1
|
Martinez P, Grant WB. Vitamin D: What role in obesity-related cancer? Semin Cancer Biol 2025; 112:135-149. [PMID: 40194750 DOI: 10.1016/j.semcancer.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
Obesity is an important risk factor for incidence and death for many types of cancer. Vitamin D reduces risk of incidence and death for many types of cancer. This review outlines the mechanisms by which obesity increases risk of cancer, how vitamin D reduces risk of cancer, and the extent to which vitamin D counters the effects of obesity in cancer. Vitamin D is a partial ally against some of obesity's pro-carcinogenic effects, notably by reducing inflammation and regulating sex hormone receptors, leptin resistance, cellular energy metabolism, the microbiome, and hypoxia. However, it can act stronger in against the renin-angiotensin system, insulin resistance, and oxidative stress in cancer. Additionally, excess fat tissue sequesters vitamin D and, along with its dilution in increased body volume, further reduces its bioavailability and serum concentration, limiting its protective effects against cancer. In conclusion, while vitamin D cannot reverse obesity, it plays a significant role in mitigating its pro-carcinogenic effects by targeting several mechanisms.
Collapse
Affiliation(s)
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, 1745 Pacific Ave., Ste. 504, San Francisco, CA 94109, USA.
| |
Collapse
|
2
|
Christimann G, Rocha G, Sattler JAG. Bioactive compounds and dietary patterns in Alzheimer's disease. J Alzheimers Dis 2025; 104:597-610. [PMID: 40012188 DOI: 10.1177/13872877251319048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects the elderly, leading to severe cognitive decline and loss of autonomy. The accumulation of amyloid-β peptides and tau proteins in the brain is considered the central pathogenic mechanism, which results in neuronal dysfunction and cell death. Various metabolic disruptions, such as chronic oxidative stress and inflammatory processes, further exacerbate the progression of AD. This review, based on literature from PubMed, SciELO, MDPI, and ScienceDirect, evaluates the role of bioactive compounds and dietary patterns, specifically the Mediterranean and MIND diets, in mitigating the progression of AD. These diets, rich in vitamins, flavonoids, carotenoids, and omega-3 fatty acids, have shown potential in reducing oxidative damage and inflammation in the brain, offering neuroprotective benefits. The findings suggest that bioactive compounds such as vitamin E isomers and polyphenols may delay cognitive decline, presenting a promising avenue for future dietary interventions aimed at optimizing the consumption of these compounds to prevent or slow the onset of AD. Further research is needed to determine the optimal doses and combinations of these bioactive compounds to maximize their protective effects.
Collapse
Affiliation(s)
- Guilherme Christimann
- Faculdade de Nutrição, Escola de Ciências da Saúde, Centro Universitário Ritter dos Reis, Porto Alegre, RS, Brazil
| | - Gabriela Rocha
- Faculdade de Medicina, Programa de Pós-Graduação em Psiquiatria e Ciências dos Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
3
|
Khatoon R. Unlocking the Potential of Vitamin D: A Comprehensive Exploration of Its Role in Neurological Health and Diseases. BIOLOGY 2025; 14:280. [PMID: 40136536 PMCID: PMC11940008 DOI: 10.3390/biology14030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Vitamin D (VD), an indispensable micronutrient renowned for its pivotal role in bone health, is increasingly recognized as a frontline therapy for bone-related disorders owing to its involvement in maintaining calcium/phosphorus levels. Beyond these benefits, VD exhibits a modulatory impact on redox imbalance, inflammation, and anti-apoptotic pathways implicated in brain-related disorders. Recent findings reveal a notable decrease in VD and its receptor expression in the cerebrospinal fluid of individuals with brain diseases, indicating a positive association between VD levels and normal brain function. Moreover, emerging reports underscore VD's potential in mitigating the pathophysiology of neurodegenerative diseases, including memory and motor impairments, mitochondrial dysfunction, and neuronal loss. Extensive in vitro and in vivo studies elucidate VD's multifaceted neuroprotective mechanisms, effectively mitigating neuronal damage and ATP deprivation, thus reducing mortality and morbidity. This review comprehensively examines VD's diverse attributes, encompassing antioxidative, anti-inflammatory, anti-apoptotic, and neurogenic effects. It provides contemporary insights into VD's efficacious actions at appropriate doses and exposures across diverse neurological experimental models. Furthermore, the clinical relevance of VD in treating patients with neurological diseases is explored. Overall, this review contributes to the exploration of potential neuroprotective agents and holds promise for improving human health outcomes in the future.
Collapse
Affiliation(s)
- Rehana Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
4
|
Deng Y, Luo Y, Shen Y, Zhao Y, Cao W, Cao J, Xu L, Kong L. Associations between hypovitaminosis D, adiposity indices and insulin resistance in adolescents: mediation analyses from NHANES 2011-2018. Nutr Diabetes 2025; 15:2. [PMID: 39905006 PMCID: PMC11794543 DOI: 10.1038/s41387-025-00358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND As all kown, both hypovitaminosis D and insulin resistance (IR) have been linked to adiposity. However, the extent of adiposity's mediating influence on the hypovitaminosis D-IR relationship among adolescents remains to be elucidated. Additionally, the intricate effects of obesity and blood lipid profiles on IR are not yet fully understood. METHODS We conducted a comprehensive analysis of NHANES data from 2011 to 2018, examining the correlation between adiposity indices such as Body Mass Index (BMI), Fat Mass Index (FMI, defined as the ratio of fat mass to height squared), hypovitaminosis D, and IR. We employed the XGBoost algorithm to identify key factors significantly influencing IR, thereby deepening our insight into the link between adiposity and insulin resistance. Furthermore, we applied mediation analysis to precisely assess the mediating role of adiposity indices in the relationship between hypovitaminosis D and IR. RESULTS Our study revealing significant correlations between adiposity indices, hypovitaminosis D, and IR after variable adjustment. Notably, subgroup analysis indicated a pronounced hypovitaminosis D -adiposity association in female adolescents, which was not observed in males. The XGBoost algorithm pinpointed obesity and blood lipid indicators significantly affecting IR, with total fat mass, triglyceride, cholesterol, BMI, and FMI ranked by descending importance. Mediation analysis disclosed that adiposity indices mediate a substantial portion of the hypovitaminosis D -IR relationship, with FMI (43.84%, p < 0.001) and BMI (40.87%, p < 0.001) showing significant mediating effects. CONCLUSION The study confirmed significant correlations between adiposity indices, hypovitaminosis D, and IR in adolescents, with gender-specific differences in the hypovitaminosis D -adiposity link. Cholesterol was found to have a more substantial influence on IR than BMI and FMI. Furthermore, FMI was identified as a more potent mediator of the hypovitaminosis D-IR relationship compared to BMI, highlighting its importance in the pathophysiology of insulin resistance in adolescents.
Collapse
Affiliation(s)
- Yaping Deng
- Department of Clinical Nutrition, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| | - Yingting Luo
- School of Mathematics, Sichuan University, Chengdu, China
| | - Yilei Shen
- School of Mathematics, Sichuan University, Chengdu, China
| | - Yong Zhao
- Nutrition Innovation Platform-Sichuan and Chongqing, Professor Zhao Yong's Science Popularization Studio, Chongqing, China
| | - Wei Cao
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention; Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Jie Cao
- Department of Medical general Ward, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lijuan Xu
- Department of Clinical Nutrition, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lin Kong
- Department of Clinical Nutrition, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
5
|
Németh Z, Paulinné Bukovics M, Sümegi LD, Sturm G, Takács I, Simon-Szabó L. The Importance of Edible Medicinal Mushrooms and Their Potential Use as Therapeutic Agents Against Insulin Resistance. Int J Mol Sci 2025; 26:827. [PMID: 39859540 PMCID: PMC11765957 DOI: 10.3390/ijms26020827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
In addition to conventional treatments, there is growing interest in preventive and complementary therapies. Proper nutrition can prevent the manifestation of several chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer, and can attenuate the severity of these diseases. Edible mushrooms have been used as nutrition and medicine for thousands of years. The spectrum and quantity of their medicinal compounds made them a widely investigated target both in basic research and clinical trials. The most abundant and medically important components are polysaccharides, terpenoids, phenols, and heterocyclic amines, but bioactive proteins, vitamins, including vitamin D, polyunsaturated fatty acids, and essential minerals are also important ingredients with noteworthy health benefits. Mushroom extracts have anti-diabetic, anti-hyperlipidemic, anti-inflammatory, antioxidant, cardioprotective, anti-osteoporotic, and anti-tumor effects and are well tolerated, even by cancer patients. In our previous review we detailed the molecular aspects of the development of type 2 diabetes, discussing the role of physical activity and diet, but we did not detail the role of medicinal mushrooms as part of nutrition. In this review, we aimed to summarize the most important medical mushrooms, along with their natural habitats, growing conditions, and components, that are presumably sufficient for the prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | | | - Liza Dalma Sümegi
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői Út 78/b, 1082 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37–47, 1094 Budapest, Hungary;
| |
Collapse
|
6
|
Jahan I, Islam MA, Harun-Ur-Rashid M, Sultana GNN. Cancer prevention at the microscopic level with the potent power of micronutrients. Heliyon 2024; 10:e39680. [PMID: 39553634 PMCID: PMC11564030 DOI: 10.1016/j.heliyon.2024.e39680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, necessitating ongoing exploration of effective prevention strategies. Micronutrients, vital for maintaining cellular health, offer promising avenues for cancer prevention. This review delineates the critical roles of micronutrients in cancer prevention, elucidating their mechanisms at the cellular level. Focusing on essential vitamins and minerals like Vitamins A, C, D, E, selenium, and zinc, we explore their profound effects on fundamental cellular processes such as DNA repair, oxidative stress regulation, cellular proliferation, and immune surveillance. These nutrients, characterized by their antioxidative, anti-inflammatory, and immune-enhancing properties, have shown potential in reducing the risk of cancer. The article synthesizes outcomes from a broad spectrum of clinical trials, epidemiological studies, and systematic reviews to evaluate the efficacy of micronutrients in thwarting cancer development. This critical analysis explores significant trials, addresses controversies in nutrient efficacy, and highlights the implications for clinical practice and public health policy. The review underscores the importance of integrating nutritional strategies into comprehensive cancer prevention frameworks and suggests directions for future research to optimize the preventive potentials of micronutrients.
Collapse
Affiliation(s)
- Israt Jahan
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Aminul Islam
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Dhaka, 1230, Bangladesh
| | - Gazi Nurun Nahar Sultana
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
7
|
Galeano D, Imrat, Haltom J, Andolino C, Yousey A, Zaksas V, Das S, Baylin SB, Wallace DC, Slack FJ, Enguita FJ, Wurtele ES, Teegarden D, Meller R, Cifuentes D, Beheshti A. sChemNET: a deep learning framework for predicting small molecules targeting microRNA function. Nat Commun 2024; 15:9149. [PMID: 39443444 PMCID: PMC11500171 DOI: 10.1038/s41467-024-49813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/14/2024] [Indexed: 10/25/2024] Open
Abstract
MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.
Collapse
Affiliation(s)
- Diego Galeano
- Department of Electronics and Mechatronics Engineering, Facultad de Ingeniería, Universidad Nacional de Asunción - FIUNA, Luque, Paraguay.
- COVID-19 International Research Team, Medford, MA, USA.
| | - Imrat
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jeffrey Haltom
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Aliza Yousey
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
- Clever Research Lab, Springfield, IL, USA
| | - Saswati Das
- COVID-19 International Research Team, Medford, MA, USA
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Stephen B Baylin
- COVID-19 International Research Team, Medford, MA, USA
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Van Andel Institute, Grand Rapids, MI, USA
| | - Douglas C Wallace
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Francisco J Enguita
- COVID-19 International Research Team, Medford, MA, USA
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Daniel Cifuentes
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, USA
- Blue Marble Space Institute of Science, NASA Ames Research Center, Moffett Field, CA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Chatsirisupachai A, Muanjumpon P, Jeayeng S, Onkoksong T, Pluempreecha M, Soingam T, Panich U. Calcitriol/vitamin D receptor system alleviates PM2.5-induced human bronchial epithelial damage through upregulating mitochondrial bioenergetics in association with regulation of HIF-1α/PGC-1α signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104568. [PMID: 39307374 DOI: 10.1016/j.etap.2024.104568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
PM2.5 exposure causes lung injury by triggering oxidative stress, mitochondrial dysfunction, and modulating HIF-1α signaling. Calcitriol activates VDR, which regulates cellular homeostasis. This study evaluated the protective role of the calcitriol/VDR system in PM2.5-induced damage to BEAS-2B bronchial epithelial cells by reducing oxidative stress, upregulating mitochondrial bioenergetics, and downregulating HIF-1α. We found that the calcitriol/VDR system decreased ROS formation and restored mitochondrial bioenergetics in PM2.5-treated cells. This improvement correlated with reduced HIF-1α nuclear translocation and increased PGC-1α protein and mitochondrial gene expressions. This study is the first to suggest that targeting the calcitriol/VDR system could be a promising pharmacological strategy for mitigating PM2.5-induced lung epithelial damage by promoting mitochondrial bioenergetics and regulating PGC-1α and HIF-1α signaling.
Collapse
Affiliation(s)
| | - Phetthinee Muanjumpon
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Saowanee Jeayeng
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tasanee Onkoksong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mutita Pluempreecha
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tanyapohn Soingam
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
9
|
Shokri F, Ramezani-Aliakbari K, Zarei M, Komaki A, Raoufi S, Naddaf H, Ramezani-Aliakbari F. Cardioprotective effect of Vitamin D on cardiac hypertrophy through improvement of mitophagy and apoptosis in an experimental rat model of levothyroxine -induced hyperthyroidism. Mol Biol Rep 2024; 51:969. [PMID: 39249564 DOI: 10.1007/s11033-024-09897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Mitochondria are known to be involved in mediating the calorigenic effects of thyroid hormones. With an abundance of these hormones, alterations in energy metabolism and cellular respiration take place, leading to the development of cardiac hypertrophy. Vitamin D has recently gained attention due to its involvement in the regulation of mitochondrial function, demonstrating promising potential in preserving the integrity and functionality of the mitochondrial network. The present study aimed to investigate the therapeutic potential of Vitamin D on cardiac hypertrophy induced by hyperthyroidism, with a focus on the contributions of mitophagy and apoptosis as possible underlying molecular mechanisms. METHODS AND RESULTS The rats were divided into three groups: control; hyperthyroid; hyperthyroid + Vitamin D. Hyperthyroidism was induced by Levothyroxine administration for four weeks. Serum thyroid hormones levels, myocardial damage markers, cardiac hypertrophy indices, and histological examination were assessed. The assessment of Malondialdehyde (MDA) levels and the expression of the related genes were conducted using heart tissue samples. Vitamin D pretreatment exhibited a significant improvement in the hyperthyroidism-induced decline in markers indicative of myocardial damage, oxidative stress, and indices of cardiac hypertrophy. Vitamin D pretreatment also improved the downregulation observed in myocardial expression levels of genes involved in the regulation of mitophagy and apoptosis, including PTEN putative kinase 1 (PINK1), Mitofusin-2 (MFN2), Dynamin-related Protein 1 (DRP1), and B cell lymphoma-2 (Bcl-2), induced by hyperthyroidism. CONCLUSIONS These results suggest that supplementation with Vitamin D could be advantageous in preventing the progression of cardiac hypertrophy and myocardial damage.
Collapse
Affiliation(s)
- Farid Shokri
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Zarei
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanieh Naddaf
- Core facility lab, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Zhang F, Li W. Vitamin D and Sarcopenia in the Senior People: A Review of Mechanisms and Comprehensive Prevention and Treatment Strategies. Ther Clin Risk Manag 2024; 20:577-595. [PMID: 39253031 PMCID: PMC11382659 DOI: 10.2147/tcrm.s471191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
This article reviews the mechanisms and prevention strategies associated with vitamin D and sarcopenia in older adults. As a geriatric syndrome, sarcopenia is defined by a notable decline in skeletal muscle mass and strength, which increases the risk of adverse health outcomes such as falls and fractures. Vitamin D, an essential fat-soluble vitamin, is pivotal in skeletal muscle health. It affects muscle function through various mechanisms, including regulating calcium and phosphorus metabolism, promoting muscle protein synthesis, and modulation of muscle cell proliferation and differentiation. A deficiency in vitamin D has been identified as a significant risk factor for the development of sarcopenia in older adults. Many studies have demonstrated that low serum vitamin D levels are significantly associated with an increased risk of sarcopenia. While there is inconsistency in the findings, most studies support the importance of vitamin D in maintaining skeletal muscle health. Vitamin D influences the onset and progression of sarcopenia through various pathways, including the promotion of muscle protein synthesis, the regulation of mitochondrial function, and the modulation of immune and inflammatory responses. Regarding the prevention and treatment of sarcopenia, a combination of nutritional, exercise, and pharmacological interventions is recommended. Further research should be conducted to elucidate the molecular mechanism of vitamin D in sarcopenia, to study genes related to sarcopenia, to perform large-scale clinical trials, to investigate special populations, and to examine the combined application of vitamin D with other nutrients or drugs. A comprehensive investigation of the interconnection between vitamin D and sarcopenia will furnish a novel scientific foundation and productive strategies for preventing and treating sarcopenia. This, in turn, will enhance the senior people's quality of life and health.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Doumit M, El-Mallah C, El-Makkawi A, Obeid O, Kobeissy F, Darwish H, Abou-Kheir W. Vitamin D Deficiency Does Not Affect Cognition and Neurogenesis in Adult C57Bl/6 Mice. Nutrients 2024; 16:2938. [PMID: 39275253 PMCID: PMC11396937 DOI: 10.3390/nu16172938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Vitamin D deficiency is a global problem. Vitamin D, the vitamin D receptor, and its enzymes are found throughout neuronal, ependymal, and glial cells in the brain and are implicated in certain processes and mechanisms in the brain. To investigate the processes affected by vitamin D deficiency in adults, we studied vitamin D deficient, control, and supplemented diets over 6 weeks in male and female C57Bl/6 mice. The effect of the vitamin D diets on proliferation in the neurogenic niches, changes in glial cells, as well as on memory, locomotion, and anxiety-like behavior, was investigated. Six weeks on a deficient diet was adequate time to reach deficiency. However, vitamin D deficiency and supplementation did not affect proliferation, neurogenesis, or astrocyte changes, and this was reflected on behavioral measures. Supplementation only affected microglia in the dentate gyrus of female mice. Indicating that vitamin D deficiency and supplementation do not affect these processes over a 6-week period.
Collapse
Affiliation(s)
- Mark Doumit
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Carla El-Mallah
- Department of Nutrition and Food Science, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Alaa El-Makkawi
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Omar Obeid
- Department of Nutrition and Food Science, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Hala Darwish
- Hariri School of Nursing, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| |
Collapse
|
12
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
13
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
14
|
Lucia U, Bergandi L, Grisolia G, Fino D, Mareschi K, Marini E, Santa Banche Niclot AG, Tirtei E, Asaftei SD, Fagioli F, Ponzetto A, Silvagno F. The exposure to extremely low frequency electromagnetic-fields inhibits the growth and potentiates the sensitivity to chemotherapy of bidimensional and tridimensional human osteosarcoma models. Biomed Pharmacother 2024; 177:117162. [PMID: 39024997 DOI: 10.1016/j.biopha.2024.117162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
We previously established a thermodynamical model to calculate the specific frequencies of extremely low frequency-electromagnetic field (ELF-EMF) able to arrest the growth of cancer cells. In the present study, for the first time, we investigated the efficacy of this technology on osteosarcoma, and we applied a precise frequency of the electromagnetic field on three human osteosarcoma cell lines, grown as adherent cells and spheroids. We evaluated the antitumour efficacy of irradiation in terms of response to chemotherapeutic treatments, which is usually poor in this type of cancer. Importantly, the results of this novel combinatorial approach revealed that the specific exposure can potentiate the efficacy of several chemotherapeutic drugs, both on bidimensional and tridimensional cancer models. The effectiveness of cisplatinum, methotrexate, ifosfamide and doxorubicin was greatly increased by the concomitant application of the specific ELF-EMF. Moreover, our experiments confirmed that ELF-EMF inhibited the proliferation and modulated the mitochondrial metabolism of all cancer models tested, whereas mesenchymal cells were not affected. The latter finding is extremely valuable, given the importance of preserving the cell reservoir necessary for tissue regeneration after chemotherapy. Altogether, this novel evidence opens new avenues to the clinical applications of ELF-EMF in oncology.
Collapse
Affiliation(s)
- Umberto Lucia
- Dipartimento Energia "Galileo Ferraris", Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| | - Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5 bis, Torino 10126, Italy
| | - Giulia Grisolia
- Dipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Debora Fino
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Katia Mareschi
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, Torino 10126, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco - Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino 10126, Italy
| | - Elena Marini
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, Torino 10126, Italy
| | | | - Elisa Tirtei
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, Torino 10126, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco - Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino 10126, Italy
| | - Sebastian Dorin Asaftei
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, Torino 10126, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco - Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino 10126, Italy
| | - Franca Fagioli
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, Torino 10126, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco - Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino 10126, Italy
| | - Antonio Ponzetto
- Dipartimento di Scienze Mediche, Università di Torino, Corso Dogliotti 14, Torino 10126, Italy
| | - Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, Torino 10126, Italy.
| |
Collapse
|
15
|
Paul S, Kaushik R, Chawla P, Upadhyay S, Rawat D, Akhtar A. Vitamin-D as a multifunctional molecule for overall well-being: An integrative review. Clin Nutr ESPEN 2024; 62:10-21. [PMID: 38901929 DOI: 10.1016/j.clnesp.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
Vitamin D is amongst the most important biomolecules to regularize and help in sustainable health, however, based on the studies, deficiency of this multifunctional vitamin is common. Vitamin D, besides playing a role in the form of vitamins, also acts as a multifunctional hormone (steroid). Vitamin D is synthesized inside the body through various steps starting from ultraviolet radiation exposure and comes from limited food sources, however, vitamin D-fortified food products are still among the major sources of vitamin D. Current review, focused on how vitamin D acts as a multifunctional molecule by effecting different functions in the body in normal or specific conditions and how it is important in fortification and how it can be managed from the available literature till date. During the Covid pandemic, people were aware of vitamin D and took supplementation, fortified foods, and sat under sunlight. As COVID prevalence decreases, people start forgetting about vitamin D. Vitamin D is very crucial for overall well-being as it has protective effects against a broad range of diseases as it can reduce inflammation, cancer cell growth and helps in controlling infection, increase metabolism, muscle, and bone strength, neurotransmitter expression, etc. Therefore, the present review is to provoke the population, and fulfillment of the vitamin D recommended dietary allowance daily must be confirmed.
Collapse
Affiliation(s)
- Snigdha Paul
- UPES, Bidholi, Dehradun 248007, Uttarakhand, India
| | | | - Prince Chawla
- Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Divya Rawat
- UPES, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Ansab Akhtar
- Louisiana State University, School of Medicine, New Orleans, USA
| |
Collapse
|
16
|
Shufang M, Xiaojiao H, Yinhong K. Pro-inflammatory cytokine IL-21 correlates with the reactive oxygen species and 25-hydroxy vitamin D in rheumatoid arthritis patients. Immun Inflamm Dis 2024; 12:e1308. [PMID: 39056553 PMCID: PMC11273535 DOI: 10.1002/iid3.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder and its characteristics include the immune system's invasion of the healthy lining of the joints and the articular structures degeneration. The IL-21 pro-inflammatory cytokine, and the reactive oxygen species (ROS) might have a role in the RA etiopathogenesis. The present study assessed the correlation of IL-21 with vitamin 25(OH)D and the ROS. METHODS The study included 120 RA patients and 60 healthy group. The RA patients were categorized based on rheumatoid factor (RF) seropositivity or seronegativity and the RA severity. Chemiluminescent immunoassay and 10% hematocrit were used to check levels of vitamin 25(OH)D and ROS, respectively. ELISA was used for the detection of IL-21 in the plasma. RESULTS The RA patients had a significantly reduced vitamin 25(OH)D level compared to the healthy controls. The IL-21 and ROS were however significantly increased in the RA patients compared to the controls. Further, the seropositive RF and the high RA severity patients had significant IL-21 and ROS increase in comparison with the seronegative RF and the low severity RA patients. Finally, IL-21 negatively correlated with vitamin 25(OH)D, but positively correlated with the ROS. CONCLUSION This is the first investigation to confirm the relationship between IL-21 with vitamin 25(OH)D and the ROS among the RA patients. The findings indicate that vitamin 25(OH)D is reduced in the RA patients' serum. ROS and IL-21 are also associated with increased RA severity.
Collapse
Affiliation(s)
- Ma Shufang
- Rheumatology and Immunology DepartmentFourth Central Hospital of Baoding CityBaodingHebei ProvinceChina
| | - Han Xiaojiao
- Rheumatology and Immunology DepartmentFourth Central Hospital of Baoding CityBaodingHebei ProvinceChina
| | - Kang Yinhong
- Obstetrics DepartmentFourth Central Hospital of Baoding CityBaodingHebei ProvinceChina
| |
Collapse
|
17
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
18
|
Bergandi L, Palladino G, Meduri A, De Luca L, Silvagno F. Vitamin D and Sulforaphane Decrease Inflammatory Oxidative Stress and Restore the Markers of Epithelial Integrity in an In Vitro Model of Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:6404. [PMID: 38928111 PMCID: PMC11203625 DOI: 10.3390/ijms25126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is strictly linked to chronic oxidative stress, inflammation, loss of epithelial barrier integrity, and often with abnormal new blood vessel development. In this study, the retinal epithelial cell line ARPE-19 was treated with pro-inflammatory transforming growth factor-beta (TGF-β) to investigate the activity of vitamin D (VD) and sulforaphane (SF) in abating the consequences of oxidative stress and inflammation. The administration of VD and SF lowered reactive oxygen species (ROS) levels, and abated the related expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8 induced by TGF-β. We evaluated mitochondrial respiration as a source of ROS production, and we discovered that the increased transcription of respiratory elements triggered by TGF-β was prevented by VD and SF. In this model of inflamed epithelium, the treatment with VD and SF also reduced the secretion of VEGF, a key angiogenic factor, and restored the markers of epithelial integrity. Remarkably, all the observed biological effects were potentiated by the co-stimulation with the two compounds and were not mediated by VD receptor expression but rather by the ERK 1/2 pathway. Altogether, the results of this study reveal the powerful synergistic anti-inflammatory activity of SF and VD and lay the foundation for future clinical assessment of their efficacy in AMD.
Collapse
Affiliation(s)
- Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy; (L.B.); (G.P.)
| | - Giulia Palladino
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy; (L.B.); (G.P.)
| | - Alessandro Meduri
- Ophthalmology Clinic, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.M.); (L.D.L.)
| | - Laura De Luca
- Ophthalmology Clinic, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.M.); (L.D.L.)
| | - Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy; (L.B.); (G.P.)
| |
Collapse
|
19
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
20
|
Grzesiak M, Herian M, Kamińska K, Ajersch P. Insight into vitamin D 3 action within the ovary-Basic and clinical aspects. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:99-130. [PMID: 39059995 DOI: 10.1016/bs.apcsb.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Vitamin D3 is a fat-soluble secosteroid predominantly synthesized in the skin or delivered with a diet. Nevertheless, recently it is considered more as a hormone than a vitamin due to its pleiotropic function within the organism ensured by widely distributed vitamin D receptors and metabolic enzymes. Besides the main role in calcium and phosphorus homeostasis, vitamin D3 was shown to regulate many cellular and metabolic processes in normal and cancerous tissues within the immune system, the cardiovascular system, the respiratory system and the endocrine system. The ovary is an important extraskeletal tissue of vitamin D3 action and local metabolism, indicating its role in the regulation of ovarian functions upon physiological and pathological conditions. This chapter reviews firstly the updated information about vitamin D3 metabolism and triggered intracellular pathways. Furthermore, the basic information about ovarian physiology and several aspects of vitamin D3 effects within the ovary are presented. Finally, the special attention is paid into possible mechanism of vitamin D3 action within ovarian pathologies such as premature ovarian failure, polycystic ovary syndrome, and ovarian cancer, considering its clinical application as alternative therapy.
Collapse
Affiliation(s)
- Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | | | - Kinga Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Paula Ajersch
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
21
|
Yeh WZ, Gresle M, Lea R, Taylor B, Lucas RM, Ponsonby AL, Mason D, Andrew J, Campbell H, Morahan J, Sampangi S, Campagna MP, Stankovich J, Van der Walt A, Jokubaitis V, Butzkueven H. The immune cell transcriptome is modulated by vitamin D 3 supplementation in people with a first demyelinating event participating in a randomized placebo-controlled trial. Clin Immunol 2024; 262:110183. [PMID: 38479439 DOI: 10.1016/j.clim.2024.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Vitamin D deficiency is a risk factor for developing multiple sclerosis. The PrevANZ trial was conducted to determine if vitamin D3 supplementation can prevent recurrent disease activity in people with a first demyelinating event. As a sub-study of this trial, we investigated the effect of supplementation on peripheral immune cell gene expression. Participants were randomized to 1000, 5000 or 10,000 international units daily of vitamin D3 or placebo. Peripheral blood was collected at baseline and 12 weeks and sent for ribonucleic acid sequencing. Datasets from 55 participants were included. Gene expression was modulated by high dose supplementation. Antigen presentation and viral response pathways were upregulated. Oxidative phosphorylation and immune signaling pathways, including tumor necrosis factor-alpha and interleukin-17 signaling, were downregulated. Overall, vitamin D3 supplementation for 12 weeks modulated the peripheral immune cell transcriptome with induction of anti-inflammatory gene expression profiles. Our results support a dose-dependent effect of vitamin D3 supplementation on immune gene expression.
Collapse
Affiliation(s)
- Wei Zhen Yeh
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| | - Melissa Gresle
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Rodney Lea
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Bruce Taylor
- Royal Hobart Hospital, Department of Neurology, Hobart, Australia; University of Tasmania, Menzies Institute for Medical Research, Hobart, Australia
| | - Robyn M Lucas
- Australian National University, National Centre for Epidemiology and Population Health, Canberra, Australia
| | - Anne-Louise Ponsonby
- The Florey Institute of Neuroscience and Mental Health, Early Brain Division, Parkville, Australia; University of Melbourne, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Deborah Mason
- Christchurch Hospital, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Julie Andrew
- Neuroscience Trials Australia, Heidelberg, Australia
| | | | | | - Sandeep Sampangi
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; MSBase Foundation, Melbourne, Australia.
| |
Collapse
|
22
|
Chen H, Zhang H, Li AM, Liu YT, Liu Y, Zhang W, Yang C, Song N, Zhan M, Yang S. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats. Redox Biol 2024; 70:103062. [PMID: 38320454 PMCID: PMC10850784 DOI: 10.1016/j.redox.2024.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE To investigate the regulatory effect and mechanism of Vitamin D receptor (VDR) on mitochondrial function in renal tubular epithelial cell under diabetic status. METHODS The diabetic rats induced by streptozotocin (STZ) and HK-2 cells under high glocose(HG)/transforming growth factor beta (TGF-β) stimulation were used in this study. Calcitriol was administered for 24 weeks. Renal tubulointerstitial injury and some parameters of mitochondrial function including mitophagy, mitochondrial fission, mitochondrial ROS, mitochondrial membrane potential (MMP), mitochondrial ATP, Complex V activity and mitochondria-associated ER membranes (MAMs) integrity were examined. Additionally, paricalcitol, 3-MA (an autophagy inhibitor), VDR over-expression plasmid, VDR siRNA and Mfn2 siRNA were applied in vitro. RESULTS The expression of VDR, Pink1, Parkin, Fundc1, LC3II, Atg5, Mfn2, Mfn1 in renal tubular cell of diabetic rats were decreased significantly. Calcitriol treatment reduced the levels of urinary albumin, serum creatinine and attenuated renal tubulointerstitial fibrosis in STZ induced diabetic rats. In addition, VDR agonist relieved mitophagy dysfunction, MAMs integrity, and inhibited mitochondrial fission, mitochondrial ROS. Co-immunoprecipitation analysis demonstrated that VDR interacted directly with Mfn2. Mitochondrial function including mitophagy, mitochondrial membrane potential (MMP), mitochondrial Ca2+, mitochondrial ATP and Complex V activity were decreased dramatically in HK-2 cells under HG/TGF-β ambience. In vitro pretreatment of HK-2 cells with autophagy inhibitor 3-MA, VDR siRNA or Mfn2 siRNA negated the activating effects of paricalcitol on mitochondrial function. Pricalcitol and VDR over-expression plasmid activated Mfn2 and then partially restored the MAMs integrity. Additionally, VDR restored mitophagy was partially associated with MAMs integrity through Fundc1. CONCLUSION Activated VDR could contribute to restore mitophagy through Mfn2-MAMs-Fundc1 pathway in renal tubular cell. VDR could recover mitochondrial ATP, complex V activity and MAMs integrity, inhibit mitochondrial fission and mitochondrial ROS. It indicating that VDR agonists ameliorate renal tubulointerstitial fibrosis in diabetic rats partially via regulation of mitochondrial function.
Collapse
Affiliation(s)
- Hong Chen
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ai-Mei Li
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yu-Ting Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Cheng Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Na Song
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ming Zhan
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, China.
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| |
Collapse
|
23
|
Zhou P, Yu X, Song T, Hou X. Safety and efficacy of antioxidant therapy in children and adolescents with attention deficit hyperactivity disorder: A systematic review and network meta-analysis. PLoS One 2024; 19:e0296926. [PMID: 38547138 PMCID: PMC10977718 DOI: 10.1371/journal.pone.0296926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/22/2023] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE To systematically evaluate the safety and efficacy of antioxidant therapy in children and adolescents with attention deficit hyperactivity disorder (ADHD). METHODS Randomized controlled trials and prospective studies on antioxidant therapy in children and adolescents with ADHD were searched in PubMed, Embase, and Cochrane Library from the inception of databases to November 12, 2022. Two investigators independently screened the literature, extracted data, and evaluated the quality of the included studies. Network meta-analysis (PROSPERO registration number CRD 42023382824) was carried out by using R Studio 4.2.1. RESULTS 48 studies involving 12 antioxidant drugs (resveratrol, pycnogenol, omega-3, omega-6, quercetin, phosphatidylserine, almond, vitamin D, zinc, folic acid, ginkgo biloba, Acetyl-L-carnitine) were finally included, with 3,650 patients. Network meta-analysis showed that omega-6 (0.18), vitamin D (0.19), and quercetin (0.24) were the top three safest drugs according to SUCRA. The omega-3 (SUCRA 0.35), pycnogenol (SUCRA 0.36), and vitamin D (SUCRA 0.27) were the most effective in improving attention, hyperactivity, and total score of Conners' parent rating scale (CPRS), respectively. In terms of improving attention, hyperactivity, and total score of Conners' teacher rating scale (CTRS), pycnogenol (SUCRA 0.32), phosphatidylserine+omega-3 (SUCRA 0.26), and zinc (SUCRA 0.34) were the most effective, respectively. In terms of improving attention, hyperactivity and total score of ADHD Rating Scale-Parent, the optimal agents were phosphatidylserine (SUCRA 0.39), resveratrol+MPH (SUCRA 0.24), and phosphatidylserine (SUCRA 0.34), respectively. In terms of improving attention, hyperactivity and total score of ADHD Rating Scale-Teacher, pycnogenol (SUCRA 0.32), vitamin D (SUCRA 0.31) and vitamin D (SUCRA 0.18) were the optimal agents, respectively. The response rate of omega-3+6 was the highest in CGI (SUCRA 0.95) and CPT (SUCRA 0.42). CONCLUSION The rankings of safety and efficacy of the 12 antioxidants vary. Due to the low methodological quality of the included studies, the probability ranking cannot fully explain the clinical efficacy, and the results need to be interpreted with caution. More high-quality studies are still needed to verify our findings.
Collapse
Affiliation(s)
- Peike Zhou
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaohui Yu
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tao Song
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaoli Hou
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
24
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
25
|
Di Molfetta IV, Bordoni L, Gabbianelli R, Sagratini G, Alessandroni L. Vitamin D and Its Role on the Fatigue Mitigation: A Narrative Review. Nutrients 2024; 16:221. [PMID: 38257114 PMCID: PMC10818509 DOI: 10.3390/nu16020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Vitamin D has historically been associated with bone metabolism. However, over the years, a growing body of evidence has emerged indicating its involvement in various physiological processes that may influence the onset of numerous pathologies (cardiovascular and neurodegenerative diseases, rheumatological diseases, fertility, cancer, diabetes, or a condition of fatigue). This narrative review investigates the current knowledge of the pathophysiological mechanisms underlying fatigue and the ways in which vitamin D is implicated in these processes. Scientific studies in the databases of PubMed, Scopus, and Web of Science were reviewed with a focus on factors that play a role in the genesis of fatigue, where the influence of vitamin D has been clearly demonstrated. The pathogenic factors of fatigue influenced by vitamin D are related to biochemical factors connected to oxidative stress and inflammatory cytokines. A role in the control of the neurotransmitters dopamine and serotonin has also been demonstrated: an imbalance in the relationship between these two neurotransmitters is linked to the genesis of fatigue. Furthermore, vitamin D is implicated in the control of voltage-gated calcium and chloride channels. Although it has been demonstrated that hypovitaminosis D is associated with numerous pathological conditions, current data on the outcomes of correcting hypovitaminosis D are conflicting. This suggests that, despite the significant involvement of vitamin D in regulating mechanisms governing fatigue, other factors could also play a role.
Collapse
Affiliation(s)
- Ippolita Valentina Di Molfetta
- Chemistry Interdisciplinary Project, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (I.V.D.M.); (L.A.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy; (L.B.); (R.G.)
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy; (L.B.); (R.G.)
| | - Gianni Sagratini
- Chemistry Interdisciplinary Project, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (I.V.D.M.); (L.A.)
| | - Laura Alessandroni
- Chemistry Interdisciplinary Project, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (I.V.D.M.); (L.A.)
| |
Collapse
|
26
|
Olszewska AM, Nowak JI, Król O, Flis D, Żmijewski MA. Different impact of vitamin D on mitochondrial activity and morphology in normal and malignant keratinocytes, the role of genomic pathway. Free Radic Biol Med 2024; 210:286-303. [PMID: 38040270 DOI: 10.1016/j.freeradbiomed.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Deregulation of mitochondria activity is one of the hallmarks of cancerogenesis and an important target for cancer therapy. Therefore, we compared the impact of an active form of vitamin D3 (1,25(OH)2D3) on mitochondrial morphology and bioenergetics in human squamous cell carcinoma (A431) and immortalized HaCaT keratinocytes. It was shown that mitochondria of cancerous A431 cells differ from that observed in HaCaT keratinocytes in terms of network, morphology, bioenergetics, glycolysis, and mitochondrial DNA copy number, while treatment of A431 with 1,25(OH)2D3 partially eliminates these differences. Furthermore, mitochondrial membrane potential, basal respiration, and mitochondrial reactive oxygen species production were decreased in A431 cells treated with 1,25(OH)2D3. Additionally, the expression and protein level of mitophagy marker PINK1 was significantly increased in A431 1,25(OH)2D3 treated cells, but not observed in treated HaCaT cells. Knockout of VDR (vitamin D receptor) or RXRA (binding partner retinoid X receptor) partially altered mitochondrial morphology and function as well as mitochondrial response to 1,25(OH)2D3. Transcriptomic analysis on A431 cells treated with 1,25(OH)2D3 revealed modulation of expression of several mitochondrial-related genes involved in mitochondrial depolarization, mitochondrial protein translation (i.e. LYRM9, MARS2), and fusion-fission (OPA1, FIS1, MFN1 and 2), however, none of the genes coded by mitochondrial DNA was affected. Interestingly, in silico analyses of nuclear-encoded mitochondrial genes revealed that they are rather activated by the secondary genomic response to 1,25(OH)2D3. Taken together, 1,25(OH)2D3 remodels mitochondrial architecture and bioenergetics through VDR-dependent and only partially RXRA-dependent activation of the genomic pathway, thus outlining a new perspective for anticancer properties of vitamin D3 in relation to mitochondria in squamous cell carcinoma.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Oliwia Król
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Damian Flis
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland.
| |
Collapse
|
27
|
Tyagi S, Mani S. Combined Administration of Metformin and Vitamin D: A Futuristic Approach for Management of Hyperglycemia. Cardiovasc Hematol Agents Med Chem 2024; 22:258-275. [PMID: 37929731 DOI: 10.2174/0118715257261643231018102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Diabetes is a series of metabolic disorders that can be categorized into three types depending on different aspects associated with age at onset, intensity of insulin resistance, and beta- cell dysfunction: Type 1 and 2 Diabetes, and Gestational Diabetes Mellitus. Type 2 Diabetes Mellitus (T2DM) has recently been found to account for more than 85% of diabetic cases. The current review intends to raise awareness among clinicians/researchers that combining vitamin D3 with metformin may pave the way for better T2DM treatment and management. An extensive literature survey was performed to analyze vitamin D's role in regulating insulin secretion, their action on the target cells and thus maintaining the normal glucose level. On the other side, the anti-hyperglycemic effect of metformin as well as its detailed mechanism of action was also studied. Interestingly both compounds are known to exhibit the antioxidant effect too. Literature supporting the correlation between diabetic phenotypes and deficiency of vitamin D was also explored further. To thoroughly understand the common/overlapping pathways responsible for the antidiabetic as well as antioxidant nature of metformin and vitamin D3, we compared their antihyperglycemic and antioxidant activities. With this background, we are proposing the hypothesis that it would be of great interest if these two compounds could work in synergy to better manage the condition of T2DM and associated disorders.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
28
|
Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B, Hollis F. Mitochondrial might: powering the peripartum for risk and resilience. Front Behav Neurosci 2023; 17:1286811. [PMID: 38187925 PMCID: PMC10767224 DOI: 10.3389/fnbeh.2023.1286811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
The peripartum period, characterized by dynamic hormonal shifts and physiological adaptations, has been recognized as a potentially vulnerable period for the development of mood disorders such as postpartum depression (PPD). Stress is a well-established risk factor for developing PPD and is known to modulate mitochondrial function. While primarily known for their role in energy production, mitochondria also influence processes such as stress regulation, steroid hormone synthesis, glucocorticoid response, GABA metabolism, and immune modulation - all of which are crucial for healthy pregnancy and relevant to PPD pathology. While mitochondrial function has been implicated in other psychiatric illnesses, its role in peripartum stress and mental health remains largely unexplored, especially in relation to the brain. In this review, we first provide an overview of mitochondrial involvement in processes implicated in peripartum mood disorders, underscoring their potential role in mediating pathology. We then discuss clinical and preclinical studies of mitochondria in the context of peripartum stress and mental health, emphasizing the need for better understanding of this relationship. Finally, we propose mitochondria as biological mediators of resilience to peripartum mood disorders.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nazharee Cloude
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Noelle Frambes
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hannah Brennen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
- USC Institute for Cardiovascular Disease Research, Columbia, SC, United States
| |
Collapse
|
29
|
Nosal BM, Sakaki JR, Mofrad MD, Macdonald Z, Mahoney KJ, Thornton SN, Patel D, Drossman J, Lee ECH, Chun OK. Blackcurrant Anthocyanins Improve Blood Lipids and Biomarkers of Inflammation and Oxidative Stress in Healthy Women in Menopause Transition without Changing Body Composition. Biomedicines 2023; 11:2834. [PMID: 37893207 PMCID: PMC10604580 DOI: 10.3390/biomedicines11102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Recent cell and animal studies suggest the potential of blackcurrants (BCs; Ribes nigrum) as a dietary agent that may reduce the risk of cardiovascular disease (CVD) by improving dyslipidemia, oxidative stress, and inflammation. This study aimed to examine the effects of BC anthocyanin (ACN) extract supplementation on biomarkers of CVD risk in healthy adult women in menopause transition. The effects of BC ACN supplementation on body composition, fasting blood lipids and biomarkers of inflammation and oxidative stress were evaluated using anthropometric measures and blood samples collected from a pilot randomized controlled clinical trial in peri- and early postmenopausal women. Thirty-eight eligible peri- and early postmenopausal women aged 45-60 completed the entire trial, in which they were randomly assigned into one of three treatment groups: placebo (control group), 392 mg/day (low BC group), or 784 mg/day (high BC group) for six months. The significance of differences in outcomes was tested using repeated-measures ANOVA. Overall, following six-month BC consumption, significantly decreased triglyceride (TG) levels were observed between treatment groups (p < 0.05) in a dose-dependent manner. Plasma interleukin-1β (IL-1β) was significantly reduced in a dose and time dependent manner (p < 0.05). Significant decreases in thiobarbituric acid reactive substances (TBARS) levels were also observed between treatment groups (p < 0.05) in a dose-dependent manner. Six-month change in oxidized LDL was inversely correlated with changes in catalase (CAT) and total antioxidant capacity (TAC) (p < 0.05), while C-reactive protein (hs-CRP) change was positively correlated with changes in TG and IL-1β (p < 0.01). Together, these findings suggest that daily BC consumption for six months effectively improved dyslipidemia, inflammation, and lipid peroxidation, thus potentially mitigating the risk of postmenopausal CVD development in study participants. Future studies with larger sample sizes and at-risk populations are warranted to confirm these findings.
Collapse
Affiliation(s)
- Briana M. Nosal
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Junichi R. Sakaki
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Manije Darooghegi Mofrad
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Zachary Macdonald
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (Z.M.); (K.J.M.); (S.N.T.); (E.C.-H.L.)
| | - Kyle J. Mahoney
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (Z.M.); (K.J.M.); (S.N.T.); (E.C.-H.L.)
| | - Staci N. Thornton
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (Z.M.); (K.J.M.); (S.N.T.); (E.C.-H.L.)
| | - Dave Patel
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Joseph Drossman
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Elaine Choung-Hee Lee
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (Z.M.); (K.J.M.); (S.N.T.); (E.C.-H.L.)
| | - Ock K. Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| |
Collapse
|
30
|
Shah M, Poojari M, Nadig P, Kakkad D, Dutta SB, Sinha S, Chowdhury K, Dagli N, Haque M, Kumar S. Vitamin D and Periodontal Health: A Systematic Review. Cureus 2023; 15:e47773. [PMID: 37899906 PMCID: PMC10612541 DOI: 10.7759/cureus.47773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 10/31/2023] Open
Abstract
The role of vitamin D in maintaining gum well-being is crucial. However, scientific research reported that the connotations of cholecalciferol and periodontal health have been divested in the present literature. However, there is enormous heterogeneity in the data available. The current review aims to systematically review and appraise the available literature investigating the role of vitamin D in maintaining periodontal health. Studies included randomized controlled trials and clinical trials following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and cohort studies reporting associations between vitamin D and oral health in systemically healthy patients. Databases such as PubMed, Google Scholar, Scopus, Embase, and other sources, including hand search, were searched until May 2023 using together-equipped search sequences. Altogether, scientific articles that conform to the inclusion principles underwent a thorough eminence evaluation. All papers meeting inclusion criteria were subject to quality assessment, and the method used to assess the risk of bias was the Cochrane risk of bias tool. The search identified 1883 papers, among which 1435 were excluded after title evaluation. After abstract and title screening, 455 were excluded, and six full texts were assessed. After full-text evaluation, two articles were excluded, and only four were included. The data shows vitamin D's association with oral health maintenance. Along with its action on bone metabolism, it has extended function, which provides for its action as an anti-inflammatory agent and production of anti-microbial peptides, which help maintain oral health. Although the literature available is immense, there is enormous heterogenicity in the papers conducted to appraise the association between vitamin D and oral health. This systematic review has filtered all the data to review a few essential aspects of the role of vitamin D in maintaining oral physiology. Vitamin D has a linear relationship with periodontal health; however, the evidence is insufficient, and further studies must be done.
Collapse
Affiliation(s)
- Monali Shah
- Periodontology, KM Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, IND
| | - Megha Poojari
- Periodontology, KM Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, IND
| | - Prasad Nadig
- Periodontology, KM Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, IND
| | - Dinta Kakkad
- Public Health Dentistry, Gujarat University, Ahmedabad, IND
| | | | - Susmita Sinha
- Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Kona Chowdhury
- Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Namrata Dagli
- Dental Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
31
|
Zhang Y, Li C, Zhou X, Jiang W, Wu P, Liu Y, Ren H, Zhang L, Mi H, Tang J, Zhang R, Feng L. Implications of vitamin D for flesh quality of grass carp (Ctenopharyngodon idella): antioxidant ability, nutritional value, sensory quality, and myofiber characteristics. J Anim Sci Biotechnol 2023; 14:134. [PMID: 37759314 PMCID: PMC10523690 DOI: 10.1186/s40104-023-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/02/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Muscle represents a unique and complex system with many components and comprises the major edible part of animals. Vitamin D is a critical nutrient for animals and is known to enhance calcium absorption and immune response. In recent years, dietary vitamin D supplementation in livestock has received increased attention due to biological responses including improving shear force in mammalian meat. However, the vitamin D acquisition and myofiber development processes in fish differ from those in mammals, and the effect of vitamin D on fish flesh quality is poorly understood. Here, the influence of dietary vitamin D on fillet quality, antioxidant ability, and myofiber development was examined in grass carp (Ctenopharyngodon idella). METHODS A total of 540 healthy grass carp, with an initial average body weight of 257.24 ± 0.63 g, were allotted in 6 experimental groups with 3 replicates each, and respectively fed corresponding diets with 15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg vitamin D for 70 d. RESULTS Supplementation with 1,167.9 IU/kg vitamin D significantly improved nutritional value and sensory quality of fillets, enhancing crude protein, free amino acid, lipid, and collagen contents; maintaining an ideal pH; and reducing lactate content, shear force, and cooking loss relative to respective values in the control (15.2 IU/kg) group. Average myofiber diameter and the frequency of myofibers > 50 μm in diameter increased under supplementation with 782.5-1,167.9 IU/kg vitamin D. Levels of oxidative damage biomarkers decreased, and the expression of antioxidant enzymes and nuclear factor erythroid 2-related factor 2 signaling molecules was upregulated in the 1,167.9 IU/kg vitamin D treatment compared to respective values in the control group. Furthermore, vitamin D supplementation activated cell differentiation by enhancing the expression of myogenic regulatory factors and myocyte enhancer factors compared to that in the control group. In addition, supplementation with 1,167.9 IU/kg vitamin D improved protein deposition associated with protein synthesis molecule (target of rapamycin) signaling and vitamin D receptor paralogs, along with inhibition of protein degradation (forkhead box protein 1) signaling. CONCLUSIONS Overall, the results demonstrated that vitamin D strengthened antioxidant ability and myofiber development, thereby enhancing nutritional value and sensory quality of fish flesh. These findings suggest that dietary vitamin D supplementation is conducive to the production of nutrient-rich, high quality aquaculture products.
Collapse
Affiliation(s)
- Yao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chaonan Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Zhang
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, 610041, Sichuan, China
| | - Haifeng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, 610041, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ruinan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
32
|
Korewo-Labelle D, Karnia MJ, Myślińska D, Kaczor JJ. Supplementation with Vitamin D 3 Protects against Mitochondrial Dysfunction and Loss of BDNF-Mediated Akt Activity in the Hippocampus during Long-Term Dexamethasone Treatment in Rats. Int J Mol Sci 2023; 24:13941. [PMID: 37762245 PMCID: PMC10530487 DOI: 10.3390/ijms241813941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Dexamethasone (DEXA) is a commonly used steroid drug with immunosuppressive and analgesic properties. Unfortunately, long-term exposure to DEXA severely impairs brain function. This study aimed to investigate the effects of vitamin D3 supplementation during chronic DEXA treatment on neurogenesis, mitochondrial energy metabolism, protein levels involved in the BDNF-mediated Akt activity, and specific receptors in the hippocampus. We found reduced serum concentrations of 25-hydroxyvitamin D3 (25(OH)D3), downregulated proBDNF and pAkt, dysregulated glucocorticosteroid and mineralocorticoid receptors, impaired mitochondrial biogenesis, and dysfunctional mitochondria energy metabolism in the DEXA-treated group. In contrast, supplementation with vitamin D3 restored the 25(OH)D3 concentration to a value close to that of the control group. There was an elevation in neurotrophic factor protein level, along with augmented activity of pAkt and increased citrate synthase activity in the hippocampus after vitamin D3 administration in long-term DEXA-treated rats. Our findings demonstrate that vitamin D3 supplementation plays a protective role in the hippocampus and partially mitigates the deleterious effects of long-term DEXA administration. The association between serum 25(OH)D3 concentration and BDNF level in the hippocampus indicates the importance of applying vitamin D3 supplementation to prevent and treat pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (D.K.-L.); (M.J.K.); (D.M.)
| |
Collapse
|
33
|
De Silva WGM, McCarthy BY, Han J, Yang C, Holland AJA, Stern H, Dixon KM, Tang EKY, Tuckey RC, Rybchyn MS, Mason RS. The Over-Irradiation Metabolite Derivative, 24-Hydroxylumister-ol 3, Reduces UV-Induced Damage in Skin. Metabolites 2023; 13:775. [PMID: 37512482 PMCID: PMC10383208 DOI: 10.3390/metabo13070775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The hormonal form of vitamin D3, 1,25(OH)2D3, reduces UV-induced DNA damage. UV exposure initiates pre-vitamin D3 production in the skin, and continued UV exposure photoisomerizes pre-vitamin D3 to produce "over-irradiation products" such as lumisterol3 (L3). Cytochrome P450 side-chain cleavage enzyme (CYP11A1) in skin catalyzes the conversion of L3 to produce three main derivatives: 24-hydroxy-L3 [24(OH)L3], 22-hydroxy-L3 [22(OH)L3], and 20,22-dihydroxy-L3 [20,22(OH)L3]. The current study investigated the photoprotective properties of the major over-irradiation metabolite, 24(OH)L3, in human primary keratinocytes and human skin explants. The results indicated that treatment immediately after UV with either 24(OH)L3 or 1,25(OH)2D3 reduced UV-induced cyclobutane pyrimidine dimers and oxidative DNA damage, with similar concentration response curves in keratinocytes, although in skin explants, 1,25(OH)2D3 was more potent. The reductions in DNA damage by both compounds were, at least in part, the result of increased DNA repair through increased energy availability via increased glycolysis, as well as increased DNA damage recognition proteins in the nucleotide excision repair pathway. Reductions in UV-induced DNA photolesions by either compound occurred in the presence of lower reactive oxygen species. The results indicated that under in vitro and ex vivo conditions, 24(OH)L3 provided photoprotection against UV damage similar to that of 1,25(OH)2D3.
Collapse
Affiliation(s)
| | - Bianca Yuko McCarthy
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jeremy Han
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J A Holland
- Douglas Cohen Department of Paediatric Surgery, The Children's Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Harvey Stern
- Department of Plastic and Constructive Surgery, The Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Strathfield Private Hospital, Sydney, NSW 2042, Australia
| | - Katie Marie Dixon
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edith Kai Yan Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Robert Charles Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
34
|
Wang J, Yu Z, Peng Y, Xu B. Insights into prevention mechanisms of bioactive components from healthy diets against Alzheimer's disease. J Nutr Biochem 2023:109397. [PMID: 37301484 DOI: 10.1016/j.jnutbio.2023.109397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease in which senile plaques, neurofibrillary tangles, insulin resistance, oxidative stress, chronic neuroinflammation, and abnormal neurotransmission are the potential mechanisms involved in its onset and development. Although it is still an intractable disorder, diet intervention has been developed as an innovative strategy for AD prevention. Some bioactive compounds and micronutrients from food, including soy isoflavones, rutin, vitamin B1, etc., have exhibited numerous neuronal health-promoting effects in both in vivo and in vitro studies. It is well known that their antiapoptotic, antioxidative, and anti-inflammatory properties prevent the neuronal or glial cells from injury or death, minimize oxidative damage, inhibit the production of proinflammatory cytokines by modulating typical signaling pathways of MAPK, NF-kβ, and TLR, and further reduce Aβ genesis and tau hyperphosphorylation. However, parts of the dietary components trigger AD-related proteins productions and inflammasome as well as inflammatory gene upregulation. This review summarized the neuroprotective or nerve damage-promoting role and underlying molecular mechanisms of flavonoids, vitamins, and fatty acids via the data from library databases, PubMed, and journal websites, which provides a comprehensive analysis of the prevention potential of these dietary components against AD.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhiling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
35
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
36
|
Cusato J, Manca A, Palermiti A, Mula J, Costanzo M, Antonucci M, Chiara F, De Vivo ED, Maiese D, Ferrara M, Bonora S, Di Perri G, D’Avolio A, Calcagno A. COVID-19: Focusing on the Link between Inflammation, Vitamin D, MAPK Pathway and Oxidative Stress Genetics. Antioxidants (Basel) 2023; 12:1133. [PMID: 37237997 PMCID: PMC10215473 DOI: 10.3390/antiox12051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
An uncontrolled inflammatory response during SARS-CoV-2 infection has been highlighted in several studies. This seems to be due to pro-inflammatory cytokines whose production could be regulated by vitamin D, ROS production or mitogen-activated protein kinase (MAPK). Several genetic studies are present in the literature concerning genetic influences on COVID-19 characteristics, but there are few data on oxidative stress, vitamin D, MAPK and inflammation-related factors, considering gender and age. Therefore, the aim of this study was to evaluate the role of single nucleotide polymorphisms in these pathways, clarifying their impact in affecting COVID-19-related clinical features. Genetic polymorphisms were evaluated through real-time PCR. We prospectively enrolled 160 individuals: 139 patients were positive for SARS-CoV-2 detection. We detected different genetic variants able to affect the symptoms and oxygenation. Furthermore, two sub-analyses were performed considering gender and age, showing a different impact of polymorphisms according to these characteristics. This is the first study highlighting a possible contribution of genetic variants of these pathways in affecting COVID-19 clinical features. This may be relevant in order to clarify the COVID-19 etiopathogenesis and to understand the possible genetic contribution for further SARS infections.
Collapse
Affiliation(s)
- Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Alessandra Manca
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Jacopo Mula
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Martina Costanzo
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Miriam Antonucci
- ASL Città di Torino, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Francesco Chiara
- Laboratory of Clinical Pharmacology S.Luigi A.O.U., Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole, Orbassano, 10043 Turin, Italy
| | - Elisa Delia De Vivo
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Domenico Maiese
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Micol Ferrara
- ASL Città di Torino, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Antonio D’Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy
| |
Collapse
|
37
|
Tabassum A, Ali A, Zahedi FD, Ismail NAS. Immunomodulatory Role of Vitamin D on Gut Microbiome in Children. Biomedicines 2023; 11:biomedicines11051441. [PMID: 37239112 DOI: 10.3390/biomedicines11051441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D plays a role in regulating the immune system and can be linked to the alteration of the gut microbiome, which leads to several immunological diseases. This systematic review aims to explore the relationship between Vitamin D and children's gut microbiome, as well as its impact towards the immune system. We have systematically collated relevant studies from different databases concerning changes in the gut microbiome of children from infants to 18 years old associated with Vitamin D and the immunological pathways. The studies utilized 16S rRNA sequencing analysis of fecal matter with or without Vitamin D supplementation and Vitamin D levels. Ten studies were selected for the review, among which eight studies showed significant alterations in the gut microbiome related to Vitamin D supplementation or Vitamin D levels. The taxa of the phylum Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria are the most altered in these studies. The alteration of the taxa alters the Th1 and Th2 pathways and changes the immune response. We will discuss how Vitamin D may contribute to the activation of immune pathways via its effects on intestinal barrier function, microbiome composition, and/or direct effects on immune responses. In conclusion, the studies examined in this review have provided evidence that Vitamin D levels may have an impact on the composition of children's gut microbiomes.
Collapse
Affiliation(s)
- Anika Tabassum
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Farah Dayana Zahedi
- Department of Otorhinolaryngology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
38
|
Tourkochristou E, Mouzaki A, Triantos C. Gene Polymorphisms and Biological Effects of Vitamin D Receptor on Nonalcoholic Fatty Liver Disease Development and Progression. Int J Mol Sci 2023; 24:ijms24098288. [PMID: 37175993 PMCID: PMC10179740 DOI: 10.3390/ijms24098288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with increasing prevalence worldwide. The genetic and molecular background of NAFLD pathogenesis is not yet clear. The vitamin D/vitamin D receptor (VDR) axis is significantly associated with the development and progression of NAFLD. Gene polymorphisms may influence the regulation of the VDR gene, although their biological significance remains to be elucidated. VDR gene polymorphisms are associated with the presence and severity of NAFLD, as they may influence the regulation of adipose tissue activity, fibrosis, and hepatocellular carcinoma (HCC) development. Vitamin D binds to the hepatic VDR to exert its biological functions, either by activating VDR transcriptional activity to regulate gene expression associated with inflammation and fibrosis or by inducing intracellular signal transduction through VDR-mediated activation of Ca2+ channels. VDR activity has protective and detrimental effects on hepatic steatosis, a characteristic feature of NAFLD. Vitamin D-VDR signaling may control the progression of NAFLD by regulating immune responses, lipotoxicity, and fibrogenesis. Elucidation of the genetic and molecular background of VDR in the pathophysiology of NAFLD will provide new therapeutic targets for this disease through the development of VDR agonists, which already showed promising results in vivo.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
39
|
Badrachalam R, Mani V, Kumar R, Shafiulla A. Vitamin D receptor (BsmI) gene polymorphism and allele frequency among chronic kidney disease patients in south Indian population. Bioinformation 2023; 19:380-384. [PMID: 37822821 PMCID: PMC10563556 DOI: 10.6026/97320630019380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 10/13/2023] Open
Abstract
The vitamin D receptor (VDR) axis plays an important role in multiple physiological renal functions. BsmI gene is one among the VDR gene plays a vital role in maintaining this VDR axis and any polymorphism in VDR gene will cause dysfunction of renal tissues. The main objective of the study is to study the link between BsmI VDR gene polymorphism and Chronic Kidney Disease (CKD). This was a case-control study, which includes 100 cases and 100 controls. BsmI gene analysis was done by polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP). Among 100 CKD study participants, BB (wild-type) genotype of BsmI gene was present in 7 patients (7%), Bb (heterozygous) genotype was present in 23 patients (23%) and bb (mutant) genotype was present in 70 patients (70%). And among 100 controls, 92 subjects were found to have BB genotype and 8 subjects were found to have Bb genotype and none of subjects were found to have bb genotypes. CKD patients with Bb and bb genotypes were found to have significantly elevated serum urea, creatinine and decreased Glomerular Filtration Rate (GFR) when compared to the BB genotype of BsmI gene. 'b' allele of BsmI gene, Bb and bb genotypes of BsmI gene plays a greater role in Guanine/Adenine single nucleotide polymorphism of BsmI gene in CKD.
Collapse
Affiliation(s)
- Ramya Badrachalam
- Department of Biochemistry, Sri Manakula Vinayagar Medical College and Hospital, Puducherry - 605107, Tamil Nadu, India
| | - Vadivel Mani
- Department of Biochemistry, Konaseema Institute of Medical sciences and research foundation, Amalapuram, East Godavari Dt-533201, Andhra Pradesh, India
| | - Ravi Kumar
- Department of Biochemistry, Sri Manakula Vinayagar Medical College and Hospital, Puducherry - 605107, Tamil Nadu, India
| | - Asmathulla Shafiulla
- Department of Biochemistry, All India Institute of Medical Sciences, Madurai- 625006, Tamilnadu, India
| |
Collapse
|
40
|
Piotrowska A, Zaucha R, Król O, Żmijewski MA. Vitamin D Modulates the Response of Patient-Derived Metastatic Melanoma Cells to Anticancer Drugs. Int J Mol Sci 2023; 24:ijms24098037. [PMID: 37175742 PMCID: PMC10178305 DOI: 10.3390/ijms24098037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is considered a lethal and treatment-resistant skin cancer with a high risk of recurrence, making it a major clinical challenge. Our earlier studies documented that 1,25(OH)2D3 and its low-calcaemic analogues potentiate the effectiveness of dacarbazine and cediranib, a pan-VEGFR inhibitor. In the current study, a set of patient-derived melanoma cultures was established and characterised as a preclinical model of human melanoma. Thus, patient-derived cells were preconditioned with 1,25(OH)2D3 and treated with cediranib or vemurafenib, a BRAF inhibitor, depending on the BRAF mutation status of the patients enrolled in the study. 1,25(OH)2D3 preconditioning exacerbated the inhibition of patient-derived melanoma cell growth and motility in comparison to monotherapy with cediranib. A significant decrease in mitochondrial respiration parameters, such as non-mitochondrial oxygen consumption, basal respiration and ATP-linked respiration, was observed. It seems that 1,25(OH)2D3 preconditioning enhanced cediranib efficacy via the modulation of mitochondrial bioenergetics. Additionally, 1,25(OH)2D3 also decreased the viability and mobility of the BRAF+ patient-derived cells treated with vemurafenib. Interestingly, regardless of the strict selection, cancer-derived fibroblasts (CAFs) became the major fraction of cultured cells over time, suggesting that melanoma growth is dependent on CAFs. In conclusion, the results of our study strongly emphasise that the active form of vitamin D, 1,25(OH)2D3, might be considered as an adjuvant agent in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Renata Zaucha
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Oliwia Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | |
Collapse
|
41
|
Agostini D, Gervasi M, Ferrini F, Bartolacci A, Stranieri A, Piccoli G, Barbieri E, Sestili P, Patti A, Stocchi V, Donati Zeppa S. An Integrated Approach to Skeletal Muscle Health in Aging. Nutrients 2023; 15:nu15081802. [PMID: 37111021 PMCID: PMC10141535 DOI: 10.3390/nu15081802] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
A decline in muscle mass and function represents one of the most problematic changes associated with aging, and has dramatic effects on autonomy and quality of life. Several factors contribute to the inexorable process of sarcopenia, such as mitochondrial and autophagy dysfunction, and the lack of regeneration capacity of satellite cells. The physiologic decline in muscle mass and in motoneuron functionality associated with aging is exacerbated by the sedentary lifestyle that accompanies elderly people. Regular physical activity is beneficial to most people, but the elderly need well-designed and carefully administered training programs that improve muscle mass and, consequently, both functional ability and quality of life. Aging also causes alteration in the gut microbiota composition associated with sarcopenia, and some advances in research have elucidated that interventions via the gut microbiota-muscle axis have the potential to ameliorate the sarcopenic phenotype. Several mechanisms are involved in vitamin D muscle atrophy protection, as demonstrated by the decreased muscular function related to vitamin D deficiency. Malnutrition, chronic inflammation, vitamin deficiencies, and an imbalance in the muscle-gut axis are just a few of the factors that can lead to sarcopenia. Supplementing the diet with antioxidants, polyunsaturated fatty acids, vitamins, probiotics, prebiotics, proteins, kefir, and short-chain fatty acids could be potential nutritional therapies against sarcopenia. Finally, a personalized integrated strategy to counteract sarcopenia and maintain the health of skeletal muscles is suggested in this review.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandro Stranieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
42
|
Chen M, Li L, Chai Y, Yang Y, Ma S, Pu X, Chen Y. Vitamin D can ameliorate premature ovarian failure by inhibiting neutrophil extracellular traps: A review. Medicine (Baltimore) 2023; 102:e33417. [PMID: 37000081 PMCID: PMC10063315 DOI: 10.1097/md.0000000000033417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
The etiology of premature ovarian failure (POF) is mainly related to inflammatory diseases, autoimmune diseases, and tumor radiotherapy and chemotherapy; however, its specific pathogenesis has not been clarified. Vitamin D (VD), a fat-soluble vitamin, is an essential steroid hormone in the human body. Neutrophil extracellular traps (NETs) are meshwork structures that are formed when neutrophils are stimulated by inflammation and other factors and are closely associated with autoimmune and inflammatory diseases. Notably, VD inhibits NET formation and intervenes in the development of POF in terms of inflammatory and immune responses, oxidative stress, and tissue fibrosis. Therefore, this study aimed to theorize the relationship between NETs, VD, and POF and provide new ideas and targets for the pathogenesis and clinical treatment of POF.
Collapse
Affiliation(s)
- Menglu Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Lailai Li
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yihui Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yuqi Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Sibu Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Xiang Pu
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yunzhi Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| |
Collapse
|
43
|
Bose D, Ravi R, Maurya M, Legha R, Konwar M. Vitamin D deficiency in rheumatoid arthritis patients of India - a single-arm meta-analysis. Afr Health Sci 2023; 23:795-806. [PMID: 37545921 PMCID: PMC10398445 DOI: 10.4314/ahs.v23i1.84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Background Vitamin D deficiency is commonly seen in patients with rheumatoid arthritis (RA). Objectives This meta-analysis is aimed to determine the prevalence of Vitamin D deficiency in RA patients in India and also to evaluate the association between vitamin D level and disease activity. Methods The relevant works of literature were identified through multiple databases and data was extracted from eligible studies independently. A single-arm meta-analysis was performed to estimate the prevalence of Vitamin D deficiency in RA patients in an Indian setup and its association with disease activity. A total of 15 studies was included in the analyses. Results The mean serum vitamin D level was 19.99 ng/ml [95% CI 16.49-24.23]. The proportion of patients with low vitamin D level was 0.80 [95% CI 0.65- 0.90], Vitamin D deficiency was 0.56 [95% CI 0.31-0.77] and vitamin D insufficiency was 0.20 [95% CI 0.12- 0.32]. A negative relationship was seen with serum vitamin D and disease activity score. Conclusions The results demonstrate significant low levels of serum vitamin D levels in patients with RA and established a negative correlation of Vitamin D with RA disease activity. The current evidence suggests a rationale for Vitamin D supplementation in the management of RA.
Collapse
Affiliation(s)
- Debdipta Bose
- Department of Clinical Pharmacology, Seth GS Medical college & KEM Hospital, Mumbai, India
| | - Renju Ravi
- Department of Clinical Pharmacology, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Miteshkumar Maurya
- Department of Clinical Pharmacology, Seth GS Medical college & KEM Hospital, Mumbai, India
| | - R Legha
- Department of Medicine, Travancore Medical college, Kollam, Kerala, India
| | - Mahanjit Konwar
- Department of Clinical Pharmacology, Seth GS Medical college & KEM Hospital, Mumbai, India
| |
Collapse
|
44
|
Salimi A, Shabani M, Nikjou A, Choupani M, Biniyaz M. Exploring the possible mitoprotective and neuroprotective potency of thymoquinone, betanin, and vitamin D against cytarabine-induced mitochondrial impairment and neurotoxicity in rats' brain. J Biochem Mol Toxicol 2023; 37:e23256. [PMID: 36419121 DOI: 10.1002/jbt.23256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
It has been suggested that cytarabine (Ara-C) induces toxicity via mitochondrial dysfunction and oxidative stress. Therefore, we hypothesized that mitochondrial protective agents and antioxidants can reduce cytarabine-induced neurotoxicity. For this purpose, 48 male Wistar rats were assigned into eight equal groups include control group, Ara-C (70 mg/kg, i.p.) group, Ara-C plus betanin (25 mg/kg, i.p.) group, Ara-C plus vitamin D (500 U/kg, i.p.) group, Ara-C plus thymoquinone (0.5 mg/kg, i.p.) group, betanin group, vitamin group, and thymoquinone group. The activity of acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), the concentrations of antioxidants (reduced glutathione and oxidized glutathione), oxidative stress (malondialdehyde) biomarkers, mitochondrial toxicity parameters as well as histopathological alteration in brain tissues were measured. Our results demonstrated that Ara-C exposure significantly declines the brain enzymes activity (AChE and BChE), levels of antioxidant biomarkers (GSH), and mitochondrial functions, but markedly elevate the levels of oxidative stress biomarkers (MDA) and mitochondrial toxicity. Almost all of the previously mentioned parameters (especially mitochondrial toxicity) were retrieved by betanin, vitamin D, and thymoquinone compared to Ara-C group. These findings conclusively indicate that betanin, vitamin D, and thymoquinone administration provide adequate protection against Ara-C-induced neurotoxicity through modulations of oxidative, antioxidant activities, and mitochondrial protective (mitoprotective) effects.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amirreza Nikjou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahshid Choupani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohana Biniyaz
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
45
|
Wu Y, Zeng Y, Zhang Q, Xiao X. The Role of Maternal Vitamin D Deficiency in Offspring Obesity: A Narrative Review. Nutrients 2023; 15:nu15030533. [PMID: 36771240 PMCID: PMC9919568 DOI: 10.3390/nu15030533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Currently, vitamin D (VD) deficiency during pregnancy is widespread globally, causing unfavorable pregnancy outcomes for both mothers and infants for a longer time than expected, based on the Developmental Origins of Health and Disease (DOHaD) theory. As VD plays a key role in maintaining normal glucose and lipid metabolism, maternal VD deficiency may lead to obesity and other obesity-related diseases among offspring later in life. This review mainly focuses on the effect of maternal VD deficiency on offspring lipid metabolism, reviewing previous clinical and animal studies to determine the effects of maternal VD deficit on offspring obesity and potential mechanisms involved in the progression of offspring obesity. Emerging clinical evidence shows that a low VD level may lead to abnormal growth (either growth restriction or largeness for gestational age) and lipid and glucose metabolism disorders in offspring. Here, we also outline the link between maternal VD deficiency and life-long offspring effects, including the disorder of adipogenesis, the secretion of adipocytokines (including leptin, resistin, and adiponectin), activated systemic inflammation, increased oxidative reactions in adipose tissue, insulin resistance, and abnormal intestinal gut microbiota. Thus, there is an urgent need to take active steps to address maternal VD deficiency to relieve the global burden of obesity.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Correspondence: (Q.Z.); (X.X.); Tel./Fax: +86-10-69155073 (Q.Z. & X.X.)
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Correspondence: (Q.Z.); (X.X.); Tel./Fax: +86-10-69155073 (Q.Z. & X.X.)
| |
Collapse
|
46
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
47
|
Gezen-Ak D, Dursun E. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer's Type Neurodegeneration. J Alzheimers Dis 2023; 95:1273-1299. [PMID: 37661883 DOI: 10.3233/jad-230214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vitamin D is a secosteroid hormone exerting neurosteroid-like properties. Its well-known nuclear hormone receptor, and recently proposed as a mitochondrial transcription factor, vitamin D receptor, acts for its primary functions. The second receptor is an endoplasmic reticulum protein, protein disulfide isomerase A3 (PDIA3), suggested to act as a rapid response. Vitamin D has effects on various systems, particularly through calcium metabolism. Among them, the nervous system has an important place in the context of our subject. Recent studies have shown that vitamin D and its receptors have numerous effects on the nervous system. Neurodegeneration is a long-term process. Throughout a human life span, so is vitamin D deficiency. Our previous studies and others have suggested that the out-come of long-term vitamin D deficiency (hypovitaminosis D or inefficient utilization of vitamin D), may lead neurons to be vulnerable to aging and neurodegeneration. We suggest that keeping vitamin D levels at adequate levels at all stages of life, considering new approaches such as agonists that can activate vitamin D receptors, and utilizing other derivatives produced in the synthesis process with UVB are crucial when considering vitamin D-based intervention studies. Given most aspects of vitamin D, this review outlines how vitamin D and its receptors work and are involved in neurodegeneration, emphasizing Alzheimer's disease.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinc Dursun
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
48
|
Żmijewski MA. Nongenomic Activities of Vitamin D. Nutrients 2022; 14:nu14235104. [PMID: 36501134 PMCID: PMC9737885 DOI: 10.3390/nu14235104] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D shows a variety of pleiotropic activities which cannot be fully explained by the stimulation of classic pathway- and vitamin D receptor (VDR)-dependent transcriptional modulation. Thus, existence of rapid and nongenomic responses to vitamin D was suggested. An active form of vitamin D (calcitriol, 1,25(OH)2D3) is an essential regulator of calcium-phosphate homeostasis, and this process is tightly regulated by VDR genomic activity. However, it seems that early in evolution, the production of secosteroids (vitamin-D-like steroids) and their subsequent photodegradation served as a protective mechanism against ultraviolet radiation and oxidative stress. Consequently, direct cell-protective activities of vitamin D were proven. Furthermore, calcitriol triggers rapid calcium influx through epithelia and its uptake by a variety of cells. Subsequently, protein disulfide-isomerase A3 (PDIA3) was described as a membrane vitamin D receptor responsible for rapid nongenomic responses. Vitamin D was also found to stimulate a release of secondary massagers and modulate several intracellular processes-including cell cycle, proliferation, or immune responses-through wingless (WNT), sonic hedgehog (SSH), STAT1-3, or NF-kappaB pathways. Megalin and its coreceptor, cubilin, facilitate the import of vitamin D complex with vitamin-D-binding protein (DBP), and its involvement in rapid membrane responses was suggested. Vitamin D also directly and indirectly influences mitochondrial function, including fusion-fission, energy production, mitochondrial membrane potential, activity of ion channels, and apoptosis. Although mechanisms of the nongenomic responses to vitamin D are still not fully understood, in this review, their impact on physiology, pathology, and potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, PL-80211 Gdańsk, Poland
| |
Collapse
|
49
|
Sosa-Díaz E, Hernández-Cruz EY, Pedraza-Chaverri J. The role of vitamin D on redox regulation and cellular senescence. Free Radic Biol Med 2022; 193:253-273. [PMID: 36270517 DOI: 10.1016/j.freeradbiomed.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Vitamin D is considered an essential micronutrient for human health that is metabolized into a multifunctional secosteroid hormone. We can synthesize it in the skin through ultraviolet B (UVB) rays or acquire it from the diet. Its deficiency is a major global health problem that affects all ages and ethnic groups. Furthermore, dysregulation of vitamin D homeostasis has been associated with premature aging, driven by various cellular processes, including oxidative stress and cellular senescence. Various studies have shown that vitamin D can attenuate oxidative stress and delay cellular senescence, mainly by inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Klotho and improving mitochondrial homeostasis, proposing this vitamin as an excellent candidate for delaying aging. However, the mechanisms around these processes are not yet fully explored. Therefore, in this review, the effects of vitamin D on redox regulation and cellular senescence are discussed to propose new lines of research and clinical applications of vitamin D in the context of age-related diseases.
Collapse
Affiliation(s)
- Emilio Sosa-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, 04360, Mexico City, Mexico; Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| |
Collapse
|
50
|
Grzesiak M, Tchurzyk M, Socha M, Sechman A, Hrabia A. An Overview of the Current Known and Unknown Roles of Vitamin D 3 in the Female Reproductive System: Lessons from Farm Animals, Birds, and Fish. Int J Mol Sci 2022; 23:ijms232214137. [PMID: 36430615 PMCID: PMC9693557 DOI: 10.3390/ijms232214137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies have clearly shown that vitamin D3 is a crucial regulator of the female reproductive process in humans and animals. Knowledge of the expression of vitamin D3 receptors and related molecules in the female reproductive organs such as ovaries, uterus, oviduct, or placenta under physiological and pathological conditions highlights its contribution to the proper function of the reproductive system in females. Furthermore, vitamin D3 deficiency leads to serious reproductive disturbances and pathologies including ovarian cysts. Although the influence of vitamin D3 on the reproductive processes of humans and rodents has been extensively described, the association between vitamin D3 and female reproductive function in farm animals, birds, and fish has rarely been summarized. In this review, we provide an overview of the role of vitamin D3 in the reproductive system of those animals, with special attention paid to the expression of vitamin D3 receptors and its metabolic molecules. This updated information could be essential for better understanding animal physiology and overcoming the incidence of infertility, which is crucial for optimizing reproductive outcomes in female livestock.
Collapse
Affiliation(s)
- Malgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
- Correspondence: ; Tel.: +48-12-664-5025
| | - Marcelina Tchurzyk
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - Magdalena Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| |
Collapse
|