1
|
Wei T, Lei M, Jiang H, Cai J, Peng Q, Wei Y, Chen Z, Geng J, Ren F, Chen C, Yang Z, Zhang Y, Chu Z, Jia H, Yin Z, Zhao T. Attenuated Salmonella carrying IL-21 overexpression plasmid enhances radiotherapy efficacy in a preclinical model of melanoma. Int Immunopharmacol 2025; 154:114590. [PMID: 40174337 DOI: 10.1016/j.intimp.2025.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Melanoma, known for its aggressive behavior and tendency to metastasize to the brain and lungs, is a formidable challenge in oncology. Radiotherapy is a potent treatment for localized solid tumors, effective against both intracranial and extracranial metastases. Yet, some melanoma patients exhibit substantial resistance to radiotherapy, with the underlying mechanisms of this resistance remaining elusive. While radiotherapy can stimulate the infiltration of immune cells, thereby triggering a range of immunostimulatory effects, it can also suppress the tumor microenvironment (TME), limiting its effectiveness. In physiological conditions, cytokines inhibit the activity of immunosuppressive cells through paracrine and autocrine signaling, while also activating immune cells to boost antitumor responses. Here, we found that Interleukin (IL)-21 expression was higher in the mice with good radiotherapy response to melanoma than in the mice with poor radiotherapy response. Interestingly, we also observed the higher infiltration of M2 TAMs and lower CD8+ T cells in the group with poor radiotherapy response. To tackle this issue, we explored the therapeutic potential of a plasmid encoding IL-21, delivered via attenuated Salmonella, in mice bearing melanomas. Our findings revealed that IL-21 administration significantly reduced M2 TAMs infiltration and enhanced CD8+ T cells infiltration and granzyme B (GZMB) expression within melanoma tumors. Most importantly, the combination of IL-21 with radiotherapy led to markedly tumor reduction compared to either treatment alone. This research highlights the potential of IL-21 as a valuable adjunct to radiotherapy in the treatment of melanoma, presenting a promising strategy for enhancing antitumor immune responses and optimizing patient outcomes.
Collapse
Affiliation(s)
- Tian Wei
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Mengyu Lei
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Hanyu Jiang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jingjing Cai
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Qi Peng
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yuqing Wei
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Zhihan Chen
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jiaxin Geng
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Caili Chen
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Zishan Yang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Zhili Chu
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Huijie Jia
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China.
| | - Zhinan Yin
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China.
| | - Tiesuo Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China.
| |
Collapse
|
2
|
Tian Y, Li J, Yang N, Zhao Y, Zuo J, Xiong H, Pan Y, Xiao L, Su M, Han F, He Z, Hu R. Integrated microfluidics-based construction of anti-BTN2A2 gel droplet cell preparations for non-invasive tumor-infiltrating lymphocyte therapy. Mater Today Bio 2025; 31:101545. [PMID: 40026625 PMCID: PMC11869011 DOI: 10.1016/j.mtbio.2025.101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
Tumor infiltrating lymphocyte therapy (TIL therapy) is one of the effective treatments for solid tumors. However, certain periods or sites of solid tumors are not amenable to surgical resection. Meanwhile, the abundant and dense extracellular matrix (ECM) and regulatory cells (e.g., regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC)) in solid tumors when infused back into the treatment will prevent T cell infiltration and proliferation, thus inhibiting the efficacy of this approach. In this study, a novel cell preparation was successfully developed by integrating microfluidic chip design with carbodiimide chemical modification. This preparation was surface modified with BTN2A2 antibodies and internally contained T cells isolated from the blood of tumor hosts, along with simulated collagen peptide CMP. Specifically, the cell preparation exerted its anti-tumor effects through multiple mechanisms: Firstly, the surface BTN2A2 antibodies effectively inhibited the proliferation of Tregs and MDSCs within the tumor microenvironment; Secondly, leveraging the T cell antigen receptors (TCRs) present in the blood T cells, which were similar to those of tumor-infiltrating lymphocytes, significantly enhanced their targeting and cytotoxic capabilities; Furthermore, the CMP component within the droplets effectively promoted the infiltration of T cells into tumor tissues. In the complex immunosuppressive microenvironment, the synergistic action of these components markedly enhanced the clearance efficacy of the immune system. Experimental results demonstrated that this cellular preparation exhibited promising therapeutic effects in both melanoma and pancreatic cancer models. This research provided a novel platform for the synergistic cooperation of various methods in tumor immunotherapy, holding broad application prospects.
Collapse
Affiliation(s)
- Yishen Tian
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory for Research on Autoimmune Diseases of Higher Education Schools in Guizhou Province, Guiyang, 550025, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jingxuan Li
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory for Research on Autoimmune Diseases of Higher Education Schools in Guizhou Province, Guiyang, 550025, China
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Na Yang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, China
| | - Yang Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jiancao Zuo
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Hang Xiong
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Yiwen Pan
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Li Xiao
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Min Su
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory for Research on Autoimmune Diseases of Higher Education Schools in Guizhou Province, Guiyang, 550025, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Feng Han
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Zhixu He
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, China
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, China
| | - Rong Hu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory for Research on Autoimmune Diseases of Higher Education Schools in Guizhou Province, Guiyang, 550025, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
3
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
4
|
Musnier A, Corde Y, Verdier A, Cortes M, Pallandre JR, Dumet C, Bouard A, Keskes A, Omahdi Z, Puard V, Poupon A, Bourquard T. AI-enhanced profiling of phage-display-identified anti-TIM3 and anti-TIGIT novel antibodies. Front Immunol 2025; 16:1499810. [PMID: 40134430 PMCID: PMC11933058 DOI: 10.3389/fimmu.2025.1499810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Antibody discovery is a lengthy and labor-intensive process, requiring extensive laboratory work to ensure that an antibody demonstrates the appropriate efficacy, production, and safety characteristics necessary for its use as a therapeutic agent in human patients. Traditionally, this process begins with phage display or B-cells isolation campaigns, where affinity serves as the primary selection criterion. However, the initial leads identified through this approach lack sufficient characterization in terms of developability and epitope definition, which are typically performed at late stages. In this study, we present a pipeline that integrates early-stage phage display screening with AI-based characterization, enabling more informed decision-making throughout the selection process. Using immune checkpoints TIM3 and TIGIT as targets, we identified five initial leads exhibiting similar binding properties. Two of these leads were predicted to have poor developability profiles due to unfavorable surface physicochemical properties. Of the remaining three candidates, structural models of the complexes formed with their respective targets were generated for 2: T4 (against TIGIT) and 6E9 (against TIM3). The predicted epitopes allowed us to anticipate a competition with TIM3 and TIGIT binding partners, and to infer the antagonistic functions expected from these antibodies. This study lays the foundations of a multidimensional AI-driven selection of lead candidates derived from high throughput analysis.
Collapse
Affiliation(s)
| | | | | | | | - Jean-René Pallandre
- Etablissement Français du Sang - Bourgogne Franche-Comté (EFS BFC), Plateforme ITAC-UMR1098-RIGHT, Besançon, France
| | | | - Adeline Bouard
- Etablissement Français du Sang - Bourgogne Franche-Comté (EFS BFC), Plateforme ITAC-UMR1098-RIGHT, Besançon, France
| | | | | | | | | | | |
Collapse
|
5
|
Araújo HM, Moura GAD, Rocha YM, Pinheiro Gomes CV, Melo de Oliveira VNE, Oliveira RND, Figueiredo Nicolete LDD, Magalhães EP, de Menezes RR, Nicolete R. In vitro antitumor and immunomodulatory activities of 1,2,4-oxadiazole derivatives. Biochem Biophys Rep 2025; 41:101950. [PMID: 40028040 PMCID: PMC11868951 DOI: 10.1016/j.bbrep.2025.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Melanoma is the most aggressive and lethal type of skin cancer, responsible for approximately 60,000 deaths annually. The main strategy for treating melanoma is surgery to completely remove the lesion and its margins. However, for more advanced cases with a high recurrence rate, the preferred approach is to combine chemotherapy with immunotherapy treatments. Tumor-associated macrophages (TAMs) are the most abundant leukocytes in solid tumors. Current immunotherapy approaches target TAMs by inhibiting pro-tumoral TAMs and activating anti-tumoral TAMs, repolarizing them to the M1 phenotype. The antitumor and immunomodulatory activities of molecules derived from 1,2,4-oxadiazole, as demonstrated in the literature, highlight the potential of this class as a source of promising candidates for therapeutic applications. Thus, the present study aims to evaluate the antitumor and immunomodulatory effects of the synthetic derivative 1,2,4-oxadiazole, N-cyclohexyl-3-(3-methylphenyl)-1,2,4-oxadiazole-5-amine (1,2,4-oxadiazole derivative 2), in melanoma cells and murine Bone Marrow-Derived Macrophages (BMDMs). Cytotoxicity in B16-F10 and BMDMs cells was assessed using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT method. 1,2,4-oxadiazole derivative 2 exhibited antiproliferative effects on both cell lines, being 2.6 times more selective for B16-F10. Necrosis was identified as the active induced death pathway. BMDMs isolated and exposed to 1,2,4-oxadiazole derivative 2 polarize to the M1 phenotype and induce TNF-α at a concentration of 64.34 μM. Exposure to melanoma murine supernatants also promotes M1 polarization. Supernatants containing traces of 1,2,4-oxadiazole derivative 2 (Supernatants B, C, and D) increased the percentage of M1 cells compared to Supernatant A, as well as elevated levels of nitrite, TNF-α, and IL-12. 1,2,4-oxadiazole derivative 2 combined with Supernatant A and 1,2,4-oxadiazole derivative 2 combined with LPS also resulted in higher M1 polarization, suggesting a synergistic effect on M1 polarization and TNF-α production. Our findings underscore the significance of the 1,2,4-oxadiazole compound class and highlight the potential of 1,2,4-oxadiazole derivative 2 as an antitumoral and immunotherapeutic agent.
Collapse
Affiliation(s)
- Héverton Mendes Araújo
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gabriel Acácio de Moura
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Yasmim Mendes Rocha
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Cristian Vicson Pinheiro Gomes
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | | | | | | | - Emanuel Paula Magalhães
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Ramon R.P.P.B. de Menezes
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Roberto Nicolete
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| |
Collapse
|
6
|
Cakir Y, Lebe B. The Relationship of PRAME Expression with Clinicopathologic Parameters and Immunologic Markers in Melanomas: In Silico Analysis. Appl Immunohistochem Mol Morphol 2025; 33:117-130. [PMID: 39774089 DOI: 10.1097/pai.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
PRAME is a cancer testis antigen whose expression is limited in normal tissues but is increased in cancers. Although there are studies revealing its oncogenic and immunogenic role, the relationship between PRAME expression and immunity in melanomas is not very clear. We aimed to reveal the relationship between PRAME expression and clinicopathologic parameters, immunologic markers, survival in melanomas. PRAME alteration data in TCGA SKCM data set was obtained from cBioPortal. Analyzes regarding clinicopathologic parameters were performed through cBioPortal and UALCAN, survival-related analyzes were performed through cBioPortal, GEPIA2. The correlation analyzes between PRAME expression and immune cell infiltration, immunity-related genes were performed in TIMER2.0, TISIDB, GEPIA2. PRAME protein-protein interaction network was constructed in STRING. The correlated genes with PRAME were listed in LinkedOmics, gene set enrichment and pathway analyses were performed through LinkInterpreter. In cases with low PRAME expression, there was a higher frequency of metastasis and p53 mutation, a more advanced tumor stage and a lower nodal stage. Strong relationship between PRAME expression and immune cell infiltration. A negative correlation was detected between expression of PRAME and many immunomodulatory genes ( P <0.05). Positively correlated genes with PRAME expression were involved in metabolic pathways; negatively correlated genes were involved in pathways related to cell differentiation, immunologic processes. No significant relationship was found between PRAME expression and survival ( P >0.05). Our findings reveal a strong interaction between PRAME expression and tumorigenicity, the immune system and shed light on further clinical studies including PRAME -targeted studies.
Collapse
Affiliation(s)
- Yasemin Cakir
- Department of Molecular Pathology, Institute of Health Sciences, Dokuz Eylül University
| | - Banu Lebe
- Department of Molecular Pathology, Institute of Health Sciences, Dokuz Eylül University
- Department of Pathology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
7
|
Tao R, Li Y, Gong S, Zhang Q, Zhu Z. Unveiling intricating roles and mechanisms of ferroptosis in melanoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189234. [PMID: 39644939 DOI: 10.1016/j.bbcan.2024.189234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Melanoma is a highly invasive malignant tumor originating from melanocytes, with increasing incidence in recent years. Ferroptosis is an iron-dependent and non-apoptotic form of programmed cell death characterized by the accumulation of lipid peroxides and reactive oxygen species. Morphologically, ferroptosis exhibits the alteration in cells, such as reduced mitochondrial volume, increased density of bilayer membrane, and a decrease or disappearance of mitochondrial cristae. Ferroptosis has shown tremendous potential and applicability in regulating the development of melanoma. As melanoma progresses, certain biomarkers associated with ferroptosis display characteristic patterns of expression. These changes not only reveal the sensitivity of tumor cells to ferroptosis but also provide potential targets for diagnosis and treatment. Besides, inducing ferroptosis has been well-documented to inhibit the growth of melanoma and enhance the efficacy of tumor immunotherapy. Hence, this review emphasizes the roles and regulatory mechanisms of ferroptosis in melanoma development, the involved immune regulation, as well as the potential for diagnosis and treatment of melanoma. The continuous explorations will endow novel strategies for developing ferroptosis-based therapies for melanoma.
Collapse
Affiliation(s)
- Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, Hubei Province, China.
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
8
|
Gouveia E, de Sousa RT, Aguiar SI, Gírio A, Costa I, Dionísio MR, Moital I. Malignant melanoma in Portuguese adult population: a scoping review of the real-world evidence. Clin Transl Oncol 2025; 27:770-777. [PMID: 39012454 DOI: 10.1007/s12094-024-03579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE Malignant melanoma is an aggressive cancer, and there is a notable dearth on epidemiology, clinical and treatment characterization within the Portuguese population. We performed a scoping review to identify real-world evidence studies focused in Portuguese adult patients with malignant melanoma. METHODS A comprehensive search was conducted. After screening, we described the studies by design, sample size, geographics, setting, population, and outcomes reported. RESULTS The search yielded 54 studies, mainly retrospective (79.6%). The population assessed was heterogeneous varying from patients with melanoma in general to specific types of melanoma, or even more restricted to patients with specific conditions. The evidence found was mostly concerning clinical outcomes (n=46), patients' clinical profile (n=44) and demographic characterization (n=48). Treatment information was described in 30 studies whereas only 18 reported epidemiological parameters. Studies were mainly performed by the major oncology centers in Lisbon, Oporto and Coimbra, and only two evaluated the entire Portuguese population. To allow comparability, only studies including patients with cutaneous malignant melanoma were considered (13 of the 54) for outcomes evaluation analysis. Median OS varied from 18 to 36 months, assessed after melanoma treatment. Incidence was the most reported epidemiological parameter, confirming the increasing number of cutaneous malignant melanoma patients over the years. Only one study reported prevalence and four reported mortality rates. CONCLUSIONS The evidence found confirms the lack of information about malignant melanoma in Portugal, highlighting the need of real-world studies to assess melanoma prevalence and incidence rates, current treatment approaches, and clinical characterization of these patients.
Collapse
Affiliation(s)
- Emanuel Gouveia
- Department of Medical Oncology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Rita Teixeira de Sousa
- Department of Medical Oncology, Centro Hospitalar Universitário Lisboa Norte-Hospital de Santa Maria, Lisbon, Portugal
| | - Sandra I Aguiar
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal
| | - Ana Gírio
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal.
| | - Inês Costa
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal
| | - Maria Rita Dionísio
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal
| | - Inês Moital
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal
| |
Collapse
|
9
|
Li L, Xu Q, Zhang X, Jiang Y, Zhang L, Guo J, Liu H, Jiang B, Li S, Peng Q, Jiang N, Wang J. AIEgen-self-assembled nanoparticles with anti-PD-L1 antibody functionalization realize enhanced synergistic photodynamic therapy and immunotherapy against malignant melanoma. Mater Today Bio 2025; 30:101387. [PMID: 39742147 PMCID: PMC11683329 DOI: 10.1016/j.mtbio.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) become integral in clinical practice, yet their application in cancer therapy is constrained by low overall response rates and the primary resistance of cancers to ICIs. Herein, this study proposes aggregation-induced emission (AIE)-based nanoparticles (NPs) for a more effective and synergistic approach combining immunotherapy and photodynamic therapy (PDT) to achieve higher responses than anti-PD-L1 monotherapy. The TBP@aPD-L1 NPs are constructed by functionalizing azide group-modified TBP-2 (TBP-N3) with anti-PD-L1 antibodies via the DBCO-S-S-PEG2000-COOH linker. The anti-PD-L1 target the tumor cells and promote the TBP-N3 accumulation in tumors for enhanced PDT. Notably, the TBP-N3, featuring aggregation-induced emission, boosts reactive oxygen species (ROS) generation through both type I and type II processes for enhanced PDT. The TBP@aPD-L1-mediated PDT induces more powerful effects of direct tumor cell-killing and further elicits effective immunogenic cell death (ICD), which exerts anti-tumor immunity by activating T cells for ICI treatment and reshapes the tumor immune microenvironment (TIME), thereby enhancing the efficacy of PD-L1 blockade of anti-PD-L1. Consequently, TBP@aPD-L1 NPs demonstrated significantly enhanced inhibition of tumor growth in the mouse model of malignant melanoma (MM). Our NPs act as a facile and effective drug delivery platform for enhanced immunotherapy combined with enhanced PDT in treating MM.
Collapse
Affiliation(s)
- Lu Li
- Department of Immunology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qing Xu
- Department of Immunology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiuzhen Zhang
- Hunan University of Medicine General Hospital, Hunan, 418000, PR China
| | - Yuan Jiang
- Department of Immunology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Haichuan Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Bin Jiang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shenglong Li
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qiling Peng
- Bijie Municipal Health Bureau, Guizhou, 551700, PR China
| | - Ning Jiang
- Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, PR China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jianwei Wang
- Department of Immunology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
10
|
Ghoshal B, Jhunjhunwala S. A game of hide-and-seek: how extracellular vesicles evade the immune system. Drug Deliv Transl Res 2025:10.1007/s13346-025-01789-w. [PMID: 39843837 DOI: 10.1007/s13346-025-01789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneously sized, cell-derived nanoparticles operating as proficient mediators of intercellular communication. They are produced by normal as well as diseased cells and carry a variety of cargo. While the molecular details of EV biology have been worked out over the past two decades, one question that continues to intrigue many is how are EVs able to evade the phagocytic immune cells while also being effectively internalized by the target cell or tissue. While some of the components that facilitate this process have started to be identified, many mechanisms are yet to be dissected. This review summarises some of the key mechanisms that cancer cell-derived and viral infected cell-derived EVs utilize to evade the immune system. It will discuss the diverse cloaking mechanisms, in the form of membrane proteins and cargo content that these EVs utilize to enhance pathogenesis. Further, it will highlight the different strategies that have been used to design EVs to escape the immune system, thereby increasing their circulation time with no major toxic effects in vivo. An understanding of the potential EV components that allow better immune evasion can be used to bioengineer EVs with better circulation times for therapeutic purposes.
Collapse
Affiliation(s)
- Bartika Ghoshal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
| | | |
Collapse
|
11
|
Bai J, Wan Z, Zhou W, Wang L, Lou W, Zhang Y, Jin H. Global trends and emerging insights in BRAF and MEK inhibitor resistance in melanoma: a bibliometric analysis. Front Mol Biosci 2025; 12:1538743. [PMID: 39897423 PMCID: PMC11782018 DOI: 10.3389/fmolb.2025.1538743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Objective This study aims to perform a comprehensive bibliometric analysis of global research on BRAF and MEK inhibitor resistance in melanoma, identifying key research trends, influential contributors, and emerging themes from 2003 to 2024. Methods A systematic search was conducted in the Web of Science Core Collection (WoSCC) database to retrieve publications related to BRAF and MEK inhibitor resistance from 1 January 2003, to 1 September 2024. Bibliometric analyses, including publication trends, citation networks, and keyword co-occurrence patterns, were performed using VOSviewer and CiteSpace. Collaborative networks, co-cited references, and keyword burst analyses were mapped to uncover shifts in research focus and global cooperation. Results A total of 3,503 documents, including 2,781 research articles and 722 review papers, were analyzed, highlighting significant growth in this field. The United States, China, and Italy led in publication volume and citation impact, with Harvard University and the University of California System among the top contributing institutions. Research output showed three phases of growth, peaking in 2020. Keyword and co-citation analyses revealed a transition from early focus on BRAF mutations and MAPK pathway activation to recent emphasis on immunotherapy, combination therapies, and non-apoptotic cell death mechanisms like ferroptosis and pyroptosis. These trends reflect the evolving priorities and innovative approaches shaping the field of resistance to BRAF and MEK inhibitors in melanoma. Conclusion Research on BRAF and MEK inhibitor resistance has evolved significantly. This analysis provides a strategic framework for future investigations, guiding the development of innovative, multi-modal approaches to improve treatment outcomes for melanoma patients.
Collapse
Affiliation(s)
- Jianhao Bai
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanru Zhou
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Lou
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Kopec K, Quaranto D, DeSouza NR, Jarboe T, Islam HK, Moscatello A, Li XM, Geliebter J, Tiwari RK. The HOX Gene Family's Role as Prognostic and Diagnostic Biomarkers in Hematological and Solid Tumors. Cancers (Basel) 2025; 17:262. [PMID: 39858044 PMCID: PMC11763641 DOI: 10.3390/cancers17020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The HOX gene family encodes for regulatory transcription factors that play a crucial role in embryogenesis and differentiation of adult cells. This highly conserved family of genes consists of thirty-nine genes in humans that are located in four clusters, A-D, on different chromosomes. While early studies on the HOX gene family have been focused on embryonic development and its related disorders, research has shifted to examine aberrant expression of HOX genes and the subsequent implication in cancer prediction and progression. Due to their role of encoding master regulatory transcription factors, the abnormal expression of HOX genes has been shown to affect all stages of tumorigenesis and metastasis. This review highlights the novel role of the HOX family's clinical relevance as both prognostic and diagnostic biomarkers in hematological and solid tumors.
Collapse
Affiliation(s)
- Kaci Kopec
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Augustine Moscatello
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
13
|
Liu H, Gou X, Tan Y, Fan Q, Chen J. Immunotherapy and delivery systems for melanoma. Hum Vaccin Immunother 2024; 20:2394252. [PMID: 39286868 PMCID: PMC11409522 DOI: 10.1080/21645515.2024.2394252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Melanoma is a highly malignant tumor of melanocyte origin that is prone to early metastasis and has a very poor prognosis. Early melanoma treatment modalities are mainly surgical, and treatment strategies for advanced or metastatic melanoma contain chemotherapy, radiotherapy, targeted therapy and immunotherapy. The efficacy of chemotherapy and radiotherapy has been unsatisfactory due to low sensitivity and strong toxic side effects. And targeted therapy is prone to drug resistance, so its clinical application is limited. Melanoma has always been the leader of immunotherapy for solid tumors, and how to maximize the role of immunotherapy and how to implement immunotherapy more accurately are still urgent to be explored. This review summarizes the common immunotherapies and applications for melanoma, illustrates the current research status of melanoma immunotherapy delivery systems, and discusses the advantages and disadvantages of each delivery system and its prospects for clinical application.
Collapse
Affiliation(s)
- Hui Liu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanfang Tan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Feng S, Ren M, Chen S, Wang B, Zhang Y, Zhang G. Study on the apoptosis of human melanoma cells induced by solanine in vitro and its mechanisms. Arch Dermatol Res 2024; 317:163. [PMID: 39738917 DOI: 10.1007/s00403-024-03665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/06/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Melanoma (malignant melanoma, MM) is a highly aggressive tumor, ranking as the third most common cutaneous malignancy and characterized by high metastatic potential, high mortality rates, and poor prognosis. Solanine, a major steroidal alkaloid found in potatoes, has widely reported anticancer benefits, though its inhibitory effects on melanoma cells are less studied. This study aimed to observe the effects of solanine on the proliferation, apoptosis, and related apoptotic proteins in melanoma A375 and A2058 cells and to investigate its possible anti-tumor mechanisms. The morphological changes associated with apoptosis induced by varying concentrations of solanine in melanoma cell lines A375 and A2058 were observed using an inverted microscope. The proliferation inhibition rate of melanoma cells was examined using the CCK-8 assay. DAPI staining was employed to observe cell growth and morphological changes. The apoptosis of melanoma A375 cells induced by solanine was detected using flow cytometry. The expression levels of apoptosis-related genes (Caspase-3, Bcl-2, and Bax) were measured using quantitative real-time PCR (RT-qPCR) and western blot analysis. Within a certain concentration and time range, solanine can inhibit the viability of A375 and A2058 cells significantly in a time-dose-dependent manner (P < 0.05). Apoptosis induced by solanine was confirmed through DAPI staining. Flow cytometry showed that, the proportion of Annexin V positive cells (the sum of early apoptotic cells and late apoptotic cells) increased gradually with the increasing of solanine dosage (P < 0.01). Notably, there was a marked decrease in the anti-apoptotic protein Bcl-2, alongside a significant increase in the expression of Bax and Caspase-3 at both the mRNA and protein levels (P < 0.05). Our data demonstrated that solanine inhibits the proliferation and induces apoptosis of melanoma A375 and A2058 cells. The findings indicate that these effects may be associated with the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Sen Feng
- Department of Dermatology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China
| | - Mingyuan Ren
- Department of Dermatology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China
| | - Sijia Chen
- Department of Dermatology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China
| | - Bin Wang
- Department of Dermatology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China
| | - Yajun Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China.
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China.
- Subcenter of National Clinical Research Center for Skin and Immune Diseases, Shijiazhuang, 050031, Hebei Province, China.
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, Shijiazhuang, 050031, China.
| |
Collapse
|
15
|
Sun R, Wei S, Yu Y, Wang Z, Yao T, Zhang Y, Cui L, Ma X. Prognostic value and immune infiltration of a tumor microenvironment-related PTPN6 in metastatic melanoma. Cancer Cell Int 2024; 24:435. [PMID: 39732710 DOI: 10.1186/s12935-024-03625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance. This study focuses on the role of the TME-related gene PTPN6 in the prognosis and immunotherapy response of MM. METHODS This study analyzed the RNA-seq and clinical data of MM patients from public databases, employing the ESTIMATE algorithm and bioinformatics tools to identify differentially expressed genes in the TME. PTPN6 was identified as a prognostic biomarker. Its expression and function were validated using in vitro and in vivo experiments. The role of PTPN6 in immune cell infiltration and its association with the JAK2-STAT3 pathway and immunotherapy response were also evaluated. RESULTS PTPN6 expression was significantly lower in MM and associated with poor prognosis. In vitro, Overexpression of PTPN6 inhibited proliferation, migration, and invasion, while knockdown reversed these effects. In vivo, PTPN6 overexpression reduced tumor growth. Mechanistically, PTPN6 suppressed JAK2-STAT3 signaling pathway activation. High PTPN6 expression was positively associated with immune cell infiltration, improved immunotherapy response, and reduced PD-L1 expression. CONCLUSION The gene PTPN6, associated with the tumor microenvironment, may serve as a promising prognostic biomarker and therapeutic target for MM.
Collapse
Affiliation(s)
- Rongyao Sun
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shuqiang Wei
- Department of Burn and Plastic Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, China
| | - Ying Yu
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhuo Wang
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Tonghao Yao
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yining Zhang
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Luping Cui
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xu Ma
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
16
|
Grützmann K, Kraft T, Meinhardt M, Meier F, Westphal D, Seifert M. Network-based analysis of heterogeneous patient-matched brain and extracranial melanoma metastasis pairs reveals three homogeneous subgroups. Comput Struct Biotechnol J 2024; 23:1036-1050. [PMID: 38464935 PMCID: PMC10920107 DOI: 10.1016/j.csbj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Melanoma, the deadliest form of skin cancer, can metastasize to different organs. Molecular differences between brain and extracranial melanoma metastases are poorly understood. Here, promoter methylation and gene expression of 11 heterogeneous patient-matched pairs of brain and extracranial metastases were analyzed using melanoma-specific gene regulatory networks learned from public transcriptome and methylome data followed by network-based impact propagation of patient-specific alterations. This innovative data analysis strategy allowed to predict potential impacts of patient-specific driver candidate genes on other genes and pathways. The patient-matched metastasis pairs clustered into three robust subgroups with specific downstream targets with known roles in cancer, including melanoma (SG1: RBM38, BCL11B, SG2: GATA3, FES, SG3: SLAMF6, PYCARD). Patient subgroups and ranking of target gene candidates were confirmed in a validation cohort. Summarizing, computational network-based impact analyses of heterogeneous metastasis pairs predicted individual regulatory differences in melanoma brain metastases, cumulating into three consistent subgroups with specific downstream target genes.
Collapse
Affiliation(s)
- Konrad Grützmann
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Theresa Kraft
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| |
Collapse
|
17
|
Tsai KW, Liao JB, Tseng HW. Metformin regulates the proliferation and motility of melanoma cells by modulating the LINC00094/miR-1270 axis. Cancer Cell Int 2024; 24:384. [PMID: 39563323 PMCID: PMC11575040 DOI: 10.1186/s12935-024-03545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Melanoma is an aggressive tumor with a high mortality rate. Metformin, a commonly prescribed diabetes medication, has shown promise in cancer prevention and treatment. Long noncoding RNAs (lncRNAs) are non-protein-coding RNA molecules that play a key role in tumor development by interacting with cellular chromatins. Despite the benefits of metformin, the anticancer mechanism underlying its effect on the regulation of lncRNAs in melanoma remains unclear. METHODS We investigated the lncRNA profiles of human melanoma cells with and without metformin treatment using a next-generation sequencing approach (NGS). Utilizing public databases, we analyzed the expression levels and clinical impacts of LINC00094 and miR-1270 in melanoma. The expression levels of LINC00094 and miR-1270 were verified in human cell lines and clinical samples by real-time PCR and in situ hybridization. The biological roles of LINC00094 and miR-1270 in cell growth, proliferation, cell cycle, apoptosis, and motility were studied using in vitro assays. RESULTS We identify a novel long noncoding RNA, namely LINC00094, whose expression considerably decreased in melanoma cells after metformin treatment. In situ hybridization analysis revealed substantially higher expression of LINC00094 in cutaneous melanoma tissue compared with adjacent normal epidermis and normal control tissues (P < 0.001). In nondiabetic patients with melanoma, the overall survival of high LINC00094 expression group was shorter than the low LINC00094 expression group with borderline statistical significance (log-rank test, P = 0.057). Coexpression analysis of LINC00094 indicated its involvement in the mitochondrial respiratory pathway, with its knockdown suppressing genes associated with mitochondrial oxidative phosphorylation, glycolysis, antioxidant production, and metabolite levels. Functional analysis revealed that silencing-LINC00094 inhibited the proliferation, colony formation, invasion, and migration of melanoma cells. Cell cycle analysis following LINC00094 knockdown revealed G1 phase arrest with reduced cell cycle protein expression. Combined TargetScan and reporter assays revealed a direct link between miR-1270 and LINC00094. Ectopic miR-1270 expression inhibited melanoma cell growth and motility while inducing apoptosis. Finally, through in silico analysis, we identified two miR-1270 target genes, CD276 and centromere protein M (CENPM), which may be involved in the biological functions of LINC00094. CONCLUSIONS Overall, LINC00094 expression may regulate melanoma cell growth and motility by modulating the expression of miR-1270, and targeting genes of CD276 and CENPM indicating its therapeutic potential in melanoma treatment.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Shu Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Wen Tseng
- Department of Dermatology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan.
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Nursing, College of Nursing, Meiho University, Neipu, Pingtung, Taiwan.
| |
Collapse
|
18
|
Yuan L, Jin K, Shao A, Feng J, Shi C, Ye J, Grzybowski A. Analysis of international publication trends in artificial intelligence in skin cancer. Clin Dermatol 2024; 42:570-584. [PMID: 39260460 DOI: 10.1016/j.clindermatol.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Bibliometric methods were used to analyze publications on the use of artificial intelligence (AI) in skin cancer from 2010 to 2022, aiming to explore current publication trends and future directions. A comprehensive search using four terms, "artificial intelligence," "machine learning," "deep learning," and "skin cancer," was performed in the Web of Science database for original English language publications on AI in skin cancer from 2010 to 2022. We visually analyzed publication, citation, and coupling information, focusing on authors, countries and regions, publishing journals, institutions, and core keywords. The analysis of 989 publications revealed a consistent year-on-year increase in publications from 2010 to 2022 (0.51% versus 33.57%). The United States, India, and China emerged as the leading contributors. IEEE Access was identified as the most prolific journal in this area. Key journals and influential authors were highlighted. Examination of the top 10 most cited publications highlights the significant potential of AI in oncology. Co-citation network analysis identified four primary categories of classical literature on AI in skin tumors. Keyword analysis indicated that "melanoma," "classification," and "deep learning" were the most prevalent keywords, suggesting that deep learning for melanoma diagnosis and grading is the current research focus. The term "pigmented skin lesions" showed the strongest burst and longest duration, whereas "texture" was the latest emerging keyword. AI represents a rapidly growing area of research in skin cancer with the potential to significantly improve skin cancer management. Future research will likely focus on machine learning and deep learning technologies for screening and diagnostic purposes.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Ophthalmology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kai Jin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Feng
- Department of Ophthalmology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Caiping Shi
- Department of Ophthalmology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland.
| |
Collapse
|
19
|
Yang C, Yan Z, Sun Z, Hu F, Xu W. FOXO3 Inhibits the Cisplatin Resistance and Progression of Melanoma Cells by Promoting CDKN1C Transcription. Appl Biochem Biotechnol 2024; 196:7834-7848. [PMID: 38568329 DOI: 10.1007/s12010-024-04909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Forkhead box O3 (FOXO3) and cyclin dependent kinase inhibitor 1 C Gene (CDKN1C) have been shown to be involved in the melanoma process, but their roles in the cisplatin (DDP) resistance of melanoma remain unclear. METHODS The mRNA levels of CDKN1C and FOXO3 were measured using quantitative real-time PCR. The protein levels of CDKN1C, FOXO3 and mitochondrial oxidative phosphorylation (mtOXPHOS)-related markers were determinant by western blot analysis. The DDP resistance, proliferation, and apoptosis of melanoma cells were assessed by cell counting kit 8 assay, colony formation assay and flow cytometry. Glucose consumption, lactate production and ATP level were detected to assess glycolysis. The regulation of FOXO3 on CDKN1C was confirmed by ChIP assay and dual-luciferase reporter assay. In vivo experiments were performed to evaluate the effect of FOXO3 on DDP sensitivity in melanoma tumor tissues. RESULTS CDKN1C and FOXO3 were downregulated in chemoresistant melanoma tissues, and their low expression levels were related to the poor prognosis of melanoma patients. Overexpression of CDKN1C and FOXO3 repressed DDP resistance, proliferation, and glycolysis, while promoted apoptosis and mtOXPHOS in DDP-resistant melanoma cells. Further analysis suggested that FOXO3 could bind to CDKN1C promoter region to enhance its transcription. Besides, CDKN1C knockdown reversed the regulation of FOXO3 on melanoma cell DDP resistance and progression. Moreover, FOXO3 overexpression enhanced the DDP sensitivity of melanoma tumor tissues in vivo. CONCLUSION FOXO3 promoted the transcription of CDKN1C, thereby inhibiting the DDP resistance and progression of melanoma cells.
Collapse
Affiliation(s)
- Chao Yang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Zeqiang Yan
- Department of Gastroenterology, Affiliated Hospital of Hubei, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Zhihua Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Fen Hu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Wei Xu
- Department of Dermatology, Affiliated Hospital of Hubei, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China.
| |
Collapse
|
20
|
Misiąg P, Molik K, Kisielewska M, Typek P, Skowron I, Karwowska A, Kuźnicki J, Wojno A, Ekiert M, Choromańska A. Amelanotic Melanoma-Biochemical and Molecular Induction Pathways. Int J Mol Sci 2024; 25:11502. [PMID: 39519055 PMCID: PMC11546312 DOI: 10.3390/ijms252111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Amelanotic melanoma (AM) is a subtype of hypomelanotic or completely amelanotic melanoma. AM is a rare subtype of melanoma that exhibits a higher recurrence rate and aggressiveness as well as worse surveillance than typical melanoma. AM shows a dysregulation of melanin production, cell cycle control, and apoptosis pathways. Knowing these pathways has an application in medicine due to targeted therapies based on the inhibiting elements of the abovementioned pathways. Therefore, we summarized and discussed AM biochemical and molecular induction pathways and personalized medicine approaches, clinical management, and future directions due to the fact that AM is relatively rare. AM is commonly misdiagnosed. Hence, the role of biomarkers is becoming significant. Nonetheless, there is a shortage of biomarkers specific to AM. BRAF, NRAS, and c-KIT genes are the main targets of therapy. However, the role of BRAF and KIT in AM varied among studies. BRAF inhibitors combined with MAK inhibitors demonstrate better results. Immune checkpoint inhibitors targeting CTLA-4 combined with a programmed death receptor 1 (PD-1) show better outcomes than separately. Fecal microbiota transplantation may overcome resistance to immune checkpoint therapy of AM. Immune-modulatory vaccines against indoleamine 2,3-dioxygenase (IDO) and PD ligand (PD-L1) combined with nivolumab may be efficient in melanoma treatment.
Collapse
Affiliation(s)
- Piotr Misiąg
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Monika Kisielewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paulina Typek
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Karwowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Wojno
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marcin Ekiert
- Department of Oncology, Wroclaw Medical University, pl. L. Hirszfelda 12, 53-413 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
21
|
Quan S, Li N, Lian S, Wang Y, Liu Y, Liu J, Zhang Z, Gao D, Li Y. SLC4A4 as a novel biomarker involved in immune system response and lung adenocarcinoma progression. Int Immunopharmacol 2024; 140:112756. [PMID: 39083932 DOI: 10.1016/j.intimp.2024.112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Altered expression and activity of solute carrier family 4 member 4 (SLC4A4) could affect the growth, survival and metastasis of tumor cells. Currently, the role of SLC4A4 in lung adenocarcinoma (LUAD) immunotherapy and prognosis was not entirely clear. METHODS We analyzed SLC4A4 expression in LUAD tissues and cell lines using quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry. The effects of SLC4A4 overexpression on angiogenesis, cell migration, invasion, and epithelial-mesenchymal transition were examined. Public databases helped construct a risk model evaluating SLC4A4's expression on LUAD prognosis and immunotherapy response. Additionally, a xenograft model, flow cytometry, and enzyme-linked immunosorbent assay further explored SLC4A4's role in tumor immune microenvironment infiltration. RESULTS Upregulation of SLC4A4 promoted apoptosis in the LUAD cell line and significantly inhibited the migration and invasive ability of cancer cells (P<0.01). A total of 10 key genes (including SIGLEC6, RHOV, PIR, MOB3B, MIR3135B, LPAR6, KRT8, ITGA2, CPS1, and C6) were screened according to SLC4A4 expression, immune score and stromal score, and a prognostic model with good outcome was constructed (AUC values of which in the training cohort at 1,3, and 5 years reached 0.73, 0.73, and 0.72, respectively). Importantly, we demonstrated that high expression of SLC4A4 was able to increase the proliferation level and cytokine secretion of CD8+ T cells for the purpose of promoting the immune system response to LUAD. CONCLUSION Our study revealed that SLC4A4 can serve as a prognostic indicator for LUAD, providing new insights into the treatment and diagnosis of LUAD.
Collapse
Affiliation(s)
- Siyu Quan
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Na Li
- Nephrology Department, Jinan Zhangqiu District People's Hospital, Jinan 250200, China
| | - Shihai Lian
- Out-patient Department, Zaozhuang Municipal Hospital, Zaozhuang 277102, China
| | - Yuanyuan Wang
- The Department of Hospital Infection, Jinan Fifth People's Hospital, Jinan 250022, China
| | - Yang Liu
- Thoracic Surgery, PLA 80th Group Army Hospital, Weifang 261011, China
| | - Jianbo Liu
- Department of Thoracic Surgery, The Fourth People's Hospital of Heze, Heze 274100, China
| | - Zewei Zhang
- Department of Thoracic Surgery, Gaoqing County People's Hospital, Gaoqing 256399, China
| | - Dejun Gao
- Department of Thoracic Surgery, The Second People's Hospital of Liaocheng, Liaocheng 252600, China
| | - Yun Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
22
|
Chen Z, Wu H, Wang Y, Rao Y, Yan J, Ran B, Zeng Q, Yang X, Cao J, Cao H, Zhu X, Zhang X. Enhancing melanoma therapy by modulating the immunosuppressive microenvironment with an MMP-2 sensitive and nHA/GNE co-encapsulated hydrogel. Acta Biomater 2024; 188:79-92. [PMID: 39241819 DOI: 10.1016/j.actbio.2024.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
The immunosuppressive tumor microenvironment, such as lactic acid and matrix metalloproteinases (MMPs) overexpression, has been well confirmed to be adverse for tumor therapy. In current study, a tumor microenvironment modulatory hydrogel was successfully developed to treat melanoma by taking advantage of the synergistic effects of nano-hydroxyapatite (nHA) with well-documented selective anti-tumor action, lactate dehydrogenase A inhibitor (R)-GNE-140 (GNE), and matrix metalloproteinase-2 (MMP-2) sensitive peptide. The hydrogel was acquired by the reaction of 4-arm-polyethylene glycol-maleic anhydride (4-arm-PEG-MAL) and MMP-2 sensitive peptide (CC-14), in which nHA and GNE were co-encapsulated physically. The in vitro degradation tests confirmed the accelerated release of nHA and GNE from the hydrogel under less-acidic (pH 6.8) and MMP-2 containing conditions compared to those neutral or without MMP-2 conditions, demonstrating the pH and MMP-2 responsive properties of as-prepared hydrogel. Findings from in vitro cell experiments revealed that the hydrogel could stop the proliferation of melanoma cells by stacking cell cycle via lactic acid metabolic dysregulation and boosting cell apoptosis via nHA direct killing effect. Moreover, after hydrogel treatment, the rate of migration and aggressiveness of melanoma cells both reduced significantly. An in vivo anti-melanoma study showed that the hydrogel could inhibit tumor growth significantly and result in more CD8+ T cells and antigen-presenting cells but less Treg cells infiltration, ultimately leading to an enhanced therapeutic efficacy. As thus, the fabricated hydrogel demonstrated great promise for treating melanoma and could be a new potent strategy for efficient melanoma therapy. STATEMENT OF SIGNIFICANCE: Nano-hydroxyapatite (nHA) has the capability of selectively killing cancer cells. The study reported a tumor microenvironment (TME) modulatory hydrogel with the goal of enhancing melanoma therapy efficacy by combining nHA administration with immunosuppressive microenvironment modulation. The hydrogel demonstrated pH and MMP-2 sensitivity. Hence, controlled release of nHA and lactate dehydrogenase A inhibitor (GNE) could be observed, and in situ MMP-2 consumption at the tumor site occurred. The hydrogel effectively inhibited the growth of melanoma cells. Furthermore, hydrogel increased the production of CD8+ T cells and antigen-presenting cells while decreasing the infiltration of Treg cells at the tumor site. This could transform the initial "cold" tumor into a "hot" tumor, ultimately resulting in an enhanced therapeutic effect.
Collapse
Affiliation(s)
- Zhu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, Nanchong Hospital Beijing AnZhen Hospital, North Sichuan Medical College, Nanchong 637000, China
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yifu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunjia Rao
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, Nanchong Hospital Beijing AnZhen Hospital, North Sichuan Medical College, Nanchong 637000, China
| | - Jin Yan
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, Nanchong Hospital Beijing AnZhen Hospital, North Sichuan Medical College, Nanchong 637000, China
| | - Bin Ran
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, Nanchong Hospital Beijing AnZhen Hospital, North Sichuan Medical College, Nanchong 637000, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials and Institute of Regulatory Science for Medical Devices and NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Huan Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Nuclear Medicine and Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Shen J, Su X, Wang S, Wang Z, Zhong C, Huang Y, Duan S. RhoJ: an emerging biomarker and target in cancer research and treatment. Cancer Gene Ther 2024; 31:1454-1464. [PMID: 38858534 DOI: 10.1038/s41417-024-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shana Wang
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Hu H, Chen J, Zhang F, Sheng Z, Yang Y, Xie Y, Zhou L, Liu Y. Evaluation of Efficiency of Liposome-Entrapped Iridium(III) Complexes Inhibiting Tumor Growth In Vitro and In Vivo. J Med Chem 2024; 67:16195-16208. [PMID: 39264254 DOI: 10.1021/acs.jmedchem.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this paper, three new iridium(III) complexes: [Ir(piq)2(DFIPP)]PF6 (piq = deprotonated 1-phenylisoquinoline, DFIPP = 3,4-difluoro-2-(1H-imidazo[4,5-f][1,10]phenenthrolin-2-yl)phenol, 3a), [Ir(bzq)2(DFIPP)]PF6 (bzq = deprotonated benzo[h]quinoline, 3b), and [Ir(ppy)2(DFIPP)]PF6 (ppy = deprotonated 1-phenylpyridine, 3c), were synthesized and characterized. The complexes were found to be nontoxic to tumor cells via 3-(4,5-dimethylthiazole-2-yl)-diphenyltetrazolium bromide (MTT) assay. Surprisingly, its liposome-entrapped complexes 3alip, 3blip, and 3clip on B16 cells showed strong cytotoxicity (IC50 = 13.6 ± 2.8, 9.6 ± 1.1, and 18.9 ± 2.1 μM). Entry of 3alip, 3blip, and 3clip into B16 cells decreases mitochondrial membrane potential, regulates Bcl-2 family proteins, releases cytochrome c, triggers caspase family cascade reaction, and induces apoptosis. In addition, we also found that 3alip, 3blip, and 3clip triggered ferroptosis and autophagy. In vivo studies demonstrated that 3blip inhibited melanoma growth in C57 mice with a high inhibitory rate of 83.95%, and no organic damage was found in C57 mice.
Collapse
Affiliation(s)
- Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhujun Sheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China
| | - Yufeng Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
25
|
Liu C, Zhang Y, Liang Y, Zhang T, Wang G. DrugReSC: targeting disease-critical cell subpopulations with single-cell transcriptomic data for drug repurposing in cancer. Brief Bioinform 2024; 25:bbae490. [PMID: 39350337 PMCID: PMC11442150 DOI: 10.1093/bib/bbae490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The field of computational drug repurposing aims to uncover novel therapeutic applications for existing drugs through high-throughput data analysis. However, there is a scarcity of drug repurposing methods leveraging the cellular-level information provided by single-cell RNA sequencing data. To address this need, we propose DrugReSC, an innovative approach to drug repurposing utilizing single-cell RNA sequencing data, intending to target specific cell subpopulations critical to disease pathology. DrugReSC constructs a drug-by-cell matrix representing the transcriptional relationships between individual cells and drugs and utilizes permutation-based methods to assess drug contributions to cellular phenotypic changes. We demonstrate DrugReSC's superior performance compared to existing drug repurposing methods based on bulk or single-cell RNA sequencing data across multiple cancer case studies. In summary, DrugReSC offers a novel perspective on the utilization of single-cell sequencing data in drug repurposing methods, contributing to the advancement of precision medicine for cancer.
Collapse
Affiliation(s)
- Chonghui Liu
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
- College of Computer and Control Engineering, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Yan Zhang
- Kunming Institute of Zoology, Chinese Academy of Sciences, 17 Longxin Road, Panlong District, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, 1 Yanxi Lake East Road, Huairou District, Beijing 100049, China
| | - Yingjian Liang
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150007, China
| | - Tianjiao Zhang
- College of Computer and Control Engineering, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
26
|
Chu LW, Chen JY, Chen YW, Hsieh S, Kung ML. Phytoconstituent-derived zingerone nanoparticles disrupt the cell adhesion mechanism and suppress cell motility in melanoma B16F10 cells. J Biotechnol 2024; 392:48-58. [PMID: 38906221 DOI: 10.1016/j.jbiotec.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.
Collapse
Affiliation(s)
- Li-Wen Chu
- Department of Nursing, and Department of Cosmetic Application and Management, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Yun-Wen Chen
- Departments of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Miao X, Guo Z, Zhang K, Chang J, Yang J, Miao G, Tian Y. Changes in mucosa‑associated lymphoid tissue 1 predicts therapeutic response and survival in patients with advanced melanoma receiving programmed cell death‑1 inhibitor monotherapy. Oncol Lett 2024; 28:433. [PMID: 39049986 PMCID: PMC11268090 DOI: 10.3892/ol.2024.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 07/27/2024] Open
Abstract
Advanced melanoma is an aggressive and dangerous form of skin cancer, and programmed cell death-1 (PD-1) inhibitors are recommended treatment options for patients with advanced melanoma. Mucosa-associated lymphoid tissue 1 (MALT1) impairs CD8+ T-cell activation to induce immune escape, leading to a reduction in the antitumor effect of PD-1 inhibitors. The present study aimed to assess the prognostic implication of MALT1 in patients with advanced melanoma receiving PD-1 inhibitor monotherapy. Blood MALT1 levels were assessed using reverse transcription-quantitative PCR in 20 healthy controls (HCs) after enrollment and in 49 patients with advanced melanoma before (T0), as well as 2 months (T1) and 4 months after (T2) PD-1 inhibitor monotherapy. The maximum level of MALT1 in HCs (3.100) was used as the cut-off in patients with advanced melanoma. MALT1 levels at T0 were significantly increased in patients with advanced melanoma compared with in HCs (P<0.001). In patients with advanced melanoma, MALT1 was significantly decreased from T0 to T2 (P<0.001). Objective response rate (ORR) and disease control rate (DCR) were 28.6 and 59.2%, respectively. MALT1 levels at T1 were significantly negatively associated with overall therapeutic response (P=0.001), ORR (P=0.009) and DCR (P=0.004). MALT1 levels at T2 were significantly inversely associated with overall therapeutic response (P=0.021) and ORR (P=0.036). Moreover, MALT1 levels >3.100 at T0 (P=0.027) and T1 (P=0.045) were significantly associated with shorter progression-free survival (PFS), and MALT1 levels >3.100 at T1 were significantly associated with a poor overall survival (OS; P=0.022). Multivariate Cox regression analysis demonstrated that MALT1 levels at T0 (>3.100 vs. ≤3.100) were significantly associated with a poor PFS [hazard ratio (HR)=2.248; P=0.037], and MALT1 levels at T1 (>3.100 vs. ≤3.100) were significantly associated with a poor OS (HR=4.332; P=0.007). In conclusion, MALT1 levels are reduced following PD-1 treatment, and a high MALT1 level is associated with a poor therapeutic response and shorter survival in patients with advanced melanoma receiving PD-1 inhibitor monotherapy.
Collapse
Affiliation(s)
- Xiaoyan Miao
- Department of Plastic Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056002, P.R. China
| | - Ziyi Guo
- Department of Burn and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Kai Zhang
- Department of Orthopedics 1, Handan Central Hospital, Handan, Hebei 056000, P.R. China
| | - Jin Chang
- Department of Plastic Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056002, P.R. China
| | - Jianmin Yang
- Department of Plastic Surgery, Beijing Tsinghua Changgung Hospital, Beijing 102218, P.R. China
| | - Guoying Miao
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056002, P.R. China
| | - Yan Tian
- Department of Plastic Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056002, P.R. China
| |
Collapse
|
28
|
Garcia DA, Pressete CG, Miranda R, Salem PPO, Nicácio KJ, Costa LPDM, Murgu M, Lago JHG, Dias DF, Soares MG, Ionta M, Chagas-Paula DA. Biological and metabolomics-guided isolation of tetrahydrofurofuran lignan from Croton spp. with antiproliferative activity against human melanoma cell line. Fitoterapia 2024; 177:106070. [PMID: 38897254 DOI: 10.1016/j.fitote.2024.106070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The Croton genus (Euphorbiaceae) is recognized as a promising source for identifying bioactive compounds with antiproliferative activity. However, knowledge on the chemical composition and activity of Croton floribundus, Croton echinocarpus, and Croton zehntneri is limited. Thus, this study aimed to investigate the antiproliferative activity of these species on cells derived from tumoral breast, lung, and melanoma cells, and primary fibroblasts derived from human skin. Metabolomic strategies were applied via ultra-performance liquid chromatography coupled with high-resolution mass spectrometry and multivariate statistical analysis to target the main active compound. The C. floribundus leaf extract exhibited the highest activity, with an IC50 value lower than that of the reference drug - temozolomide - in the most responsive cell line - SK-MEL-147 - and in all the evaluated melanoma cell lines (SK-MEL-147, CHL-1 and WM-1366). Four tetrahydrofurofuran lignans were isolated for the first time from the most promising fraction of the C. floribundus extract. According to the metabolomic and multivariate statistical analyses, the isolated lignan epi-yangambin constituted the main antiproliferative compound against SK-MEL-147; furthermore, it exhibited selective antiproliferative activity for this cell line (IC50 = 13.09 μg/mL and selectivity index = 3.82; temozolomide, IC50 = 121.50 μg/mL) due to, at least in part, its ability to inhibit cell cycle progression at G2/M. This is especially relevant considering the high resistance of melanoma cells to available drugs. Thus, epi-yangambin can serve as a prototype for further antiproliferative investigations.
Collapse
Affiliation(s)
- Daniela A Garcia
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil; Laboratory for the Evaluation of Antitumor Prototypes, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil
| | - Carolina G Pressete
- Laboratory for the Evaluation of Antitumor Prototypes, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil
| | - Rafael Miranda
- Laboratory for the Evaluation of Antitumor Prototypes, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil
| | - Paula P O Salem
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil
| | - Karen J Nicácio
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil; Department of Chemistry, Federal University of Mato Grosso (UFMT), Cuiabá, MT 78060-900, Brazil
| | - Lara P D M Costa
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil
| | | | - João H G Lago
- Center of Human and Natural Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil
| | - Danielle F Dias
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil
| | - Marisi G Soares
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil
| | - Marisa Ionta
- Laboratory for the Evaluation of Antitumor Prototypes, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil
| | - Daniela A Chagas-Paula
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
29
|
Patrick N, Markey M. Long-Read MDM4 Sequencing Reveals Aberrant Isoform Landscape in Metastatic Melanomas. Int J Mol Sci 2024; 25:9415. [PMID: 39273363 PMCID: PMC11395681 DOI: 10.3390/ijms25179415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
MDM4 is upregulated in the majority of melanoma cases and has been described as a "key therapeutic target in cutaneous melanoma". Numerous isoforms of MDM4 exist, with few studies examining their specific expression in human tissues. The changes in splicing of MDM4 during human melanomagenesis are critical to p53 activity and represent potential therapeutic targets. Compounding this, studies relying on short reads lose "connectivity" data, so full transcripts are frequently only inferred from the presence of splice junction reads. To address this problem, long-read nanopore sequencing was utilized to read the entire length of transcripts. Here, MDM4 transcripts, both alternative and canonical, are characterized in a pilot cohort of human melanoma specimens. RT-PCR was first used to identify the presence of novel splice junctions in these specimens. RT-qPCR then quantified the expression of major MDM4 isoforms observed during sequencing. The current study both identifies and quantifies MDM4 isoforms present in melanoma tumor samples. In the current study, we observed high expression levels of MDM4-S, MDM4-FL, MDM4-A, and the previously undescribed Ensembl transcript MDM4-209. A novel transcript lacking both exons 6 and 9 is observed and named MDM4-A/S for its resemblance to both MDM4-A and MDM4-S isoforms.
Collapse
Affiliation(s)
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| |
Collapse
|
30
|
Gao M, Liu J, Yang M, Zhang X, Zhang Y, Zhou Z, Deng J. Integrative analysis of autophagy-related genes reveals that CAPNS1 is a novel prognostic biomarker and promotes the malignancy of melanoma via Notch signaling pathway. Am J Cancer Res 2024; 14:3665-3693. [PMID: 39267668 PMCID: PMC11387868 DOI: 10.62347/ecdf2762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/15/2024] [Indexed: 09/15/2024] Open
Abstract
Skin cutaneous melanoma (SKCM) is a highly fatal form of skin cancer that develops from the malignant transformation of epidermal melanocytes. There is substantial evidence linking autophagy to cancer etiology and immunotherapy efficacy. This study aimed to conduct a comprehensive analysis of autophagy-related genes (ARGs) using TCGA datasets and further explore the potential function of critical ARGs in SKCM progression. We performed comprehensive bioinformatics analysis uses the TCGA dataset. RT-PCR was applied to examine the expression of CAPNS1 in SKCM cells. Lost-of-function experiments were performed to detect the expression of the related proteins. In this search, we screed 70 differentially expressed autophagy-related genes (DE-ARGs), including 33 up-DE-ARGs and 37 down-DE-ARGs. Enrichment assays revealed that these 70 DE-ARGs may exert influence on critical cellular processes such as autophagy, protein kinase activity, and signaling pathways, impacting cell growth, differentiation, survival, and tumor development. Then, we further explore the prognostic value of 70 DE-ARGs and confirmed 18 survival-related DE-ARGs in SKCM patients. Nearly all the 18 DE-ARGs' methylation was negatively correlated with their corresponding expression in SKCM. The 12 survival-related DE-ARGs were used to develop a unique predictive model that effectively classified SKCM patients into high- and low-risk groups with regard to overall survival. Furthermore, tumor environment analysis indicated that the risk score was associated with several immune cells. Among the 12 survival-related DE-ARGs, our attention focused on CAPNS1 which was highly expressed in SKCM patients and predicted a poor prognosis. In addition, we confirmed that knockdown of CAPNS1 distinctly suppressed the proliferation, metastasis and EMT of SKCM cells, and promoted autophagy via regulating Notch signaling pathway. Overall, this study enhances our understanding of the intricate molecular landscape of SKCM progression and presents promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Mengru Gao
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University Hefei 230012, Anhui, China
- Anhui Public Health Clinical Center Hefei 230012, Anhui, China
| | - Jisong Liu
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Bengshan District, Bengbu 233000, Anhui, China
| | - Miaomiao Yang
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University Hefei 230012, Anhui, China
- Anhui Public Health Clinical Center Hefei 230012, Anhui, China
| | - Xiangzhou Zhang
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Bengshan District, Bengbu 233000, Anhui, China
| | - Yulian Zhang
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University Hefei 230012, Anhui, China
- Anhui Public Health Clinical Center Hefei 230012, Anhui, China
| | - Zhuliang Zhou
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Bengshan District, Bengbu 233000, Anhui, China
| | - Jiabin Deng
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Bengshan District, Bengbu 233000, Anhui, China
| |
Collapse
|
31
|
Trocchia M, Ventrici A, Modestino L, Cristinziano L, Ferrara AL, Palestra F, Loffredo S, Capone M, Madonna G, Romanelli M, Ascierto PA, Galdiero MR. Innate Immune Cells in Melanoma: Implications for Immunotherapy. Int J Mol Sci 2024; 25:8523. [PMID: 39126091 PMCID: PMC11313504 DOI: 10.3390/ijms25158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.
Collapse
Affiliation(s)
- Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
| | - Leonardo Cristinziano
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| |
Collapse
|
32
|
Wang M, Zan T, Fan C, Li Z, Wang D, Li Q, Zhang C. Advances in GPCR-targeted drug development in dermatology. Trends Pharmacol Sci 2024; 45:678-690. [PMID: 39060127 DOI: 10.1016/j.tips.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Achieving the efficacy and specificity of G-protein-coupled receptor (GPCR) targeting-drugs in the skin remains challenging. Understanding the molecular mechanism underlying GPCR dysfunction is crucial for developing targeted therapies. Recent advances in genetic, signal transduction, and structural studies have significantly improved our understanding of cutaneous GPCR functions in both normal and pathological states. In this review, we summarize recent discoveries of pathogenic GPCRs in dermal injuries, chronic inflammatory dermatoses, cutaneous malignancies, as well as the development of potent potential drugs. We also discuss targeting of cutaneous GPCR complexes via the transient receptor potential (TRP) channel and structure elucidation, which provide new opportunities for therapeutic targeting of GPCRs involved in skin disorders. These insights are expected to lead to more effective and specific treatments for various skin conditions.
Collapse
Affiliation(s)
- Meng Wang
- Songjiang Research Institute, Songjiang Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengang Fan
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Chao Zhang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
33
|
Ruiz-Ojeda D, Guzmán-Martín CA, Bojalil R, Balderas XF, Paredes-González IS, González-Ramírez J, Torres-Rasgado E, Hernández-DíazCouder A, Springall R, Sánchez-Muñoz F. Long noncoding RNA MALAT1 in dermatologic disorders: a comprehensive review. Biomark Med 2024; 18:853-867. [PMID: 38982732 PMCID: PMC11497971 DOI: 10.1080/17520363.2024.2369044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Dermatologic disorders, affecting the integumentary system, involve diverse molecular mechanisms such as cell proliferation, apoptosis, inflammation and immune responses. Long noncoding RNAs, particularly Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), are crucial regulators of gene expression. MALAT1 influences inflammatory responses, immune cell function and signaling pathways, impacting various physiological and pathological processes, including dermatologic disorders. Dysregulation of MALAT1 is observed in skin conditions like psoriasis, atopic dermatitis and systemic lupus erythematosus. However, its precise role remains unclear. This review consolidates knowledge on MALAT1's impact on skin biology and pathology, emphasizing its potential diagnostic and therapeutic implications in dermatologic conditions.
Collapse
Affiliation(s)
- Dayanara Ruiz-Ojeda
- Posgrado en Medicina Interna, Hospital Central Sur de Alta Especialidad de Petróleos Mexicanos, Ciudad de México, C.P. 14140, México
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| | - Carlos A Guzmán-Martín
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, C.P. 04960, México
- Departamento de programas de investigación, Hospital Shriners para Niños México, Ciudad de México, C.P. 04600, México
| | - Rafael Bojalil
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, C.P. 04960, México
| | - Ximena F Balderas
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| | - Iris S Paredes-González
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, C.P. 14080, México
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali, Baja California, C.P. 21376, México
| | - Enrique Torres-Rasgado
- Facultad de Medicina, Cuerpo Académico de Medicina Interna (CA-160), Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000,México
| | - Adrián Hernández-DíazCouder
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, C.P. 06720, México
| | - Rashidi Springall
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| |
Collapse
|
34
|
Hasterok S, Jankovskaja S, Miletic Dahlström R, Prgomet Z, Ohlsson L, Björklund S, Gustafsson A. Exploring the Surface: Sampling of Potential Skin Cancer Biomarkers Kynurenine and Tryptophan, Studied on 3D Melanocyte and Melanoma Models. Biomolecules 2024; 14:815. [PMID: 39062529 PMCID: PMC11274760 DOI: 10.3390/biom14070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Early detection of cancer via biomarkers is vital for improving patient survival rates. In the case of skin cancers, low-molecular-weight biomarkers can penetrate the skin barrier, enabling non-invasive sampling at an early stage. This study focuses on detecting tryptophan (Trp) and kynurenine (Kyn) on the surface of reconstructed 3D melanoma and melanocyte models. This is examined in connection with IDO-1 and IL-6 expression in response to IFN-γ or UVB stimulation, both crucial factors of the melanoma tumor microenvironment (TME). Using a polystyrene scaffold, full-thickness human skin equivalents containing fibroblasts, keratinocytes, and melanocytes or melanoma cells were developed. The samples were stimulated with IFN-γ or UVB, and Trp and Kyn secretion was measured using HPLC-PDA and HPLC-MS. The expression of IDO-1 and IL-6 was measured using RT-qPCR. Increased Trp catabolism to Kyn was observed in IFN-γ-stimulated melanoma and melanocyte models, along with higher IDO-1 expression. UVB exposure led to significant changes in Kyn levels but only in the melanoma model. This study demonstrates the potential of skin surface Trp and Kyn monitoring to capture TME metabolic changes. It also lays the groundwork for future in vivo studies, aiding in understanding and monitoring skin cancer progression.
Collapse
Affiliation(s)
- Sylwia Hasterok
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Skaidre Jankovskaja
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Ruzica Miletic Dahlström
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Zdenka Prgomet
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 214 21 Malmo, Sweden
| | - Lars Ohlsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Anna Gustafsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| |
Collapse
|
35
|
Xie J, Zhang P, Tang Q, Ma C, Li M, Qi M. Leveraging single-cell sequencing analysis and bulk-RNA sequencing analysis to forecast necroptosis in cutaneous melanoma prognosis. Exp Dermatol 2024; 33:e15148. [PMID: 39051739 DOI: 10.1111/exd.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Cutaneous melanoma, a malignancy of melanocytes, presents a significant challenge due to its aggressive nature and rising global incidence. Despite advancements in treatment, the variability in patient responses underscores the need for further research into novel therapeutic targets, including the role of programmed cell death pathways such as necroptosis. The melanoma datasets used for analysis, GSE215120, GSE19234, GSE22153 and GSE65904, were downloaded from the GEO database. The melanoma data from TCGA were downloaded from the UCSC website. Using single-cell sequencing, we assess the heterogeneity of necroptosis in cutaneous melanoma, identifying distinct cell clusters and necroptosis-related gene expression patterns. A combination of 101 machine learning algorithms was employed to construct a necroptosis-related signature (NRS) based on key genes associated with necroptosis. The prognostic value of NRS was evaluated in four cohorts (one TCGA and three GEO cohorts), and the tumour microenvironment (TME) was analysed to understand the relationship between necroptosis, tumour mutation burden (TMB) and immune infiltration. Finally, we focused on the role of key target TSPAN10 in the prognosis, pathogenesis, immunotherapy relevance and drug sensitivity of cutaneous melanoma. Our study revealed significant heterogeneity in necroptosis among melanoma cells, with a higher prevalence in epithelial cells, myeloid cells and fibroblasts. The NRS, developed through rigorous machine learning techniques, demonstrated robust prognostic capabilities, distinguishing high-risk patients with poorer outcomes in all cohorts. Analysis of the TME showed that high NRS scores correlated with lower TMB and reduced immune cell infiltration, indicating a potential mechanism through which necroptosis influences melanoma progression. Finally, TSPAN10 has been identified as a key target for cutaneous melanoma and is highly associated with poor prognosis. The findings highlight the complex role of necroptosis in cutaneous melanoma and introduce the NRS as a novel prognostic tool with potential to guide therapeutic decisions.
Collapse
Affiliation(s)
- Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qikai Tang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chenfeng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Muyang Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
36
|
Zhang Y, Sun Q, Liang Y, Yang X, Wang H, Song S, Wang Y, Feng Y. FAM20A: a potential diagnostic biomarker for lung squamous cell carcinoma. Front Immunol 2024; 15:1424197. [PMID: 38983866 PMCID: PMC11231076 DOI: 10.3389/fimmu.2024.1424197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) ranks among the carcinomas with the highest incidence and dismal survival rates, suffering from a lack of effective therapeutic strategies. Consequently, biomarkers facilitating early diagnosis of LUSC could significantly enhance patient survival. This study aims to identify novel biomarkers for LUSC. Methods Utilizing the TCGA, GTEx, and CGGA databases, we focused on the gene encoding Family with Sequence Similarity 20, Member A (FAM20A) across various cancers. We then corroborated these bioinformatic predictions with clinical samples. A range of analytical tools, including Kaplan-Meier, MethSurv database, Wilcoxon rank-sum, Kruskal-Wallis tests, Gene Set Enrichment Analysis, and TIMER database, were employed to assess the diagnostic and prognostic value of FAM20A in LUSC. These tools also helped evaluate immune cell infiltration, immune checkpoint genes, DNA repair-related genes, DNA methylation, and tumor-related pathways. Results FAM20A expression was found to be significantly reduced in LUSC, correlating with lower survival rates. It exhibited a negative correlation with key proteins in DNA repair signaling pathways, potentially contributing to LUSC's radiotherapy resistance. Additionally, FAM20A showed a positive correlation with immune checkpoints like CTLA-4, indicating potential heightened sensitivity to immunotherapies targeting these checkpoints. Conclusion FAM20A emerges as a promising diagnostic and prognostic biomarker for LUSC, offering potential clinical applications.
Collapse
Affiliation(s)
- Yalin Zhang
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qin Sun
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yangbo Liang
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xian Yang
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yong Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
37
|
Xiao X, Zheng Y, Wang T, Zhang X, Fang G, Zhang Z, Zhang Z, Zhao J. Enhancing anti-angiogenic immunotherapy for melanoma through injectable metal-organic framework hydrogel co-delivery of combretastatin A4 and poly(I:C). NANOSCALE ADVANCES 2024; 6:3135-3145. [PMID: 38868828 PMCID: PMC11166098 DOI: 10.1039/d4na00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
The interplay between vascularization and macrophage-induced immune suppression plays a crucial role in melanoma treatment. In this study, we propose a novel combination approach to combat melanoma by simultaneously inhibiting tumor vascularization and enhancing macrophage-mediated anti-tumor responses. We investigate the potential of combining combretastatin A4 (CA4), a vascular-disrupting agent, with poly(I:C) (PIC), an immunostimulatory adjuvant. This combination approach effectively suppresses melanoma cell proliferation, disrupts vascularization, and promotes macrophage polarization towards the M1 phenotype for melanoma suppression. To facilitate efficient co-delivery of CA4 and PIC for enhanced anti-angiogenic immunotherapy, we develop an injectable metal-organic framework hydrogel using Zeolitic Imidazolate Framework-8 (ZIF-8) and hyaluronic acid (HA) (ZIF-8/HA). Our findings demonstrate that ZIF-8 enables efficient loading of CA4 and enhances the stability of PIC against RNAase degradation in vitro. Furthermore, the developed co-delivery hydrogel system, PIC/CA4@ZIF-8/HA, exhibits improved rheological properties, good injectability and prolonged drug retention. Importantly, in vivo experiments demonstrate that the PIC/CA4@ZIF-8/HA formulation significantly reduces the dosage and administration frequency while achieving a more pronounced therapeutic effect. It effectively inhibits melanoma growth by suppressing angiogenesis, destroying blood vessels, promoting M1 macrophage infiltration, and demonstrating excellent biocompatibility. In conclusion, our study advances anti-angiogenic immunotherapy for melanoma through the potent combination of PIC/CA4, particularly when administered using the PIC/CA4@ZIF-8/HA formulation. These findings provide a new perspective on clinical anti-angiogenic immunotherapy for melanoma, emphasizing the importance of targeting tumor vascularization and macrophage-mediated immune suppression simultaneously.
Collapse
Affiliation(s)
- Xufeng Xiao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Yunuo Zheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Xuzhou 221009 Jiangsu China
| | - Tianlong Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Xiaoqing Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Gaochuan Fang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Zhonghai Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University Xuzhou 221002 Jiangsu China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 Jiangsu China
| | - Jiaojiao Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| |
Collapse
|
38
|
Xie J, Zhang P, Ma C, Tang Q, Zhou X, Xu X, Zhang M, Zhao S, Zhou L, Qi M. Unravelling the metabolic landscape of cutaneous melanoma: Insights from single-cell sequencing analysis and machine learning for prognostic assessment of lactate metabolism. Exp Dermatol 2024; 33:e15119. [PMID: 38881438 DOI: 10.1111/exd.15119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
This manuscript presents a comprehensive investigation into the role of lactate metabolism-related genes as potential prognostic markers in skin cutaneous melanoma (SKCM). Bulk-transcriptome data from The Cancer Genome Atlas (TCGA) and GSE19234, GSE22153, and GSE65904 cohorts from GEO database were processed and harmonized to mitigate batch effects. Lactate metabolism scores were assigned to individual cells using the 'AUCell' package. Weighted Co-expression Network Analysis (WGCNA) was employed to identify gene modules correlated with lactate metabolism. Machine learning algorithms were applied to construct a prognostic model, and its performance was evaluated in multiple cohorts. Immune correlation, mutation analysis, and enrichment analysis were conducted to further characterize the prognostic model's biological implications. Finally, the function of key gene NDUFS7 was verified by cell experiments. Machine learning resulted in an optimal prognostic model, demonstrating significant prognostic value across various cohorts. In the different cohorts, the high-risk group showed a poor prognosis. Immune analysis indicated differences in immune cell infiltration and checkpoint gene expression between risk groups. Mutation analysis identified genes with high mutation loads in SKCM. Enrichment analysis unveiled enriched pathways and biological processes in high-risk SKCM patients. NDUFS7 was found to be a hub gene in the protein-protein interaction network. After the expression of NDUFS7 was reduced by siRNA knockdown, CCK-8, colony formation, transwell and wound healing tests showed that the activity, proliferation and migration of A375 and WM115 cell lines were significantly decreased. This study offers insights into the prognostic significance of lactate metabolism-related genes in SKCM.
Collapse
Affiliation(s)
- Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chenfeng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Xinxin Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolong Xu
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Min Zhang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Liping Zhou
- Emergency Department of Xiangya Hospital, Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Guo X, Guo Z, Bai P, Guo C, Liu X, Zhu K, Li X, Zhao Y. GPR168 functions as a tumor suppressor in mouse melanoma by restraining Akt signaling pathway. PLoS One 2024; 19:e0302061. [PMID: 38805406 PMCID: PMC11132440 DOI: 10.1371/journal.pone.0302061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/27/2024] [Indexed: 05/30/2024] Open
Abstract
Malignant melanoma (MM) is a malignant tumor associated with high mortality rates and propensity for metastasis. Despite advancement in treatment, the incidence of MM continue to rise globally. GPR168, also known as MrgprF, is a MAS related GPR family member. The low expression of GPR168 has also been reported in many malignant tumors including MM. In the study, the statistical analysis from The Cancer Genome Atlas (TCGA) revealed a significant down regulation of GPR168 in melanoma compared to normal melanocytes, underscoring its importance in MM. The aim of the present study is to investigate the affect of GPR168 overexpression and elucidate its molecular mechanisms in MM cells. In addition, we used mouse melanoma B16-F10 cell line and xenograph tumor model to explore the function of GPR168 in melanoma. Our findings demonstrate that GPR168 overexpression could inhibit B16-F10 cell proliferation, migration, and xenografts tumor growth. Further, mechanistic studies revealed that GPR168 affected B16-F10 progress through Akt signal pathway with the decreased expression of p-Akt, p-GSK-3β, β-catenin, Myc, CyclinD1 and CDK4. In order to validate these findings, a rescue experiment was formulated employing GPR168 polyclonal antibody (Anti-GPR168 pAbs) to block GPR168 functionality. The addition of Anti-GPR168 pAbs into the culture medium restored both cell proliferation and migration. In conclusion, the overexpression of GPR168 in mouse melanoma B16-F10 cells suppressed proliferation and migration through the Akt signaling pathway. These findings collectively propose GPR168 as a promising novel tumor suppressor in MM, suggesting its potential as a therapeutic target in future interventions.
Collapse
Affiliation(s)
- Xiang Guo
- Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zongliang Guo
- Department of General Surgery, Chinese Academy of Medical Sciences, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Peirong Bai
- Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | | | - Xuewei Liu
- College of Veterinary Medicine, Institute of Animal Biotechnology, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Kaiyi Zhu
- Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University Taiyuan, Taiyuan, Shanxi, China
| | - Yiyan Zhao
- Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Villani A, Potestio L, Lallas A, Apalla Z, Scalvenzi M, Martora F. Unaddressed Challenges in the Treatment of Cutaneous Melanoma? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:884. [PMID: 38929501 PMCID: PMC11205306 DOI: 10.3390/medicina60060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: While the management of noninvasive cutaneous melanoma (CM) is typically limited to a secondary excision to reduce recurrence risk and periodic follow-up, treating patients with advanced melanoma presents ongoing challenges. Materials and Methods: This review provides a comprehensive examination of both established and emerging pharmacologic strategies for advanced CM management, offering an up-to-date insight into the current therapeutic milieu. The dynamic landscape of advanced CM treatment is explored, highlighting the efficacy of immune checkpoint inhibitors and targeted therapies, either in monotherapy or combination regimens. Additionally, ongoing investigations into novel treatment modalities are thoroughly discussed, reflecting the evolving nature of melanoma management. Results: The therapeutic landscape for melanoma management is undergoing significant transformation. Although various treatment modalities exist, there remains a critical need for novel therapies, particularly for certain stages of melanoma or cases resistant to current options. Conclusions: Consequently, further studies are warranted to identify new treatment avenues and optimize the utilization of existing drugs.
Collapse
Affiliation(s)
- Alessia Villani
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Aimilios Lallas
- First Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece;
| | - Zoe Apalla
- Second Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Massimiliano Scalvenzi
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Fabrizio Martora
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| |
Collapse
|
41
|
Li C, Wu N, Lin X, Zhou Q, Xu M. Integrated transcriptomic and immunological profiling reveals new diagnostic and prognostic models for cutaneous melanoma. Front Pharmacol 2024; 15:1389550. [PMID: 38863979 PMCID: PMC11165152 DOI: 10.3389/fphar.2024.1389550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The mortality rate associated with cutaneous melanoma (SKCM) remains alarmingly high, highlighting the urgent need for a deeper understanding of its molecular underpinnings. In our study, we leveraged bulk transcriptome sequencing data from the SKCM cohort available in public databases such as TCGA and GEO. We utilized distinct datasets for training and validation purposes and also incorporated mutation and clinical data from TCGA, along with single-cell sequencing data from GEO. Through dimensionality reduction, we annotated cell subtypes within the single-cell data and analyzed the expression of tumor-related pathways across these subtypes. We identified differentially expressed genes (DEGs) in the training set, which were further refined using the Least Absolute Shrinkage and Selection Operator (LASSO) machine learning algorithm, employing tenfold cross-validation. This enabled the construction of a prognostic model, whose diagnostic efficacy we subsequently validated. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses on the DEGs, and performed immunological profiling on two risk groups to elucidate the relationship between model genes and the immune responses relevant to SKCM diagnosis, treatment, and prognosis. We also knocked down the GMR6 expression level in the melanoma cells and verified its effect on cancer through multiple experiments. The results indicate that the GMR6 gene plays a role in promoting the proliferation, invasion, and migration of cancer cells in human melanoma. Our findings offer novel insights and a theoretical framework that could enhance prognosis, treatment, and drug development strategies for SKCM, potentially leading to more precise therapeutic interventions.
Collapse
Affiliation(s)
- Changchang Li
- Department of Dermatology,Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Nanhui Wu
- Department of Dermatopathology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqiong Lin
- Department of Dermatology,Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Qiaochu Zhou
- Department of Dermatology,Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Mingyuan Xu
- Department of Dermatopathology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Rojas-Solé C, Torres-Herrera B, Gelerstein-Claro S, Medina-Pérez D, Gómez-Venegas H, Alzolay-Sepúlveda J, Chichiarelli S, Saso L, Rodrigo R. Cellular Basis of Adjuvant Role of n-3 Polyunsaturated Fatty Acids in Cancer Therapy: Molecular Insights and Therapeutic Potential against Human Melanoma. APPLIED SCIENCES 2024; 14:4548. [DOI: 10.3390/app14114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Human melanoma is a highly aggressive malignant tumor originating from epidermal melanocytes, characterized by intrinsic resistance to apoptosis and the reprogramming of proliferation and survival pathways during progression, leading to high morbidity and mortality rates. This malignancy displays a marked propensity for metastasis and often exhibits poor responsiveness to conventional therapies. Fatty acids, such as n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic and eicosapentaenoic acids, exert various physiological effects on melanoma, with increasing evidence highlighting the anti-tumorigenic, anti-inflammatory, and immunomodulatory properties. Additionally, n-3 PUFAs have demonstrated their ability to inhibit cancer metastatic dissemination. In the context of cancer treatment, n-3 PUFAs have been investigated in conjunction with chemotherapy as a potential strategy to mitigate severe chemotherapy-induced side effects, enhance treatment efficacy and improve safety profiles, while also enhancing the responsiveness of cancer cells to chemotherapy. Furthermore, dietary intake of n-3 PUFAs has been associated with numerous health benefits, including a decreased risk and improved prognosis in conditions such as heart disease, autoimmune disorders, depression and mood disorders, among others. However, the specific mechanisms underlying their anti-melanoma effects and outcomes remain controversial, particularly when comparing findings from in vivo or in vitro experimental studies to those from human trials. Thus, the objective of this review is to present data supporting the potential role of n-3 PUFA supplementation as a novel complementary approach in the treatment of malignant cancers such as melanoma.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Benjamín Torres-Herrera
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Santiago Gelerstein-Claro
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Diego Medina-Pérez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Haziel Gómez-Venegas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Javier Alzolay-Sepúlveda
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
43
|
Zhang X, Zhang M, Zhang Z, Zhou S. Salidroside induces mitochondrial dysfunction and ferroptosis to inhibit melanoma progression through reactive oxygen species production. Exp Cell Res 2024; 438:114034. [PMID: 38588875 DOI: 10.1016/j.yexcr.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Reactive oxygen species (ROS) induces necroptotic and ferroptosis in melanoma cells. Salidroside (SAL) regulates ROS in normal cells and inhibits melanoma cell proliferation. This study used human malignant melanoma cells treated with SAL either alone or in combination with ROS scavenger (NAC) or ferroptosis inducer (Erastin). Through cell viability, wound healing assays, and a Seahorse analyze found that SAL inhibited cell proliferation, migration, extracellular acidification rate, and oxygen consumption rate. Metabolic flux analysis, complexes I, II, III, and IV activity of the mitochondrial respiratory chain assays, mitochondrial membrane potential assay, mitochondrial ROS, and transmission electron microscope revealed that SAL induced mitochondrial dysfunction and ultrastructural damage. Assessment of malondialdehyde, lipid ROS, iron content measurement, and Western blot analysis showed that SAL activated lipid peroxidation and promoted ferroptosis in A-375 cells. These effects were abolished after NAC treatment. Additionally, SAL and Erastin both inhibited cell proliferation and promoted cell death; SAL increased the Erastin sensitivity of cells while NAC antagonized it. In xenograft mice, SAL inhibited melanoma growth and promoted ROS-dependent ferroptosis. SAL induced mitochondrial dysfunction and ferroptosis to block melanoma progression through ROS production, which offers a scientific foundation for conducting SAL pharmacological research in the management of melanoma.
Collapse
Affiliation(s)
- Xianqi Zhang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi Province, China.
| | - Ziyan Zhang
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
44
|
Ren M, Yang L, He L, Wang J, Zhao W, Yang C, Yang S, Cheng H, Huang M, Gou M. Non-viral Gene Therapy for Melanoma Using Lysenin from Eisenia Foetida. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306076. [PMID: 38445883 PMCID: PMC11077637 DOI: 10.1002/advs.202306076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Earthworms, long utilized in traditional medicine, serve as a source of inspiration for modern therapeutics. Lysenin, a defensive factor in the coelom fluid of the earthworm Eisenia fetida, has multiple bioactivities. However, the inherent toxicity of Lysenin as a pore-forming protein (PFP) restricts its application in therapy. Here, a gene therapy strategy based on Lysenin for cancer treatment is presented. The formulation consists of polymeric nanoparticles complexed with the plasmid encoding Lysenin. After transfection in vitro, melanoma cells can express Lysenin, resulting in necrosis, autophagy, and immunogenic cell death. The secretory signal peptide alters the intracellular distribution of the expressed product of Lysenin, thereby potentiating its anticancer efficacy. The intratumor injection of Lysenin gene formulation can efficiently kill the transfected melanoma cells and activate the antitumor immune response. Notably, no obvious systemic toxicity is observed during the treatment. Non-viral gene therapy based on Lysenin derived from Eisenia foetida exhibits potential in cancer therapy, which can inspire future cancer therapeutics.
Collapse
Affiliation(s)
- Min Ren
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Ling Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liming He
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jie Wang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Wei Zhao
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chunli Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shuai Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Hao Cheng
- Huahang Microcreate Technology Co., LtdChengduSichuan610041China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Maling Gou
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
45
|
Zhang Y, Lu Q. Immune cells in skin inflammation, wound healing, and skin cancer. J Leukoc Biol 2024; 115:852-865. [PMID: 37718697 DOI: 10.1093/jleuko/qiad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Given the self-evident importance of cutaneous immunity in the maintenance of body-surface homeostasis, disturbance of the steady-state skin is inextricably intertwined with dysfunction in cutaneous immunity. It is often overlooked by people that skin, well-known as a solid physical barrier, is also a strong immunological barrier, considering the abundant presence of immune cells including lymphocytes, granulocytes, dendritic cells, and macrophages. What's more, humoral immune components including cytokines, immunoglobulins, and antimicrobial peptides are also rich in the skin. This review centers on skin inflammation (acute and chronic, infection and aseptic inflammation), wound healing, and skin cancer to elucidate the elaborate network of immune cells in skin diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
46
|
Cecchi M, Anceschi C, Silvano A, Coniglio ML, Chinnici A, Magnelli L, Lapucci A, Laurenzana A, Parenti A. Unveiling the Role of Tryptophan 2,3-Dioxygenase in the Angiogenic Process. Pharmaceuticals (Basel) 2024; 17:558. [PMID: 38794128 PMCID: PMC11124529 DOI: 10.3390/ph17050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 in human umbilical venular endothelial cells (HUVECs) and human endothelial colony-forming cells (ECFCs). METHODS qRT-PCR and immunofluorescence were used for TDO and IDO1 expression while their activity was measured using ELISA assays. Cell proliferation was examined via MTT tests and in in vitro angiogenesis by capillary morphogenesis. RESULTS HUVECs and ECFCs expressed TDO and IDO1. Treatment with the selective TDO inhibitor 680C91 significantly impaired HUVEC proliferation and 3D-tube formation in response to VEGF-A, while IDO1 inhibition showed no effect. VEGF-induced mTor phosphorylation and Kyn production were hindered by 680C91. ECFC morphogenesis was also inhibited by 680C91. Co-culturing HUVECs with A375 induced TDO up-regulation in both cell types, whose inhibition reduced MMP9 activity and prevented c-Myc and E2f1 upregulation. CONCLUSIONS HUVECs and ECFCs express the key enzymes of the kynurenine pathway. Significantly, TDO emerges as a pivotal player in in vitro proliferation and capillary morphogenesis, suggesting a potential pathophysiological role in angiogenesis beyond its well-known immunomodulatory effects.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
| | - Cecilia Anceschi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50134 Florence, Italy;
| | - Maria Luisa Coniglio
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Aurora Chinnici
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Andrea Lapucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
47
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
48
|
Li H, Dou Y, Yang H, Xing H, Zhu C, Wang T, Xuan Z, Yang M. Ce6-modified Fe ions-doped carbon dots as multifunctional nanoplatform for ferroptosis and photodynamic synergistic therapy of melanoma. J Nanobiotechnology 2024; 22:100. [PMID: 38462597 PMCID: PMC10924998 DOI: 10.1186/s12951-024-02346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Despite the higher sensitivity of melanoma towards ferroptosis and photodynamic therapy (PDT), the lack of efficient ferroptosis inducers and the poor solubility of photosensitizers restrict their synergistic strategies. With unique advantages, carbon dots (CDs) are expected to serve as innovative building blocks for combination therapy of cancers. RESULTS Herein, an ferroptosis/PDT integrated nanoplatform for melanoma therapy is constructed based on chlorin e6-modified Fe ions-doped carbon dots (Fe-CDs@Ce6). As a novel type of iron-carbon hybrid nanoparticles, the as-prepared Fe-CDs can selectively activate ferroptosis, prevent angiogenesis and inhibit the migration of mouse skin melanoma cells (B16), but have no toxicity to normal cells. The nano-conjugated structures facilitate not only the aqueous dispersibility of Ce6, but also the self-accumulation ability of Fe-CDs@Ce6 within melanoma area without requiring extra targets. Moreover, the therapeutic effects of Fe-CDs@Ce6 are synergistically enhanced due to the increased GSH depletion by PDT and the elevated singlet oxygen (1O2) production efficiency by Fe-CDs. When combined with laser irradiation, the tumor growth can be significantly suppressed by Fe-CDs@Ce6 through cyclic administration. The T2-weighted magnetic resonance imaging (MRI) capability of Fe-CDs@Ce6 also reveals their potentials for cancer diagnosis and navigation therapy. CONCLUSIONS Our findings indicate the multifunctionality of Fe-CDs@Ce6 in effectively combining ferroptosis/PDT therapy, tumor targeting and MRI imaging, which enables Fe-CDs@Ce6 to become promising biocompatible nanoplatform for the treatment of melanoma.
Collapse
Affiliation(s)
- Haiqiu Li
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Yichen Dou
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Hang Yang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Hanlin Xing
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Cheng Zhu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Tao Wang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China.
| | - Zhaopeng Xuan
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China.
| | - Mingxi Yang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China.
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
49
|
Letsoalo K, Nortje E, Patrick S, Nyakudya T, Hlophe Y. Decoding the synergistic potential of MAZ-51 and zingerone as therapy for melanoma treatment in alignment with sustainable development goals. Cell Biochem Funct 2024; 42:e3950. [PMID: 38348768 DOI: 10.1002/cbf.3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Melanoma, an invasive class of skin cancer, originates from mutations in melanocytes, the pigment-producing cells. Globally, approximately 132,000 new cases are reported each year, and in South Africa, the incidence stands at 2.7 per 100,000 people, signifying a worrisome surge in melanoma rates. Therefore, there is a need to explore treatment modalities that will target melanoma's signalling pathways. Melanoma metastasis is aided by ligand activity of transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor-C (VEGF-C) and C-X-C chemokine ligand 12 (CXCL12) which bind to their receptors and promote tumour cell survival, lymphangiogenesis and chemotaxis. (3-(4-dimethylaminonaphthelen-1-ylmethylene)-1,3-dihydroindol-2-one) MAZ-51 is an indolinone-based molecule that inhibits VEGF-C induced phosphorylation of vascular endothelial growth factor receptor 3 (VEGFR-3). Despite the successful use of conventional cancer therapies, patients endure adverse side effects and cancer drug resistance. Moreover, conventional therapies are toxic to the environment and caregivers. The use of medicinal plants and their phytochemical constituents in cancer treatment strategies has become more widespread because of the rise in drug resistance and the development of unfavourable side effects. Zingerone, a phytochemical derived from ginger exhibits various pharmacological properties positioning it as a promising candidate for cancer treatment. This review provides an overview of melanoma biology and the intracellular signalling pathways promoting cell survival, proliferation and adhesion. There is a need to align health and environmental objectives within sustainable development goals 3 (good health and well-being), 13 (climate action) and 15 (life on land) to promote early detection of skin cancer, enhance sun-safe practices, mitigation of environmental factors and advancing the preservation of biodiversity, including medicinal plants. Thus, this review discusses the impact of cytostatic cancer drugs on patients and the environment and examines the potential use of phytochemicals as adjuvant therapy.
Collapse
Affiliation(s)
- Kganya Letsoalo
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Evangeline Nortje
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Sean Patrick
- Environmental Chemical Pollution and Health Research Unit, University of Pretoria, Pretoria, South Africa
| | - Trevor Nyakudya
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Yvette Hlophe
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
50
|
Eddy K, Gupta K, Eddin MN, Marinaro C, Putta S, Sauer JM, Chaly A, Freeman KB, Pelletier JC, Fateeva A, Furmanski P, Silk AW, Reitz AB, Zloza A, Chen S. Assessing Longitudinal Treatment Efficacies and Alterations in Molecular Markers Associated with Glutamatergic Signaling and Immune Checkpoint Inhibitors in a Spontaneous Melanoma Mouse Model. JID INNOVATIONS 2024; 4:100262. [PMID: 38445232 PMCID: PMC10914525 DOI: 10.1016/j.xjidi.2024.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024] Open
Abstract
Previous work done by our laboratory described the use of an immunocompetent spontaneous melanoma-prone mouse model, TGS (TG-3/SKH-1), to evaluate treatment outcomes using inhibitors of glutamatergic signaling and immune checkpoint for 18 weeks. We showed a significant therapeutic efficacy with a notable sex-biased response in male mice. In this follow-up 18-week study, the dose of the glutamatergic signaling inhibitor was increased (from 1.7 mg/kg to 25 mg/kg), which resulted in improved responses in female mice but not male mice. The greatest reduction in tumor progression was observed in male mice treated with single-agent troriluzole and anti-PD-1. Furthermore, a randomly selected group of mice was removed from treatment after 18 weeks and maintained for up to an additional 48 weeks demonstrating the utility of the TGS mouse model to perform a ≥1-year preclinical therapeutic study in a physiologically relevant tumor-host environment. Digital spatial imaging analyses were performed in tumors and tumor microenvironments across treatment modalities using antibody panels for immune cell types and immune cell activation. The results suggest that immune cell populations and cytotoxic activities of T cells play critical roles in treatment responses in these mice. Examination of a group of molecular protein markers based on the proposed mechanisms of action of inhibitors of glutamatergic signaling and immune checkpoint showed that alterations in expression levels of xCT, γ-H2AX, EAAT2, PD-L1, and PD-1 are likely associated with the loss of treatment responses. These results suggest the importance of tracking changes in molecular markers associated with the mechanism of action of therapeutics over the course of a longitudinal preclinical therapeutic study in spatial and temporal manners.
Collapse
Affiliation(s)
- Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular & Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, New Jersey, USA
| | - Kajal Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Mohamad Naser Eddin
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Christina Marinaro
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Sanjana Putta
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - John Michael Sauer
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Anna Chaly
- Fox Chase Therapeutics Discovery, Doylestown, Pennsylvania, USA
| | | | | | - Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular & Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, New Jersey, USA
| | - Philip Furmanski
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Ann W. Silk
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Allen B. Reitz
- Fox Chase Therapeutics Discovery, Doylestown, Pennsylvania, USA
| | - Andrew Zloza
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular & Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|