1
|
Tufail T, Fatima S, Bader Ul Ain H, Ikram A, Noreen S, Rebezov M, AL-Farga A, Saleh R, Shariati MA. Role of Phytonutrients in the Prevention and Treatment of Chronic Diseases: A Concrete Review. ACS OMEGA 2025; 10:12724-12755. [PMID: 40224418 PMCID: PMC11983219 DOI: 10.1021/acsomega.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/15/2025]
Abstract
Delving into the intricate role of phytonutrients is paramount to effectively preventing and treating chronic diseases. Phytonutrients are "plant-based nutrients" that positively affect human health. Phytonutrients perform primary therapeutic functions in the management and treatment of various diseases. It is reported that different types of pathogenesis occur due to the excessive production of oxidants (reactive nitrogen species and reactive oxygen species). The literature shows that a higher intake of fruits, vegetables, and other plant-based food is inversely related to treating different chronic diseases. Due to many phytonutrients (antioxidants) in fruits, vegetables, and other medicinal plants, they are considered major therapeutic agents for various diseases. The main purpose of this review is to summarize the major phytonutrients involved in preventing and treating diseases. Fourteen major phytonutrients are discussed in this review, such as polyphenols, anthocyanin, resveratrol, phytosterol (stigmasterol), flavonoids, isoflavonoids, limonoids, terpenoids, carotenoids, lycopene, quercetin, phytoestrogens, glucosinolates, and probiotics, which are well-known for their beneficial effects on the human body and treatment of different pathological conditions. It is concluded that phytonutrients play a major role in the prevention and treatment of diabetes mellitus, obesity, hypertension, cardiovascular disorders, other types of cancers, neurological disorders, age-related diseases, and inflammatory disorders and are also involved in various biological activities.
Collapse
Affiliation(s)
- Tabussam Tufail
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, 212013, China
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Smeea Fatima
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Huma Bader Ul Ain
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Ikram
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Sana Noreen
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Maksim Rebezov
- Department
of Scientific Research, V. M. Gorbatov Federal
Research Center for Food Systems, 26 Talalikhin Str., Moscow 109316, Russia
- Faculty
of Biotechnology and Food Engineering, Ural
State Agrarian University, 42 Karl Liebknecht str., Yekaterinburg, 620075, Russia
- Department
of Biotechnology, Toraighyrov University, 64 Lomov Str., Pavlodar, 140008, Kazakhstan
| | - Ammar AL-Farga
- Department
of Biochemistry, College of Sciences, University
of Jeddah, Jeddah, 21577, KSA
| | - Rashad Saleh
- Medical Microbiology
Department, Faculty of Science, IBB University, IBB, Yemen
| | - Mohammad Ali Shariati
- Kazakh
Research
Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan
| |
Collapse
|
2
|
Mao T, Wescombe P, Mohan MS. Predominance of non-covalent interactions of polyphenols with milk proteins and their health promoting properties. Crit Rev Food Sci Nutr 2024; 64:11871-11893. [PMID: 37584498 DOI: 10.1080/10408398.2023.2245037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Polyphenols have widely accepted health benefits which are limited by their low uptake, low bioavailability, and rapid degradation in the gut. While milk proteins are excellent carriers for polyphenols, the specific interactions of the polyphenols with the milk proteins, need to be understood to facilitate the utilization of these delivery systems in food and pharmaceutical applications. We have evaluated the relevance of different factors affecting milk protein-polyphenol interactions and the subsequent impact on the bioavailability and health promoting aspects of polyphenols. Hydrophobic forces are the primary binding forces of polyphenols to milk proteins. The significant factors affecting the interactions and binding affinity are the molecular weight and the hydrophobicity of the polyphenols. The interaction of polyphenols with milk proteins improved the antioxidant activity in comparison to milk proteins, while conflicting results exists for comparisons with polyphenols. In-vitro and cell line studies demonstrated enhanced bioavailability of polyphenols in the presence of milk proteins as well as higher anti-cancer and anti-allergy benefits. Overall, this work will pave the way for better understanding of polyphenol interactions with milk proteins and enable the tailoring of complexes through sustainable green processes, enabling higher bioavailability and health promoting effects of the polyphenols in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Ting Mao
- Dairy and Food Science Department, South Dakota State University, Brookings, SD, USA
| | - Philip Wescombe
- Yili Innovation Center Oceania, Lincoln University, Christchurch, New Zealand
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Maneesha S Mohan
- Dairy and Food Science Department, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
3
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
4
|
Raza C, Mohsin S, Faheem M, Hanif U, Alkhathlan HZ, Shaik MR, Riaz HA, Anjum R, Jurrat H, Khan M. In Vivo Study of Moringa oleifera Seed Extracts as Potential Sources of Neuroprotection against Rotenone-Induced Neurotoxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1479. [PMID: 38891288 PMCID: PMC11175126 DOI: 10.3390/plants13111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) is a leading neurodegenerative disorder affecting 1-3 percent of the elderly population. Oxidative stress is the primary factor for the neurodegeneration of Substantia Nigra (SN). The current study aims to assess the seed extracts of Moringa oleifera (MO) on rotenone-mediated motor function impairments in a PD mouse model. For this purpose, two different seed extracts of MO were prepared, including aqueous MO (AqMO) and ethanolic MO (EthMO). Male Swiss albino mice were grouped into five groups. Mice received 2.5 mg/kg rotenone for 21 consecutive days, and control mice received the vehicle. Extract-treated mice received 200 mg/kg AqMO and EthMO separately, orally and daily for 28 days. Sinemet-treated mice received 20 mg/kg, oral dose, as a positive group. The motor function performance was evaluated using standard neurobehavioral tests. The antioxidant potentials of MO seed extracts were estimated by lipid peroxidation (LPO), reduced glutathione (GSH), glutathione-s-transferase (GST) and catalase (CAT) activities in mice brain homogenates. The PD mice brain SN sections were investigated for neurodegeneration. MO seed extract-treated mice showed a significant reduction in motor dysfunction compared to rotenone-treated mice as assessed through the open field, beam walk, pole climb-down, tail suspension, stride length and stepping tests. Increased antioxidant capacities of the PD mice brains of MO extract-administered groups were observed compared to the control. A histological study showed reduced signs of neurodegeneration, vacuolation around multipolar cells and cytoplasmic shrinkage in MO extract-treated mice SN brain sections. Collectively, MO seed extracts protected the animals from locomotor deficits induced by rotenone, possibly through antioxidant means, and seem to have potential applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Sehrish Mohsin
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Uzma Hanif
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.Z.A.); (M.R.S.)
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.Z.A.); (M.R.S.)
| | - Hasib Aamir Riaz
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Husna Jurrat
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.Z.A.); (M.R.S.)
| |
Collapse
|
5
|
Kunnummal SP, Khan M. Diet-gut microbiome interaction and ferulic acid bioavailability: implications on neurodegenerative disorders. Eur J Nutr 2024; 63:51-66. [PMID: 37747555 DOI: 10.1007/s00394-023-03247-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE OF THE REVIEW Ferulic acid (FA), which occurs naturally as the feruloylated sugar ester in grains, fruits, and vegetables, is critical for combating oxidative stress and alleviating neurodegenerative diseases resulting from free radical-generated protein aggregates in brain cells. However, FA cannot be absorbed in conjugated form. Therefore, strategies to improve the bioavailability of FA are gaining more importance. Ferulic acid esterases (FAE) of the gut microbiota are critical enzymes that facilitate FA release from feruloylated sugar ester conjugates and influence systemic health. This review provides insight into a nutrition-based approach to preventing neurodegenerative disorders such as Alzheimer's and Parkinson's by altering the diversity of FAE-producing gut microbiota. RECENT FINDINGS The human gut is a niche for a highly dense microbial population. Nutrient components and the quality of food shape the gut microbiota. Microbiota-diet-host interaction primarily involves an array of enzymes that hydrolyse complex polysaccharides and release covalently attached moieties, thereby increasing their bio-accessibility. Moreover, genes encoding polysaccharide degrading enzymes are substrate inducible, giving selective microorganisms a competitive advantage in scavenging nutrients. Nutraceutical therapy using specific food components holds promise as a prophylactic agent and as an adjunctive treatment strategy in neurotherapeutics, as it results in upregulation of polysaccharide utilisation loci containing fae genes in the gut microbiota, thereby increasing the release of FA and other antioxidant molecules and combat neurodegenerative processes.
Collapse
Affiliation(s)
- Saarika Pothuvan Kunnummal
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- CSIR-Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Mahejibin Khan
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
- CSIR-Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Hamedani SG, Pourmasoumi M, Askari G, Bagherniya M, Sathyapalan T, Sahebkar A. An Investigation into the Effects of Chemical, Pharmaceutical, and Herbal Compounds on Neuroglobin: A Literature Review. Curr Med Chem 2024; 31:2944-2954. [PMID: 37069714 DOI: 10.2174/0929867330666230413093409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 04/19/2023]
Abstract
Neuroglobin (Ngb) is an oxygen-binding globin protein that is mainly expressed in the neurons of the central and peripheral nervous system. However, moderate levels of Ngb have also been detected in non-neural tissues. Ngb and Ngb modulating factors have been increasingly studied over the last decade due to their neuroprotective role in neurological disorders and hypoxia. Studies have shown that a number of chemicals, pharmaceuticals, and herbal compounds can modulate the expression of Ngb at different dose levels, indicating a protective role against neurodegenerative diseases. Iron chelators, hormones, antidiabetic drugs, anticoagulants, antidepressants, plant derivatives and short-chain fatty acids are among these compounds. Therefore, this study aimed to review the literature focused on the possible effects and mechanisms of chemical, pharmaceutical, and herbal compounds on Ngbs.
Collapse
Affiliation(s)
- Sahar Golpour Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Makan Pourmasoumi
- Gastrointestinal & Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Monteiro KLC, de Aquino TM, da Silva-Júnior EF. Natural Compounds as Inhibitors of Aβ Peptide and Tau Aggregation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1234-1250. [PMID: 38018200 DOI: 10.2174/0118715273273539231114095300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
8
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
9
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
10
|
Melini V, Melini F, Luziatelli F, Ruzzi M. Development of an Ultrasound-Assisted Extraction Procedure for the Simultaneous Determination of Anthocyanins and Phenolic Acids in Black Beans. Foods 2023; 12:3566. [PMID: 37835220 PMCID: PMC10572765 DOI: 10.3390/foods12193566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Beans are an essential source of nutritional components such as plant proteins, minerals and dietary fiber, as well as of antioxidants such as phenolic compounds. Phenolic compounds are praised for their biological activities and possible benefits on human health. Since no official methods are available for phenolic compound extraction, the optimization of extraction parameters via Response Surface Methodology (RSM) has become a commonly used methodological approach for reliable determinations. This study aimed to apply RSM to optimize the ultrasound-assisted extraction procedure of phenolic compounds, including anthocyanins, from black beans. A Generally Recognized As Safe solvent (ethanol) was used. Solvent concentration, extraction time, and solvent/sample ratio were optimized to maximize two responses: Total Anthocyanin Content (TAC) and Total Phenolic Content (TPC). An ethanol concentration of 64%, 30 min extraction time, and a 50 mL/g solvent/sample ratio were identified as the optimal extraction conditions. The TAC was 71.45 ± 1.96 mg cyanidin-3-O-glucoside equivalents 100 g-1 dm, and the TPC was 60.14 ± 0.89 mg gallic acid equivalents 100 g-1 dm. Among the pigmented phenolic compounds, cyanidin-3-O-glucoside and peonidin-3-O-glucoside were identified in the extracts. Regarding phenolic acids, caffeic, sinapic, and t-ferulic acids were detected.
Collapse
Affiliation(s)
- Valentina Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Roma, Italy;
| | - Francesca Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Roma, Italy;
| | - Francesca Luziatelli
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, Via C. de Lellis, snc, I-01100 Viterbo, Italy; (F.L.); (M.R.)
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, Via C. de Lellis, snc, I-01100 Viterbo, Italy; (F.L.); (M.R.)
| |
Collapse
|
11
|
Palanisamy CP, Pei J, Alugoju P, Anthikapalli NVA, Jayaraman S, Veeraraghavan VP, Gopathy S, Roy JR, Janaki CS, Thalamati D, Mironescu M, Luo Q, Miao Y, Chai Y, Long Q. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics 2023; 13:4138-4165. [PMID: 37554286 PMCID: PMC10405853 DOI: 10.7150/thno.83066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons and intricate interactions between different cell types within the affected regions. Reliable biomarkers that can accurately reflect disease activity, diagnose, and monitor the progression of neurodegenerative diseases are crucial for the development of effective therapies. However, identifying suitable biomarkers has been challenging due to the heterogeneous nature of these diseases, affecting specific subsets of neurons in different brain regions. One promising approach for promoting brain regeneration and recovery involves the transplantation of mesenchymal stem cells (MSCs). MSCs have demonstrated the ability to modulate the immune system, promote neurite outgrowth, stimulate angiogenesis, and repair damaged tissues, partially through the release of their extracellular vesicles (EVs). MSC-derived EVs retain some of the therapeutic characteristics of their parent MSCs, including their ability to regulate neurite outgrowth, promote angiogenesis, and facilitate tissue repair. This review aims to explore the potential of MSC-derived EVs as an emerging therapeutic strategy for neurodegenerative diseases, highlighting their role in modulating disease progression and promoting neuronal recovery. By elucidating the mechanisms by which MSC-derived EVs exert their therapeutic effects, we can advance our understanding and leverage their potential for the development of novel treatment approaches in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chella Perumal Palanisamy
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Phaniendra Alugoju
- Department of Clinical Chemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Sridevi Gopathy
- Department of Physiology, SRM Dental College, Ramapuram campus, Chennai, Tamil Nadu 600089, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Coimbatore Sadagopan Janaki
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Qiang Luo
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yu Miao
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yuan Chai
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Qianfa Long
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| |
Collapse
|
12
|
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023; 28:5415. [PMID: 37513286 PMCID: PMC10385962 DOI: 10.3390/molecules28145415] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in people's longevity has, consequently, led to more brain involvement and neurodegenerative diseases, which can become complicated and lead to chronic degenerative diseases, thereby presenting greater public health problems. Medicinal plants have been used since ancient times and contain high concentrations of molecules, including polyphenols. It has been proven that polyphenols, which are present in various natural sources can provide curative effects against various diseases and brain disorders through neuroprotective effects. These neuroprotective effects are mainly attributed to their ability to cross the blood-brain barrier, eliminate reactive oxygen species, and cause the chelation of metal ions. Polyphenols increase the concentration of neurotrophic factors and bind directly to the membrane receptors of these neurotrophic factors, to modulate and activate the signaling cascades that allow the plasticity, survival, proliferation, and growth of neuronal cells, thereby allowing for better learning, memory, and cognition. Moreover, polyphenols have no serious adverse side effects resulting from their consumption.
Collapse
Affiliation(s)
- Raziel Alejandro Arias-Sánchez
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| | - Luz Torner
- Centro de Investigaciones Biomédicas de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| | - Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| |
Collapse
|
13
|
Rizvi ST, Shah JS, Shaaya S, Mollayeva T. Treating cognitive impairments in primary central nervous system infections: A systematic review of pharmacological interventions. Medicine (Baltimore) 2023; 102:e34151. [PMID: 37443498 PMCID: PMC10344564 DOI: 10.1097/md.0000000000034151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND This research synthesized scientific evidence on the use of pharmacotherapy as intervention to reduce cognitive impairments in adult patients with primary central nervous system (CNS) infections. METHODS We searched for experimental studies published in English prior to October 2021 in MEDLINE, Embase and Cochrane databases. We included non-randomized studies (NRS) and randomized control trials (RCT) of pharmacotherapy versus placebo, drug, or a combination of drugs in adults with primary CNS infection. The certainty of the evidence was rated according to GRADE guidelines. RESULTS We included 8 RCTs and 1 NRS, involving a total of 805 patients (50.77% male patients; mean age 42.67 ± 10.58) with Lyme disease (LD), herpes simplex virus type 1 (HSV-1), or Creutzfeldt-Jakob disease (CJD) studying the efficacy of antibiotics, antiviral, and non-opioid analgesic drugs, respectively. In patients with LD, antibiotics alone or in combination with other drugs enhanced certain cognitive domains relative to placebo. In patients with HSV-1, the results were inconsistent. In patients with CJD, flupirtine maleate enhanced baseline cognitive scores. The quality of RCT studies was low, and the quality of NRS of intervention was very low, suggesting low and very low certainty in the reported results. CONCLUSION There is limited evidence and low certainty regarding the efficacy of antimicrobials and analgesics in reducing cognitive impairments in patients with LD, HSV-1, and CJD. Future efforts must be aimed at enhancing attention to clinical trial methodology and reporting, as well as reaching a consensus on outcome measures and the endpoint of clinical trials relevant to patients.
Collapse
Affiliation(s)
- Syeda T. Rizvi
- University of Toronto, Toronto, ON
- KITE Research Institute University Health Network, Toronto, ON
| | - Jhankhana S. Shah
- University of Toronto, Toronto, ON
- KITE Research Institute University Health Network, Toronto, ON
| | - Sarah Shaaya
- University of Toronto, Toronto, ON
- KITE Research Institute University Health Network, Toronto, ON
| | - Tatyana Mollayeva
- University of Toronto, Toronto, ON
- KITE Research Institute University Health Network, Toronto, ON
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
14
|
Xiang L, Wang Y, Liu S, Liu B, Jin X, Cao X. Targeting Protein Aggregates with Natural Products: An Optional Strategy for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11275. [PMID: 37511037 PMCID: PMC10379780 DOI: 10.3390/ijms241411275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingzhi Xiang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
15
|
Melini V, Melini F, Comendador FJ. Response Surface Methodology as an Experimental Strategy for Ultrasound-Assisted Extraction of Phenolic Compounds from Artichoke Heads. Antioxidants (Basel) 2023; 12:1360. [PMID: 37507900 PMCID: PMC10376278 DOI: 10.3390/antiox12071360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The accurate quantification of phenolic compounds (PCs) in foods has become mandatory for a reliable estimation of PCs dietary intake. However, the extraction step of these molecules from the food matrix is a challenging and complex task. To manage the current lack of an official or generally accepted procedure for the recovery of phenolics, the application of statistical and mathematical tools, such as the response surface methodology (RSM), that allow the optimization of extraction parameters and the acquisition of the best output, has become the analytical approach of choice. The aim of this study was to apply an RSM-optimized ultrasound-assisted procedure to extract phenolic compounds from artichoke (Cynara cardunculus L. var. scolymus (L.) Hegi, cultivar "Campagnano") heads. The effect of extraction time, temperature, and solvent-to-sample ratio on the profile and content of phenolic acids and flavonoids was investigated. The total phenolic content was 488.13 ± 0.56 mg GAE 100 g-1 dry matter (dm) and total flavonoid content was 375.03 ± 1.49 mg CATeq 100 g-1 dm when the optimum extraction conditions were set. The HPLC analysis showed that caffeoylquinic acid derivatives (i.e., cynarin and 1,5-O-dicaffeoylquinic acid) were the main compounds in globe artichokes. Caffeic and p-coumaric acids were also identified. In regard to flavonoids, only the flavone luteolin-7-O-glucoside was identified.
Collapse
Affiliation(s)
- Valentina Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Roma, Italy
| | - Francesca Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Roma, Italy
| | | |
Collapse
|
16
|
Lodato M, Plaisance V, Pawlowski V, Kwapich M, Barras A, Buissart E, Dalle S, Szunerits S, Vicogne J, Boukherroub R, Abderrahmani A. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023; 12:cells12060940. [PMID: 36980281 PMCID: PMC10047094 DOI: 10.3390/cells12060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting β-cells, which would tackle the progression of the disease.
Collapse
Affiliation(s)
- Michele Lodato
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Maxime Kwapich
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Service de Diabétologie et d’Endocrinologie, CH Dunkerque, 59385 Dunkirk, France
| | - Alexandre Barras
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Emeline Buissart
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Jérôme Vicogne
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Correspondence: ; Tel.: +33-362531704
| |
Collapse
|
17
|
Pilipović K, Jurišić Grubešić R, Dolenec P, Kučić N, Juretić L, Mršić-Pelčić J. Plant-Based Antioxidants for Prevention and Treatment of Neurodegenerative Diseases: Phytotherapeutic Potential of Laurus nobilis, Aronia melanocarpa, and Celastrol. Antioxidants (Basel) 2023; 12:antiox12030746. [PMID: 36978994 PMCID: PMC10045087 DOI: 10.3390/antiox12030746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
With the progress of medicine, especially in the last century, life expectancy increased considerably. As a result, age-related diseases also increased, especially malignancies and degenerative diseases of the central nervous system. The incidence and prevalence of neurodegenerative diseases steadily increased over the years, but despite efforts to uncover the pathophysiological processes behind these conditions, they remain elusive. Among the many theories, oxidative stress was proposed to be involved in neurodegenerative processes and to play an important role in the morbidity and progression of various neurodegenerative disorders. Accordingly, a number of studies discovered the potential of natural plant constituents to have significant antioxidant activity. This review focused on several plant-based antioxidants that showed promising results in the prevention and treatment of neurodegenerative diseases. Laurus nobilis, Aronia melanocarpa, and celastrol, a chemical compound isolated from the root extracts of Tripterygium wilfordii and T. regelii, are all known to be rich in antioxidant polyphenols.
Collapse
Affiliation(s)
- Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Renata Jurišić Grubešić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Natalia Kučić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Lea Juretić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| |
Collapse
|
18
|
Khan S, Hassan MI, Shahid M, Islam A. Nature's Toolbox Against Tau Aggregation: An Updated Review of Current Research. Ageing Res Rev 2023; 87:101924. [PMID: 37004844 DOI: 10.1016/j.arr.2023.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Tau aggregation is a hallmark of several neurodegenerative disorders, such as Alzheimer's disease (AD), frontotemporal dementia, and progressive supranuclear palsy. Hyperphosphorylated tau is believed to contribute to the degeneration of neurons and the development of these complex diseases. Therefore, one potential treatment for these illnesses is to prevent or counteract tau aggregation. In recent years, interest has been increasing in developing nature-derived tau aggregation inhibitors as a potential treatment for neurodegenerative disorders. Researchers have become increasingly interested in natural compounds with multifunctional features, such as flavonoids, alkaloids, resveratrol, and curcumin, since these molecules can interact simultaneously with the various targets of AD. Recent studies have demonstrated that several natural compounds can inhibit tau aggregation and promote the disassembly of pre-formed tau aggregates. Nature-derived tau aggregation inhibitors hold promise as a potential treatment for neurodegenerative disorders. However, it is important to note that more research is needed to fully understand the mechanisms by which these compounds exert their effects and their safety and efficacy in preclinical and clinical studies. Nature-derived inhibitors of tau aggregation are a promising new direction in the research of neurodegenerative complexities. This review focuses on the natural products that have proven to be a rich supply for inhibitors in tau aggregation and their uses in neurodegenerative complexities, including AD.
Collapse
|
19
|
Zhang X, Wang L, Li B, Shi J, Xu J, Yuan M. Targeting Mitochondrial Dysfunction in Neurodegenerative Diseases: Expanding the Therapeutic Approaches by Plant-Derived Natural Products. Pharmaceuticals (Basel) 2023; 16:277. [PMID: 37259422 PMCID: PMC9961467 DOI: 10.3390/ph16020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 09/16/2023] Open
Abstract
Mitochondria are the primary source of energy production in neurons, supporting the high energy consumption of the nervous system. Inefficient and dysfunctional mitochondria in the central nervous system have been implicated in neurodegenerative diseases. Therefore, targeting mitochondria offers a new therapeutic opportunity for neurodegenerative diseases. Many recent studies have proposed that plant-derived natural products, as pleiotropic, safe, and readily obtainable sources of new drugs, potentially treat neurodegenerative diseases by targeting mitochondria. In this review, we summarize recent advances in targeting mitochondria in neurotherapeutics by employing plant-derived natural products. We discuss the mechanism of plant-derived natural products according to their mechanism of action on mitochondria in terms of regulating biogenesis, fusion, fission, bioenergetics, oxidative stress, calcium homeostasis, membrane potential, and mitochondrial DNA stability, as well as repairing damaged mitochondria. In addition, we discuss the potential perspectives and challenges in developing plant-derived natural products to target mitochondria, highlighting the clinical value of phytochemicals as feasible candidates for future neurotherapeutics.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Longqin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Minlan Yuan
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Anticancer Mechanism of Flavonoids on High-Grade Adult-Type Diffuse Gliomas. Nutrients 2023; 15:nu15040797. [PMID: 36839156 PMCID: PMC9964830 DOI: 10.3390/nu15040797] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
High-grade adult-type diffuse gliomas are the most common and deadliest malignant adult tumors of the central nervous system. Despite the advancements in the multimodality treatment of high-grade adult-type diffuse gliomas, the five-year survival rates still remain poor. The biggest challenge in treating high-grade adult-type diffuse gliomas is the intra-tumor heterogeneity feature of the glioma tumors. Introducing dietary flavonoids to the current high-grade adult-type diffuse glioma treatment strategies is crucial to overcome this challenge, as flavonoids can target several molecular targets. This review discusses the anticancer mechanism of flavonoids (quercetin, rutin, chrysin, apigenin, naringenin, silibinin, EGCG, genistein, biochanin A and C3G) through targeting molecules associated with high-grade adult-type diffuse glioma cell proliferation, apoptosis, oxidative stress, cell cycle arrest, migration, invasion, autophagy and DNA repair. In addition, the common molecules targeted by the flavonoids such as Bax, Bcl-2, MMP-2, MMP-9, caspase-8, caspase-3, p53, p38, Erk, JNK, p38, beclin-1 and LC3B were also discussed. Moreover, the clinical relevance of flavonoid molecular targets in high-grade adult-type diffuse gliomas is discussed with comparison to small molecules inhibitors: ralimetinib, AMG232, marimastat, hydroxychloroquine and chloroquine. Despite the positive pre-clinical results, further investigations in clinical studies are warranted to substantiate the efficacy and safety of the use of flavonoids on high-grade adult-type diffuse glioma patients.
Collapse
|
21
|
Woźniak-Budych M, Bajek A, Kowalczyk O, Giamberini M, Montornes JM, Staszak K, Tylkowski B. The Pragmatism of Polyphenols and Flavonoids Application as Drugs, from an Academic Lab to a Pharmacy Shelf. Curr Pharm Des 2023; 29:3421-3427. [PMID: 38083888 DOI: 10.2174/0113816128273103231204064507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/26/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols and flavonoids, naturally occurring compounds found abundantly in plants, have gained considerable attention in recent years due to their potential health benefits. Research exploring their bioactive properties has revealed promising therapeutic applications in various diseases. This article aims to provide a comprehensive overview of the intricate journey from academic laboratory discoveries to the availability of polyphenols and flavonoids as drugs on pharmacy shelves. It was shown that the transformation of these natural compounds into effective therapies is a promising avenue for enhancing human health. Yet, fully realizing this potential necessitates sustained scientific exploration, cross-disciplinary collaboration, and continued investment in research and development. This article underscores the importance of sustained collaboration and investment as key pillars of progress towards innovative and effective therapies.
Collapse
Affiliation(s)
| | - Anna Bajek
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Oliwia Kowalczyk
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marta Giamberini
- Departament d' Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep M Montornes
- Unitat de Tecnologia Química, Eurecat - Centre Tecnològic de Catalunya, Tarragona, Spain
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Poznan, Poland
| | - Bartosz Tylkowski
- Unitat de Tecnologia Química, Eurecat - Centre Tecnològic de Catalunya, Tarragona, Spain
| |
Collapse
|
22
|
Zhang Y, Yu W, Zhang L, Wang M, Chang W. The Interaction of Polyphenols and the Gut Microbiota in Neurodegenerative Diseases. Nutrients 2022; 14:nu14245373. [PMID: 36558531 PMCID: PMC9785743 DOI: 10.3390/nu14245373] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Polyphenols are secondary metabolites of plants and play a potential role in the prevention and treatment of neurodegenerative diseases (NND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) due to their unique physiological functions such as acting as antioxidants, being anti-inflammatory, being neuroprotective, and promoting intestinal health. Since dietary polyphenols exist in plant foods in the form of glycosylation or esterification or are combined with polymers, they need to undergo extensive metabolism through phase I and phase II biotransformations by various intestinal enzymes, as well as metabolism by the intestinal microbiota before they can be fully absorbed. Polyphenols improve intestinal microbiota disorders by influencing the structure and function of intestinal microbiota, inducing beneficial bacteria to produce a variety of metabolites such as short-chain fatty acids (SCFAs), promoting the secretion of hormones and neurotransmitters, and playing an important role in the prevention and treatment of NND by affecting the microbe-gut-brain axis. We review the ways in which some polyphenols can change the composition of the intestinal microbiota and their metabolites in AD or PD animal models to exert the role of slowing down the progression of NND, aiming to provide evidence for the role of polyphenols in slowing the progression of NND via the microbiota-gut-brain (MGB) axis.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
- Correspondence: ; Tel.: +86-532-82991791
| | - Wanpeng Yu
- Medical College, Qingdao University, Qingdao 266021, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|
23
|
Mani R, Sha Sulthana A, Muthusamy G, Elangovan N. Progress in the development of naturally derived active metabolites-based drugs: Potential therapeutics for Alzheimer's disease. Biotechnol Appl Biochem 2022; 69:2713-2732. [PMID: 35067971 DOI: 10.1002/bab.2317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an extensive age-associated neurodegenerative disorder. In spite of wide-ranging progress in understanding the AD pathology for the past 50 years, clinical trials based on the hypothesis of amyloid-beta (Aβ) have reserved worsening particularly at late-stage human trials. Consequently, very few old drugs are presently used for AD with inadequate clinical consequences and various side effects. We focus on widespread pharmacological and beneficial principles for existing as well as future drugs. Multitargeting approaches by means of general antioxidant and anti-inflammatory mechanisms allied with particular receptor and/or enzyme-mediated actions in neuroprotection and neurodegeneration. The plant kingdom comprises a vast range of species with an incredible diversity of bioactive metabolites with diverse chemical scaffolds. In recent times, an increasing body of facts recommended the use of phytochemicals to decelerate AD's onset and progression. The definitive goal of AD investigation is to avert the onset of neurodegeneration, thereby allowing successful aging devoid of cognitive decline. At this point, we discussed the neurological protective role of natural products and naturally derived therapeutic agents for AD from various natural polyphenolic compounds and medicinal plants. In conclusion, medicinal plants act as a chief source of different bioactive constituents.
Collapse
Affiliation(s)
- Renuka Mani
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ahmed Sha Sulthana
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ganesan Muthusamy
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
24
|
Fernandes AS, Oliveira C, Reis RL, Martins A, Silva TH. Marine-Inspired Drugs and Biomaterials in the Perspective of Pancreatic Cancer Therapies. Mar Drugs 2022; 20:689. [PMID: 36355012 PMCID: PMC9698933 DOI: 10.3390/md20110689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 05/12/2024] Open
Abstract
Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.
Collapse
Affiliation(s)
- Andreia S. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| |
Collapse
|
25
|
Rodríguez-Vera D, Abad-García A, Vargas-Mendoza N, Pinto-Almazán R, Farfán-García ED, Morales-González JA, Soriano-Ursúa MA. Polyphenols as potential enhancers of stem cell therapy against neurodegeneration. Neural Regen Res 2022; 17:2093-2101. [PMID: 35259814 PMCID: PMC9083162 DOI: 10.4103/1673-5374.335826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
The potential of polyphenols for treating chronic-degenerative diseases (particularly neurodegenerative diseases) is attractive. However, the selection of the best polyphenol for each treatment, the mechanisms by which they act, and their efficacy are frequently discussed. In this review, the basics and the advances in the field, as well as suggestions for using natural and synthetic polyphenols alone or in a combinatorial strategy with stem cell assays, are compiled and discussed. Thus, stem cells exhibit several responses when polyphenols are added to their environment, which could provide us with knowledge for advancing the elucidation of the origin of neurodegeneration. But also, polyphenols are being included in the innovative strategies of novel therapies for treating neurodegenerative diseases as well as metabolic diseases related to neurodegeneration. In this regard, flavonoid compounds are suggested as the best natural polyphenols due to their several mechanisms for acting in ameliorative effects; but increasing reports are involving other polyphenols. Even if some facts limiting bioactivity prevent them from conventional use, some natural polyphenols and derivatives hold the promise for being improved compounds, judged by their induced effects. The current results suggest polyphenols as enhancers of stem cell therapy against the targeted diseases.
Collapse
Affiliation(s)
- Diana Rodríguez-Vera
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Antonio Abad-García
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Nancy Vargas-Mendoza
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, State of México, México
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - José A. Morales-González
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| |
Collapse
|
26
|
Fisette A, Sergi D, Breton-Morin A, Descôteaux S, Martinoli MG. New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection. Curr Pharm Des 2022; 28:3068-3081. [PMID: 36121075 DOI: 10.2174/1381612828666220919085742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last three decades, neurodegenerative diseases have received increasing attention due to their frequency in the aging population and the social and economic burdens they are posing. In parallel, an era's worth of research in neuroscience has shaped our current appreciation of the complex relationship between nutrition and the central nervous system. Particular branches of nutrition continue to galvanize neuroscientists, in particular the diverse roles that bioactive food derivatives play on health and disease. Bioactive food derivatives are nowadays recognized to directly impact brain homeostasis, specifically with respect to their actions on cellular mechanisms of oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and autophagy. However, ambiguities still exist regarding the significance of the influence of bioactive food derivatives on human health. In turn, gut microbiota dysbiosis is emerging as a novel player in the pathogenesis of neurodegenerative diseases. Currently, several routes of communication exist between the gut and the brain, where molecules are either released in the bloodstream or directly transported to the CNS. As such, bioactive food derivatives can modulate the complex ecosystem of the gut-brain axis, thus, targeting this communication network holds promises as a neuroprotective tool. This review aims at addressing one of the emerging aspects of neuroscience, particularly the interplay between food bioactive derivatives and neurodegeneration. We will specifically address the role that polyphenols and omega-3 fatty acids play in preventing neurodegenerative diseases and how dietary intervention complements available pharmacological approaches.
Collapse
Affiliation(s)
- Alexandre Fisette
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Domenico Sergi
- Department of Translational Medicine, University di Ferrara, Ferrara, Italy
| | - Alyssa Breton-Morin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Savanah Descôteaux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada.,Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, Canada
| |
Collapse
|
27
|
Piotrowicz Z, Tabisz Ł, Łęska B, Messyasz B, Pankiewicz R. Comparison of the Antioxidant Properties of Green Macroalgae from Diverse European Water Habitats by Use of Several Semi-Quantitative Assays. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123812. [PMID: 35744937 PMCID: PMC9227508 DOI: 10.3390/molecules27123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022]
Abstract
Nowadays, algae are becoming more and more popular as a food group rich in nutrients, cosmetic raw materials full of antioxidants or valuable dietary supplements. They are of interest for the industry because they are found almost all over the world, in all climatic zones, both in fresh and salt waters. The aim of this study was to take a broad look at green algae (Chlorophyta) and to show how large the variability of the content of active compounds may depend on the species and the place and time of sample collection. Particular attention was paid to compounds with antioxidant activity, whose simplified profiles were created on the basis of complementary, semi-quantitative methods. Additionally, time-yield extraction optimizations were performed. Three different specimens of Ulva lactuca were compared: from the coastal zone of the Baltic Sea, from the open Baltic Sea area around Bornholm and Ulva spiralis (Ulva lactuca polymorph) from the Atlantic Ocean. The studied algae of the Cladophora genera were three different species of freshwater algae from various habitats: a lake (Cladophora glomerata), a river (Cladophora rivularis) and aquarium farming (Cladophora aegagropila, syn. Aegagropila linnaei). The content of antioxidants and the extraction efficiency varied significantly depending on the species.
Collapse
Affiliation(s)
- Zuzanna Piotrowicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (Z.P.); (Ł.T.); (B.Ł.)
| | - Łukasz Tabisz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (Z.P.); (Ł.T.); (B.Ł.)
| | - Bogusława Łęska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (Z.P.); (Ł.T.); (B.Ł.)
| | - Beata Messyasz
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Radosław Pankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (Z.P.); (Ł.T.); (B.Ł.)
- Correspondence:
| |
Collapse
|
28
|
Dall’Asta M, Barbato M, Rocchetti G, Rossi F, Lucini L, Marsan PA, Colli L. Nutrigenomics: an underestimated contribution to the functional role of polyphenols. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
The Multifaceted Role of Neuroprotective Plants in Alzheimer’s Disease Treatment. Geriatrics (Basel) 2022; 7:geriatrics7020024. [PMID: 35314596 PMCID: PMC8938774 DOI: 10.3390/geriatrics7020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related, progressive neurodegenerative disorder characterized by impaired cognition, memory loss, and altered personality. Many of the available pharmaceutical treatments do not alter the onset of disease progression. Recently, alternatives to developed drug candidates have been explored including medicinal plants and herbal treatments for the treatment of AD. This article examines the role of herbal plant extracts and the neuroprotective effects as alternative modes of intervention for AD progression. These extracts contain key metabolites that culminate alterations in AD progression. The traditional plant extracts explored in this article induce a variety of beneficial properties, including antioxidants, anti-inflammatory, and enhanced cognition, while also inducing activity on AD drug targets such as Aβ degradation. While these neuroprotective aspects for AD are relatively recent, there is great potential in the drug discovery aspect of these plant extracts for future use in AD treatment.
Collapse
|
30
|
Curcumin and Weight Loss: Does It Work? Int J Mol Sci 2022; 23:ijms23020639. [PMID: 35054828 PMCID: PMC8775659 DOI: 10.3390/ijms23020639] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.
Collapse
|
31
|
Giovannini J, Smeralda W, Jouanne M, Sopkova-de Oliveira Santos J, Catto M, Sophie Voisin-Chiret A. Tau protein aggregation: key features to improve drug discovery screening. Drug Discov Today 2022; 27:1284-1297. [DOI: 10.1016/j.drudis.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
32
|
Three in One: The Potential of Brassica By-Products against Economic Waste, Environmental Hazard, and Metabolic Disruption in Obesity. Nutrients 2021; 13:nu13124194. [PMID: 34959745 PMCID: PMC8708897 DOI: 10.3390/nu13124194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A large amount of waste is generated within the different steps of the food supply chain, representing a significant loss of natural resources, plant material, and economic value for producers and consumers. During harvesting and processing, many parts of edible plants are not sold for consumption and end up as massive waste, adding environmental hazards to the list of concerns regarding food wastage. Examples are Brassica oleracea var. Italica (broccoli) by-products, which represent 75% of the plant mass. A growing concern in the Western world is obesity, which results from incorrect lifestyles and comprises an extensive array of co-morbidities. Several studies have linked these co-morbidities to increased oxidative stress; thus, naturally occurring and readily available antioxidant compounds are an attractive way to mitigate metabolic diseases. The idea of by-products selected for their biomedical value is not novel. However, there is innovation underlying the use of Brassica by-products in the context of obesity. For this reason, Brassica by-products are prime candidates to be used in the treatment of obesity due to its bioactive compounds, such as sulforaphane, which possess antioxidant activity. Here, we review the economic and health potential of Brassica bioactive compounds in the context of obesity.
Collapse
|
33
|
Rivas F, Poblete-Aro C, Pando ME, Allel MJ, Fernandez V, Soto A, Nova P, Garcia-Diaz D. Effects of polyphenols in aging and neurodegeneration associated with oxidative stress. Curr Med Chem 2021; 29:1045-1060. [PMID: 34720075 DOI: 10.2174/0929867328666211101100632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 11/22/2022]
Abstract
Aging is defined as the functional loss of tissues and organs over time. This is a biological, irreversible, progressive, and universal process that results from genetic and environmental factors, such as diet, physical activity, smoking, harmful alcohol consumption, and exposure to toxins, among others. Aging is a consequence of molecular and cellular damage built up over time. This damage begins with a gradual decrease in physical and mental capacity, thus increasing the risk of neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Neuronal, functional, and structural damage can be explained by an imbalance among free radicals, reactive oxygen species, reactive nitrogen species, and antioxidants, which finally lead to oxidative stress. Due to the key role of free radicals, reactive oxygen species, and reactive nitrogen species, antioxidant therapy may reduce the oxidative damage associated with neurodegeneration. Exogenous antioxidants are molecules that may help maintain the balance between the formation and elimination of free radicals, thus protecting the cell from their toxicity. Among them, polyphenols are a broad group of secondary plant metabolites with potent antioxidant properties. Here, we review several studies that show the potential role of polyphenol consumption to prevent, or slow down, harmful oxidative processes linked to neurodegenerative disorders.
Collapse
Affiliation(s)
- Francisca Rivas
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | - Carlos Poblete-Aro
- Centro de Investigacion de Rehabilitacion en Salud, Universidad de las Americas, Santiago. Chile
| | - María Elsa Pando
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | - María José Allel
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | - Valentina Fernandez
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | | | - Pablo Nova
- Unidad de Anatomia Humana Normal, Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago. Chile
| | - Diego Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| |
Collapse
|
34
|
Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, Jeong YJ, Goh SH, Kim CS, Lee KJ. Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges. Molecules 2021; 26:5327. [PMID: 34500759 PMCID: PMC8433718 DOI: 10.3390/molecules26175327] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Natural products derived from plants, as well as their bioactive compounds, have been extensively studied in recent years for their therapeutic potential in a variety of neurodegenerative diseases (NDs), including Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease. These diseases are characterized by progressive dysfunction and loss of neuronal structure and function. There has been little progress in designing efficient treatments, despite impressive breakthroughs in our understanding of NDs. In the prevention and therapy of NDs, the use of natural products may provide great potential opportunities; however, many clinical issues have emerged regarding their use, primarily based on the lack of scientific support or proof of their effectiveness and patient safety. Since neurodegeneration is associated with a myriad of pathological processes, targeting multi-mechanisms of action and neuroprotection approaches that include preventing cell death and restoring the function of damaged neurons should be employed. In the treatment of NDs, including AD and PD, natural products have emerged as potential neuroprotective agents. This current review will highlight the therapeutic potential of numerous natural products and their bioactive compounds thatexert neuroprotective effects on the pathologies of NDs.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Johny Bajgai
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Ailyn Fadriquela
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Subham Sharma
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Thuy Thi Trinh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Rokeya Akter
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Yun Ju Jeong
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Seong Hoon Goh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| |
Collapse
|
35
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
36
|
Di Santo MC, D' Antoni CL, Domínguez Rubio AP, Alaimo A, Pérez OE. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications - A review. Biomed Pharmacother 2021; 142:111970. [PMID: 34333289 DOI: 10.1016/j.biopha.2021.111970] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Plant-based polyphenols are natural compounds, present in fruits and vegetables. During recent years, polyphenols have gained special attention due to their nutraceutical and pharmacological activities for the prevention and treatment of human diseases. Nevertheless, their photosensitivity and low bioavailability, rapid metabolism and short biological half-life represent the major limitations for their use, which could be overcome by polyphenols encapsulation (flavonoids and non-flavonoids) into chitosan (CS)-tripolyphosphate (TPP) based nanoparticles (NP). In this review, we particularly focused on the ionic gelation method for the NP design. This contribution exhaustively discusses and compares results of scientific reports published in the last decade referring to ionic gelation applied for the protection, controlled and site-directed delivery of polyphenols. As a consequence, CS-TPP NP would constitute true platforms to transport polyphenols, or a combination of them, to be used for the designing of a new generation of drugs or nutraceuticals.
Collapse
Affiliation(s)
- Mariana Carolina Di Santo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Cecilia Luciana D' Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Scassellati C, Galoforo AC, Esposito C, Ciani M, Ricevuti G, Bonvicini C. Promising Intervention Approaches to Potentially Resolve Neuroinflammation And Steroid Hormones Alterations in Alzheimer's Disease and Its Neuropsychiatric Symptoms. Aging Dis 2021; 12:1337-1357. [PMID: 34341712 PMCID: PMC8279527 DOI: 10.14336/ad.2021.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a biological process by which the central nervous system responds to stimuli/injuries affecting its homeostasis. So far as this reactive response becomes exacerbated and uncontrolled, it can lead to neurodegeneration, compromising the cognitive and neuropsychiatric domains. Parallelly, modifications in the hypothalamic signaling of neuroprotective hormones linked also to the inflammatory responses of microglia and astrocytes can exacerbate these processes. To complicate the picture, modulations in the gut microbiota (GM) can induce changes in neuroinflammation, altering cognitive and neuropsychiatric functioning. We conducted a web-based search on PubMed. We described studies regarding the cross-talk among microglia and astrocytes in the neuroinflammation processes, along with the role played by the steroid hormones, and how this can reflect on cognitive decline/neurodegeneration, in particular on Alzheimer's Disease (AD) and its neuropsychiatric manifestations. We propose and support the huge literature showing the potentiality of complementary/alternative therapeutic approaches (nutraceuticals) targeting the sustained inflammatory response, the dysregulation of hypothalamic system and the GM composition. NF-κB and Keap1/Nrf2 are the main molecular targets on which a list of nutraceuticals can modulate the altered processes. Since there are some limitations, we propose a new intervention natural treatment in terms of Oxygen-ozone (O2-O3) therapy that could be potentially used for AD pathology. Through a meta-analytic approach, we found a significant modulation of O3 on inflammation-NF-κB/NLRP3 inflammasome/Toll-Like Receptor 4 (TLR4)/Interleukin IL-17α signalling, reducing mRNA (p<0.00001 Odd Ratio (OR)=-5.25 95% CI:-7.04/-3.46) and protein (p<0.00001 OR=-4.85 95%CI:-6.89/-2.81) levels, as well as on Keap1/Nrf2 pathway. Through anti-inflammatory, immune, and steroid hormones modulation and anti-microbial activities, O3 at mild therapeutic concentrations potentiated with nutraceuticals and GM regulators could determine combinatorial effects impacting on cognitive and neurodegenerative domains, neuroinflammation and neuroendocrine signalling, directly or indirectly through the mediation of GM.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy.
- University of Pavia, Pavia, Italy.
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy.
- Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy.
- P.D. High School in Geriatrics, University of Pavia, Italy.
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Giovanni Ricevuti
- P.D. High School in Geriatrics, University of Pavia, Italy.
- Department of Drug Sciences, University of Pavia, Italy.
- St. Camillus Medical University, Rome, Italy.
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
38
|
De Santis S, Liso M, Verna G, Curci F, Milani G, Faienza MF, Franchini C, Moschetta A, Chieppa M, Clodoveo ML, Crupi P, Corbo F. Extra Virgin Olive Oil Extracts Modulate the Inflammatory Ability of Murine Dendritic Cells Based on Their Polyphenols Pattern: Correlation between Chemical Composition and Biological Function. Antioxidants (Basel) 2021; 10:1016. [PMID: 34202671 PMCID: PMC8300824 DOI: 10.3390/antiox10071016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Extra virgin olive oil (EVOO) represents one of the most important health-promoting foods whose antioxidant and anti-inflammatory activities are mainly associated to its polyphenols content. To date, studies exploring the effect of EVOO polyphenols on dendritic cells (DCs), acting as a crosstalk between the innate and the adaptive immune response, are scanty. Therefore, we studied the ability of three EVOO extracts (cv. Coratina, Cima di Mola/Coratina, and Casaliva), characterized by different polyphenols amount, to regulate DCs maturation in resting conditions or after an inflammatory stimulus. Cima di Mola/Coratina and Casaliva extracts were demonstrated to be the most effective in modulating DCs toward an anti-inflammatory profile by reduction of TNF and IL-6 secretion and CD86 expression, along with a down-modulation of Il-1β and iNOS expression. From factorial analysis results, 9 polyphenols were tentatively established to play a synergistic role in modulating DCs inflammatory ability, thus reducing the risk of chronic inflammation.
Collapse
Affiliation(s)
- Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| | - Marina Liso
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (M.C.)
| | - Giulio Verna
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Francesca Curci
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| | - Gualtiero Milani
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Carlo Franchini
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (A.M.); (M.L.C.)
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (M.C.)
| | - Maria Lisa Clodoveo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (A.M.); (M.L.C.)
| | - Pasquale Crupi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (A.M.); (M.L.C.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| |
Collapse
|
39
|
Modelling and Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Quinoa by Response Surface Methodology. Molecules 2021; 26:molecules26123616. [PMID: 34204777 PMCID: PMC8231643 DOI: 10.3390/molecules26123616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Phenolic compounds are currently the most investigated class of functional components in quinoa. However, great variability in their content emerged, because of differences in sample intrinsic and extrinsic characteristics; processing-induced factors; as well as extraction procedures applied. This study aimed to optimize phenolic compound extraction conditions in black quinoa seeds by Response Surface Methodology. An ultrasound-assisted extraction was performed with two different mixtures; and the effect of time; temperature; and sample-to-solvent ratio on total phenolic content (TPC) was investigated. Data were fitted to a second-order polynomial model. Multiple regression analysis and analysis of variance were used to determine the fitness of the model and optimal conditions for TPC. Three-dimensional surface plots were generated from the mathematical models. TPC at optimal conditions was 280.25 ± 3.94 mg of Gallic Acid Equivalent (GAE) 100 g−1 dm upon extraction with aqueous methanol/acetone, and 236.37 ± 5.26 mg GAE 100 g−1 dm with aqueous ethanol mixture. The phenolic profile of extracts obtained at optimal conditions was also investigated by HPLC. The two extracting procedures did not show different specificities for phenolic compounds but differed in the extraction yield.
Collapse
|
40
|
Gossypitrin, A Naturally Occurring Flavonoid, Attenuates Iron-Induced Neuronal and Mitochondrial Damage. Molecules 2021; 26:molecules26113364. [PMID: 34199597 PMCID: PMC8199700 DOI: 10.3390/molecules26113364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
The disruption of iron homeostasis is an important factor in the loss of mitochondrial function in neural cells, leading to neurodegeneration. Here, we assessed the protective action of gossypitrin (Gos), a naturally occurring flavonoid, on iron-induced neuronal cell damage using mouse hippocampal HT-22 cells and mitochondria isolated from rat brains. Gos was able to rescue HT22 cells from the damage induced by 100 µM Fe(II)-citrate (EC50 8.6 µM). This protection was linked to the prevention of both iron-induced mitochondrial membrane potential dissipation and ATP depletion. In isolated mitochondria, Gos (50 µM) elicited an almost complete protection against iron-induced mitochondrial swelling, the loss of mitochondrial transmembrane potential and ATP depletion. Gos also prevented Fe(II)-citrate-induced mitochondrial lipid peroxidation with an IC50 value (12.45 µM) that was about nine time lower than that for the tert-butylhydroperoxide-induced oxidation. Furthermore, the flavonoid was effective in inhibiting the degradation of both 15 and 1.5 mM 2-deoxyribose. It also decreased Fe(II) concentration with time, while increasing O2 consumption rate, and impairing the reduction of Fe(III) by ascorbate. Gos-Fe(II) complexes were detected by UV-VIS and IR spectroscopies, with an apparent Gos-iron stoichiometry of 2:1. Results suggest that Gos does not generally act as a classical antioxidant, but it directly affects iron, by maintaining it in its ferric form after stimulating Fe(II) oxidation. Metal ions would therefore be unable to participate in a Fenton-type reaction and the lipid peroxidation propagation phase. Hence, Gos could be used to treat neuronal diseases associated with iron-induced oxidative stress and mitochondrial damage.
Collapse
|
41
|
Genome-Wide Differential Methylation Profiles from Two Terpene-Rich Medicinal Plant Extracts Administered in Osteoarthritis Rats. PLANTS 2021; 10:plants10061132. [PMID: 34199631 PMCID: PMC8227118 DOI: 10.3390/plants10061132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Extracts from the plants Phlomis umbrosa and Dipsacus asperoides—which are widely used in Korean and Chinese traditional medicine to treat osteoarthritis and other bone diseases—were used to treat experimental osteoarthritis (OA) rats. Genome-wide differential methylation regions (DMRs) of these medicinal-plant-treated rats were profiled as therapeutic evidence associated with traditional medicine, and they need to be investigated further using detailed molecular research to extrapolate traditional practices to modern medicine. In total, 49 protein-encoding genes whose expression is differentially regulated during disease progression and recovery have been discovered via systematic bioinformatic analysis and have been approved/proposed as druggable targets for various bone diseases by the US food and drug administration. Genes encoding proteins involved in the PI3K/AKT pathway were found to be enriched, likely as this pathway plays a crucial role during OA progression as well as during the recovery process after treatment with the aforementioned plant extracts. The four sub-networks of PI3K/AKT were highly regulated by these plant extracts. Overall, 29 genes were seen in level 2 (51–75%) DMRs and were correlated highly with OA pathogenesis. Here, we propose that these genes could serve as targets to study OA; moreover, the iridoid and triterpenoid phytochemicals obtained from these two plants may serve as potential therapeutic agents.
Collapse
|
42
|
Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. Cells 2021; 10:1309. [PMID: 34070275 PMCID: PMC8225186 DOI: 10.3390/cells10061309] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Joshua Drew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wren Berney
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325, USA
| |
Collapse
|
43
|
Gut Microbiota Induced by Pterostilbene and Resveratrol in High-Fat-High-Fructose Fed Rats: Putative Role in Steatohepatitis Onset. Nutrients 2021; 13:nu13051738. [PMID: 34065444 PMCID: PMC8160898 DOI: 10.3390/nu13051738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Resveratrol and its 2-methoxy derivative pterostilbene are two phenolic compounds that occur in foodstuffs and feature hepato-protective effects. This study is devoted to analysing and comparing the metabolic effects of pterostilbene and resveratrol on gut microbiota composition in rats displaying NAFLD induced by a diet rich in saturated fat and fructose. The associations among changes induced by both phenolic compounds in liver status and those induced in gut microbiota composition were also analysed. For this purpose, fifty Wistar rats were distributed in five experimental groups: a group of animals fed a standard diet (CC group) and four additional groups fed a high-fat high-fructose diet alone (HFHF group) or supplemented with 15 or 30 mg/kg bw/d of pterostilbene (PT15 and PT30 groups, respectively) or 30 mg/kg bw/d of resveratrol (RSV30 group). The dramatic changes induced by high-fat high-fructose feeding in the gut microbiota were poorly ameliorated by pterostilbene or resveratrol. These results suggest that the specific changes in microbiota composition induced by pterostilbene (increased abundances of Akkermansia and Erysipelatoclostridium, and lowered abundance of Clostridum sensu stricto 1) may not entirely explain the putative preventive effects on steatohepatitis.
Collapse
|
44
|
Matute A, Tabart J, Cheramy-Bien JP, Kevers C, Dommes J, Defraigne JO, Pincemail J. Ex Vivo Antioxidant Capacities of Fruit and Vegetable Juices. Potential In Vivo Extrapolation. Antioxidants (Basel) 2021; 10:770. [PMID: 34066070 PMCID: PMC8151340 DOI: 10.3390/antiox10050770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In support of claims that their products have antioxidant properties, the food industry and dietary supplement manufacturers rely solely on the in vitro determination of the ORAC (oxygen radical antioxidant capacity) value, despite its acknowledged lack of any in vivo relevance. It thus appears necessary to use tests exploiting biological materials (blood, white blood cells) capable of producing physiological free radicals, in order to evaluate more adequately the antioxidant capacities of foods such as fruit and vegetable juices. MATERIALS Two approaches to assessing the antioxidant capacities of 21 commercial fruit and vegetable juices were compared: the ORAC assay and the "PMA-whole blood assay," which uses whole blood stimulated by phorbol myristate acetate to produce the superoxide anion. We described in another paper the total polyphenol contents (TPCs) and individual phenolic compound contents of all the juices were investigated. RESULTS Ranking of the juices from highest to lowest antioxidant capacity differed considerably according to the test used, so there was no correlation (r = 0.33, p = 0.13) between the two assays when considering all juices. Although the results of the ORAC assay correlated positively with TPC (r = 0.50, p = 0.02), a much stronger correlation (r = 0.70, p = 0.004) emerged between TPC and % superoxide anion inhibition. In the PMA-whole blood assay, peonidin-3-O-glucoside, epigallocatechin gallate, catechin, and quercetin present in juices were found to inhibit superoxide anion production at concentrations below 1 µM, with a strong positive correlation. CONCLUSIONS Associated with the determination of total and individual phenolic compounds contained in fruit and vegetable juices, the PMA-whole blood assay appears better than the ORAC assay for evaluating juice antioxidant capacity.
Collapse
Affiliation(s)
- Alexis Matute
- Laboratory of Plant Molecular Biology and Biotechnology, UR InBios-Phytosystems, University of Liège, Sart Tilman, 4000 Liège, Belgium; (A.M.); (J.T.); (C.K.); (J.D.)
| | - Jessica Tabart
- Laboratory of Plant Molecular Biology and Biotechnology, UR InBios-Phytosystems, University of Liège, Sart Tilman, 4000 Liège, Belgium; (A.M.); (J.T.); (C.K.); (J.D.)
| | - Jean-Paul Cheramy-Bien
- Department of Cardiovascular Surgery, CREDEC and Platform Nutrition Antioxydante et Santé, CHU and University of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (J.-O.D.)
| | - Claire Kevers
- Laboratory of Plant Molecular Biology and Biotechnology, UR InBios-Phytosystems, University of Liège, Sart Tilman, 4000 Liège, Belgium; (A.M.); (J.T.); (C.K.); (J.D.)
| | - Jacques Dommes
- Laboratory of Plant Molecular Biology and Biotechnology, UR InBios-Phytosystems, University of Liège, Sart Tilman, 4000 Liège, Belgium; (A.M.); (J.T.); (C.K.); (J.D.)
| | - Jean-Olivier Defraigne
- Department of Cardiovascular Surgery, CREDEC and Platform Nutrition Antioxydante et Santé, CHU and University of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (J.-O.D.)
| | - Joël Pincemail
- Department of Cardiovascular Surgery, CREDEC and Platform Nutrition Antioxydante et Santé, CHU and University of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (J.-O.D.)
| |
Collapse
|
45
|
Tonali N, Hericks L, Schröder DC, Kracker O, Krzemieniecki R, Kaffy J, Le Joncour V, Laakkonen P, Marion A, Ongeri S, Dodero VI, Sewald N. Peptidotriazolamers Inhibit Aβ(1-42) Oligomerization and Cross a Blood-Brain-Barrier Model. Chempluschem 2021; 86:840-851. [PMID: 33905181 DOI: 10.1002/cplu.202000814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/07/2021] [Indexed: 12/25/2022]
Abstract
In peptidotriazolamers every second peptide bond is replaced by a 1H-1,2,3-triazole. Such foldamers are expected to bridge the gap in molecular weight between small-molecule drugs and protein-based drugs. Amyloid β (Aβ) aggregates play an important role in Alzheimer's disease. We studied the impact of amide bond replacements by 1,4-disubstituted 1H-1,2,3-triazoles on the inhibitory activity of the aggregation "hot spots" K16 LVFF20 and G39 VVIA42 in Aβ(1-42). We found that peptidotriazolamers act as modulators of the Aβ(1-42) oligomerization. Some peptidotriazolamers are able to interfere with the formation of toxic early Aβ oligomers, depending on the position of the triazoles, which is also supported by computational studies. Preliminary in vitro results demonstrate that a highly active peptidotriazolamer is also able to cross the blood-brain-barrier.
Collapse
Affiliation(s)
- Nicolo Tonali
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany.,BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Loreen Hericks
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - David C Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Oliver Kracker
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Radosław Krzemieniecki
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Julia Kaffy
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Vadim Le Joncour
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Pirjo Laakkonen
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Veronica I Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| |
Collapse
|
46
|
Aneklaphakij C, Saigo T, Watanabe M, Naake T, Fernie AR, Bunsupa S, Satitpatipan V, Tohge T. Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. FRONTIERS IN PLANT SCIENCE 2021; 12:642581. [PMID: 33889165 PMCID: PMC8056029 DOI: 10.3389/fpls.2021.642581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 05/27/2023]
Abstract
Nuts, such as peanut, almond, and chestnut, are valuable food crops for humans being important sources of fatty acids, vitamins, minerals, and polyphenols. Polyphenols, such as flavonoids, stilbenoids, and hydroxycinnamates, represent a group of plant-specialized (secondary) metabolites which are characterized as health-beneficial antioxidants within the human diet as well as physiological stress protectants within the plant. In food chemistry research, a multitude of polyphenols contained in culinary nuts have been studied leading to the identification of their chemical properties and bioactivities. Although functional elucidation of the biosynthetic genes of polyphenols in nut species is crucially important for crop improvement in the creation of higher-quality nuts and stress-tolerant cultivars, the chemical diversity of nut polyphenols and the key biosynthetic genes responsible for their production are still largely uncharacterized. However, current technical advances in whole-genome sequencing have facilitated that nut plant species became model plants for omics-based approaches. Here, we review the chemical diversity of seed polyphenols in majorly consumed nut species coupled to insights into their biological activities. Furthermore, we present an example of the annotation of key genes involved in polyphenolic biosynthesis in peanut using comparative genomics as a case study outlining how we are approaching omics-based approaches of the nut plant species.
Collapse
Affiliation(s)
- Chaiwat Aneklaphakij
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoki Saigo
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Thomas Naake
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Veena Satitpatipan
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
47
|
Leclerc M, Dudonné S, Calon F. Can Natural Products Exert Neuroprotection without Crossing the Blood-Brain Barrier? Int J Mol Sci 2021; 22:ijms22073356. [PMID: 33805947 PMCID: PMC8037419 DOI: 10.3390/ijms22073356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood–brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut–microbiota–brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Stéphanie Dudonné
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48697); Fax: +1-(418)-654-2761
| |
Collapse
|
48
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|
49
|
Rodriguez-Chavez V, Moran J, Molina-Salinas G, Zepeda Ruiz WA, Rodriguez MC, Picazo O, Cerbon M. Participation of Glutamatergic Ionotropic Receptors in Excitotoxicity: The Neuroprotective Role of Prolactin. Neuroscience 2021; 461:180-193. [PMID: 33647379 DOI: 10.1016/j.neuroscience.2021.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023]
Abstract
Glutamate (Glu) is known as the main excitatory neurotransmitter in the central nervous system. It can trigger a series of processes ranging from synaptic plasticity to neurophysiological regulation. To carry out its functions, Glu acts via interaction with its cognate receptors, which are ligand-dependent. Glutamatergic receptors include ionotropic and metabotropic categories. The first allows the passage of ions through the postsynaptic membrane, while the metabotropic subtype activates signaling cascades through second messengers. It is well known that an excess of extracellular Glu concentration induces overstimulation of ionotropic glutamatergic receptors (iGluRs), causing the excitotoxicity phenomenon that leads to neuronal damage and cell death. Excitotoxicity plays a crucial role in different brain pathologies such as brain strokes, epilepsy and neurodegenerative disorders. However, until now, there are no effective neuroprotective compounds to prevent or rescue neurons from excitotoxicity. Thus, the continuous elucidation of the molecular mechanisms underlying excitotoxicity in order to prevent damage or neuronal death is necessary. Therefore, the aim of this review was to summarize the current knowledge regarding iGluRs, while describing their structures and molecular mechanisms of action, including their role in excitotoxicity, as well as the current strategies to reduce excitotoxic damage. Particularly, strategies mediated by prolactin, a somatotropin family-related hormone that displays a significant neuroprotective effect against both Glu and kainic acid-induced excitotoxicity in the hippocampus, are described. Finally, the role of prolactin as a possible molecule in the treatment of excitotoxicity in neurological diseases is discussed.
Collapse
Affiliation(s)
- V Rodriguez-Chavez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - J Moran
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - G Molina-Salinas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - W A Zepeda Ruiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - M C Rodriguez
- Instituto Nacional de Salud Pública, CISEI, Cuernavaca, Morelos 62100, Mexico
| | - O Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340 Ciudad de México, Mexico.
| | - M Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico.
| |
Collapse
|
50
|
Akter R, Rahman MH, Behl T, Chowdhury MAR, Manirujjaman M, Bulbul IJ, Elshenaw SE, Tit DM, Bungau S. Prospective Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:430-450. [DOI: 10.2174/1871527320666210218084444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023]
Abstract
:
Aging is an important stage of the human life cycle and the primary risk factor for neurodegenerative diseases (ND). The aging process contributes to modifications in cells, which may lead to a lack of nutrient signaling, disrupted cellular activity, increased oxidative pressure, cell homeostasis depletion, genomic instability, misfolded protein aggregation, impaired cellular protection, and telomere reduction. The neuropathologies found in Alzheimer's disease (AD) and Parkinson's disease (PD) are internally and extrinsically compound environmental stressors which may be partially alleviated by using different phytochemicals. The new therapies for ND are restricted as they are primarily targeted at final disease progression, including behavioral shifts, neurological disorders, proteinopathies, and neuronal failure. This review presents the role of phytochemicals-related polyphenolic compounds as an accompanying therapy model to avoid neuropathologies linked to AD, PD and to simultaneously enhance two stochastic stressors, namely inflammation and oxidative stress, promoting their disease pathologies. Therefore, this approach represents a prophylactic way to target risk factors that rely on their action against ND that does not occur through current pharmacological agents over the life of a person.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | - Manirujjaman Manirujjaman
- Institute of Health and Biomedical Innovation (IHBI), School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Kelvin Grove, Australia
| | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Shimaa E. Elshenaw
- Center of stem cell and regenerative medicine, Zewail City for Science, Egypt
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| |
Collapse
|