage degeneration was evaluated using the Osteoarthritis Research Society International (OARSI) score. Immunostaining and western blot analyses were conducted to detect relative protein. Raw264.7 cells were treated with LPS or IL-4 to investigate the role of polarized macrophages. ADTC5 cells were treated with IL-1β and conditioned medium was collected to investigate the crosstalk between chondrocytes and macrophages. Results Fargesin attenuated articular cartilage degeneration and synovitis, resulting in substantially lower Osteoarthritis Research Society International (OARSI) and synovitis scores. In particular, significantly increased M2 polarization and decreased M1 polarization in synovial macrophages were found in fargesin-treated CIOA mice compared to controls. This was accompanied by downregulation of IL-6 and IL-1β and upregulation of IL-10 in serum. Conditioned medium (CM) from M1 macrophages treated with fargesin reduced the expression of matrix metalloproteinase-13, RUNX2, and type X collagen and increased Col2a1 and SOX9 in OA chondrocytes, but fargesin alone did not affect chondrocyte catabolic processes. Moreover, fargesin exerted protective effects by suppressing p38/ERK MAPK and p65/NF-κB signaling. Conclusions This study showed that fargesin switched the polarized phenotypes of macrophages from M1 to M2 subtypes and prevented cartilage degeneration partially by downregulating p38/ERK MAPK and p65/NF-κB signaling. Targeting macrophage reprogramming or blocking the crosstalk between macrophages and chondrocytes in early OA may be an effective preventive strategy.
Collapse
|
29
|
Yao S, Jiang C, Zhang H, Gao X, Guo Y, Cao Z. Visfatin regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119042. [PMID: 33901513 DOI: 10.1016/j.bbamcr.2021.119042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Periodontitis is a widespread chronic infectious-inflammatory disease associated with multiple systemic diseases. Visfatin is an adipokine-enzyme that can be locally produced by human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). It can upregulate proinflammatory cytokines and matrix metalloproteinases (MMPs) in various types of cells. However, the effects of visfatin on healthy and inflammatory human periodontal cells as well as the underlying molecular mechanisms remain unclear. This study firstly demonstrated visfatin expression was highly elevated in inflamed human gingiva and Pg LPS-treated hPDLCs. Moreover, recombinant visfatin significantly upregulated the expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6) and prodegradative factors (EMPPRIN, MMP1, MMP3 and MMP13) in hPDLCs. Next, we found the levels of proinflammatory and prodegradative cytokines were significantly increased in visfatin-overexpressing hPDLCs, and decreased in visfatin-silencing inflammatory hGFs (iGFs) when treated with Pg LPS. In the absence of Pg LPS, visfatin silencing failed to affect the expression of these factors in iGFs, and overexpression of visfatin upregulated MMPs but no other factors in hPDLCs. Furthermore, marked NF-κB pathway activation with increased phosphorylation of p65 was observed in visfatin-overexpressing hPDLCs. BAY11-7082, a specific inhibitor of NF-κB, partially reversed the upregulation proinflammatory and prodegradative factors induced by visfatin overexpression. Taken together, this study showed that visfatin critically regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. The findings suggest that visfatin is closely involved in the development of periodontitis, and may serve as a promising novel biomarker and therapeutic target for periodontitis management.
Collapse
Affiliation(s)
- Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huihui Zhang
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Interaction between non-coding RNAs and JNK in human disorders. Biomed Pharmacother 2021; 138:111497. [PMID: 33735819 DOI: 10.1016/j.biopha.2021.111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
Jun N-terminal Kinase (JNK) signaling pathway is a conserved cascade among species with particular roles in diverse processes during embryogenesis and normal life. These kinases regulate functions of neurons and the immune system by affecting the expression of genes, modulating the arrangement of cytoskeletal proteins, and regulating apoptosis/survival pathways. They are also involved in carcinogenesis. Several miRNAs and lncRNAs have a functional relationship with JNKs. This interaction contributes to the pathogenesis of traumatic brain injury, ulcerative colitis, hepatic ischemia/ reperfusion injury, acute myocardial infarction, and a number of other disorders. Lung cancer, hepatocellular carcinoma, gall bladder cancer, melanoma, and colon cancer are among malignant conditions in which JNK-related miRNAs/ lncRNAs contribute. The current review aims at depicting the functional interaction between JNKs and lncRNAs/ miRNAs and describing the role of these regulatory transcripts in the pathobiology of human disorders.
Collapse
|
31
|
Exploring the Crosstalk between Hydrostatic Pressure and Adipokines: An In Vitro Study on Human Osteoarthritic Chondrocytes. Int J Mol Sci 2021; 22:ijms22052745. [PMID: 33803113 PMCID: PMC7963177 DOI: 10.3390/ijms22052745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a risk factor for osteoarthritis (OA) development and progression due to an altered biomechanical stress on cartilage and an increased release of inflammatory adipokines from adipose tissue. Evidence suggests an interplay between loading and adipokines in chondrocytes metabolism modulation. We investigated the role of loading, as hydrostatic pressure (HP), in regulating visfatin-induced effects in human OA chondrocytes. Chondrocytes were stimulated with visfatin (24 h) and exposed to high continuous HP (24 MPa, 3 h) in the presence of visfatin inhibitor (FK866, 4 h pre-incubation). Apoptosis and oxidative stress were detected by cytometry, B-cell lymphoma (BCL)2, metalloproteinases (MMPs), type II collagen (Col2a1), antioxidant enzymes, miRNA, cyclin D1 expressions by real-time PCR, and β-catenin protein by western blot. HP exposure or visfatin stimulus significantly induced apoptosis, superoxide anion production, and MMP-3, -13, antioxidant enzymes, and miRNA gene expression, while reducing Col2a1 and BCL2 mRNA. Both stimuli significantly reduced β-catenin protein and increased cyclin D1 gene expression. HP exposure exacerbated visfatin-induced effects, which were counteracted by FK866 pre-treatment. Our data underline the complex interplay between loading and visfatin in controlling chondrocytes' metabolism, contributing to explaining the role of obesity in OA etiopathogenesis, and confirming the importance of controlling body weight for disease treatment.
Collapse
|
32
|
Kim M, Shin DI, Choi BH, Min BH. Exosomes from IL-1β-Primed Mesenchymal Stem Cells Inhibited IL-1β- and TNF-α-Mediated Inflammatory Responses in Osteoarthritic SW982 Cells. Tissue Eng Regen Med 2021; 18:525-536. [PMID: 33495946 DOI: 10.1007/s13770-020-00324-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Exosomes from mesenchymal stem cells (MSCs) show anti-inflammatory effect on osteoarthritis (OA); however, their biological effect and mechanism are not yet clearly understood. This study investigated the anti-inflammatory effect and mechanism of MSC-derived exosomes (MSC-Exo) primed with IL-1β in osteoarthritic SW982 cells. METHODS SW982 cells were treated with interleukin (IL)-1β and tumor necrosis factor (TNF)-α to induce the OA phenotype. The effect of exosomes without priming (MSC-Exo) or with IL-1β priming (MSC-IL-Exo) was examined on the expression of pro- or anti-inflammatory factors, and the amount of IκBα was examined in SW982 cells. Exosomes were treated with RNase to remove RNA. The role of miR-147b was examined using a mimic and an inhibitor. RESULTS MSC-IL-Exo showed stronger inhibitory effects on the expression of pro-inflammatory cytokines (IL-1β, IL-6, and monocyte chemoattractant protein-1) than MSC-Exo. The expression of anti-inflammatory factors (SOCS3 and SOCS6) was enhanced by MSCs-IL-Exo. Priming with IL-1β increased RNA content in MSC-IL-Exo, and pretreatment with RNase abolished anti-inflammatory effect in SW982 cells. miR-147b was found in much larger amounts in MSC-IL-Exo than in MSC-Exo. The miR-147b mimic significantly inhibited the expression of inflammatory cytokines, while the miR-147b inhibitor only partially blocked the anti-inflammatory effect of MSC-IL-Exo. MSC-IL-Exo and miR-147b mimic inhibited the reduction of IκBα, an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitor, by IL-1β and TNF-α. CONCLUSION This study showed that MSC exosomes with IL-1β priming exhibit significantly enhanced anti-inflammatory activity in osteoarthritic SW982 cells. The effect of IL-1β-primed MSC exosomes is mediated by miRNAs such as miR-147b and involves inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.,Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Dong Il Shin
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.,Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea. .,Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea. .,Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
33
|
Huang HH, Chang JCY, Liu HC, Yang ZY, Yang YJ, Chen LK, Yen DHT. Handgrip strength, tumor necrosis factor-α, interlukin-6, and visfatin levels in oldest elderly patients with cognitive impairment. Exp Gerontol 2020; 142:111138. [PMID: 33122129 DOI: 10.1016/j.exger.2020.111138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Handgrip strength is associated with mild cognitive impairment. Tumor necrosis factor [TNF]-α and interleukin [IL]-6 were pro-inflammatory cytokines influencing the severity of initial neurological deficit. Visfatin is a novel adipokine and has a strong correlation with inflammation. The relationships of TNF-α, IL-6 and visfatin are not consistent, and no study has investigated them in the elderly patients with cognitive impairment. METHODS This study included patients aged ≥75 years at the emergency department from August 2018 to February 2019. All patients underwent comprehensive geriatric assessment and blood tests for fasting plasma TNF-α, IL-6 and visfatin levels. RESULTS We enrolled 106 elderly patients with a mean age of 87.3 years, including 62 (58.4%) patients in cognitive impairment group (Mini-Mental State Examination [MMSE] < 24) and 44 (41.5%) patients in the non-cognitive impairment group. Compared to the non-cognitive impairment group, the cognitive impairment group had significantly lower handgrip strength, and significantly higher TNF-α, IL-6 and visfatin levels. TNF-α positively correlated with IL-6. Both TNF-α and IL-6 negatively correlated with Barthel index and MMSE. Handgrip strength negatively correlated with TNF-α but positively correlated with Barthel index and MMSE scores. Backward and stepwise multiple logistic regression analyses showed that the independent predictor for cognitive impairment was handgrip strength and age. CONCLUSION The cognitive impairment group had significantly higher serum TNF-α, IL-6, and visfatin levels. The independent predictors of cognitive impairment were handgrip strength and age. Handgrip strength negatively correlated with TNF-α and IL-6 but positively with Barthel index and MMSE scores.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Julia Chia-Yu Chang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hui-Chia Liu
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zhi-Yu Yang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Jie Yang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Kung Chen
- Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan; Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - David Hung-Tsang Yen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
34
|
韩 晓, 吴 文, 刘 小, 祝 烨. [Study on visfatin-induced inflammation and necroptosis via LOX-1 in human umbilical vein endothelial cells]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:834-841. [PMID: 33140607 PMCID: PMC10320536 DOI: 10.7507/1001-5515.202003067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 02/05/2023]
Abstract
The aim of the study is to identify the effects and underlying mechanisms of visfatin on inflammation and necroptosis in vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with visfatin or pretreated with Polyinosinic acid (LOX-1 inhibitor). By using the Western blot, RT-PCR, immunocytochemistry, enzyme-linked immunosorbent assay (ELISA), MTT and flow cytometry technique, the occurrence of inflammation and necroptosis in HUVECs were evaluated. Our results showed that 100 ng/mL visfatin significantly increased the mRNA and protein expression of monocyte chemotactic protein 1 (MCP-1) and LOX-1 after 24 hours' treatment in HUVECs. However, pretreatment with Polyinosinic acid could significantly reduce the expression of MCP-1 compared with visfatin group. Additionally, 100 ng/mL visfatin could induce the production of necrotic features and increase the mRNA expression of BMF (one of the markers of necroptosis), while pretreating with Polyinosinic acid markedly downregulated the mRNA expression of BMF gene and promoted the cell proliferation. These results indicate that visfatin might induce inflammation and necroptosis via LOX-1 in HUVECs, suggesting that visfatin plays a central role in the development of atherosclerosis.
Collapse
Affiliation(s)
- 晓宇 韩
- 成都市第二人民医院 老年医学科(成都 610017)Geriatrics Department, Chengdu Second People’s Hospital, Chengdu 610017, P.R.China
- 四川大学华西医院 心血管疾病研究室(成都 610041)Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 文超 吴
- 成都市第二人民医院 老年医学科(成都 610017)Geriatrics Department, Chengdu Second People’s Hospital, Chengdu 610017, P.R.China
| | - 小菁 刘
- 成都市第二人民医院 老年医学科(成都 610017)Geriatrics Department, Chengdu Second People’s Hospital, Chengdu 610017, P.R.China
- 四川大学华西医院 心血管疾病研究室(成都 610041)Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 烨 祝
- 成都市第二人民医院 老年医学科(成都 610017)Geriatrics Department, Chengdu Second People’s Hospital, Chengdu 610017, P.R.China
| |
Collapse
|
35
|
Ezzati-Mobaser S, Malekpour-Dehkordi Z, Nourbakhsh M, Tavakoli-Yaraki M, Ahmadpour F, Golpour P, Nourbakhsh M. The up-regulation of markers of adipose tissue fibrosis by visfatin in pre-adipocytes as well as obese children and adolescents. Cytokine 2020; 134:155193. [PMID: 32707422 DOI: 10.1016/j.cyto.2020.155193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 01/01/2023]
Abstract
Adipocytes are surrounded by a three-dimensional network of extracellular matrix (ECM) proteins. Aberrant ECM accumulation and remodeling leads to adipose tissue fibrosis. Visfatin is one of the adipocytokines that is increased in obesity and is implicated in insulin resistance. The objective of this study was to investigate the effect of visfatin on major components of ECM remodeling. In this study, plasma levels of both endotrophin and visfatin in obese children and adolescents were significantly higher than those in control subjects and they showed a positive correlation with each other. Treatment of 3T3-L1 pre-adipocytes with visfatin caused significant up-regulation of Osteopontin (Opn), Collagen type VI (Col6), matrix metalloproteinases MMP-2 and MMP-9. By using inhibitors of major signaling pathways it was shown that visfatin exerted its effect on Col6a3 gene expression through PI3K, JNK, and NF-кB pathways, while induced Opn gene expression via PI3K, JNK, MAPK/ERK, and NOTCH1. Our conclusion is that, the relationship between visfatin, endotrophin and insulin resistance parameters in obesity as well as increased expression of ECM proteins by visfatin suggests adipose tissue fibrosis as a mechanism for devastating effects of visfatin in obesity.
Collapse
Affiliation(s)
- Samira Ezzati-Mobaser
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Malekpour-Dehkordi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Nourbakhsh
- Hazrat Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadpour
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Golpour
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Law YY, Lin YM, Liu SC, Wu MH, Chung WH, Tsai CH, Fong YC, Tang CH, Wang CK. Visfatin increases ICAM-1 expression and monocyte adhesion in human osteoarthritis synovial fibroblasts by reducing miR-320a expression. Aging (Albany NY) 2020; 12:18635-18648. [PMID: 32991325 PMCID: PMC7585076 DOI: 10.18632/aging.103889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Pathophysiological events that modulate the progression of structural changes in osteoarthritis (OA) include monocyte adhesion and infiltration, and synovial inflammation. In particular, the adhesion protein intercellular adhesion molecule type 1 (ICAM-1) promotes monocyte recruitment into the synovial tissue. Visfatin is an adipocyte hormone that promotes the release of inflammatory cytokines during OA progression. We report that visfatin enhances ICAM-1 expression in human OA synovial fibroblasts (OASFs) and facilitates the adhesion of monocytes with OASFs. AMPK and p38 inhibitors, as well as their respective siRNAs, attenuated the effects of visfatin upon ICAM-1 synthesis and monocyte adhesion. We also describe how miR-320a negatively regulates visfatin-induced promotion of ICAM-1 expression and monocyte adhesion. We detail how visfatin affects ICAM-1 expression and monocyte adhesion with OASFs by inhibiting miR-320a synthesis via the AMPK and p38 signaling pathways.
Collapse
Affiliation(s)
- Yat-Yin Law
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Min Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Orthopedic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Min-Huan Wu
- Physical Education Office, Tunghai University, Taichung, Taiwan,Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung, Taiwan
| | - Wen-Hui Chung
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan,Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Tavallaee G, Rockel JS, Lively S, Kapoor M. MicroRNAs in Synovial Pathology Associated With Osteoarthritis. Front Med (Lausanne) 2020; 7:376. [PMID: 32850892 PMCID: PMC7431695 DOI: 10.3389/fmed.2020.00376] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis, a disease that affects the entire joint. The relative involvement of each tissue, and their interactions, add to the complexity of OA, hampering our understanding of the underlying molecular mechanisms, and the generation of a disease modifying therapy. The synovium is essential in maintaining joint homeostasis, and pathologies associated with the synovium contribute to joint destruction, pain and stiffness in OA. MicroRNAs (miRNAs) are post-transcriptional regulators dysregulated in OA tissues including the synovium. MiRNAs are important contributors to OA synovial changes that have the potential to improve our understanding of OA and to act as novel therapeutic targets. The purpose of this review is to summarize and integrate current published literature investigating the roles that miRNAs play in OA-related synovial pathologies including inflammation, matrix deposition and cell proliferation.
Collapse
Affiliation(s)
- Ghazaleh Tavallaee
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason S. Rockel
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Starlee Lively
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
TGF-β1 enhances FOXO3 expression in human synovial fibroblasts by inhibiting miR-92a through AMPK and p38 pathways. Aging (Albany NY) 2020; 11:4075-4089. [PMID: 31232696 PMCID: PMC6628998 DOI: 10.18632/aging.102038] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/14/2019] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is an age-related disease marked by synovial inflammation and cartilage destruction arising from synovitis, joint swelling and pain. OA therapy that targets the synovium is a promising strategy for mitigating the symptoms and disease progression. Altered activity of the transforming growth factor-β1 isoform (TGF-β1) during aging underlies OA progression. Notably, aberrant forkhead box class O 3 (FOXO3) activity is implicated in the pathogenesis of various age-related diseases, including OA. This study explored the interaction and cross-talk of TGF-β1 and FOXO3 in human osteoarthritis synovial fibroblasts (OASFs). TGF-β1 stimulated FOXO3 synthesis in OASFs, which was mitigated by blocking adenosine monophosphate-activated protein kinase (AMPK) and p38 activity. TGF-β1 also inhibited the expression of miR-92a, which suppresses FOXO3 transcription. The suppression of miR-92a was effectively reversed with the blockade of the AMPK and p38 pathways. Our study showed that TGF-β1 promotes anti-inflammatory FOXO3 expression by stimulating the phosphorylation of AMPK and p38 and suppressing the downstream expression of miR-92a. These results may help to clarify OA pathogenesis and lead to better targeted treatment.
Collapse
|
39
|
Han D, Fang Y, Tan X, Jiang H, Gong X, Wang X, Hong W, Tu J, Wei W. The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: An update. J Cell Mol Med 2020; 24:9518-9532. [PMID: 32686306 PMCID: PMC7520283 DOI: 10.1111/jcmm.15669] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA), the most ubiquitous degenerative disease affecting the entire joint, is characterized by cartilage degradation and synovial inflammation. Although the pathogenesis of OA remains poorly understood, synovial inflammation is known to play an important role in OA development. However, studies on OA pathophysiology have focused more on cartilage degeneration and osteophytes, rather than on the inflamed and thickened synovium. Fibroblast-like synoviocytes (FLS) produce a series of pro-inflammatory regulators, such as inflammatory cytokines, nitric oxide (NO) and prostaglandin E2 (PGE2 ). These regulators are positively associated with the clinical symptoms of OA, such as inflammatory pain, joint swelling and disease development. A better understanding of the inflammatory immune response in OA-FLS could provide a novel approach to comprehensive treatment strategies for OA. Here, we have summarized recently published literatures referring to epigenetic modifications, activated signalling pathways and inflammation-associated factors that are involved in OA-FLS-mediated inflammation. In addition, the current related clinical trials and future perspectives were also summarized.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Haifei Jiang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
40
|
Tran A, He W, Jiang N, Chen JTC, Belsham DD. NAMPT and BMAL1 Are Independently Involved in the Palmitate-Mediated Induction of Neuroinflammation in Hypothalamic Neurons. Front Endocrinol (Lausanne) 2020; 11:351. [PMID: 32595600 PMCID: PMC7303266 DOI: 10.3389/fendo.2020.00351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a prominent metabolic disease that predisposes individuals to multiple comorbidities, including type 2 diabetes mellitus, cardiovascular diseases, and cancer. Elevated circulating levels of fatty acids contribute to the development of obesity, in part, by targeting the hypothalamus. Palmitate, the most abundant circulating saturated fatty acid, has been demonstrated to dysregulate NAMPT and circadian clock proteins, as well as induce neuroinflammation. These effects ultimately result in hypothalamic dysregulation of feeding behavior and energy homeostasis. NAMPT is the rate-limiting enzyme of the NAD+ salvage pathway and its expression is under the control of the circadian clock. NAD+ produced from NAMPT can modulate the circadian clock, demonstrating bidirectional interactions between circadian and metabolic pathways. Using NPY/AgRP-expressing mHypoE-46 neurons as well as the novel mHypoA-BMAL1-WT/F and mHypoA-BMAL1-KO/F cell lines, we studied whether there were any interactions between NAMPT and the core circadian clock protein BMAL1 in the palmitate-mediated induction of neuroinflammation. We report that palmitate altered Nampt, Bmal1, Per2 and the inflammatory genes Nf-κb, IκBα, Il-6, and Tlr4. Contrary to studies performed with peripheral tissues, the palmitate-mediated induction in Nampt was independent of BMAL1, and basal Nampt levels did not appear to exhibit rhythmic expression. Palmitate-induced downregulation of Bmal1 and Per2 was independent of NAMPT. However, NAMPT and BMAL1 were both involved in the regulation of Nf-κb, IκBα, Il-6, and Tlr4, as NAMPT inhibition resulted in the repression of basal Nf-κb and IκBα and normalized palmitate-mediated increases in Il-6, and Tlr4. On the other hand, BMAL1 deletion repressed basal Nf-κb, but increased basal Il-6. We conclude that NAMPT and BMAL1 do not interact at the transcriptional level in hypothalamic neurons, but are independently involved in the expression of inflammatory genes.
Collapse
Affiliation(s)
- Andy Tran
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Wenyuan He
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Nan Jiang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jim T. C. Chen
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Tsai CH, Liu SC, Chung WH, Wang SW, Wu MH, Tang CH. Visfatin Increases VEGF-dependent Angiogenesis of Endothelial Progenitor Cells during Osteoarthritis Progression. Cells 2020; 9:cells9051315. [PMID: 32466159 PMCID: PMC7291153 DOI: 10.3390/cells9051315] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) pannus contains a network of neovascularization that is formed and maintained by angiogenesis, which is promoted by vascular endothelial growth factor (VEGF). Bone marrow-derived endothelial progenitor cells (EPCs) are involved in VEGF-induced vessel formation in OA. The adipokine visfatin stimulates the release of inflammatory cytokines during OA progression. In this study, we found significantly higher visfatin and VEGF serum concentrations in patients with OA compared with healthy controls. We describe how visfatin enhanced VEGF expression in human OA synovial fibroblasts (OASFs) and facilitated EPC migration and tube formation. Treatment of OASFs with PI3K and Akt inhibitors or siRNAs attenuated the effects of visfatin on VEGF synthesis and EPC angiogenesis. We also describe how miR-485-5p negatively regulated visfatin-induced promotion of VEGF expression and EPC angiogenesis. In our OA rat model, visfatin shRNA was capable of inhibiting visfatin and rescuing EPC angiogenesis and pathologic changes. We detail how visfatin affected VEGF expression and EPC angiogenesis in OASFs by inhibiting miR-485-5p synthesis through the PI3K and Akt signaling pathways.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404, Taiwan;
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651, Taiwan;
| | - Wen-Hui Chung
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Min-Huan Wu
- Physical Education Office, Tunghai University, Taichung 407, Taiwan
- Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung 807, Taiwan
- Correspondence: (M.-H.W.); (C.-H.T.)
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: (M.-H.W.); (C.-H.T.)
| |
Collapse
|
42
|
Chang TK, Wang YH, Kuo SJ, Wang SW, Tsai CH, Fong YC, Wu NL, Liu SC, Tang CH. Apelin enhances IL-1β expression in human synovial fibroblasts by inhibiting miR-144-3p through the PI3K and ERK pathways. Aging (Albany NY) 2020; 12:9224-9239. [PMID: 32420902 PMCID: PMC7288923 DOI: 10.18632/aging.103195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/29/2020] [Indexed: 01/15/2023]
Abstract
Much data suggests intersecting activities between the adipokine apelin (APLN) and the pathologic processes of obesity and osteoarthritis (OA), with APLN modulating cartilage, synovium, bone, and various immune cell activities. The synovium plays an important role in the pathogenesis of OA. We investigated the crosstalk between APLN, a major OA-related adipokine, and interleukin 1 beta (IL-1β), a major proinflammatory cytokine, in human OA synovial fibroblasts (OASFs). We showed that APLN stimulated the synthesis of IL-1β in a concentration- and time-dependent manner, which was mitigated by blockade of the PI3K and ERK pathway. We also showed that APLN inhibited the expression of miRNA-144-3p, which blocks IL-1β transcription; this suppression activity was reversed via blockade of the PI3K and ERK pathway. Moreover, pathologic changes in OA cartilage were rescued when APLN was silenced by shAPLN transfection both in vitro and in vivo. Our evidence is the first to show that APLN stimulates the expression of IL-1β by activating the PI3K and ERK pathway and suppressing downstream expression of miRNA-144-3p in OASFs. We also demonstrate that knockdown of APLN expression by shAPLN transfection ameliorated changes in OA cartilage severity. These results shed light on OA pathogenesis and suggest a novel treatment pathway.
Collapse
Affiliation(s)
- Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
43
|
Jin Z, Ren J, Qi S. RETRACTED: Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol 2020; 78:105946. [PMID: 31784400 DOI: 10.1016/j.intimp.2019.105946] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 2E, 3D and F, 4B, E+G, 5D+I, and 6D+F, which appear to have a similar phenotype as contained in many other publications, detailed here: https://pubpeer.com/publications/73C0A79F5EDF9ECC9818CE2D9B2A09; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The provenance of the flow cytometry data in Figure 5A was also questioned, as it appeared to have histograms that were hand drawn. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Orthopaedics, the First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Jiaan Ren
- Department of Orthopaedics, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Shanlun Qi
- Department of Orthopaedics, Dashiqiao Central Hospital, Yingkou 115100, PR China
| |
Collapse
|
44
|
Hu SL, Huang CC, Tzeng TT, Liu SC, Tsai CH, Fong YC, Tang CH. S1P promotes IL-6 expression in osteoblasts through the PI3K, MEK/ERK and NF-κB signaling pathways. Int J Med Sci 2020; 17:1207-1214. [PMID: 32547316 PMCID: PMC7294913 DOI: 10.7150/ijms.44612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disease, in which the immune system attacks joint tissue. Interleukin (IL)-6 is a key proinflammatory cytokine in RA progression. Sphingosine-1-phosphate (S1P), a platelet-derived lysophospholipid mediator, reportedly regulates osteoimmunology. Here, we examined the effects of S1P on IL-6 expression in osteoblasts. Our results and records from the Gene Expression Omnibus (GEO) database demonstrate higher levels of IL-6 in patients with RA compared with those with osteoarthritis. Stimulation of osteoblasts with S1P increased mRNA and protein expression of IL-6. PI3K, MEK, ERK and NF-κB inhibitors and their small interfering RNAs (siRNAs) reduced S1P-promoted IL-6 expression. S1P also facilitated PI3K, MEK/ERK and NF-κB signaling cascades. Our results indicate that S1P promotes the expression of IL-6 in osteoblasts via the PI3K, MEK/ERK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Sung-Lin Hu
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Ting Tzeng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
45
|
Zhao H, Liu S, Ma C, Ma S, Chen G, Yuan L, Chen L, Zhao H. Estrogen-Related Receptor γ Induces Angiogenesis and Extracellular Matrix Degradation of Temporomandibular Joint Osteoarthritis in Rats. Front Pharmacol 2019; 10:1290. [PMID: 31780931 PMCID: PMC6851845 DOI: 10.3389/fphar.2019.01290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/08/2019] [Indexed: 01/27/2023] Open
Abstract
The main causes of cartilage destruction during temporomandibular joint osteoarthritis (TMJOA) are extracellular matrix degradation and angiogenesis, accompanied by an increased level of matrix-degrading enzymes and proangiogenic factors. Interleukin 6 and extracellular signal–regulated kinase (ERK) signaling pathways may play a critical role in these two processes simultaneously, but researchers have not clearly determined the mechanism. We hypothesized that estrogen-related receptor γ (ERRγ) is involved in both cartilage degeneration and angiogenesis in TMJOA. The interactions between ERRγ and the Mmp9 and Vegfa promoter regions were investigated using a chromatin immunoprecipitation (ChIP) assay. A chick embryo chorioallantoic membrane (CAM) assay was performed to investigate the inhibitory effects of U0126 and GSK5182 on angiogenesis. Western blotting, reverse transcription–quantitative PCR (RT-qPCR), immunofluorescence staining, toluidine blue staining, and transfection with cDNAs or small interfering RNAs (siRNAs) were performed on primary mandibular condylar chondrocytes (MCCs). Unilateral anterior crossbite–induced TMJOA models were established in rats, and Western blotting, RT-qPCR, immunohistochemistry, and Safranin O-Fast Green staining were performed to evaluate changes in vivo. ERK1/2 activated matrix metalloproteinase 9 (MMP9) and vascular endothelial growth factor A (VEGFA), which are involved in cartilage destruction, through ERRγ. Based on the ChIP assay results, ERRγ directly activated the transcription of the Mmp9 and Vegfa genes. In chick embryo CAM models, U0126 and GSK5182 significantly inhibited angiogenesis. In conclusion, ERRγ is a downstream transcription factor of ERK1/2, and its upregulation leads to extracellular matrix degradation and angiogenesis in TMJOA. This study identified a common factor between inflammation and vascularization in OA as well as a new therapeutic target for OA: ERRγ.
Collapse
Affiliation(s)
- Haoming Zhao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, China
| | - Shaopeng Liu
- Department of General Dentistry, Ningbo Stomatology Hospital, Ningbo, China
| | - Chuan Ma
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, China
| | - Shixing Ma
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, China
| | - Guokun Chen
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, China
| | - Lingyu Yuan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, China
| | - Lei Chen
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Huaqiang Zhao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
46
|
MicroRNA Mediate Visfatin and Resistin Induction of Oxidative Stress in Human Osteoarthritic Synovial Fibroblasts Via NF-κB Pathway. Int J Mol Sci 2019; 20:ijms20205200. [PMID: 31635187 PMCID: PMC6829533 DOI: 10.3390/ijms20205200] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 01/15/2023] Open
Abstract
Synovial membrane inflammation actively participate to structural damage during osteoarthritis (OA). Adipokines, miRNA, and oxidative stress contribute to synovitis and cartilage destruction in OA. We investigated the relationship between visfatin, resistin and miRNA in oxidative stress regulation, in human OA synovial fibroblasts. Cultured cells were treated with visfatin and resistin. After 24 h, we evaluated various pro-inflammatory cytokines, metalloproteinases (MMPs), type II collagen (Col2a1), miR-34a, miR-146a, miR-181a, antioxidant enzymes, and B-cell lymphoma (BCL)2 by qRT-PCR, apoptosis and mitochondrial superoxide production by cytometry, p50 nuclear factor (NF)-κB by immunofluorescence. Synoviocytes were transfected with miRNA inhibitors and oxidative stress evaluation after adipokines stimulus was performed. The implication of NF-κB pathway was assessed by the use of a NF-κB inhibitor (BAY-11-7082). Visfatin and resistin significantly up-regulated gene expression of interleukin (IL)-1β, IL-6, IL-17, tumor necrosis factor (TNF)-α,MMP-1, MMP-13 and reduced Col2a1. Furthermore, adipokines induced apoptosis and superoxide production, the transcriptional levels of BCL2, superoxide dismutase (SOD)-2, catalase (CAT), nuclear factor erythroid 2 like 2 (NRF2), miR-34a, miR-146a, and miR-181a. MiRNA inhibitors counteracted adipokines modulation of oxidative stress. Visfatin and resistin effects were suppressed by BAY-11-7082. Our data suggest that miRNA may represent possible mediators of oxidative stress induced by visfatin and resistin via NF-κB pathway in human OA synoviocytes.
Collapse
|
47
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
48
|
The Adipokine Network in Rheumatic Joint Diseases. Int J Mol Sci 2019; 20:ijms20174091. [PMID: 31443349 PMCID: PMC6747092 DOI: 10.3390/ijms20174091] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rheumatic diseases encompass a diverse group of chronic disorders that commonly affect musculoskeletal structures. Osteoarthritis (OA) and rheumatoid arthritis (RA) are the two most common, leading to considerable functional limitations and irreversible disability when patients are unsuccessfully treated. Although the specific causes of many rheumatic conditions remain unknown, it is generally accepted that immune mechanisms and/or uncontrolled inflammatory responses are involved in their etiology and symptomatology. In this regard, the bidirectional communication between neuroendocrine and immune system has been demonstrated to provide a homeostatic network that is involved in several pathological conditions. Adipokines represent a wide variety of bioactive, immune and inflammatory mediators mainly released by adipocytes that act as signal molecules in the neuroendocrine-immune interactions. Adipokines can also be synthesized by synoviocytes, osteoclasts, osteoblasts, chondrocytes and inflammatory cells in the joint microenvironment, showing potent modulatory properties on different effector cells in OA and RA pathogenesis. Effects of adiponectin, leptin, resistin and visfatin on local and systemic inflammation are broadly described. However, more recently, other adipokines, such as progranulin, chemerin, lipocalin-2, vaspin, omentin-1 and nesfatin, have been recognized to display immunomodulatory actions in rheumatic diseases. This review highlights the latest relevant findings on the role of the adipokine network in the pathophysiology of OA and RA.
Collapse
|
49
|
MicroRNA-34a and MicroRNA-181a Mediate Visfatin-Induced Apoptosis and Oxidative Stress via NF-κB Pathway in Human Osteoarthritic Chondrocytes. Cells 2019; 8:cells8080874. [PMID: 31405216 PMCID: PMC6721672 DOI: 10.3390/cells8080874] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 01/16/2023] Open
Abstract
Current evidence suggests a complex interaction between adipokines and microRNA (miRNA) in osteoarthritis (OA) pathogenesis. The present study explored the role of miR-34a and miR-181a in regulating apoptosis and oxidative stress induced by visfatin in human OA chondrocytes. Chondrocytes were transfected with miR-34a and miR-181a inhibitors and stimulated with visfatin for 24 h, in the presence of nuclear factor (NF)-κB inhibitor (BAY-11-7082, 2 h pre-incubation). Apoptosis and reactive oxygen species (ROS) production were detected by cytometry, miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2 and B-cell lymphoma (BCL)2 expressions by quantitative real time polymerase chain reaction (real time PCR) and western blot. P50 NF-κB subunit was measured by immunofluorescence. Visfatin significantly induced apoptosis and superoxide anion production, increased miR-34a, miR-181a, superoxide dismutase (SOD)-2, catalase (CAT), NRF2 and decreased BCL2 gene and protein expression in OA chondrocytes. All the visfatin-caused effects were suppressed by using miR-34a and miR-181a inhibitors. Pre-incubation with BAY-11-7082 counteracted visfatin-induced expression of miRNA, BCL2, SOD-2, CAT and NRF2. Inhibition of miR-34a and miR-181a significantly reduced the activation of p50 NF-κB. Visfatin confirms its ability to induce apoptosis and oxidative stress in human OA chondrocytes; these effects appeared mediated by miR-34a and miR-181a via NF-κB pathway. We highlight the relevance of visfatin as potential therapeutic target for OA treatment.
Collapse
|
50
|
Franco-Trepat E, Guillán-Fresco M, Alonso-Pérez A, Jorge-Mora A, Francisco V, Gualillo O, Gómez R. Visfatin Connection: Present and Future in Osteoarthritis and Osteoporosis. J Clin Med 2019; 8:jcm8081178. [PMID: 31394795 PMCID: PMC6723538 DOI: 10.3390/jcm8081178] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/29/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Musculoskeletal pathologies (MSPs) such as osteoarthritis (OA) and osteoporosis (OP), are a set of disorders that cause severe pain, motion difficulties, and even permanent disability. In developed countries, the current incidence of MSPs reaches about one in four adults and keeps escalating as a consequence of aging and sedentarism. Interestingly, OA and OP have been closely related to similar risk factors, including aging, metabolic alterations, and inflammation. Visfatin, an adipokine with an inflammatory and catabolic profile, has been associated with several OA and OP metabolic risk factors, such as obesity, insulin resistance, and type II diabetes. Furthermore, visfatin has been associated with the innate immune receptor toll-like receptor 4 (TLR4), which plays a key role in cartilage and bone inflammatory and catabolic responses. Moreover, visfatin has been related to several OA and OP pathologic features. The aim of this work is to bring together basic and clinical data regarding the common role of visfatin in these pathologies and their major shared risk factors. Finally, we discuss the pitfalls of visfatin as a potential biomarker and therapeutic target in both pathologies.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Vera Francisco
- Research laboratory 9, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Oreste Gualillo
- Research laboratory 9, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain.
| |
Collapse
|