1
|
Xu X, Chen Z, Song M, Hou Z, Balmer L, Zhou C, Huang Y, Hou H, Wang W, Lin L. Profiling of IgG N-glycosylation for axial spondyloarthritis and other rheumatic diseases. Arthritis Res Ther 2025; 27:37. [PMID: 39987207 PMCID: PMC11846342 DOI: 10.1186/s13075-025-03505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Axial spondyloarthritis (axSpA) is an inflammatory rheumatic disease with challenges in diagnosis and disease activity assessment. While alterations in immunoglobulin G (IgG) N-glycosylation have been observed in varied rheumatic diseases, those in axSpA remains unclear. This study aims to explore the role of IgG N-glycan profiles in diagnosis and disease activity of axSpA. METHODS A clinical case-control study was conducted involving patients with axSpA (n = 138), systemic lupus erythematosus (n = 102), rheumatoid arthritis (n = 106), osteoarthritis (n = 33), gout (n = 41) and healthy controls (n = 117). Ultra-performance liquid chromatography was employed to analyze the composition of the serum IgG N-glycome. Associations between IgG N-glycans and axSpA were investigated and compared to healthy controls and other four rheumatic diseases. The relationship among IgG N-glycosylation, disease activity, and inflammatory cytokines of axSpA patients were analyzed. The receiver operating characteristic (ROC) curve analysis was applied to evaluate the diagnostic/classification performance of IgG N-glycans to distinguish axSpA and its disease activity. RESULTS In patients with axSpA, the abundances of IgG galactosylation and sialylation were significantly lower than healthy controls, while the abundance of fucosylation was higher than the other four studied rheumatic diseases. Additionally, two asialylated IgG N-glycans (FA2 and FA2 [3]G1) were associated with axSpA, with adjusted odds ratios (AORs) of 5.62 (95% CI: 3.41-9.24) and 0.33 (95% CI: 0.22-0.50), respectively. Notably, decreased FA2 [3]G1 emerged as a characteristic IgG N-glycan associated with all five studied rheumatic diseases, while decreased FA2BG2S2 was a unique IgG N-glycan differentiating axSpA from the other four rheumatic diseases. Furthermore, FA2 displayed positive association with disease activity indicators (ASDAS-CRP, SPARCC-SIJ and SPARCC-spine) in axSpA. IgG N-glycans, particularly FA2 [3]G1, FA2BG2S2 and FA2, demonstrated canonical correlation with inflammatory cytokines, including interleukin-23 and tumor necrosis factor α, in axSpA (r = 0.519, P = 0.017). CONCLUSIONS Specific IgG N-glycans hold potential as novel biomarkers to enhance diagnosis and disease activity assessment in axSpA management.
Collapse
Affiliation(s)
- Xiaojia Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Zhixian Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Manshu Song
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Zhiduo Hou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Chunbin Zhou
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yayi Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Haifeng Hou
- Department of Epidemiology, School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Wei Wang
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- Department of Epidemiology, School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Institute of Glycome Study, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong, China.
| | - Ling Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Rheumatology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
2
|
Chen Z, Xu X, Song M, Lin L. Crosstalk Between Cytokines and IgG N-Glycosylation: Bidirectional Effects and Relevance to Clinical Innovation for Inflammatory Diseases. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:608-619. [PMID: 39585210 DOI: 10.1089/omi.2024.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The crosstalk between cytokines and immunoglobulin G (IgG) N-glycosylation forms a bidirectional regulatory network that significantly impacts inflammation and immune function. This review examines how various cytokines, both pro- and anti-inflammatory, modulate IgG N-glycosylation, shaping antibody activity and influencing inflammatory responses. In addition, we explore how altered IgG N-glycosylation patterns affect cytokine production and immune signaling, either promoting or reducing inflammation. Through a comprehensive analysis of current studies, this review underscores the dynamic relationship between cytokines and IgG N-glycosylation. These insights enhance our understanding of the mechanisms underlying inflammatory diseases and contribute to improved strategies for disease prevention, diagnosis, monitoring, prognosis, and the exploration of novel treatment options. By focusing on this crosstalk, we identify new avenues for developing innovative diagnostic tools and therapies to improve patient outcomes in inflammatory diseases.
Collapse
Affiliation(s)
- Zhixian Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Xiaojia Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Ling Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Rheumatology, Shantou University Medical College, Shantou, China
| |
Collapse
|
3
|
DeBono NJ, Moh ESX, Packer NH. Experimentally Determined Diagnostic Ions for Identification of Peptide Glycotopes. J Proteome Res 2024; 23:2661-2673. [PMID: 38888225 DOI: 10.1021/acs.jproteome.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The analysis of the structures of glycans present on glycoproteins is an essential component for determining glycoprotein function; however, detailed glycan structural assignment on glycopeptides from proteomics mass spectrometric data remains challenging. Glycoproteomic analysis by mass spectrometry currently can provide significant, yet incomplete, information about the glycans present, including the glycan monosaccharide composition and in some circumstances the site(s) of glycosylation. Advancements in mass spectrometric resolution, using high-mass accuracy instrumentation and tailored MS/MS fragmentation parameters, coupled with a dedicated definition of diagnostic fragmentation ions have enabled the determination of some glycan structural features, or glycotopes, expressed on glycopeptides. Here we present a collation of diagnostic glycan fragments produced by traditional positive-ion-mode reversed-phase LC-ESI MS/MS proteomic workflows and describe the specific fragmentation energy settings required to identify specific glycotopes presented on N- or O-linked glycopeptides in a typical proteomics MS/MS experiment.
Collapse
Affiliation(s)
- Nicholas J DeBono
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
4
|
Afrifa-Yamoah E, Adua E, Anto EO, Peprah-Yamoah E, Opoku-Yamoah V, Aboagye E, Hashmi R. Conceptualised psycho-medical footprint for health status outcomes and the potential impacts for early detection and prevention of chronic diseases in the context of 3P medicine. EPMA J 2023; 14:585-599. [PMID: 38094584 PMCID: PMC10713508 DOI: 10.1007/s13167-023-00344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/21/2023] [Indexed: 10/16/2024]
Abstract
Background The Suboptimal Health Status Questionnaire-25 (SHSQ-25) is a distinctive medical psychometric diagnostic tool designed for the early detection of chronic diseases. However, the synaptic connections between the 25 symptomatic items and their relevance in supporting the monitoring of suboptimal health outcomes, which are precursors for chronic diseases, have not been thoroughly evaluated within the framework of predictive, preventive, and personalised medicine (PPPM/3PM). This baseline study explores the internal structure of the SHSQ-25 and demonstrates its discriminatory power to predict optimal and suboptimal health status (SHS) and develop photogenic representations of their distinct relationship patterns. Methods The cross-sectional study involved healthy Ghanaian participants (n = 217; aged 30-80 years; ~ 61% female), who responded to the SHSQ-25. The median SHS score was used to categorise the population into optimal and SHS. Graphical LASSO model and multi-dimensional scaling configuration methods were employed to describe the network structures for the two populations. Results We observed differences in the structural, node placement and node distance of the synaptic networks for the optimal and suboptimal populations. A statistically significant variance in connectivity levels was noted between the optimal (58 non-zero edges) and suboptimal (43 non-zero edges) networks (p = 0.024). Fatigue emerged as a prominently central subclinical condition within the suboptimal population, whilst the cardiovascular system domain had the greatest relevance for the optimal population. The contrast in connectivity levels and the divergent prominence of specific subclinical conditions across domain networks shed light on potential health distinctions. Conclusions We have demonstrated the feasibility of creating dynamic visualizers of the evolutionary trends in the relationships between the domains of SHSQ-25 relative to health status outcomes. This will provide in-depth comprehension of the conceptual model to inform personalised strategies to circumvent SHS. Additionally, the findings have implications for both health care and disease prevention because at-risk individuals can be predicted and prioritised for monitoring, and targeted intervention can begin before their symptoms reach an irreversible stage. Supplementary information The online version contains supplementary material available at 10.1007/s13167-023-00344-2.
Collapse
Affiliation(s)
| | - Eric Adua
- Rural Clinical School, Medicine and Health, University of New South Wales, Kensington, NSW Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia
| | - Enoch Odame Anto
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia
- Department of Medical Diagnostics, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Victor Opoku-Yamoah
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Emmanuel Aboagye
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rashid Hashmi
- Rural Clinical School, Medicine and Health, University of New South Wales, Kensington, NSW Australia
| |
Collapse
|
5
|
Bergonzo C, Hoopes JT, Kelman Z, Gallagher DT. Effects of glycans and hinge on dynamics in the IgG1 Fc. J Biomol Struct Dyn 2023; 42:12571-12579. [PMID: 37897185 PMCID: PMC11055941 DOI: 10.1080/07391102.2023.2270749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
The crystallizable fragment (Fc) domain of immunoglobulin subclass IgG1 antibodies is engineered for a wide variety of pharmaceutical applications. Two important structural variables in Fc constructs are the hinge region connecting the Fc to the antigen binding fragments (Fab) and the glycans present in various glycoforms. These components affect receptor binding interactions that mediate immune activation. To design new antibody drugs, a robust in silico method for linking stability to structural changes is necessary. In this work, all-atom simulations were used to compare the dynamic behavior of the four structural variants arising from presence or absence of the hinge and glycans. We expressed the simplest of these constructs, the 'minimal Fc' with no hinge and no glycans, in Escherichia coli and report its crystal structure. The 'maximal Fc' that includes full hinge and G0F/G1F glycans is based on a previously reported structure, Protein Data Bank (PDB) ID: 5VGP. These, along with two intermediate structures (with only the glycans or with only the hinge) were used to independently measure the stability effects of the two structural variables using umbrella sampling simulations. Principal component analysis (PCA) was used to determine free energy effects along the Fc's dominant mode of motion. This work provides a comprehensive picture of the effects of hinge and glycans on Fc dynamics and stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Christina Bergonzo
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - J. Todd Hoopes
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Biomolecular Labeling Laboratory, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - Zvi Kelman
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Biomolecular Labeling Laboratory, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - D. Travis Gallagher
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
| |
Collapse
|
6
|
Shkunnikova S, Mijakovac A, Sironic L, Hanic M, Lauc G, Kavur MM. IgG glycans in health and disease: Prediction, intervention, prognosis, and therapy. Biotechnol Adv 2023; 67:108169. [PMID: 37207876 DOI: 10.1016/j.biotechadv.2023.108169] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Immunoglobulin (IgG) glycosylation is a complex enzymatically controlled process, essential for the structure and function of IgG. IgG glycome is relatively stable in the state of homeostasis, yet its alterations have been associated with aging, pollution and toxic exposure, as well as various diseases, including autoimmune and inflammatory diseases, cardiometabolic diseases, infectious diseases and cancer. IgG is also an effector molecule directly involved in the inflammation processes included in the pathogenesis of many diseases. Numerous recently published studies support the idea that IgG N-glycosylation fine-tunes the immune response and plays a significant role in chronic inflammation. This makes it a promising novel biomarker of biological age, and a prognostic, diagnostic and treatment evaluation tool. Here we provide an overview of the current state of knowledge regarding the IgG glycosylation in health and disease, and its potential applications in pro-active prevention and monitoring of various health interventions.
Collapse
Affiliation(s)
- Sofia Shkunnikova
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Anika Mijakovac
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, Zagreb, Croatia
| | - Lucija Sironic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Ulica Ante Kovačića 1, Zagreb, Croatia
| | | |
Collapse
|
7
|
Mao L, Schneider JW, Robinson AS. Use of single analytic tool to quantify both absolute N-glycosylation and glycan distribution in monoclonal antibodies. Biotechnol Prog 2023; 39:e3365. [PMID: 37221987 DOI: 10.1002/btpr.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/22/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Recombinant proteins represent almost half of the top selling therapeutics-with over a hundred billion dollars in global sales-and their efficacy and safety strongly depend on glycosylation. In this study, we showcase a simple method to simultaneously analyze N-glycan micro- and macroheterogeneity of an immunoglobulin G (IgG) by quantifying glycan occupancy and distribution. Our approach is linear over a wide range of glycan and glycoprotein concentrations down to 25 ng/mL. Additionally, we present a case study demonstrating the effect of small molecule metabolic regulators on glycan heterogeneity using this approach. In particular, sodium oxamate (SOD) decreased Chinese hamster ovary (CHO) glucose metabolism and reduced IgG glycosylation by 40% through upregulating reactive oxygen species (ROS) and reducing the UDP-GlcNAc pool, while maintaining a similar glycan profile to control cultures. Here, we suggest glycan macroheterogeneity as an attribute should be included in bioprocess screening to identify process parameters that optimize culture performance without compromising antibody quality.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Wu Z, Guo Z, Zheng Y, Wang Y, Zhang H, Pan H, Li Z, Balmer L, Li X, Tao L, Guo X, Wang W. IgG N-Glycosylation Cardiovascular Age Tracks Cardiovascular Risk Beyond Calendar Age. ENGINEERING 2023; 26:99-107. [DOI: 10.1016/j.eng.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
9
|
Adua E. Decoding the mechanism of hypertension through multiomics profiling. J Hum Hypertens 2023; 37:253-264. [PMID: 36329155 PMCID: PMC10063442 DOI: 10.1038/s41371-022-00769-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Hypertension, characterised by a constant high blood pressure, is the primary risk factor for multiple cardiovascular events and a major cause of death in adults. Excitingly, innovations in high-throughput technologies have enabled the global exploration of the whole genome (genomics), revealing dysregulated genes that are linked to hypertension. Moreover, post-genomic biomarkers, from the emerging fields of transcriptomics, proteomics, glycomics and lipidomics, have provided new insights into the molecular underpinnings of hypertension. In this paper, we review the pathophysiology of hypertension, and highlight the multi-omics approaches for hypertension prediction and diagnosis.
Collapse
Affiliation(s)
- Eric Adua
- School of Clinical Medicine, Medicine & Health, Rural Clinical Campus, University of New South Wales, Wagga Wagga, NSW, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
10
|
Mijakovac A, Frkatović A, Hanić M, Ivok J, Martinić Kavur M, Pučić-Baković M, Spector T, Zoldoš V, Mangino M, Lauc G. Heritability of the glycan clock of biological age. Front Cell Dev Biol 2022; 10:982609. [PMID: 36619858 PMCID: PMC9815111 DOI: 10.3389/fcell.2022.982609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Immunoglobulin G is posttranslationally modified by the addition of complex N-glycans affecting its function and mediating inflammation at multiple levels. IgG glycome composition changes with age and health in a predictive pattern, presumably due to inflammaging. As a result, a novel biological aging biomarker, glycan clock of age, was developed. Glycan clock of age is the first of biological aging clocks for which multiple studies showed a possibility of clock reversal even with simple lifestyle interventions. However, none of the previous studies determined to which extent the glycan clock can be turned, and how much is fixed by genetic predisposition. To determine the contribution of genetic and environmental factors to phenotypic variation of the glycan clock, we performed heritability analysis on two TwinsUK female cohorts. IgG glycans from monozygotic and dizygotic twin pairs were analyzed by UHPLC and glycan age was calculated using the glycan clock. In order to determine additive genetic, shared, and unique environmental contributions, a classical twin design was applied. Heritability of the glycan clock was calculated for participants of one cross-sectional and one longitudinal cohort with three time points to assess the reliability of measurements. Heritability estimate for the glycan clock was 39% on average, suggesting a moderate contribution of additive genetic factors (A) to glycan clock variation. Remarkably, heritability estimates remained approximately the same in all time points of the longitudinal study, even though IgG glycome composition changed substantially. Most environmental contributions came from shared environmental factors (C), with unique environmental factors (E) having a minor role. Interestingly, heritability estimates nearly doubled, to an average of 71%, when we included age as a covariant. This intervention also inflated the estimates of unique environmental factors contributing to glycan clock variation. A complex interplay between genetic and environmental factors defines alternative IgG glycosylation during aging and, consequently, dictates the glycan clock's ticking. Apparently, environmental factors (including lifestyle choices) have a strong impact on the biological age measured with the glycan clock, which additionally clarifies why this aging clock is one of the most potent biomarkers of biological aging.
Collapse
Affiliation(s)
- Anika Mijakovac
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Maja Hanić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Jelena Ivok
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | | | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Vlatka Zoldoš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom,NIHR Biomedical Research Centre at Guy’s and St Thoma’s Foundation Trust, London, United Kingdom
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia,*Correspondence: Gordan Lauc,
| |
Collapse
|
11
|
Guo Z, Meng R, Zheng Y, Li X, Zhou Z, Yu L, Tang Q, Zhao Y, Garcia M, Yan Y, Song M, Balmer L, Wen J, Hou H, Tan X, Wang W. Translation and cross-cultural validation of a precision health tool, the Suboptimal Health Status Questionnaire-25, in Korean. J Glob Health 2022; 12:04077. [PMID: 36181723 PMCID: PMC9526479 DOI: 10.7189/jogh.12.04077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Suboptimal health status (SHS) is a reversible stage between health and illness that is characterized by health complaints, low energy, general weakness, and chronic fatigue. The Suboptimal Health Status Questionnaire-25 (SHSQ-25) has been validated in three major populations (African, Asian, and Caucasian) and is internationally recognized as a reliable and robust tool for health estimation in general populations. This study focused on the development of K-SHSQ-25, a Korean version of the SHSQ-25, from its English version. METHODS The SHSQ-25 was translated from English to Korean according to international guidelines set forth by the World Health Organization (WHO) for health instrument translation between different languages. A subsequent cross-sectional survey involved 460 healthy South Korean participants (aged 18-83 years; 65.4% females) to answer the 25 questions focusing on the health perspectives of 5 domains, 1) fatigue, 2) cardiovascular health, 3) digestive tract, 4) immune system and 5) mental health. The K-SHSQ-25 was further validated using tests for reliability, internal consistency, exploratory factor analysis (EFA), and confirmatory factor analysis (CFA). RESULTS The version of K-SHSQ-25 achieved linguistic, cultural, and conceptual equivalence to the English version. The intraclass correlation coefficient (ICC) of test-retest reliability for individual items ranged from 0.88 to 0.99. Reliability estimates based on internal consistency reached a Cronbach's α of 0.953; the Cronbach's α for each domain ranged from 0.76 to 0.94. Regarding construct validity, the EFA of the K-SHSQ-25 generally replicated the multidimensional structure (fatigue, cardiovascular, digestive, immune system, and mental health) and 25 questions. The CFA revealed that the root mean square error of approximation (RMSEA), goodness-of-fit index (GFI) and adjusted goodness of fit index (AGFI) were excellent (RMSEA = 0.069<0.08, GFI = 0.929>0.90, AGFI = 0.907>0.90). The five domains of the K-SHSQ-25 showed significant correlations with each other (r = 0.59-0.81, P<0.001). The cut-off point of K-SHSQ-25 for SHS was determined as an SHS score of 25. The prevalence of SHS in this study was 60.0% (276/460), with 47.8% (76/159) for males and 58.5% for females (176/301). CONCLUSIONS Our results indicate that the Korean version of SHSQ-25, K-SHSQ-25, is a transcultural equivalent, robust, valid, and reliable assessment tool for evaluating SHS in the Korean-speaking population.
Collapse
Affiliation(s)
- Zheng Guo
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- The Nathan Centre, Joondalup, Western Australia, Australia
| | - Ruoyu Meng
- Department of Physiology, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju, Korea
| | - Yulu Zheng
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- The Nathan Centre, Joondalup, Western Australia, Australia
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- The Nathan Centre, Joondalup, Western Australia, Australia
| | - Ziqi Zhou
- Department of Herbology, School of Korean Medicine, Wonkwang University, Jeonbuk, Korea
| | - Leilei Yu
- Department of Endocrinology, Taian City Central Hospital, Taian, China
| | - Qian Tang
- Department of Obstetrics, Tengzhou People's Central Hospital, Tengzhou, China
| | - Ying Zhao
- School of Foreign Languages, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Monique Garcia
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- The Nathan Centre, Joondalup, Western Australia, Australia
| | - Yuxiang Yan
- School of Foreign Languages, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Lois Balmer
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Department of Physiology, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jun Wen
- School of Business and Law, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Haifeng Hou
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Public Health, Shandong First Medical University &
- Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xuerui Tan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- The Nathan Centre, Joondalup, Western Australia, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup, Western Australia, Australia
| | | |
Collapse
|
12
|
Yang S, Cui M, Liu Q, Liao Q. Glycosylation of immunoglobin G in tumors: Function, regulation and clinical implications. Cancer Lett 2022; 549:215902. [PMID: 36096412 DOI: 10.1016/j.canlet.2022.215902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Immunoglobulin G (IgG) is the predominant component in humoral immunity and the major effector of neutralizing heterogeneous antigens. Glycosylation, as excessive posttranscriptional modification, can modulate IgG immune function. Glycosylated IgG has been reported to correlate with tumor progression, presenting several characteristic modifications, including the core fucose, galactose, sialic acid, and the bisect N-acetylglucosamine (GlcNAc). Meanwhile, IgG glycosylation regulates tumor immunity involved in tumor progression and is thus a potential target. Herein, we summarized the research progression to provide novel insight into the application of IgG glycosylation in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Li S, Meng J, Lv Y, Wang Q, Tian X, Li M, Zeng X, Hu C, Zheng Y. Changes in Serum IgG Glycosylation Patterns for Abdominal Aortic Aneurysm Patients. J Cardiovasc Dev Dis 2022; 9:jcdd9090291. [PMID: 36135436 PMCID: PMC9502462 DOI: 10.3390/jcdd9090291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: B cells and autoantibodies play an important role in the pathogenesis of abdominal aortic aneurysm (AAA). IgG glycosylations are highly valued as potential disease biomarkers and therapeutic targets. Methods: Lectin microarray was applied to analyze the expression profile of serum IgG glycosylation in 75 patients with AAA, 68 autoimmune disease controls, and 100 healthy controls. Lectin blots were performed to validate the differences. The clinical relevance of lectins binding from the microarray results was explored in AAA patients. Results: Significantly lower binding level of SBA (preferred GalNAc) was observed for the AAA group compared with DCs (p < 0.001) and HCs (p = 0.049). A significantly lower binding level of ConA (preferred mannose) was observed in patients with aneurysm diameter >5 cm. Significantly higher binding of CSA (preferred GalNAc) was present for dyslipidemia patients, whereas a lower binding level of AAL (preferred fucose) was observed for hypertensive patients. Patients with diabetes had lower binding levels of IRA (preferred GalNAc) and HPA (preferred GalNAc) compared with those not with DM. PTL-L (R = 0.36, p = 0.0015, preferred GalNAc) was positively associated with aneurysm diameters, whereas DSL (R = 0.28, p = 0.014, preferred (GlcNAc)2-4) was positively associated with patients’ age. Symptomatic patients had a lower binding level of ConA (p = 0.032), and patients with coronary heart disease had higher binding levels of STL (p = 0.0029, preferred GlcNAc). Patients with ILT bound less with black bean crude (p = 0.04, preferred GalNAc). Conclusions: AAA was associated with a decreased IgG binding level of SBA (recognizing glycan GalNAc). Symptomatic patients with aneurysm <5 cm had a higher binding level of ConA (preferred mannose). Coronary heart disease and elder age were associated with increased IgG bisecting GlcNAc. IgG O-glycosylation (GalNAc) may play an important role in AAA pathogenesis and progression.
Collapse
Affiliation(s)
- Siting Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100010, China
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100010, China
| | - Jingjing Meng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing 100730, China
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100010, China
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100010, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Xinping Tian
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing 100730, China
- Correspondence: (C.H.); (Y.Z.)
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100010, China
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100010, China
- Correspondence: (C.H.); (Y.Z.)
| |
Collapse
|
14
|
Li Y, Shi F, Wang G, Lv J, Zhang H, Jin H, Chen X, Wang M, Li P, Ji L. Expression Profile of Immunoglobulin G Glycosylation in Children With Epilepsy in Han Nationality. Front Mol Neurosci 2022; 15:843897. [PMID: 35845609 PMCID: PMC9283856 DOI: 10.3389/fnmol.2022.843897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/30/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Epilepsy is a chronic brain disease that recurs during childhood, and more than half of adult epilepsy originates from childhood. Studies suggested that immunoglobulin G (IgG) glycosylation are closely related to neurological diseases. Here we analyzed the characteristics of the immunoglobulin glycosylation profile of children with epilepsy. METHODS Patients were recruited in Taian, Shandong Province from December 2019 to March 2020. Serum IgG glycome composition was analyzed by hydrophilic interaction liquid chromatography with ultra-high-performance liquid chromatography approach. RESULTS The proportion of fucosylated glycans in total IgG glycans was 93.72% in the epilepsy patients, which was significantly lower than that in the control group (94.94%). A lower level of total monogalactosylated and digalactosylated glycans were observed in the epilepsy patients group (30.76 and 40.14%) than that in the controls (36.17 and 42.69%). There was no significant difference between the two groups in bisected GlcNAc glycans and sialylated glycans. CONCLUSION The decrease of core fucosylation and galactosylation may promote the inflammatory reaction of the body and participate in the occurrence of epilepsy in children.
Collapse
Affiliation(s)
- Yuejin Li
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Fengxue Shi
- School of Clinical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Guanglei Wang
- Tai’an Maternal and Child Health Hospital, Taian, China
| | - Jian Lv
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Haitao Zhang
- Tai’an Maternal and Child Health Hospital, Taian, China
| | - Hao Jin
- Department of Critical Care Medical Center, Taian City Central Hospital, Taian, China
| | - Xueyu Chen
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Meng Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Peirui Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Long Ji
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
15
|
Adua E, Afrifa-Yamoah E, Peprah-Yamoah E, Anto EO, Acheampong E, Awuah-Mensah KA, Wang W. Multi-block data integration analysis for identifying and validating targeted N-glycans as biomarkers for type II diabetes mellitus. Sci Rep 2022; 12:10974. [PMID: 35768493 PMCID: PMC9243128 DOI: 10.1038/s41598-022-15172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Plasma N-glycan profiles have been shown to be defective in type II diabetes Mellitus (T2DM) and holds a promise to discovering biomarkers. The study comprised 232 T2DM patients and 219 healthy individuals. N-glycans were analysed by high-performance liquid chromatography. The multivariate integrative framework, DIABLO was employed for the statistical analysis. N-glycan groups (GPs 34, 32, 26, 31, 36 and 30) were significantly expressed in T2DM in component 1 and GPs 38 and 20 were related to T2DM in component 2. Four clusters were observed based on the correlation of the expressive signatures of the 39 N-glycans across T2DM and controls. Cluster A, B, C and D had 16, 16, 4 and 3 N-glycans respectively, of which 11, 8, 1 and 1 were found to express differently between controls and T2DM in a univariate analysis [Formula: see text]. Multi-block analysis revealed that trigalactosylated (G3), triantennary (TRIA), high branching (HB) and trisialylated (S3) expressed significantly highly in T2DM than healthy controls. A bipartite relevance network revealed that HB, monogalactosylated (G1) and G3 were central in the network and observed more connections, highlighting their importance in discriminating between T2DM and healthy controls. Investigation of these N-glycans can enhance the understanding of T2DM.
Collapse
Affiliation(s)
- Eric Adua
- Rural Clinical School, Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | | | | | - Enoch Odame Anto
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Diagnostics, Faculty of Allied Health Science, Kwame Nkrumah University of Science and Technology, 9800, Kumasi, Ashanti Region, Ghana
| | - Emmanuel Acheampong
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
16
|
Gonzalez-Gronow M, Pizzo SV. Physiological Roles of the Autoantibodies to the 78-Kilodalton Glucose-Regulated Protein (GRP78) in Cancer and Autoimmune Diseases. Biomedicines 2022; 10:biomedicines10061222. [PMID: 35740249 PMCID: PMC9219851 DOI: 10.3390/biomedicines10061222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023] Open
Abstract
The 78 kDa glucose-regulated protein (GRP78), a member of the 70 kDa heat-shock family of molecular chaperones (HSP70), is essential for the regulation of the unfolded protein response (UPR) resulting from cellular endoplasmic reticulum (ER) stress. During ER stress, GRP78 evades retention mechanisms and is translocated to the cell surface (csGRP78) where it functions as an autoantigen. Autoantibodies to GRP78 appear in prostate, ovarian, gastric, malignant melanoma, and colorectal cancers. They are also found in autoimmune pathologies such as rheumatoid arthritis (RA), neuromyelitis optica (NMO), anti-myelin oligodendrocyte glycoprotein antibody-associated disorder (AMOGAD), Lambert-Eaton myasthenic syndrome (LEMS), multiple sclerosis (MS), neuropsychiatric systemic lupus erythematosus (NPSLE) and type 1 diabetes (T1D). In NMO, MS, and NPSLE these autoantibodies disrupt and move across the blood-brain barrier (BBB), facilitating their entry and that of other pathogenic antibodies to the brain. Although csGRP78 is common in both cancer and autoimmune diseases, there are major differences in the specificity of its autoantibodies. Here, we discuss how ER mechanisms modulate csGRP78 antigenicity and the production of autoantibodies, permitting this chaperone to function as a dual compartmentalized receptor with independent signaling pathways that promote either pro-proliferative or apoptotic signaling, depending on whether the autoantibodies bind csGRP78 N- or C-terminal regions.
Collapse
|
17
|
Joubert S, Guimond J, Perret S, Malenfant F, Elahi SM, Marcil A, Parat M, Gilbert M, Lenferink A, Baardsnes J, Durocher Y. Production of afucosylated antibodies in CHO cells by co-expression of an anti-FUT8 intrabody. Biotechnol Bioeng 2022; 119:2206-2220. [PMID: 35509261 DOI: 10.1002/bit.28127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Some effector functions prompted by IgG antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC), strongly depend on the N-glycans linked to asparagine 297 of the Fc region of the protein. A single alpha-(1,6)-fucosyltransferase (FUT8) is responsible for catalyzing the addition of an α-1,6-linked fucose residue to the first GlcNAc residue of the N-linked glycans. Antibodies missing this core fucose show a significantly enhanced ADCC and increased anti-tumor activity, which could help reduce therapeutic dose requirement, potentially translating into reduced safety concerns and manufacturing costs. Several approaches have been developed to modify glycans and improve the biological functions of antibodies. Here, we demonstrate that expression of a membrane-associated anti-FUT8 intrabody engineered to reside in the endoplasmic reticulum and Golgi apparatus can efficiently reduce FUT8 activity and therefore the core-fucosylation of the Fc N-glycan of an antibody. IgG1-producing CHO cells expressing the intrabody secrete antibodies with reduced core fucosylation as demonstrated by lectin blot analysis and UPLC-HILIC glycan analysis. Cells engineered to inhibit directly and specifically alpha-(1,6)-fucosyltransferase activity allows for the production of g/L levels of IgGs with strongly enhanced ADCC effector function, for which the level of fucosylation can be selected. The quick and efficient method described here should have broad practical applicability for the development of next-generation therapeutic antibodies with enhanced effector functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Simon Joubert
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Julie Guimond
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Félix Malenfant
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Seyyed Mehdy Elahi
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Marie Parat
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Anne Lenferink
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| |
Collapse
|
18
|
Xu X, Balmer L, Chen Z, Mahara G, Lin L. The role of IgG N-galactosylation in Spondyloarthritis. TRANSLATIONAL METABOLIC SYNDROME RESEARCH 2022. [DOI: 10.1016/j.tmsr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Woodall DW, Dillon TM, Kalenian K, Padaki R, Kuhns S, Semin DJ, Bondarenko PV. Non-targeted characterization of attributes affecting antibody-FcγRIIIa V158 (CD16a) binding via online affinity chromatography-mass spectrometry. MAbs 2022; 14:2004982. [PMID: 34978527 PMCID: PMC8741291 DOI: 10.1080/19420862.2021.2004982] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antibodies facilitate targeted cell killing by engaging with immune cells such as natural killer cells through weak binding interactions with Fcγ receptors on the cell surface. Here, we evaluate the binding affinity of the receptor FcγRIIIa V158 (CD16a) for several therapeutic antibody classes, isoforms, and Fc-fusion proteins using an immobilized receptor affinity liquid chromatography (LC) approach coupled with online mass spectrometry (MS) detection. Aglycosylated FcγRIIIa was used in the affinity chromatography and compared with published affinities using glycosylated receptors. Affinity LC-MS differentiated the IgG1 antibodies primarily according to their Fc glycosylation patterns, with highly galactosylated species having greater affinity for the immobilized receptors and thus eluting later from the column (M5< G0F < G0 afucosylated ≅ G1F < G2F). Sialylated species bound weaker to their asialylated counterparts as reported previously. High mannose glycoforms bound weaker than G0F, contrary to previously published studies using glycosylated receptors. Also, increased receptor binding affinity associated with afucosylated antibodies was not observed with the aglycosylated FcγRIIIa. This apparent difference from previous findings highlighted the importance of the glycans on the receptors for mediating stronger binding interactions. Characterization of temperature-stressed samples by LC-MS peptide mapping revealed over 200 chemical and post-translational modifications, but only the Fc glycans, deamidation of EU N325, and an unknown modification to either proline or cysteine residues of the hinge region were found to have a statistically significant impact on binding. Abbreviations: Antibody-dependent cell-mediated cytotoxicity (ADCC), chimeric antigen receptor (CAR), Chinese hamster ovary (CHO), dithiothreitol (DTT), electrospray ionization (ESI), hydrogen-deuterium exchange (HDX), filter aided-sample preparation (FASP), Fcγ receptor (FcγR), fragment crystallizable (Fc), high-pressure liquid chromatography (HPLC), immunoglobulin G (IgG), liquid chromatography (LC), monoclonal antibody (mAb), mass spectrometry (MS), natural killer (NK), N-glycolylneuraminic acid (NGNA), N-acetylneuraminic acid (NANA), principal component analysis (PCA), surface plasmon resonance (SPR), trifluoroacetic acid (TFA), and extracted mass chromatogram (XMC).
Collapse
Affiliation(s)
- Daniel W Woodall
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Kevin Kalenian
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Rupa Padaki
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Scott Kuhns
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| |
Collapse
|
20
|
Meng Y, Chen D, Qiu N, Mine Y, Keast R, Meng S, Zhu C. Comparative N-glycoproteomic analysis of Tibetan and lowland chicken fertilized eggs: Implications on proteins biofunction and species evolution. J Food Biochem 2021; 46:e14006. [PMID: 34859904 DOI: 10.1111/jfbc.14006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
The characterization and functionality of protein glycosylation among different related species are of common interest. Herein, non-standard quantification and N-glycosylation enrichment technology combined with ultra-high liquid chromatography-tandem mass spectrometry were used to establish detailed N-glycoproteomics of fertilized eggs, and quantitatively compared between Tibetan and lowland chicken. A total of 396N-glycosites from 143 glycoproteins were found. Specifically, compared with lowland chicken egg white, 32N-glycosites of 22 glycoproteins were up-regulated and 57N-glycosites of 25 glycoproteins were down-regulated in Tibetan chicken egg white. Also, 137N-glycosites in 72 glycoproteins showed much higher-degree glycosylation and 36N-glycosites in 15 glycoproteins displayed lower-degree glycosylation in Tibetan chicken egg yolk than those in lowland chicken egg yolk. Through bioinformatic analysis, these varied glycoproteins were highly associated with antifreeze activity, hypoxia adaptation, coagulation cascade, and binding/immunity activities, which may be related to plateau hypoxia and cold stress. PRACTICAL APPLICATIONS: These findings provide a new insight on the role of biological egg N-glycoproteins related to environmental adaptation and evolution, which may be further applied in improving egg processing and human health, by developing biomolecules for food and medical industry.
Collapse
Affiliation(s)
- Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Diao Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ning Qiu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Sichong Meng
- Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
21
|
Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, Anto EO, Mahara G, Zheng Y, Li B, Kang T, Zhong Z, Wang Y, Guo X, Golubnitschaja O. All around suboptimal health - a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine. EPMA J 2021; 12:403-433. [PMID: 34539937 PMCID: PMC8435766 DOI: 10.1007/s13167-021-00253-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
First two decades of the twenty-first century are characterised by epidemics of non-communicable diseases such as many hundreds of millions of patients diagnosed with cardiovascular diseases and the type 2 diabetes mellitus, breast, lung, liver and prostate malignancies, neurological, sleep, mood and eye disorders, amongst others. Consequent socio-economic burden is tremendous. Unprecedented decrease in age of maladaptive individuals has been reported. The absolute majority of expanding non-communicable disorders carry a chronic character, over a couple of years progressing from reversible suboptimal health conditions to irreversible severe pathologies and cascading collateral complications. The time-frame between onset of SHS and clinical manifestation of associated disorders is the operational area for an application of reliable risk assessment tools and predictive diagnostics followed by the cost-effective targeted prevention and treatments tailored to the person. This article demonstrates advanced strategies in bio/medical sciences and healthcare focused on suboptimal health conditions in the frame-work of Predictive, Preventive and Personalised Medicine (3PM/PPPM). Potential benefits in healthcare systems and for society at large include but are not restricted to an improved life-quality of major populations and socio-economical groups, advanced professionalism of healthcare-givers and sustainable healthcare economy. Amongst others, following medical areas are proposed to strongly benefit from PPPM strategies applied to the identification and treatment of suboptimal health conditions:Stress overload associated pathologiesMale and female healthPlanned pregnanciesPeriodontal healthEye disordersInflammatory disorders, wound healing and pain management with associated complicationsMetabolic disorders and suboptimal body weightCardiovascular pathologiesCancersStroke, particularly of unknown aetiology and in young individualsSleep medicineSports medicineImproved individual outcomes under pandemic conditions such as COVID-19.
Collapse
Affiliation(s)
- Wei Wang
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Yuxiang Yan
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Zheng Guo
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Haifeng Hou
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Monique Garcia
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Xuerui Tan
- First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Enoch Odame Anto
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- Department of Medical Diagnostics, College of Health Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gehendra Mahara
- First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Yulu Zheng
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Bo Li
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- School of Nursing and Health, Henan University, Kaifeng, China
| | - Timothy Kang
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- Institute of Chinese Acuology, Perth, Australia
| | - Zhaohua Zhong
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- School of Basic Medicine, Harbin Medical University, Harbin, China
| | - Youxin Wang
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- Department of Medical Diagnostics, College of Health Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Xiuhua Guo
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Olga Golubnitschaja
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - On Behalf of Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- Department of Medical Diagnostics, College of Health Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Nursing and Health, Henan University, Kaifeng, China
- Institute of Chinese Acuology, Perth, Australia
- School of Basic Medicine, Harbin Medical University, Harbin, China
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
22
|
Russell A, Wang W. The Rapidly Expanding Nexus of Immunoglobulin G N-Glycomics, Suboptimal Health Status, and Precision Medicine. EXPERIENTIA. SUPPLEMENTUM 2021; 112:545-564. [PMID: 34687022 DOI: 10.1007/978-3-030-76912-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Immunoglobulin G is a prevalent glycoprotein, whose downstream immune responses are partially mediated by the N-glycans within the fragment crystallisable domain. Collectively termed the N-glycome, it is considered a complex intermediate phenotype: an amalgamation of genetic predisposition, environmental exposure, and health behaviours over the life-course. Thus, the immunoglobulin G N-glycome may provide an indication of health status on the spectrum from health to disease and infirmary. Although variability exists within and between populations, composition of the immunoglobulin G N-glycome remains stable over short periods of time. This underscores the potential of harnessing the immunoglobulin G N-glycome as an ideal tool for preclinical disease risk prediction, stratification, and prognosis through the development of precise dynamic biomarkers.
Collapse
Affiliation(s)
- Alyce Russell
- Centre for Precision Health, Edith Cowan University, Joondalup, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Joondalup, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
23
|
Zhou Q, Xie Y, Lam M, Lebrilla CB. N-Glycomic Analysis of the Cell Shows Specific Effects of Glycosyl Transferase Inhibitors. Cells 2021; 10:cells10092318. [PMID: 34571967 PMCID: PMC8465854 DOI: 10.3390/cells10092318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Glycomic profiling methods were used to determine the effect of metabolic inhibitors on glycan production. These inhibitors are commonly used to alter the cell surface glycosylation. However, structural analysis of the released glycans has been limited. In this research, the cell membranes were enriched and the glycans were released to obtain the N-glycans of the glycocalyx. Glycomic analysis using liquid chromatography–mass spectrometry (LC–MS) with a PGC chip column was used to profile the structures in the cell membrane. Glycans of untreated cells were compared to glycans of cells treated with inhibitors, including kifunensine, which inhibits the formation of complex- and hybrid-type structures, 2,4,7,8,9-Penta-O-acetyl-N-acetyl-3-fluoro-b-d-neuraminic acid methyl ester for sialylated glycans, 2-deoxy-2-fluorofucose, and 6-alkynyl fucose for fucosylated glycans. Kifunensine was the most effective, converting nearly 95% of glycans to high mannose types. The compound 6-alkynyl fucose inhibited some fucosylation but also incorporated into the glycan structure. Proteomic analysis of the enriched membrane for the four inhibitors showed only small changes in the proteome accompanied by large changes in the N-glycome for Caco-2. Future works may use these inhibitors to study the cellular behavior associated with the alteration of glycosylation in various biological systems, e.g., viral and bacterial infection, drug binding, and cell–cell interactions.
Collapse
Affiliation(s)
- Qingwen Zhou
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Matthew Lam
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
- Department of Biochemistry, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
24
|
Anderluh M, Berti F, Bzducha‐Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic‐Cincovic M, Marradi M, Ozil M, Polito L, Reina‐Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021; 288:4746-4772. [PMID: 33752265 PMCID: PMC8453523 DOI: 10.1111/febs.15830] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Collapse
Affiliation(s)
- Marko Anderluh
- Chair of Pharmaceutical ChemistryFaculty of PharmacyUniversity of LjubljanaSlovenia
| | | | - Anna Bzducha‐Wróbel
- Department of Biotechnology and Food MicrobiologyWarsaw University of Life Sciences‐SGGWPoland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Federica Compostella
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Katarzyna Durlik
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Xhenti Ferhati
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Wieslaw Kaca
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Milena Marinovic‐Cincovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Musa Ozil
- Department of ChemistryFaculty of Arts and SciencesRecep Tayyip Erdogan University RizeTurkey
| | | | | | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyInstituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortugal
| | - Robert Sackstein
- Department of Translational Medicinethe Translational Glycobiology InstituteHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte Sant’AngeloNapoliItaly
| | - Urban Švajger
- Blood Transfusion Center of SloveniaLjubljanaSlovenia
| | - Ondřej Vaněk
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology LaboratoryJosep Carreras Leukaemia Research InstituteBadalonaSpain
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| |
Collapse
|
25
|
Li X, Guo Y, Song Y, Sun R, Zhu M, Tan Z, Swaiba UE, Zhang L, Huang J. The glycosyltransferase ST3GAL2 modulates virus proliferation and the inflammation response in porcine reproductive and respiratory syndrome virus infection. Arch Virol 2021; 166:2723-2732. [PMID: 34319453 DOI: 10.1007/s00705-021-05180-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
β-galactoside α-2,3-sialyltransferase 2 (ST3GAL2) is a member of the sialyltransferase family that mediates terminal modification of glycoproteins and glycolipids. ST3GAL2 has been found to play a role in obesity, aging, and malignant diseases. In this study, we cloned porcine ST3GAL2 (pST3GAL2) from porcine alveolar macrophages (PAMs), and its role in porcine reproductive and respiratory syndrome virus (PRRSV) infection was investigated by transcriptome analysis. pST3GAL2 was found to be located in the Golgi apparatus, and it was expressed at high levels in PRRSV-infected PAMs. Overexpression of pST3GAL2 resulted in a slight increase in PRRSV proliferation, and the interaction between pST3GAL2 and GP2a of PRRSV was detected by coimmunoprecipitation and confocal microscopy. The expression of pro-inflammatory cytokines (IFN-β, IL-2, IL-6, IL-18, IL-1β and TNF-α) was significantly inhibited in pST3GAL2-overexpressing, PRRSV-infected cells and upregulated in PRRSV-infected pST3GAL2-knockout cells, while the pattern of expression of anti-inflammatory cytokines (IL-4 and IL-10) was diametrically opposite. Our results demonstrate that the regulation of pST3GAL2 plays an important role in PRRSV proliferation and functional alterations in virus-infected cells. These results contribute to our understanding of the role of β-galactoside α-2,3-sialyltransferase 2 in antiviral immunity.
Collapse
Affiliation(s)
- Xiaoyang Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yinna Song
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Min Zhu
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zheng Tan
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Umm E Swaiba
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
26
|
On the Use of Surface Plasmon Resonance Biosensing to Understand IgG-FcγR Interactions. Int J Mol Sci 2021; 22:ijms22126616. [PMID: 34205578 PMCID: PMC8235063 DOI: 10.3390/ijms22126616] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.
Collapse
|
27
|
Adua E, Memarian E, Afrifa-Yamoah E, Russell A, Trbojević-Akmačić I, Gudelj I, Jurić J, Roberts P, Lauc G, Wang W. N-glycosylation profiling of Type 2 diabetes mellitus from baseline to follow-up: an observational study in a Ghanaian population. Biomark Med 2021; 15:467-480. [PMID: 33856266 DOI: 10.2217/bmm-2020-0615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: The study sought to determine the patterns of N-glycan profiles among Type 2 diabetes mellitus (T2DM) patients over a 6-month period. Materials & methods: Biochemical and clinical data were obtained from 253 T2DM patients at baseline and follow-up. Ultra-performance liquid chromatography and statistical methods were applied for N-glycan profiling. Results: The coefficients of variation were 28% and 29% at baseline and follow-up, respectively, whereas the range of N-glycan variability was from 11% to 56%. Apart from GP1 (FA2) and GP29 (FA3G3S [3,3,3]3), the intra-individual variations of N-glycan peaks were not statistically significant. Conclusion: N-glycan profiles were stable over 6-month period in T2DM patients and could be used to monitor biochemical changes in relation with T2DM comorbidities.
Collapse
Affiliation(s)
- Eric Adua
- School of Medical & Health Sciences, Edith Cowan University, WA, 6027, Australia.,Department of Health Sciences, Edith Cowan College, Building 80 Joondalup Campus West, WA, Australia.,Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elham Memarian
- Genos Glycoscience Research Laboratory, Zagreb, 10000, Croatia
| | | | - Alyce Russell
- School of Medical & Health Sciences, Edith Cowan University, WA, 6027, Australia
| | | | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, 10000, Croatia
| | - Julija Jurić
- Genos Glycoscience Research Laboratory, Zagreb, 10000, Croatia
| | - Peter Roberts
- School of Medical & Health Sciences, Edith Cowan University, WA, 6027, Australia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, 10000, Croatia.,Faculty of Pharmacy & Biochemistry, University of Zagreb, Zagreb, 10000, Croatia
| | - Wei Wang
- School of Medical & Health Sciences, Edith Cowan University, WA, 6027, Australia.,School of Public Health, Taishan Medical University, Taian, Shandong, 271000, China.,Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
28
|
Monoclonal immunoglobulins promote bone loss in multiple myeloma. Blood 2021; 136:2656-2666. [PMID: 32575115 DOI: 10.1182/blood.2020006045] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/07/2020] [Indexed: 01/07/2023] Open
Abstract
Most patients with multiple myeloma develop a severe osteolytic bone disease. The myeloma cells secrete immunoglobulins, and the presence of monoclonal immunoglobulins in the patient's sera is an important diagnostic criterion. Here, we show that immunoglobulins isolated from myeloma patients with bone disease promote osteoclast differentiation when added to human preosteoclasts in vitro, whereas immunoglobulins from patients without bone disease do not. This effect was primarily mediated by immune complexes or aggregates. The function and aggregation behavior of immunoglobulins are partly determined by differential glycosylation of the immunoglobulin-Fc part. Glycosylation analyses revealed that patients with bone disease had significantly less galactose on immunoglobulin G (IgG) compared with patients without bone disease and also less sialic acid on IgG compared with healthy persons. Importantly, we also observed a significant reduction of IgG sialylation in serum of patients upon onset of bone disease. In the 5TGM1 mouse myeloma model, we found decreased numbers of lesions and decreased CTX-1 levels, a marker for osteoclast activity, in mice treated with a sialic acid precursor, N-acetylmannosamine (ManNAc). ManNAc treatment increased IgG-Fc sialylation in the mice. Our data support that deglycosylated immunoglobulins promote bone loss in multiple myeloma and that altering IgG glycosylation may be a therapeutic strategy to reduce bone loss.
Collapse
|
29
|
Li D, Lou Y, Zhang Y, Liu S, Li J, Tao J. Sialylated immunoglobulin G: a promising diagnostic and therapeutic strategy for autoimmune diseases. Am J Cancer Res 2021; 11:5430-5446. [PMID: 33859756 PMCID: PMC8039950 DOI: 10.7150/thno.53961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Human immunoglobulin G (IgG), especially autoantibodies, has major implications for the diagnosis and management of a wide range of autoimmune diseases. However, some healthy individuals also have autoantibodies, while a portion of patients with autoimmune diseases test negative for serologic autoantibodies. Recent advances in glycomics have shown that IgG Fc N-glycosylations are more reliable diagnostic and monitoring biomarkers than total IgG autoantibodies in a wide variety of autoimmune diseases. Furthermore, these N-glycosylations of IgG Fc, particularly sialylation, have been reported to exert significant anti-inflammatory effects by upregulating inhibitory FcγRIIb on effector macrophages and reducing the affinity of IgG for either complement protein or activating Fc gamma receptors. Therefore, sialylated IgG is a potential therapeutic strategy for attenuating pathogenic autoimmunity. IgG sialylation-based therapies for autoimmune diseases generated through genetic, metabolic or chemoenzymatic modifications have made some advances in both preclinical studies and clinical trials.
Collapse
|
30
|
Zhang X, Yuan H, Lyu J, Meng X, Tian Q, Li Y, Zhang J, Xu X, Su J, Hou H, Li D, Sun B, Wang W, Wang Y. Association of dementia with immunoglobulin G N-glycans in a Chinese Han Population. NPJ Aging Mech Dis 2021; 7:3. [PMID: 33542243 PMCID: PMC7862610 DOI: 10.1038/s41514-021-00055-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
Immunoglobulin G (IgG) functionality can drastically change from anti- to proinflammatory by alterations in the IgG N-glycan patterns. Our previous studies have demonstrated that IgG N-glycans associated with the risk factors of dementia, such as aging, dyslipidemia, type 2 diabetes mellitus, hypertension, and ischemic stroke. Therefore, the aim is to investigate whether the effects of IgG N-glycan profiles on dementia exists in a Chinese Han population. A case–control study, including 81 patients with dementia, 81 age- and gender-matched controls with normal cognitive functioning (NC) and 108 non-matched controls with mild cognitive impairment (MCI) was performed. Plasma IgG N-glycans were separated by ultra-performance liquid chromatography. Fourteen glycan peaks reflecting decreased of sialylation and core fucosylation, and increased bisecting N-acetylglucosamine (GlcNAc) N-glycan structures were of statistically significant differences between dementia and NC groups after controlling for confounders (p < 0.05; q < 0.05). Similarly, the differences for these 14 initial glycans were statistically significant between AD and NC groups after adjusting for the effects of confounders (p < 0.05; q < 0.05). The area under the receiver operating curve (AUC) value of the model consisting of GP8, GP9, and GP14 was determined to distinguish dementia from NC group as 0.876 [95% confidence interval (CI): 0.815–0.923] and distinguish AD from NC group as 0.887 (95% CI: 0.819–0.936). Patients with dementia were of an elevated proinflammatory activity via the significant changes of IgG glycome. Therefore, IgG N-glycans might contribute to be potential novel biomarkers for the neurodegenerative process risk assessment of dementia.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China.,Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100095, China
| | - Hui Yuan
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Xiaoni Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Qiuyue Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Yuejin Li
- School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Jie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xizhu Xu
- School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Jing Su
- Department of Geriatrics, Tai'an City Central Hospital, Tai'an, 271000, China
| | - Haifeng Hou
- School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Dong Li
- School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Baoliang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Wei Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China. .,School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China. .,School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6027, Australia.
| | - Youxin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China. .,School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6027, Australia.
| |
Collapse
|
31
|
Zlatina K, Galuska SP. The N-glycans of lactoferrin: more than just a sweet decoration. Biochem Cell Biol 2021; 99:117-127. [DOI: 10.1139/bcb-2020-0106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nearly all extracellular proteins undergo post-translational modification with sugar chains during their transit through the endoplasmic reticulum and the Golgi apparatus. These “sweet” modifications not only influence the activity of its carrier protein, but they themselves often have bioactivity, independent of the carrier function. Lactoferrin belongs to the group of glycoproteins and is modified with several different N-glycans. This minireview summarizes several studies dealing with the diverse glycosylation patterns of lactoferrin from different origins, and the potential impact of these post-translational modifications on the functionality of lactoferrin. A special emphasis is placed on the differences between human and bovine lactoferrin, because the latter form is often selected for the development of novel therapeutic approaches in humans. For this reason, the potential impact of the bovine-specific glycosylation patterns on the observed heterogeneous effects of lactoferrin in humans is discussed within this minireview.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Sebastian P. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
32
|
Wang J, Huang C, Zhou J, Zhao K, Li Y. Causal link between immunoglobulin G glycosylation and cancer: A potential glycobiomarker for early tumor detection. Cell Immunol 2021; 361:104282. [PMID: 33453507 DOI: 10.1016/j.cellimm.2021.104282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022]
Abstract
Changes in immunoglobulin G (IgG) glycan structures are currently believed to closely related to the emergence of cancer. In this review, we summarize the current body of evidence suggesting that differences in serum IgG glycosylation patterns correspond to changes in multiple types of cancer. Modifications include IgG terminal N-link galactosylation, IgG core fucosylation, IgG terminal sialylation, and IgG terminal bisecting N-acetylglucosamine. IgG N-glycomic alterations represent promising novel biomarkers for non-invasive-cancer diagnosis, prognosis, and progression monitoring; they are characterized by high sensitivity and specificity, compensating for previously identified glycobiomarkers.
Collapse
Affiliation(s)
- Junyan Wang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuncui Huang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyu Zhou
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keli Zhao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Wang X, Zhong Z, Balmer L, Wang W. Glycosylation Profiling as a Biomarker of Suboptimal Health Status for Chronic Disease Stratification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:321-339. [PMID: 34495543 DOI: 10.1007/978-3-030-70115-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
WHO defines health as "a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity." We coined and defined suboptimal health status (SHS) as a subclinical, reversible stage of the pre-chronic disease. SHS is a physical state between health and disease, characterized by health complaints, general weakness, chronic fatigue, and low energy levels. We have developed an instrument to measure SHS, Suboptimal Health Status Questionnaire-25 (SHSQ-25), a self-reported survey assessing five health components that has been validated in various ethnical populations. Our studies suggest that SHS is associated with the major components of cardiovascular health and the early onset of metabolic diseases. Besides subjective measure of health (SHS), glycans are conceived as objective biomarkers of SHS. Glycans are complex and branching carbohydrate moieties attached to proteins, participating in inflammatory regulation and chronic disease pathogenesis. We have been investigating the role of glycans and SHS in multiple cardiometabolic diseases in different ethnical populations (African, Chinese, and Caucasian). Here we present case studies to prove that a combination of subjective health measure (SHS) with objective health measure (glycans) represents a window of opportunity to halt or reverse the progression of chronic diseases.
Collapse
Affiliation(s)
- Xueqing Wang
- School of Health and Medical Sciences, Edith Cowan University, Perth, Australia
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lois Balmer
- School of Health and Medical Sciences, Edith Cowan University, Perth, Australia
| | - Wei Wang
- School of Health and Medical Sciences, Edith Cowan University, Perth, Australia.
- Centre for Precision Health, ECU Strategic Research Centre, Edith Cowan University, Perth, Australia.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.
- First Affiliated Hospital, Shantou University Medical College, Shantou, China.
| |
Collapse
|
34
|
Wu Z, Pan H, Liu D, Zhou D, Tao L, Zhang J, Wang X, Wang Y, Wang W, Guo X. Association of IgG Glycosylation and Esophageal Precancerosis Beyond Inflammation. Cancer Prev Res (Phila) 2020; 14:347-354. [PMID: 33303693 DOI: 10.1158/1940-6207.capr-20-0489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the association of IgG glycosylation and esophageal precancerosis for squamous cell carcinoma and determine its role in inflammation. Primary glycans selected by the least absolute shrinkage and selection operator (LASSO) algorithm were validated using univariate and multivariate logistics models plus restricted cubic spline functions. In total, 24 direct glycans and 27 derived traits were detected, among which four glycans and three derived traits were primarily selected. Then, GP5 (adjusted OR: 0.805), GP17 (adjusted OR: 1.305), G12n (adjusted OR: 1.271), Gal_1 (adjusted OR: 0.776) and Fuc (adjusted OR: 0.737) were validated and significantly associated with esophageal precancerosis. In addition, there was a consistent positive association in GP17 and G12n and a negative association in GP5, Gal_1, and Fuc by restricted cubic spline function. Compared with esophageal inflammation, GP17, G12n, and Fuc were still independently associated with precancerosis. In brief, the IgG glycosylation profile was independently associated with esophageal precancerosis beyond inflammation, which could be an early biomarker for esophageal cancer.Prevention Relevance: IgG glycosylation profile is associated with esophageal precancerosis and specific IgG glycans involves in the early stage of esophageal cancer, which is independent of inflammation.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Huiying Pan
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Di Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Di Zhou
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Lixin Tao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Jie Zhang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Xiaonan Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Youxin Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Wei Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China.,Department of Public Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Xiuhua Guo
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China.
| |
Collapse
|
35
|
Klobučar M, Pavlić SD, Car I, Severinski NS, Milaković TT, Badovinac AR, Pavelić SK. Mass spectrometry-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from follicular fluid. Biomol Concepts 2020; 11:153-171. [PMID: 33099516 DOI: 10.1515/bmc-2020-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022] Open
Abstract
Couples with infertility issues have been assisted by in vitro fertilization reproduction technologies with high success rates of 50-80%. However, complications associated with ovarian stimulation remain, such as ovarian hyperstimulation. Oocyte quality is a significant factor impacting the outcome of in vitro fertilization procedures, but other processes are also critical for fertilization success. Increasing evidence points to aberrant inflammation as one of these critical processes reflected in molecular changes, including glycosylation of proteins. Here we report results from a MALDI-TOF-MS-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from the follicular fluid obtained from patients undergoing fertilization through either (1) assisted reproduction by modified natural cycle or (2) controlled ovarian stimulation (GnRH antagonist, GnRH Ant) protocols. Significant inflammatory-related differences between analyzed N-glycomes were observed from samples and correlated with the ovarian stimulation protocol used in patients.
Collapse
Affiliation(s)
- Marko Klobučar
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sanja Dević Pavlić
- University of Rijeka, Department of Medical Biology and Genetics, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Iris Car
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Neda Smiljan Severinski
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Cambierieva 17/5, 51000 Rijeka, Croatia
| | - Tamara Tramišak Milaković
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Cambierieva 17/5, 51000 Rijeka, Croatia
| | - Anđelka Radojčić Badovinac
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
- University of Rijeka, Department of Medical Biology and Genetics, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | | |
Collapse
|
36
|
Mastrocola R, Collotta D, Gaudioso G, Le Berre M, Cento AS, Ferreira Alves G, Chiazza F, Verta R, Bertocchi I, Manig F, Hellwig M, Fava F, Cifani C, Aragno M, Henle T, Joshi L, Tuohy K, Collino M. Effects of Exogenous Dietary Advanced Glycation End Products on the Cross-Talk Mechanisms Linking Microbiota to Metabolic Inflammation. Nutrients 2020; 12:nu12092497. [PMID: 32824970 PMCID: PMC7551182 DOI: 10.3390/nu12092497] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Heat-processed diets contain high amounts of advanced glycation end products (AGEs). Here we explore the impact of an AGE-enriched diet on markers of metabolic and inflammatory disorders as well as on gut microbiota composition and plasma proteins glycosylation pattern. C57BL/6 mice were allocated into control diet (CD, n = 15) and AGE-enriched diet (AGE-D, n = 15) for 22 weeks. AGE-D was prepared replacing casein by methylglyoxal hydroimidazolone-modified casein. AGE-D evoked increased insulin and a significant reduction of GIP/GLP-1 incretins and ghrelin plasma levels, altered glucose tolerance, and impaired insulin signaling transduction in the skeletal muscle. Moreover, AGE-D modified the systemic glycosylation profile, as analyzed by lectin microarray, and increased Nε-carboxymethyllysine immunoreactivity and AGEs receptor levels in ileum and submandibular glands. These effects were associated to increased systemic levels of cytokines and impaired gut microbial composition and homeostasis. Significant correlations were recorded between changes in bacterial population and in incretins and inflammatory markers levels. Overall, our data indicates that chronic exposure to dietary AGEs lead to a significant unbalance in incretins axis, markers of metabolic inflammation, and a reshape of both the intestinal microbiota and plasma protein glycosylation profile, suggesting intriguing pathological mechanisms underlying AGEs-induced metabolic derangements.
Collapse
Affiliation(s)
- Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (A.S.C.); (M.A.)
- Correspondence: (R.M.); (M.C.); Tel.: +39-011-6707758 (R.M.); +39-011-6706861 (M.C.)
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (D.C.); (G.F.A.); (F.C.); (R.V.)
| | - Giulia Gaudioso
- Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.G.); (F.F.); (K.T.)
| | - Marie Le Berre
- Biomedical Sciences, National University of Ireland, H91 TK33 Galway, Ireland; (M.L.B.); (L.J.)
| | - Alessia Sofia Cento
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (A.S.C.); (M.A.)
| | - Gustavo Ferreira Alves
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (D.C.); (G.F.A.); (F.C.); (R.V.)
| | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (D.C.); (G.F.A.); (F.C.); (R.V.)
| | - Roberta Verta
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (D.C.); (G.F.A.); (F.C.); (R.V.)
| | - Ilaria Bertocchi
- Department of Neuroscience, University of Turin, 10124 Turin, Italy;
| | - Friederike Manig
- Chair of Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (F.M.); (M.H.); (T.H.)
| | - Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (F.M.); (M.H.); (T.H.)
| | - Francesca Fava
- Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.G.); (F.F.); (K.T.)
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (A.S.C.); (M.A.)
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (F.M.); (M.H.); (T.H.)
| | - Lokesh Joshi
- Biomedical Sciences, National University of Ireland, H91 TK33 Galway, Ireland; (M.L.B.); (L.J.)
| | - Kieran Tuohy
- Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.G.); (F.F.); (K.T.)
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (D.C.); (G.F.A.); (F.C.); (R.V.)
- Correspondence: (R.M.); (M.C.); Tel.: +39-011-6707758 (R.M.); +39-011-6706861 (M.C.)
| |
Collapse
|
37
|
Markina YV, Gerasimova EV, Markin AM, Glanz VY, Wu WK, Sobenin IA, Orekhov AN. Sialylated Immunoglobulins for the Treatment of Immuno-Inflammatory Diseases. Int J Mol Sci 2020; 21:ijms21155472. [PMID: 32751832 PMCID: PMC7432344 DOI: 10.3390/ijms21155472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Immunoglobulins are the potent effector proteins of the humoral immune response. In the course of evolution, immunoglobulins have formed extremely diverse types of molecular structures with antigen-recognizing, antigen-binding, and effector functions embedded in a single molecule. Polysaccharide moiety of immunoglobulins plays the essential role in immunoglobulin functioning. There is growing evidence that the carbohydrate composition of immunoglobulin-linked glycans, and especially their terminal sialic acid residues, provide a key effect on the effector functions of immunoglobulins. Possibly, sialylation of Fc glycan is a common mechanism of IgG anti-inflammatory action in vivo. Thus, the post-translational modification (glycosylation) of immunoglobulins opens up significant possibilities in the diagnosis of both immunological and inflammatory disorders and in their therapies. This review is focused on the analysis of glycosylation of immunoglobulins, which can be a promising addition to improve existing strategies for the diagnosis and treatment of various immuno-inflammatory diseases.
Collapse
Affiliation(s)
- Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
- Correspondence: ; Tel.: +7-905-336-67-76
| | - Elena V. Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, 34A Kashirskoe Shosse, 115522 Moscow, Russia;
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
| | - Victor Y. Glanz
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan;
| | - Igor A. Sobenin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
| |
Collapse
|
38
|
Sim KY, Im KC, Park SG. The Functional Roles and Applications of Immunoglobulins in Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5295. [PMID: 32722559 PMCID: PMC7432158 DOI: 10.3390/ijms21155295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Natural autoantibodies, immunoglobulins (Igs) that target self-proteins, are common in the plasma of healthy individuals; some of the autoantibodies play pathogenic roles in systemic or tissue-specific autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Recently, the field of autoantibody-associated diseases has expanded to encompass neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), with related studies examining the functions of Igs in the central nervous system (CNS). Recent evidence suggests that Igs have various effects in the CNS; these effects are associated with the prevention of neurodegeneration, as well as induction. Here, we summarize the functional roles of Igs with respect to neurodegenerative disease (AD and PD), focusing on the target antigens and effector cell types. In addition, we review the current knowledge about the roles of these antibodies as diagnostic markers and immunotherapies.
Collapse
Affiliation(s)
| | | | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (K.-Y.S.); (K.C.I.)
| |
Collapse
|
39
|
Komaromy A, Reider B, Jarvas G, Guttman A. Glycoprotein biomarkers and analysis in chronic obstructive pulmonary disease and lung cancer with special focus on serum immunoglobulin G. Clin Chim Acta 2020; 506:204-213. [PMID: 32243984 DOI: 10.1016/j.cca.2020.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are two major diseases of the lung with high rate of mortality, mostly among tobacco smokers. The glycosylation patterns of various plasma proteins show significant changes in COPD and subsequent hypoxia, inflammation and lung cancer, providing promising opportunities for screening aberrant glycan structures contribute to early detection of both diseases. Glycoproteins associated with COPD and lung cancer consist of highly sialylated N-glycans, which play an important role in inflammation whereby hypoxia leads to accumulation of sialyl Lewis A and X glycans. Although COPD is an inflammatory disease, it is an independent risk factor for lung cancer. Marked decrease in galactosylation of plasma immunoglobulin G (IgG) together with increased presence of sialic acids and more complex highly branched N-glycan structures are characteristic for COPD and lung cancer. Numerous glycan biomarkers have been discovered, and analysis of glycovariants associated with COPD and lung cancer has been carried out. In this paper we review fundamental glycosylation changes in COPD and lung cancer glycoproteins, focusing on IgG to provide an opportunity to distinguish between the two diseases at the glycoprotein level with diagnostic value.
Collapse
Affiliation(s)
- Andras Komaromy
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary
| | - Balazs Reider
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary
| | - Gabor Jarvas
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei Krt, Debrecen 4032, Hungary.
| | - Andras Guttman
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei Krt, Debrecen 4032, Hungary
| |
Collapse
|
40
|
Profiling of isomer-specific IgG N-glycosylation in cohort of Chinese colorectal cancer patients. Biochim Biophys Acta Gen Subj 2020; 1864:129510. [DOI: 10.1016/j.bbagen.2019.129510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/19/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022]
|
41
|
Vletter EM, Koning MT, Scherer HU, Veelken H, Toes REM. A Comparison of Immunoglobulin Variable Region N-Linked Glycosylation in Healthy Donors, Autoimmune Disease and Lymphoma. Front Immunol 2020; 11:241. [PMID: 32133009 PMCID: PMC7040075 DOI: 10.3389/fimmu.2020.00241] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
N-linked glycans play an important role in immunity. Although the role of N-linked glycans in the Fragment crystallizable (Fc) region of immunoglobulins has been thoroughly described, the function of N-linked glycans present in Ig-variable domains is only just being appreciated. Most of the N-linked glycans harbored by immunoglobulin variable domain are of the complex biantennary type and are found as a result of the presence of N-linked glycosylation that most often have been introduced by somatic hypermutation. Furthermore, these glycans are ubiquitously present on autoantibodies observed in some autoimmune diseases as well as certain B-cell lymphomas. For example, variable domain glycans are abundantly found by anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) as well as by the B-cell receptors of follicular lymphoma (FL). In FL, variable domain glycans are postulated to convey a selective advantage through interaction with lectins and/or microbiota, whereas the contribution of variable domain glycans on autoantibodies is not known. To aid the understanding how these seemingly comparable phenomena contribute to a variety of deranged B-responses in such different diseases this study summarizes the characteristics of ACPA and other auto-antibodies with FL and healthy donor immunoglobulins, to identify the commonalities and differences between variable domain glycans in autoimmune and malignant settings. Our finding indicate intriguing differences in variable domain glycan distribution, frequency and glycan composition in different conditions. These findings underline that variable domain glycosylation is a heterogeneous process that may lead to a number of pathogenic outcomes. Based on the current body of knowledge, we postulate three disease groups with distinct variable domain glycosylation patterns, which might correspond with distinct underlying pathogenic processes.
Collapse
Affiliation(s)
- Esther M Vletter
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
42
|
Ząbczyńska M, Polak K, Kozłowska K, Sokołowski G, Pocheć E. The Contribution of IgG Glycosylation to Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) and Complement-Dependent Cytotoxicity (CDC) in Hashimoto's Thyroiditis: An in Vitro Model of Thyroid Autoimmunity. Biomolecules 2020; 10:biom10020171. [PMID: 31979029 PMCID: PMC7072644 DOI: 10.3390/biom10020171] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) are involved in destruction of thyroid tissue in Hashimoto’s thyroiditis (HT). N-glycosylation of the Fc fragment affects the effector functions of IgG by enhancing or suppressing the cytotoxicity effect. The aim of the present study was to assess the impact of HT-specific IgG glycosylation in ADCC and CDC, using in vitro models. The normal thyroid Nthy-ori 3-1 cell line and thyroid carcinoma FTC-133 cells were used as the target cells. Peripheral blood mononuclear cells (PBMCs) from healthy donors and the HL-60 human promyelotic leukemia cell line served as the effector cells. IgG was isolated from sera of HT and healthy donors and then treated with α2-3,6,8-neuraminidase to cut off sialic acids (SA) from N-glycans. We observed more intensive cytotoxicity in the presence of IgG from HT patients than in the presence of IgG from healthy donors. Removal of SA from IgG N-glycans increased ADCC intensity and reduced CDC. We conclude that the enhanced thyrocyte lysis resulted from the higher anti-TPO content in the whole IgG pool of HT donors and from altered IgG glycosylation in HT autoimmunity.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
| | - Katarzyna Polak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
| | - Kamila Kozłowska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
| | - Grzegorz Sokołowski
- Department of Endocrinology, University Hospital in Kraków, Kopernika 17, 31-501 Kraków, Poland;
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
- Correspondence: ; Tel.: +48-12-664-6467
| |
Collapse
|
43
|
Zhu H, Aloor A, Ma C, Kondengaden SM, Wang PG. Mass Spectrometric Analysis of Protein Glycosylation. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1346.ch010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- He Zhu
- These authors contributed equally
| | | | | | | | - Peng George Wang
- Current Address: Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
44
|
Glycomic Signatures of Plasma IgG Improve Preoperative Prediction of the Invasiveness of Small Lung Nodules. Molecules 2019; 25:molecules25010028. [PMID: 31861777 PMCID: PMC6982969 DOI: 10.3390/molecules25010028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023] Open
Abstract
Preoperative assessment of tumor invasiveness is essential to avoid overtreatment for patients with small-sized ground-glass nodules (GGNs) of 10 mm or less in diameter. However, it is difficult to determine the pathological state by computed tomography (CT) examination alone. Aberrant glycans has emerged as a tool to identify novel potential disease biomarkers. In this study, we used a lectin microarray-based strategy to investigate whether glycosylation changes in plasma immunoglobulin G (IgG) provide additional information about the invasiveness of small GGNs before surgery. Two independent cohorts (discovery set, n = 92; test set, n = 210) of GGN patients were used. Five of 45 lectins (Sambucus nigra agglutinin, SNA; Datura stramonium agglutinin, DSA; Galanthus nivalis agglutinin, GNA; Euonymus europaeus lectin, EEL; and Vicia villosa agglutinin, VVA) were identified as independent factors associated with pathological invasiveness of small GGNs (p < 0.01). Receiver-operating characteristic (ROC) curve analysis indicated the combination of these five lectins could significantly improve the accuracy of CT in diagnosing invasive GGNs, with an area under the curve (AUC) of 0.792 (p < 0.001), a sensitivity of 74.6%, and specificity of 74.4%, which was superior to current clinical biomarkers. These results suggest that the multilectin assay based on plasma IgG glycosylation may be a useful in vitro complementary test to enhance preoperative determination of the invasiveness of GGNs and guide surgeons to select proper clinical management to avoid overtreatment.
Collapse
|
45
|
Liu D, Li Q, Zhang X, Wang H, Cao W, Li D, Xing W, Song M, Wang W, Meng Q, Wang Y. Systematic Review: Immunoglobulin G N-Glycans as Next-Generation Diagnostic Biomarkers for Common Chronic Diseases. ACTA ACUST UNITED AC 2019; 23:607-614. [DOI: 10.1089/omi.2019.0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Qihuan Li
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoyu Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Hao Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Weijie Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Dong Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Manshu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qun Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Li X, Wang H, Russell A, Cao W, Wang X, Ge S, Zheng Y, Guo Z, Hou H, Song M, Yu X, Wang Y, Hunter M, Roberts P, Lauc G, Wang W. Type 2 Diabetes Mellitus is Associated with the Immunoglobulin G N-Glycome through Putative Proinflammatory Mechanisms in an Australian Population. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:631-639. [PMID: 31526239 DOI: 10.1089/omi.2019.0075] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a common complex trait arising from interactions among multiple environmental, genomic, and postgenomic factors. We report here the first attempt to investigate the association between immunoglobulin G (IgG) N-glycan patterns, T2DM, and their clinical risk factors in an Australian population. N-glycosylation of proteins is one of the most frequently observed co- and post-translational modifications, reflecting, importantly, the real-time status of the interplay between the genomic and postgenomic factors. In a community-based case-control study, 849 participants (217 cases and 632 controls) were recruited from an urban community in Busselton, Western Australia. We applied the ultraperformance liquid chromatography method to analyze the composition of IgG N-glycans. We then conducted Spearman's correlation analyses to explore the association between glycan biomarker candidates and clinical risk factors. We performed area under the curve (AUC) analysis of the receiver operating characteristic curves by fivefold cross-validation for clinical risk factors, IgG glycans, and their combination. Two directly measured and four derived glycan peaks were significantly associated with T2DM, after correction for extensive clinical confounders and false discovery rate, thus suggesting that IgG N-glycan traits are highly correlated with T2DM clinical risk factors. Moreover, adding the IgG glycan profiles to fasting blood glucose in the logistic regression model increased the AUC from 0.799 to 0.859. The AUC for IgG glycans alone was 0.623 with a 95% confidence interval 0.580-0.666. In addition, our study provided new evidence of diversity in T2DM complex trait by IgG N-glycan stratification. Six IgG glycan traits were firmly associated with T2DM, which reflects an increased proinflammatory and biological aging status. In summary, our study reports novel associations between the IgG N-glycome and T2DM in an Australian population and the putative role of proinflammatory mechanisms. Furthermore, IgG N-glycomic alterations offer future prospects as inflammatory biomarker candidates for T2DM diagnosis, and monitoring of T2DM progression to cardiovascular disease or renal failure.
Collapse
Affiliation(s)
- Xingang Li
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Hao Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Alyce Russell
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- School of Population and Global Health, University of Western Australia, Crawley, Australia
| | - Weijie Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xueqing Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Siqi Ge
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yulu Zheng
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Zheng Guo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xinwei Yu
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Tiantan Hospital, Capital Medical University, Beijing, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Michael Hunter
- School of Population and Global Health, University of Western Australia, Crawley, Australia
- Busselton Health Study Centre, Busselton Population Medical Research Institute, Busselton, Australia
| | - Peter Roberts
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
47
|
Zaytseva OO, Freidin MB, Keser T, Štambuk J, Ugrina I, Šimurina M, Vilaj M, Štambuk T, Trbojević-Akmačić I, Pučić-Baković M, Lauc G, Williams FMK, Novokmet M. Heritability of Human Plasma N-Glycome. J Proteome Res 2019; 19:85-91. [DOI: 10.1021/acs.jproteome.9b00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Olga O. Zaytseva
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, Zagreb 10000, Croatia
| | - Maxim B. Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, Lambeth Palace Road, London SE1 7EH, U.K
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | - Jerko Štambuk
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, Zagreb 10000, Croatia
| | - Ivo Ugrina
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, Zagreb 10000, Croatia
- Faculty of Science, University of Split, Rud̵era Bošković 33, Split 21000, Croatia
| | - Mirna Šimurina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | - Marija Vilaj
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, Zagreb 10000, Croatia
| | - Tamara Štambuk
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | | | - Maja Pučić-Baković
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, Zagreb 10000, Croatia
| | - Gordan Lauc
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, Lambeth Palace Road, London SE1 7EH, U.K
| | - Mislav Novokmet
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, Zagreb 10000, Croatia
| |
Collapse
|
48
|
Russell AC, Kepka A, Trbojević-Akmačić I, Ugrina I, Song M, Hui J, Hunter M, Laws SM, Lauc G, Wang W. Why Not Use the Immunoglobulin G N-Glycans as Predictor Variables in Disease Biomarker-Phenotype Association Studies? A Multivariate Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:668-670. [PMID: 31651214 DOI: 10.1089/omi.2019.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alyce C Russell
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,School of Population and Global Health, University of Western Australia, Nedlands, Australia
| | - Agnieszka Kepka
- Department of Immunology, Faculty of Biology, Institute of Zoology, University of Warsaw, Warsaw, Poland
| | | | - Ivo Ugrina
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Science, University of Split, Split, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Key Municipal Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Jennie Hui
- School of Population and Global Health, University of Western Australia, Nedlands, Australia.,Busselton Population Medical Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Michael Hunter
- School of Population and Global Health, University of Western Australia, Nedlands, Australia.,Busselton Health Study Centre, Busselton Population Medical Research Institute, Busselton, Australia
| | - Simon M Laws
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Key Municipal Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.,School of Public Health, Taishan Medical University, Taian, China
| |
Collapse
|
49
|
Adua E, Memarian E, Russell A, Trbojević-Akmačić I, Gudelj I, Jurić J, Roberts P, Lauc G, Wang W. Utilization of N-glycosylation profiles as risk stratification biomarkers for suboptimal health status and metabolic syndrome in a Ghanaian population. Biomark Med 2019; 13:1273-1287. [DOI: 10.2217/bmm-2019-0005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: The study sought to apply N-glycosylation profiles to understand the interplay between suboptimal health status (SHS) and metabolic syndrome (MetS). Materials & methods: In this study, 262 Ghanaians were recruited from May to July 2016. After completing a health survey, plasma samples were collected for clinical assessments while ultra performance liquid chromatography was used to measure plasma N-glycans. Results: Four glycan peaks were found to predict case status (MetS and SHS) using a step-wise Akaike’s information criterion logistic regression model selection. This model yielded an area under the curve of MetS: 83.1% (95% CI: 78.0–88.1%) and SHS: 67.1% (60.6–73.7%). Conclusion: Our results show that SHS is a significant, albeit modest, risk factor for MetS and N-glycan complexity was associated with MetS.
Collapse
Affiliation(s)
- Eric Adua
- School of Medical & Health Sciences, Edith Cowan University, WA 6027, Australia
| | - Elham Memarian
- Genos Glycoscience Research Laboratory, Zagreb 10000, Croatia
| | - Alyce Russell
- School of Medical & Health Sciences, Edith Cowan University, WA 6027, Australia
| | | | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb 10000, Croatia
| | - Julija Jurić
- Genos Glycoscience Research Laboratory, Zagreb 10000, Croatia
| | - Peter Roberts
- School of Medical & Health Sciences, Edith Cowan University, WA 6027, Australia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb 10000, Croatia
- University of Zagreb, Faculty of Pharmacy & Biochemistry, Zagreb 10000, Croatia
| | - Wei Wang
- School of Medical & Health Sciences, Edith Cowan University, WA 6027, Australia
- School of Public Health, Taishan Medical University, Shandong, Taian 271000, PR China
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
50
|
Hanić M, Trbojević-Akmačić I, Lauc G. Inflammatory bowel disease - glycomics perspective. Biochim Biophys Acta Gen Subj 2019; 1863:1595-1601. [PMID: 31276732 DOI: 10.1016/j.bbagen.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) pathogenesis is still not well understood. It is considered to result from genetic susceptibility, environment, microbiota composition and aberrant immune response. Crohn's disease (CD) and ulcerative colitis (UC), forms of IBD, are sometimes indistinguishable by typical laboratory and clinical characteristics making timely diagnosis and subsequent therapy hit-and-miss. Glycosylation has shown a promising biomarker potential for early IBD diagnosis and effective response to treatment prediction. SCOPE OF REVIEW This mini-review briefly covers present knowledge of IBD pathophysiology, with a focus on recent research on the role of glycosylation in IBD pathogenesis and disease progression. MAJOR CONCLUSIONS Aberrant glycosylation significantly changes functionality of key proteins in intestinal niche and is involved in IBD etiology. GENERAL SIGNIFICANCE Elucidating mechanisms of IBD development is one of critical goals in managing this disease. Glycans are important for fine-tuning of intestinal processes that ensure homeostatic conditions which, if disrupted, lead to IBD.
Collapse
Affiliation(s)
- Maja Hanić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| |
Collapse
|