1
|
Shivashakarappa K, Marriboina S, Yadegari Z, Paduri VR, Sachan R, Dumenyo K, Taheri A. DNA delivery into plant tissues using carbon dots made from citric acid and β-alanine. Front Chem 2025; 13:1542504. [PMID: 40177349 PMCID: PMC11961904 DOI: 10.3389/fchem.2025.1542504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 04/05/2025] Open
Abstract
Agriculture and food security face significant challenges due to population growth, climate change, and biotic and abiotic stresses. Enhancing crop productivity and quality through biotechnology is crucial in addressing these challenges. Genome engineering techniques, including gene cassette delivery into plant cells, aim to meet these demands. However, conventional biomolecule delivery methods have limitations such as poor efficacy, low regeneration capability, and potential cell damage. Nanoparticles, known for their success in drug delivery in animals, hold promise as DNA nanocarriers in plant sciences. This study explores the efficacy of carbon dots (CDs), synthesized rapidly and cost-effectively from citric acid monohydrate and β-alanine using a microwave-assisted method, as carriers for plasmid DNA delivery into plant tissues. The detailed characterization of carbon dots, evaluation of their binding ability with plasmid DNA, and phytotoxicity assessments were systematically conducted. The delivery and expression of plasmid DNA were successfully demonstrated in canola leaves via needleless syringe infiltration and in soybean root cells and protoplasts through passive diffusion. Additionally, the particle bombardment method facilitated the efficient delivery of plasmid DNA of varying sizes (4 kb, 11 kb, and 17 kb) into onion epidermal cells, as well as the successful delivery of plasmid DNA containing the GUS reporter gene into soybean embryos, using carbon dots as a binding agent between plasmid DNA and tungsten microcarrier. To our knowledge, this is the first study to report the use of carbon dots as a substitute for spermidine in such applications. Overall, our research presents a rapidly synthesized, cost-effective platform for efficient plasmid DNA delivery, establishing a foundation for using carbon dots as carriers for CRISPR and RNAi constructs in gene knockout and knockdown applications in plant tissues, with a comparison of their transformation efficiency against traditional delivery techniques.
Collapse
Affiliation(s)
- Kuber Shivashakarappa
- Department of Agricultural Science and Engineering, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Sureshbabu Marriboina
- Department of Agricultural Science and Engineering, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Zeinab Yadegari
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Vikas Reddy Paduri
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, United States
| | - Ritesh Sachan
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, United States
| | - Korsi Dumenyo
- Department of Agricultural Science and Engineering, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Ali Taheri
- Department of Agricultural Science and Engineering, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
2
|
Sahoo SS, Khiami M, Wlodarski MW. Inducible pluripotent stem cell models to study bone marrow failure and MDS predisposition syndromes. Exp Hematol 2025; 143:104669. [PMID: 39491640 DOI: 10.1016/j.exphem.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as powerful tools for in vitro modeling of bone marrow failure (BMF) syndromes and hereditary conditions predisposing to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). This review synthesizes recent advances in iPSC-based disease modeling for various inherited BMF/MDS disorders, including Fanconi anemia, dyskeratosis congenita, Diamond Blackfan anemia syndrome, Shwachman-Diamond syndrome, and severe congenital neutropenia as well as GATA2, RUNX1, ETV6, ANKRD26, SAMD9, SAMD9L, and ADH5/ALDH2 syndromes. Although the majority of these iPSC lines are derived from patient cells, some are generated by introducing patient-specific mutations into healthy iPSC backgrounds, offering complementary approaches to disease modeling. The review highlights the ability of iPSCs to recapitulate key disease phenotypes, such as impaired hematopoietic differentiation, telomere dysfunction, and defects in DNA repair or ribosome biogenesis. We discuss how these models have enhanced our understanding of disease pathomechanisms, hematopoietic defects, and potential therapeutic approaches. Challenges in generating and maintaining disease-specific iPSCs are examined, particularly for disorders involving DNA repair. We emphasize the necessity of creating isogenic controls to elucidate genotype-phenotype relationships. Furthermore, we address limitations of current iPSC models, including genetic variability among iPSC clones derived from the same patient, and difficulties in achieving robust engraftment of iPSC-derived hematopoietic progenitor cells in mouse transplantation models. The review also explores future directions, including the potential of iPSC models for drug discovery and personalized medicine approaches. This review underscores the significance of iPSC technology in advancing our understanding of inherited hematopoietic disorders and its potential to inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Majd Khiami
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
3
|
Barber HM, Pater AA, Gagnon KT, Damha MJ, O'Reilly D. Chemical engineering of CRISPR-Cas systems for therapeutic application. Nat Rev Drug Discov 2025; 24:209-230. [PMID: 39690326 DOI: 10.1038/s41573-024-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed.
Collapse
Affiliation(s)
- Halle M Barber
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Adrian A Pater
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Keith T Gagnon
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| | - Daniel O'Reilly
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
4
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Ali Agha AS, Al-Samydai A, Aburjai T. New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14. Heliyon 2025; 11:e42013. [PMID: 39906792 PMCID: PMC11791237 DOI: 10.1016/j.heliyon.2025.e42013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Background The issue of antimicrobial resistance (AMR) poses a major challenge to global health, evidenced by alarming mortality predictions and the diminishing efficiency of conventional antimicrobial drugs. The CRISPR-Cas system has proven to be a powerful tool in addressing this challenge. It originated from bacterial adaptive immune mechanisms and has gained significant recognition in the scientific community. Objectives This review aims to explore the applications of CRISPR-Cas technologies in combating AMR, evaluating their effectiveness, challenges, and potential for integration into current antimicrobial strategies. Methods We conducted a comprehensive review of recent literature from databases such as PubMed and Web of Science, focusing on studies that employ CRISPR-Cas technologies against AMR. Conclusions CRISPR-Cas technologies offer a transformative approach to combat AMR, with potential applications that extend beyond traditional antimicrobial strategies. Integrating these technologies with existing methods could significantly enhance our ability to manage and potentially reverse the growing problem of antimicrobial resistance. Future research should address technical and ethical barriers to facilitate safe and effective clinical and environmental applications. This review underscores the necessity for interdisciplinary collaboration and international cooperation to harness the full potential of CRISPR-Cas technologies in the fight against superbugs.
Collapse
Affiliation(s)
- Ahmed S.A. Ali Agha
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, (AA), Amman, 19328, Jordan
| | - Talal Aburjai
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
6
|
Krysenko S. Current Approaches for Genetic Manipulation of Streptomyces spp.-Key Bacteria for Biotechnology and Environment. BIOTECH 2025; 14:3. [PMID: 39846552 PMCID: PMC11755657 DOI: 10.3390/biotech14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Organisms from the genus Streptomyces feature actinobacteria with complex developmental cycles and a great ability to produce a variety of natural products. These soil bacteria produce more than 2/3 of antibiotics used in medicine, and a large variety of bioactive compounds for industrial, medical and agricultural use. Although Streptomyces spp. have been studied for decades, the engineering of these bacteria remains challenging, and the available genetic tools are rather limited. Furthermore, most biosynthetic gene clusters in these bacteria are silent and require strategies to activate them and exploit their production potential. In order to explore, understand and manipulate the capabilities of Streptomyces spp. as a key bacterial for biotechnology, synthetic biology strategies emerged as a valuable component of Streptomyces research. Recent advancements in strategies for genetic manipulation of Streptomyces involving proposals of a large variety of synthetic components for the genetic toolbox, as well as new approaches for genome mining, assembly of genetic constructs and their delivery into the cell, allowed facilitation of the turnaround time of strain engineering and efficient production of new natural products at an industrial scale, but still have strain- and design-dependent limitations. A new perspective offered recently by technical advances in DNA sequencing, analysis and editing proposed strategies to overcome strain- and construct-specific difficulties in the engineering of Streptomyces. In this review, challenges and recent developments of approaches for Streptomyces engineering are discussed, an overview of novel synthetic biology strategies is provided and examples of successful application of new technologies in molecular genetic engineering of Streptomyces are highlighted.
Collapse
Affiliation(s)
- Sergii Krysenko
- Valent BioSciences, Biorational Research Center, 1910 Innovation Way, Suite 100, Libertyville, IL 60048, USA
| |
Collapse
|
7
|
Koo J, Lee G, Park C, Oh H, Hong SH, Suh JY, Bae E. Structural and biochemical insights into the mechanism of the anti-CRISPR protein AcrIE3. Structure 2025; 33:160-170.e4. [PMID: 39541974 DOI: 10.1016/j.str.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/12/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Anti-CRISPR (Acr) proteins are natural inhibitors of CRISPR-Cas systems, found in bacteriophages and other genetic elements. AcrIE3, identified in a Pseudomonas phage, inactivates the type I-E CRISPR-Cas system in Pseudomonas aeruginosa by engaging with the Cascade complex. However, its precise inhibition mechanism has remained elusive. In this study, we present a comprehensive structural and biochemical analysis of AcrIE3, providing mechanistic insight into its anti-CRISPR function. Our results reveal that AcrIE3 selectively binds to the Cas8e subunit of the Cascade complex. The crystal structure of AcrIE3 exhibits an all-helical fold with a negatively charged surface. Through extensive mutational analyses, we show that AcrIE3 interacts with the protospacer adjacent motif (PAM) recognition site in Cas8e through its negatively charged surface residues. These findings enhance our understanding of the structure and function of type I-E Acr proteins, suggesting PAM interaction sites as primary targets for divergent Acr inhibitors.
Collapse
Affiliation(s)
- Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Gyujin Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Changkon Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Sung-Hyun Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
8
|
Argentel-Martínez L, Peñuelas-Rubio O, Herrera-Sepúlveda A, González-Aguilera J, Sudheer S, Salim LM, Lal S, Pradeep CK, Ortiz A, Sansinenea E, Hathurusinghe SHK, Shin JH, Babalola OO, Azizoglu U. Biotechnological advances in plant growth-promoting rhizobacteria for sustainable agriculture. World J Microbiol Biotechnol 2024; 41:21. [PMID: 39738995 DOI: 10.1007/s11274-024-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere, the soil zone surrounding plant roots, serves as a reservoir for numerous beneficial microorganisms that enhance plant productivity and crop yield, with substantial potential for application as biofertilizers. These microbes play critical roles in ecological processes such as nutrient recycling, organic matter decomposition, and mineralization. Plant growth-promoting rhizobacteria (PGPR) represent a promising tool for sustainable agriculture, enabling green management of crop health and growth, being eco-friendly alternatives to replace chemical fertilizers and pesticides. In this sense, biotechnological advancements respecting genomics and gene editing have been crucial to develop microbiome engineering which is pivotal in developing microbial consortia to improve crop production. Genome mining, which involves comprehensive analysis of the entire genome sequence data of PGPR, is crucial for identifying genes encoding valuable bacterial enzymes and metabolites. The CRISPR-Cas system, a cutting-edge genome-editing technology, has shown significant promise in beneficial microbial species. Advances in genetic engineering, particularly CRISPR-Cas, have markedly enhanced grain output, plant biomass, resistance to pests, and the sensory and nutritional quality of crops. There has been a great advance about the use of PGPR in important crops; however, there is a need to go further studying synthetic microbial communities, microbiome engineering, and gene editing approaches in field trials. This review focuses on future research directions involving several factors and topics around the use of PGPR putting special emphasis on biotechnological advances.
Collapse
Affiliation(s)
- Leandris Argentel-Martínez
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico.
| | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Angélica Herrera-Sepúlveda
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Jorge González-Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso Do Sul (UEMS), Cassilândia, MS, 79540-000, Brazil
| | - Surya Sudheer
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, 51005, Tartu, Estonia
| | - Linu M Salim
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Cochin, India
| | - Sunaina Lal
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Chittethu Kunjan Pradeep
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram, Kerala, 695562, India
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | | | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
9
|
Nayar G, Altman RB. Heterogeneous network approaches to protein pathway prediction. Comput Struct Biotechnol J 2024; 23:2727-2739. [PMID: 39035835 PMCID: PMC11260399 DOI: 10.1016/j.csbj.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Understanding protein-protein interactions (PPIs) and the pathways they comprise is essential for comprehending cellular functions and their links to specific phenotypes. Despite the prevalence of molecular data generated by high-throughput sequencing technologies, a significant gap remains in translating this data into functional information regarding the series of interactions that underlie phenotypic differences. In this review, we present an in-depth analysis of heterogeneous network methodologies for modeling protein pathways, highlighting the critical role of integrating multifaceted biological data. It outlines the process of constructing these networks, from data representation to machine learning-driven predictions and evaluations. The work underscores the potential of heterogeneous networks in capturing the complexity of proteomic interactions, thereby offering enhanced accuracy in pathway prediction. This approach not only deepens our understanding of cellular processes but also opens up new possibilities in disease treatment and drug discovery by leveraging the predictive power of comprehensive proteomic data analysis.
Collapse
Affiliation(s)
- Gowri Nayar
- Department of Biomedical Data Science, Stanford University, United States
| | - Russ B. Altman
- Department of Biomedical Data Science, Stanford University, United States
- Department of Genetics, Stanford University, United States
- Department of Medicine, Stanford University, United States
- Department of Bioengineering, Stanford University, United States
| |
Collapse
|
10
|
Syahrani RA, Wanandi SI, Arumsari S, Nihayah S, Watanabe Y, Mizuno S, Louisa M, Wuyung PE. Dual sgRNA-directed knockout survivin gene expression using CRISPR/Cas9 technology for editing survivin gene in triple-negative breast cancer. NARRA J 2024; 4:e1177. [PMID: 39816115 PMCID: PMC11731936 DOI: 10.52225/narra.v4i3.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/11/2024] [Indexed: 01/18/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting survivin with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the survivin gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects. Survivin gene knockout was conducted in the TNBC cell line BT549. Intron 1, exon 2, and intron 2 of the survivin gene were selected as sgRNA targets. These sgRNAs were designed in silico and then cloned into a CRISPR/Cas9 expression plasmid. The cleavage activity was assessed using an enhanced green fluorescent protein (EGFP) expression plasmid. The sgRNAs with higher cleavage activity were selected for the establishment of knockout cells. After transfecting the plasmid into the cells, the success of the survivin gene knockout was validated at the deoxyribonucleic acid (DNA) level using polymerase chain reaction (PCR) and sequencing analysis, and at the protein expression level using Western blotting. The study found that sgRNAs survin1A (targeting intron 1), survex2A (targeting intron 2), and survin2A (targeting intron 2) demonstrated higher cleavage activities compared to the other sgRNAs. However, using the single sgRNA, survex2A did not generate mutations in the survivin gene. At the protein level, survivin was still expressed, indicating that a single sgRNA was ineffective in knocking out the survivin gene. In contrast, the combination of sgRNA survin1A and sgRNA survin2A was more effective in generating mutations in the survivin gene, resulting in the deletion of the entire exon 2 and leading to a loss of survivin protein expression. In conclusion, our work provides specific sgRNAs and demonstrates the utilization of dual sgRNAs strategy in the CRISPR/Cas9 technology to knock out the survivin gene, showing potential in breast cancer therapy.
Collapse
Affiliation(s)
- Resda A. Syahrani
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Septelia I. Wanandi
- Molecular Biology and Proteomics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sekar Arumsari
- Molecular Biology and Proteomics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Silviatun Nihayah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Melva Louisa
- Department of Pharmacology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Puspita E. Wuyung
- Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
11
|
Wang YR, Chang SM, Lin JJ, Chen HC, Lee LT, Tsai DY, Lee SD, Lan CY, Chang CR, Chen CF, Ng CS. A comprehensive study of Z-DNA density and its evolutionary implications in birds. BMC Genomics 2024; 25:1123. [PMID: 39573987 PMCID: PMC11580473 DOI: 10.1186/s12864-024-11039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Z-DNA, a left-handed helical form of DNA, plays a significant role in genomic stability and gene regulation. Its formation, associated with high GC content and repetitive sequences, is linked to genomic instability, potentially leading to large-scale deletions and contributing to phenotypic diversity and evolutionary adaptation. RESULTS In this study, we analyzed the density of Z-DNA-prone motifs of 154 avian genomes using the non-B DNA Motif Search Tool (nBMST). Our findings indicate a higher prevalence of Z-DNA motifs in promoter regions across all avian species compared to other genomic regions. A negative correlation was observed between Z-DNA density and developmental time in birds, suggesting that species with shorter developmental periods tend to have higher Z-DNA densities. This relationship implies that Z-DNA may influence the timing and regulation of development in avian species. Furthermore, Z-DNA density showed associations with traits such as body mass, egg mass, and genome size, highlighting the complex interactions between genome architecture and phenotypic characteristics. Gene Ontology (GO) analysis revealed that Z-DNA motifs are enriched in genes involved in nucleic acid binding, kinase activity, and translation regulation, suggesting a role in fine-tuning gene expression essential for cellular functions and responses to environmental changes. Additionally, the potential of Z-DNA to drive genomic instability and facilitate adaptive evolution underscores its importance in shaping phenotypic diversity. CONCLUSIONS This study emphasizes the role of Z-DNA as a dynamic genomic element contributing to gene regulation, genomic stability, and phenotypic diversity in avian species. Future research should experimentally validate these associations and explore the molecular mechanisms by which Z-DNA influences avian biology.
Collapse
Affiliation(s)
- Yu-Ren Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shao-Ming Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jinn-Jy Lin
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, 300092, Taiwan
| | - Hsiao-Chian Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Marine Research Station, Academia Sinica, Yilan, 262204, Taiwan
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Lo-Tung Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Dien-Yu Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shih-Da Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Feng Chen
- Deparment of Animal Sciences, National Chung Hsing University, Taichung, 402202, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402202, Taiwan.
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
12
|
Nujoom N, Koyakutty M, Biswas L, Rajkumar T, Nair SV. Emerging Gene-editing nano-therapeutics for Cancer. Heliyon 2024; 10:e39323. [PMID: 39524822 PMCID: PMC11550658 DOI: 10.1016/j.heliyon.2024.e39323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Remarkable progress has been made in the field of genome engineering after the discovery of CRISPR/Cas9 in 2012 by Jennifer Doudna and Emmanuelle Charpentier. Compared to any other gene-editing tools, CRISPR/Cas9 attracted the attention of the scientific community because of its simplicity, specificity, and multiplex editing possibilities for which the inventors were awarded the Nobel prize for chemistry in 2020. CRISPR/Cas9 allows targeted alteration of the genomic sequence, gene regulation, and epigenetic modifications using an RNA-guided site-specific endonuclease. Though the impact of CRISPR/Cas9 was undisputed, some of its limitations led to key modifications including the use of miniature-Cas proteins, Cas9 Retron precise Parallel Editing via homologY (CRISPEY), Cas-Clover, or development of alternative methods including retron-recombineering, Obligate Mobile Element Guided Activity(OMEGA), Fanzor, and Argonaute proteins. As cancer is caused by genetic and epigenetic alterations, gene-editing was found to be highly useful for knocking out oncogenes, editing mutations to regain the normal functioning of tumor suppressor genes, knock-out immune checkpoint blockade in CAR-T cells, producing 'off-the-shelf' CAR-T cells, identify novel tumorigenic genes and functional analysis of multiple pathways in cancer, etc. Advancements in nanoparticle-based delivery of guide-RNA and Cas9 complex to the human body further enhanced the potential of CRISPR/Cas9 for clinical translation. Several studies are reported for developing novel delivery methods to enhance the tumor-specific application of CRISPR/Cas9 for anticancer therapy. In this review, we discuss new developments in novel gene editing techniques and recent progress in nanoparticle-based CRISPR/Cas9 delivery specific to cancer applications.
Collapse
Affiliation(s)
- Najma Nujoom
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Thangarajan Rajkumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Shantikumar V. Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| |
Collapse
|
13
|
Singpanomchai N, Ratthawongjirakul P. The CRISPR-dCas9 interference system suppresses inhA gene expression in Mycobacterium smegmatis. Sci Rep 2024; 14:26116. [PMID: 39478003 PMCID: PMC11525817 DOI: 10.1038/s41598-024-77442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-dead Cas9 interference (CRISPRi) has become a valuable tool for precise gene regulation. In this study, CRISPRi was designed to target the inhA gene of Mycobacterium smegmatis (Msm), a gene necessary for mycolic acid synthesis. Our findings revealed that sgRNA2 induced with 100 ng/ml aTc achieved over 90% downregulation of inhA gene expression and inhibited bacterial viability by approximately 1,000-fold. Furthermore, CRISPRi enhanced the susceptibility of M. smegmatis to isoniazid and rifampicin, which are both 50% and 90% lower than those of the wild-type strain or other strains, respectively. This study highlights the ability of CRISPRi to silence the inhA gene, which impacts bacterial viability and drug susceptibility. The findings provide valuable insights into the utility of CRISPRi as an alternative tool for gene regulation. CRISPRi might be further assessed for its synergistic effect with current anti-tuberculosis drugs and its possible implications for combating mycobacterial infections, especially drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Nuntita Singpanomchai
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panan Ratthawongjirakul
- Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Mascarenhas MS, Nascimento FDS, Rocha ADJ, Ferreira MDS, Oliveira WDDS, Morais Lino LS, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Use of CRISPR Technology in Gene Editing for Tolerance to Biotic Factors in Plants: A Systematic Review. Curr Issues Mol Biol 2024; 46:11086-11123. [PMID: 39451539 PMCID: PMC11505962 DOI: 10.3390/cimb46100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.
Collapse
Affiliation(s)
- Marcelly Santana Mascarenhas
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (M.S.M.); (W.D.d.S.O.)
| | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Mileide dos Santos Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Lucymeire Souza Morais Lino
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| |
Collapse
|
15
|
Shetty A, Kwas H, Rajhi H, Rangareddy H, Fryer J. Revolutionizing Tuberculosis Management With Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas Technology: A Comprehensive Literature Review. Cureus 2024; 16:e71697. [PMID: 39552996 PMCID: PMC11568648 DOI: 10.7759/cureus.71697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have gained attention for their revolutionary potential in tuberculosis (TB) management, providing a novel approach to both diagnostics and treatment. This technology, renowned for its ability to accurately target and modify genetic material, offers a promising solution to the limitations of current TB diagnostic methods, which often rely on time-consuming culture techniques or polymerase chain reaction (PCR)-based assays. One of the key advantages of CRISPR-Cas systems is their high specificity and sensitivity, making them well-suited for detecting Mycobacterium tuberculosis, even in low-bacterial-load samples. Techniques such as CRISPR-Cas12 and Cas13 have been employed for rapid detection, utilizing their trans-cleavage activity to produce a fluorescent signal upon recognition of the TB genome. Furthermore, these methods often use isothermal amplification techniques like recombinase polymerase amplification (RPA) or loop-mediated isothermal amplification (LAMP), which require less equipment compared to traditional PCR. Beyond diagnostics, CRISPR-Cas technologies show promise in studying TB resistance mechanisms and potentially treating drug-resistant strains. Genome-editing capabilities enable researchers to manipulate the M. tuberculosis genome, investigating genes linked to virulence or antibiotic resistance. Although challenges such as the development of multiplexed CRISPR assays for detecting multiple mutations simultaneously remain, advancements continue to improve the technology's practicality for clinical use. Incorporating CRISPR into TB management could enhance early detection, inform personalized treatment, and potentially contribute to developing more effective therapies, especially in regions where TB remains a significant public health threat.
Collapse
Affiliation(s)
- Achal Shetty
- Community Medicine, Father Muller Medical College, Mangalore, IND
| | - Hamida Kwas
- Pulmonology, University of Sfax, Faculty of Medicine of Sfax, Gabès University Hospital, Gabès, TUN
| | - Hayfa Rajhi
- Analysis Laboratory Research, University Hospital of Gabès, Gabès, TUN
| | | | | |
Collapse
|
16
|
de Morais CCPDL, Correia EM, Bonamino MH, de Vasconcelos ZFM. Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy. Hum Gene Ther 2024; 35:781-797. [PMID: 39276086 PMCID: PMC11511780 DOI: 10.1089/hum.2024.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) technology has revolutionized the field of genetic engineering, offering unprecedented potential for the targeted manipulation of DNA sequences. Advances in the mechanism of action of the CRISPR-Cas9 system allowed potential applicability for the treatment of genetic diseases. CRISPR-Cas9's mechanism of action involves the use of an RNA guide molecule to target-specific DNA sequences and the Cas9 enzyme to induce precise DNA cleavage. In the context of the CRISPR-Cas9 system, this review covers nonviral delivery methods for gene editing based on peptide internalization. Here, we describe critical areas of discussion such as immunogenicity, emphasizing the importance of safety, efficiency, and cost-effectiveness, particularly in the context of treating single-mutation genetic diseases using advanced editing techniques genetics as prime editor and base editor. The text discusses the versatility of cell-penetrating peptides (CPPs) in forming complexes for delivering biomolecules, particularly ribonucleoprotein for genome editing with CRISPR-Cas9 in human cells. In addition, it emphasizes the promise of combining CPPs with DNA base editing and prime editing systems. These systems, known for their simplicity and precision, hold great potential for correcting point mutations in human genetic diseases. In summary, the text provides a clear overview of the advantages of using CPPs for genome editing with CRISPR-Cas9, particularly in conjunction with advanced editing systems, highlighting their potential impact on clinical applications in the treatment of single-mutation genetic diseases. [Figure: see text].
Collapse
Affiliation(s)
- Carla Cristina Pedrosa de Lira de Morais
- Cell Processing Center/Umbilical and Placental Cord Blood Bank (CPC/BSCUP), Bone Marrow Transplant Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Women, Children and Adolescents’ Health Fernandes Figueira (IFF), Rio de Janeiro, Brazil
| | - Eduardo Mannarino Correia
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martín Hernán Bonamino
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelos
- Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Women, Children and Adolescents’ Health Fernandes Figueira (IFF), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Wang Q, Jia S, Wang Z, Chen H, Jiang X, Li Y, Ji P. Nanogene editing drug delivery systems in the treatment of liver fibrosis. Front Med (Lausanne) 2024; 11:1418786. [PMID: 39386741 PMCID: PMC11461213 DOI: 10.3389/fmed.2024.1418786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liver fibrosis is a group of diseases that seriously affect the health of the world's population. Despite significant progress in understanding the mechanisms of liver fibrogenesis, the technologies and drugs used to treat liver fibrosis have limited efficacy. As a revolutionary genetic tool, gene editing technology brings new hope for treating liver fibrosis. Combining nano-delivery systems with gene editing tools to achieve precise delivery and efficient expression of gene editing tools that can be used to treat liver fibrosis has become a rapidly developing field. This review provides a comprehensive overview of the principles and methods of gene editing technology and commonly used gene editing targets for liver fibrosis. We also discuss recent advances in common gene editing delivery vehicles and nano-delivery formulations in liver fibrosis research. Although gene editing technology has potential advantages in liver fibrosis, it still faces some challenges regarding delivery efficiency, specificity, and safety. Future studies need to address these issues further to explore the potential and application of liver fibrosis technologies in treating liver fibrosis.
Collapse
Affiliation(s)
- Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Jafarzadeh A, Naseri B, Khorramdelazad H, Jafarzadeh S, Ghorbaninezhad F, Asgari Z, Masoumi J, Nemati M. Reciprocal Interactions Between Apelin and Noncoding RNAs in Cancer Progression. Cell Biochem Funct 2024; 42:e4116. [PMID: 39233464 DOI: 10.1002/cbf.4116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Apelin, a bioactive peptide that serves as an endogenous ligand for the apelin receptor (APJ), is overexpressed in various types of cancers and contributes to cancer cell proliferation, viability, migration, angiogenesis, and metastasis, as well as immune deviation. Noncoding RNAs (ncRNAs) regulate gene expression, and there is growing evidence suggesting a bidirectional crosstalk between ncRNAs (including long noncoding RNAs [lncRNAs], circular RNAs [circRNAs], and microRNAs [miRNAs]) and apelin in cancers. Certain miRNAs can directly target the apelin and inhibit its expression, thereby suppressing tumor growth. It has been indicated that miR-224, miR-195/miR-195-5p, miR-204-5p, miR-631, miR-4286, miR-637, miR-4493, and miR-214-3p target apelin mRNA and influence its expression in prostate cancer, lung cancer, esophageal cancer, chondrosarcoma, melanoma, gastric cancer, glioma, and hepatocellular carcinoma (HCC), respectively. Moreover, circ-NOTCH1, circ-ZNF264, and lncRNA BACE1-AS upregulate apelin expression in gastric cancer, glioma, and HCC, respectively. On the other hand, apelin has been shown to regulate the expression of certain ncRNAs to affect tumorigenesis. It was revealed that apelin affects the expression of circ_0000004/miR-1303, miR-15a-5p, and miR-106a-5p in osteosarcoma, lung cancer, and prostate cancer, respectively. This review explains a bidirectional interplay between ncRNAs and apelin in cancers to provide insights concerning the molecular mechanisms underlying this crosstalk and potential implications for cancer therapy.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farid Ghorbaninezhad
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, Li S, Xue C. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer 2024; 23:178. [PMID: 39215288 PMCID: PMC11363509 DOI: 10.1186/s12943-024-02089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yeltai Nurzat
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Shaohua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
20
|
Benites-Pariente JS, Samolski I, Ludeña Y, Villena GK. CRISPR/Cas9 mediated targeted knock-in of eglA gene to improve endoglucanase activity of Aspergillus fumigatus LMB-35Aa. Sci Rep 2024; 14:19661. [PMID: 39179646 PMCID: PMC11344075 DOI: 10.1038/s41598-024-70397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Bioeconomy goals for using biomass feedstock for biofuels and bio-based production has arisen the demand for fungal strains and enzymes for biomass processing. Despite well-known Trichoderma and Aspergillus commercial strains, continuous bioprospecting has revealed the fungal biodiversity potential for production of biomass degrading enzymes. The strain Aspergillus fumigatus LMB-35Aa has revealed a great potential as source of lignocellulose-degrading enzymes. Nevertheless, genetic improvement should be considered to increase its biotechnological potential. Molecular manipulation based on homologous direct recombination (HDR) in filamentous fungi poses a challenge since its low recombination rate. Currently, CRISPR/Cas9-mediated mutagenesis can enable precise and efficient editing of filamentous fungi genomes. In this study, a CRISPR/Cas9-mediated gene editing strategy for improving endoglucanase activity of A. fumigatus LMB-35Aa strain was successfully used, which constitutes the first report of heterologous cellulase production in filamentous fungi using this technology. For this, eglA gene from A. niger ATCC 10,864 was integrated into conidial melanin pksP gene locus, which facilitated the selection of edited events discerned by the emergence of albino colonies. Heterologous production of the EglA enzyme in a biofilm fermentation system resulted in a 40% improvement in endoglucanase activity of the mutant strain compared to the wild type.
Collapse
Affiliation(s)
- J S Benites-Pariente
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - I Samolski
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - Y Ludeña
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - G K Villena
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru.
| |
Collapse
|
21
|
Khoshandam M, Soltaninejad H, Bhia I, Goudarzi MTH, Hosseinkhani S. CRISPR challenges in clinical developments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:263-279. [PMID: 39824584 DOI: 10.1016/bs.pmbts.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats and associated proteins) is a novel genome editing technology with potential applications in treating diseases. Currently, its use in humans is restricted to clinical trials, although its growth rate is significant, and some have received initial FDA approval. It is crucial to examine and address the challenges for this technology to be implemented in clinical settings. This review aims to identify and explore new research ideas to increase of CRISPR's efficiency in treating genetic diseases and cancer, as well as its future prospects. Given that a substantial amount of previous research has focused on CRISPR-Cas delivery strategies and materials, this overview introduces specific conditions and strategies. It also discusses some of the challenges and opportunities in this field, offering a unique perspective.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran; National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Soltaninejad
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran.
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Khan FA, Ali A, Wu D, Huang C, Zulfiqar H, Ali M, Ahmed B, Yousaf MR, Putri EM, Negara W, Imran M, Pandupuspitasari NS. Editing microbes to mitigate enteric methane emissions in livestock. World J Microbiol Biotechnol 2024; 40:300. [PMID: 39134917 DOI: 10.1007/s11274-024-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 10/17/2024]
Abstract
Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
Collapse
Affiliation(s)
- Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Azhar Ali
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Hamza Zulfiqar
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Ali
- Institute of Animal and Diary sciences, Faculty of Animal Husbandry, Agriculture University, Faisalabad, Pakistan
| | - Bilal Ahmed
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Rizwan Yousaf
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
23
|
De Castro V, Galaine J, Loyon R, Godet Y. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy. Cancer Gene Ther 2024; 31:1124-1134. [PMID: 38609574 DOI: 10.1038/s41417-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These technologies have allowed the discovery of T cells' negative regulators such as specific cell-surface receptors, cell-signaling proteins, and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells' antitumor capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant advancement in the pursuit of superior adoptive cell therapy.
Collapse
Affiliation(s)
- Valentine De Castro
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Jeanne Galaine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Yann Godet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France.
| |
Collapse
|
24
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
25
|
Kumar Sachan RS, Choudhary A, Devgon I, Karnwal A, Al-Tawaha ARMS, Malik T. Bibliometric analysis on CRISPR/Cas: a potential Sherlock Holmes for disease detection. Front Mol Biosci 2024; 11:1383268. [PMID: 39055984 PMCID: PMC11269658 DOI: 10.3389/fmolb.2024.1383268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
CRISPR has revolutionized illness detection by using precision gene editing to identify specific sequences in recent years. Using the Scopus database, this study performs a comprehensive bibliometric analysis, looking at academic papers on CRISPR that were published between 1992 and 2023. After screening a dataset of 1407 articles using Zotero, trends in annual publishing, citation patterns, author affiliations, and keyword co-occurrence are revealed using analysis tools such as VOSviewer, RStudio, and MS Excel. According to the report, there was only one CRISPR publication in 1992. By 2017, there were a meager 64 papers. Nonetheless, there is a notable upsurge between 2018 and 2023. Leading nations involved in CRISPR-based illness detection research include Germany, the United States, China, India, and the United Kingdom. Chongqing University Three Gorges Hospital, Chongqing University Medical University, and Chongqing University Bioengineering College are a few of the top institutions. With the greatest publication numbers (1688 and 1616) and strong total link strengths (TLS) of 42 and 77, respectively, authors Liu, C., and Li, Y., stand out. The field with the greatest citation counts as of 2023 is Broughton's 2020 study on CRISPR-based SARS-CoV-2 detection in Nature Biotechnology, with 1598 citations. Biosensors and Bioelectronics comprise 14.99% of papers. Researchers, decision-makers, and interested parties can use this thorough summary to help them make well-informed decisions about future CRISPR-based disease detection studies.
Collapse
Affiliation(s)
| | - Adarsh Choudhary
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
26
|
Hussen BM, Najmadden ZB, Abdullah SR, Rasul MF, Mustafa SA, Ghafouri-Fard S, Taheri M. CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders. Cell Commun Signal 2024; 22:329. [PMID: 38877530 PMCID: PMC11179281 DOI: 10.1186/s12964-024-01713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
Respiratory disorders are among the conditions that affect the respiratory system. The healthcare sector faces challenges due to the emergence of drug resistance to prescribed medications for these illnesses. However, there is a technology called CRISPR/Cas9, which uses RNA to guide DNA targeting. This technology has revolutionized our ability to manipulate and visualize the genome, leading to advancements in research and treatment development. It can effectively reverse epigenetic alterations that contribute to drug resistance. Some studies focused on health have shown that targeting genes using CRISPR/Cas9 can be challenging when it comes to reducing drug resistance in patients with respiratory disorders. Nevertheless, it is important to acknowledge the limitations of this technology, such as off-target effects, immune system reactions to Cas9, and challenges associated with delivery methods. Despite these limitations, this review aims to provide knowledge about CRISPR/Cas9 genome editing tools and explore how they can help overcome resistance in patients with respiratory disorders. Additionally, this study discusses concerns related to applications of CRISPR and provides an overview of successful clinical trial studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, 44001, Kurdistan Region, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Zana Baqi Najmadden
- Research Center, University of Halabja, Halabja, 46018, Kurdistan region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Kurdistan Region, Iraq
| | - Suhad A Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
27
|
Maroniche GA, Puente ML, García JE, Mongiardini E, Coniglio A, Nievas S, Labarthe MM, Wisniewski-Dyé F, Rodriguez Cáceres E, Díaz-Zorita M, Cassán F. Phenogenetic profile and agronomic contribution of Azospirillum argentinense Az39 T, a reference strain for the South American inoculant industry. Microbiol Res 2024; 283:127650. [PMID: 38452553 DOI: 10.1016/j.micres.2024.127650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Azospirillum sp. is a plant growth-promoting rhizobacteria largely recognized for its potential to increase the yield of different important crops. In this work, we present a thorough genomic and phenotypic analysis of A. argentinense Az39T to provide new insights into the beneficial mechanisms of this microorganism. Phenotypic analyses revealed the following in vitro abilities: growth at 20-38 °C (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 6.8), and in the presence of 1% (w/v) NaCl; production of variable amounts of PHB as intracellular granules; nitrogen fixation under microaerophilic conditions; IAA synthesis in the presence of L-tryptophan. Through biochemical (API 20NE) and carbon utilization profiling (Biolog) assays, we proved that A. argentinense Az39T is able to use 15 substrates and metabolize 19 different carbon substrates. Lipid composition indicated a predominance of medium and long-chain saturated fatty acids. A total of 6 replicons classified as one main chromosome, three chromids, and two plasmids, according to their tRNA and core essential genes contents, were identified. Az39T genome includes genes associated with multiple plant growth-promoting (PGP) traits such as nitrogen fixation and production of auxins, cytokinin, abscisic acid, ethylene, and polyamines. In addition, Az39T genome harbor genetic elements associated with physiological features that facilitate its survival in the soil and competence for rhizospheric colonization; this includes motility, secretion system, and quorum sensing genetic determinants. A metadata analysis of Az39T agronomic performance in the pampas region, Argentina, demonstrated significant grain yield increases in wheat and maize, proving its potential to provide better growth conditions for dryland cereals. In conclusion, our data provide a detailed insight into the metabolic profile of A. argentinense Az39T, the strain most widely used to formulate non-legume inoculants in Argentina, and allow a better understanding of the mechanisms behind its field performance.
Collapse
Affiliation(s)
- G A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), CONICET, Balcarce, Buenos Aires, Argentina
| | - M L Puente
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - J E García
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - E Mongiardini
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, La Plata, Buenos Aires, Argentina
| | - A Coniglio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
| | - S Nievas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
| | - M M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), CONICET, Balcarce, Buenos Aires, Argentina
| | - F Wisniewski-Dyé
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne 69622, France
| | | | - M Díaz-Zorita
- Facultad de Agronomía, Universidad Nacional de La Pampa (UNLPam), CONICET, Santa Rosa, La Pampa, Argentina
| | - F Cassán
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
28
|
Pandey P, Vavilala SL. From Gene Editing to Biofilm Busting: CRISPR-CAS9 Against Antibiotic Resistance-A Review. Cell Biochem Biophys 2024; 82:549-560. [PMID: 38702575 DOI: 10.1007/s12013-024-01276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
In recent decades, the development of novel antimicrobials has significantly slowed due to the emergence of antimicrobial resistance (AMR), intensifying the global struggle against infectious diseases. Microbial populations worldwide rapidly develop resistance due to the widespread use of antibiotics, primarily targeting drug-resistant germs. A prominent manifestation of this resistance is the formation of biofilms, where bacteria create protective layers using signaling pathways such as quorum sensing. In response to this challenge, the CRISPR-Cas9 method has emerged as a ground-breaking strategy to counter biofilms. Initially identified as the "adaptive immune system" of bacteria, CRISPR-Cas9 has evolved into a state-of-the-art genetic engineering tool. Its exceptional precision in altering specific genes across diverse microorganisms positions it as a promising alternative for addressing antibiotic resistance by selectively modifying genes in diverse microorganisms. This comprehensive review concentrates on the historical background, discovery, developmental stages, and distinct components of CRISPR Cas9 technology. Emphasizing its role as a widely used genome engineering tool, the review explores how CRISPR Cas9 can significantly contribute to the targeted disruption of genes responsible for biofilm formation, highlighting its pivotal role in reshaping strategies to combat antibiotic resistance and mitigate the challenges posed by biofilm-associated infectious diseases.
Collapse
Affiliation(s)
- Pooja Pandey
- School of Biological Sciences, UM DAE Centre for Excellence in Basic Sciences, Mumbai, 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM DAE Centre for Excellence in Basic Sciences, Mumbai, 400098, India.
| |
Collapse
|
29
|
Tanveer M, Abidin ZU, Alawadi HFN, Shahzad AN, Mahmood A, Khan BA, Qari S, Oraby HF. Recent advances in genome editing strategies for balancing growth and defence in sugarcane ( Saccharum officinarum). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24036. [PMID: 38696670 DOI: 10.1071/fp24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/14/2024] [Indexed: 05/04/2024]
Abstract
Sugarcane (Saccharum officinarum ) has gained more attention worldwide in recent decades because of its importance as a bioenergy resource and in producing table sugar. However, the production capabilities of conventional varieties are being challenged by the changing climates, which struggle to meet the escalating demands of the growing global population. Genome editing has emerged as a pivotal field that offers groundbreaking solutions in agriculture and beyond. It includes inserting, removing or replacing DNA in an organism's genome. Various approaches are employed to enhance crop yields and resilience in harsh climates. These techniques include zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/associated protein (CRISPR/Cas). Among these, CRISPR/Cas is one of the most promising and rapidly advancing fields. With the help of these techniques, several crops like rice (Oryza sativa ), tomato (Solanum lycopersicum ), maize (Zea mays ), barley (Hordeum vulgare ) and sugarcane have been improved to be resistant to viral diseases. This review describes recent advances in genome editing with a particular focus on sugarcane and focuses on the advantages and limitations of these approaches while also considering the regulatory and ethical implications across different countries. It also offers insights into future prospects and the application of these approaches in agriculture.
Collapse
Affiliation(s)
- Maira Tanveer
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zain Ul Abidin
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | | | - Ahmad Naeem Shahzad
- Department of Agronomy, Bahauddin Zakarriya University, Multan 60650, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Sameer Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hesham Farouk Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; and Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
30
|
Gómez-Márquez J. The Lithbea Domain. Adv Biol (Weinh) 2024; 8:e2300679. [PMID: 38386280 DOI: 10.1002/adbi.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The tree of life is the evolutionary metaphor for the past and present connections of all cellular organisms. Today, to speak of biodiversity is not only to speak of archaea, bacteria, and eukaryotes, but they should also consider the "new biodiversity" that includes viruses and synthetic organisms, which represent the new forms of life created in laboratories. There is even a third group of artificial entities that, although not living systems, pretend to imitate the living. To embrace and organize all this new biodiversity, I propose the creation of a new domain, with the name Lithbea (from life-on-the-border entites) The criteria for inclusion as members of Lithbea are: i) the acellular nature of the living system, ii) its origin in laboratory manipulation, iii) showing new biological traits, iv) the presence of exogenous genetic elements, v) artificial or inorganic nature. Within Lithbea there are two subdomains: Virworld (from virus world) which includes all viruses, regarded as lifeless living systems, and classified according to the International Committee on Taxonomy of Viruses (ICTV), and ii) Humade (from human-made) which includes all synthetic organisms and artificial entities. The relationships of Lithbea members to the three classical woesian domains and their implications are briefly discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain
| |
Collapse
|
31
|
Li Z, Li S, Chen L, Sun T, Zhang W. Fast-growing cyanobacterial chassis for synthetic biology application. Crit Rev Biotechnol 2024; 44:414-428. [PMID: 36842999 DOI: 10.1080/07388551.2023.2166455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 12/28/2022] [Indexed: 02/28/2023]
Abstract
Carbon neutrality by 2050 has become one of the most urgent challenges the world faces today. To address the issue, it is necessary to develop and promote new technologies related with CO2 recycling. Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, capable of fixing CO2 into biomass under sunlight and serving as one of the most important primary producers on earth. Notably, recent progress on synthetic biology has led to utilizing model cyanobacteria such as Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 as chassis for "light-driven autotrophic cell factories" to produce several dozens of biofuels and various fine chemicals directly from CO2. However, due to the slow growth rate and low biomass accumulation in the current chassis, the productivity for most products is still lower than the threshold necessary for large-scale commercial application, raising the importance of developing high-efficiency cyanobacterial chassis with fast growth and/or higher biomass accumulation capabilities. In this article, we critically reviewed recent progresses on identification, systems biology analysis, and engineering of fast-growing cyanobacterial chassis. Specifically, fast-growing cyanobacteria identified in recent years, such as S. elongatus UTEX 2973, S. elongatus PCC 11801, S. elongatus PCC 11802 and Synechococcus sp. PCC 11901 was comparatively analyzed. In addition, the progresses on their recent application in converting CO2 into chemicals, and genetic toolboxes developed for these new cyanobacterial chassis were discussed. Finally, the article provides insights into future challenges and perspectives on the synthetic biology application of cyanobacterial chassis.
Collapse
Affiliation(s)
- Zhixiang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
32
|
Leta S, Chibssa TR, Paeshuyse J. CRISPR-Cas12/Cas13: Bibliometric analysis and systematic review of its application in infectious disease detection. J Infect Public Health 2024; 17:741-747. [PMID: 38518680 DOI: 10.1016/j.jiph.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Infectious diseases impose a significant burden on the global public health and economy, resulting in an estimated 15 million deaths out of 57 million annually worldwide. This study examines the current state of CRISPR-Cas12/Cas13 research, focusing on its applications in infectious disease detection and its evolutionary trajectory. METHODS A bibliometric analysis and systematic review were conducted by retrieving CRISPR-Cas12/Cas13-related articles published between January 1, 2015 to December 31, 2022, from the Web of Science database. The research protocol was registered with International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY202380062). RESULTS Our search identified 1987 articles, of which, 1856 were included in the bibliometric analysis and 445 were used in qualitative analysis. The study reveals a substantial increase in scientific production on CRISPR-Cas12/Cas13, with an annual growth rate of 104.5%. The United States leads in the number of published articles. The systematic review identified 580 different diagnostic assays targeting 170 pathogens, with SARS-CoV-2 dominating with 158 assays. Recombinase polymerase amplification (RPA)/reverse transcription-RPA (RT-RPA) emerged as the predominant amplification method, while lateral flow assay was the most common readout method. Approximately 72% of the diagnostic assays developed are suitable for point-of-care testing. CONCLUSION The rapid increase in research on CRISPR-Cas12/Cas13 between 2015 and 2022 suggests promising potential for advancements in infectious disease diagnosis. Given the numerous advantages of CRISPR-Cas technology for disease detection over other methods, and the dedicated efforts of scientists from around the world, it is reasonable to anticipate that CRISPR-Cas technology may emerge as a formidable alternative, offering the possibility of expedited point-of-care testing in the not-too-distant future.
Collapse
Affiliation(s)
- Samson Leta
- Laboratory of Host Pathogen Interaction in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | | | - Jan Paeshuyse
- Laboratory of Host Pathogen Interaction in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
33
|
Cook GD, Stasulli NM. Employing synthetic biology to expand antibiotic discovery. SLAS Technol 2024; 29:100120. [PMID: 38340893 DOI: 10.1016/j.slast.2024.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Antimicrobial-resistant (AMR) bacterial pathogens are a continually growing threat as our methods for combating these infections continue to be overcome by the evolution of resistance mechanisms. Recent therapeutic methods have not staved off the concern of AMR infections, so continued research focuses on new ways of identifying small molecules to treat AMR pathogens. While chemical modification of existing antibiotics is possible, there has been rapid development of resistance by pathogens that were initially susceptible to these compounds. Synthetic biology is becoming a key strategy in trying to predict and induce novel, natural antibiotics. Advances in cloning and mutagenesis techniques applied through a synthetic biology lens can help characterize the native regulation of antibiotic biosynthetic gene clusters (BGCs) to identify potential modifications leading to more potent antibiotic activity. Additionally, many cryptic antibiotic BGCs are derived from non-ribosomal peptide synthase (NRPS) and polyketide synthase (PKS) biosynthetic pathways; complex, clustered genetic sequences that give rise to amino acid-derived natural products. Synthetic biology can be applied to modify and metabolically engineer these enzyme-based systems to promote rapid and sustainable production of natural products and their variants. This review will focus on recent advances related to synthetic biology as applied to genetic pathway characterization and identification of antibiotics from naturally occurring BGCs. Specifically, we will summarize recent efforts to characterize BGCs via general genomic mutagenesis, endogenous gene expression, and heterologous gene expression.
Collapse
Affiliation(s)
- Greta D Cook
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Rd, Dodds Hall 316, West Haven 06516 USA
| | - Nikolas M Stasulli
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Rd, Dodds Hall 316, West Haven 06516 USA.
| |
Collapse
|
34
|
Lim X, Zhang C, Chen X. Advances and applications of CRISPR/Cas-mediated interference in Escherichia coli. ENGINEERING MICROBIOLOGY 2024; 4:100123. [PMID: 39628789 PMCID: PMC11611006 DOI: 10.1016/j.engmic.2023.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2024]
Abstract
The bacterium Escherichia coli (E. coli) is one of the most widely used chassis microbes employed for the biosynthesis of numerous valuable chemical compounds. In the past decade, the metabolic engineering of E. coli has undergone significant advances, although further productivity improvements will require extensive genome modification, multi-dimensional regulation, and multiple metabolic-pathway coordination. In this context, clustered regularly interspaced short palindromic repeats (CRISPR), along with CRISPR-associated protein (Cas) and its inactive variant (dCas), have emerged as notable recombination and transcriptional regulation tools that are particularly useful for multiplex metabolic engineering in E. coli. In this review, we briefly describe the CRISPR/Cas9 technology in E. coli, and then summarize the recent advances in CRISPR/dCas9 interference (CRISPRi) systems in E. coli, particularly the strategies designed to effectively regulate gene repression and overcome retroactivity during multiplexing. Moreover, we discuss recent applications of the CRISPRi system for enhancing metabolite production in E. coli, and finally highlight the major challenges and future perspectives of this technology.
Collapse
Affiliation(s)
- Xiaohui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| |
Collapse
|
35
|
Larriba E, Yaroshko O, Pérez-Pérez JM. Recent Advances in Tomato Gene Editing. Int J Mol Sci 2024; 25:2606. [PMID: 38473859 PMCID: PMC10932025 DOI: 10.3390/ijms25052606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | | | | |
Collapse
|
36
|
Clark A, Wilcox P, Morrison S, Munshi D, Kurian P, Mika J, Chagne D, Allan A, Hudson M. Identifying Māori perspectives on gene editing in Aotearoa New Zealand. Commun Biol 2024; 7:221. [PMID: 38388561 PMCID: PMC10883908 DOI: 10.1038/s42003-024-05896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
A comment article summarizing a range of research activities that contribute to understanding evolving Māori perspectives on Gene Editing and how they might contribute to future regulation.
Collapse
Affiliation(s)
- Amanda Clark
- Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand
| | - Phillip Wilcox
- Department of Statistics, University of Otago, Dunedin, New Zealand
| | - Sandy Morrison
- Faculty of Māori and Indigenous Studies, University of Waikato, Hamilton, New Zealand
| | | | - Priya Kurian
- Faculty of Arts, Law, Psychology and Social Sciences, University of Waikato, Hamilton, New Zealand
| | - Jason Mika
- Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand
- Management School, University of Waikato, Hamilton, New Zealand
| | - David Chagne
- Plant and Food Research, Palmerston North, New Zealand
| | - Andrew Allan
- Plant and Food Research, Auckland, New Zealand
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Maui Hudson
- Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
37
|
Li B, Zhai G, Dong Y, Wang L, Ma P. Recent progress on the CRISPR/Cas system in optical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:798-816. [PMID: 38259224 DOI: 10.1039/d3ay02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein systems are adaptive immune systems unique to archaea and bacteria, with the characteristics of targeted recognition and gene editing to resist the invasion of foreign nucleic acids. Biosensors combined with the CRISPR/Cas system and optical detection technology have attracted much attention in medical diagnoses, food safety, agricultural progress, and environmental monitoring owing to their good sensitivity, high selectivity, and fast detection efficiency. In this review, we introduce the mechanism of CRISPR/Cas systems and developments in this area, followed by summarizing recent progress on CRISPR/Cas system-based optical biosensors combined with colorimetric, fluorescence, electrochemiluminescence and surface-enhanced Raman scattering optical techniques in various fields. Finally, we discuss the challenges and future perspectives of CRISPR/Cas systems in optical biosensors.
Collapse
Affiliation(s)
- Bingqian Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Guangyu Zhai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yaru Dong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lan Wang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Peng Ma
- School of Basic Medicine, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
38
|
Morshedzadeh F, Ghanei M, Lotfi M, Ghasemi M, Ahmadi M, Najari-Hanjani P, Sharif S, Mozaffari-Jovin S, Peymani M, Abbaszadegan MR. An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol 2024; 66:179-197. [PMID: 37269466 PMCID: PMC10239226 DOI: 10.1007/s12033-023-00724-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/05/2023]
Abstract
The CRISPR/Cas system, an innovative gene-editing tool, is emerging as a promising technique for genome modifications. This straightforward technique was created based on the prokaryotic adaptive immune defense mechanism and employed in the studies on human diseases that proved enormous therapeutic potential. A genetically unique patient mutation in the process of gene therapy can be corrected by the CRISPR method to treat diseases that traditional methods were unable to cure. However, introduction of CRISPR/Cas9 into the clinic will be challenging because we still need to improve the technology's effectiveness, precision, and applications. In this review, we first describe the function and applications of the CRISPR-Cas9 system. We next delineate how this technology could be utilized for gene therapy of various human disorders, including cancer and infectious diseases and highlight the promising examples in the field. Finally, we document current challenges and the potential solutions to overcome these obstacles for the effective use of CRISPR-Cas9 in clinical practice.
Collapse
Affiliation(s)
- Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Ghasemi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Samaneh Sharif
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Peymani
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Harsij Z, Ghafoorzadeh Z, Goharian E. The CRISPR Revolution: Unraveling the mysteries of Life's genetic code. Gene 2024; 892:147870. [PMID: 37797781 DOI: 10.1016/j.gene.2023.147870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
A biotechnological revolution is triggered by CRISPR-Cas systems' variety, measured quality, and proficiency. Identifying nucleic acid biomarkers, one of the methods that use CRISPR for diagnosis, is an extremely sensitive diagnostic method.A broad range of infectious and noninfecting diseases, mutations, and CRISPR deletions associated with genetic disorders have been detected using diagnostics. Furthermore, this technology is used to test proteins and micromolecules. We focus on how Cas proteins can be used to detect diseases in genes, agriculture, and cancer therapy. Furthermore, CRISPR technology has many negative impacts on the health of living organisms, environmental and population structures in spite of its numerous contributions to biomedical science. Therefore, an investigation into the impact of genome editing on nontargeted species is important for these reasons. CRISPR in the future is briefly discussed towards the end of this review.
Collapse
Affiliation(s)
- Zohreh Harsij
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Zahra Ghafoorzadeh
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| | - Elahe Goharian
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
40
|
Nolan-Stevaux O, Li C, Liang L, Zhan J, Estrada J, Osgood T, Li F, Zhang H, Case R, Murawsky CM, Estes B, Moore GL, Bernett MJ, Muchhal U, Desjarlais JR, Staley BK, Stevens J, Cooke KS, Aeffner F, Thomas O, Stieglmaier J, Lee JL, Coxon A, Bailis JM. AMG 509 (Xaluritamig), an Anti-STEAP1 XmAb 2+1 T-cell Redirecting Immune Therapy with Avidity-Dependent Activity against Prostate Cancer. Cancer Discov 2024; 14:90-103. [PMID: 37861452 DOI: 10.1158/2159-8290.cd-23-0984] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
The tumor-associated antigen STEAP1 is a potential therapeutic target that is expressed in most prostate tumors and at increased levels in metastatic castration-resistant prostate cancer (mCRPC). We developed a STEAP1-targeted XmAb 2+1 T-cell engager (TCE) molecule, AMG 509 (also designated xaluritamig), that is designed to redirect T cells to kill prostate cancer cells that express STEAP1. AMG 509 mediates potent T cell-dependent cytotoxicity of prostate cancer cell lines in vitro and promotes tumor regression in xenograft and syngeneic mouse models of prostate cancer in vivo. The avidity-driven activity of AMG 509 enables selectivity for tumor cells with high STEAP1 expression compared with normal cells. AMG 509 is the first STEAP1 TCE to advance to clinical testing, and we report a case study of a patient with mCRPC who achieved an objective response on AMG 509 treatment. SIGNIFICANCE Immunotherapy in prostate cancer has met with limited success due to the immunosuppressive microenvironment and lack of tumor-specific targets. AMG 509 provides a targeted immunotherapy approach to engage a patient's T cells to kill STEAP1-expressing tumor cells and represents a new treatment option for mCRPC and potentially more broadly for prostate cancer. See related commentary by Hage Chehade et al., p. 20. See related article by Kelly et al., p. 76. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
| | - Cong Li
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Lingming Liang
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jinghui Zhan
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Juan Estrada
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Tao Osgood
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Fei Li
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Hanzhi Zhang
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Ryan Case
- Lead Discovery and Characterization, Amgen Research, Amgen Inc., South San Francisco, California
| | | | - Bram Estes
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | | | | | | | | | - Binnaz K Staley
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jennitte Stevens
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | - Keegan S Cooke
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Famke Aeffner
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, California
| | - Oliver Thomas
- Translational Safety and Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Julia Stieglmaier
- Early Development Oncology, Amgen Research (Munich) GmbH, Munich, Germany
| | - Jae-Lyun Lee
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Angela Coxon
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Julie M Bailis
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| |
Collapse
|
41
|
Martínez-Trejo A, Ruiz-Ruiz JM, Gonzalez-Avila LU, Saldaña-Padilla A, Hernández-Cortez C, de Jesús Colmenero-Solís R, Bello-López JM, Castro-Escarpulli G. The CRISPR-Cas system in clinical strains of Acinetobacter baumannii: an in-silico analysis. Lett Appl Microbiol 2024; 77:ovae003. [PMID: 38211976 DOI: 10.1093/lambio/ovae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
Acinetobacter baumannii is a relevant bacterium due to its high-resistance profile. It is well known that antimicrobial resistance is primarily linked to mutations and the acquisition of external genomic material, such as plasmids or phages, to which the Clustered Regularly Interspaced Short Palindromic Repeats associated with Cas proteins, or CRISPR-Cas, system is related. It is known that the system can influence the acquisition of foreign genetic material and play a role in various physiological pathways. In this study, we conducted an in-silico analysis using 91 fully assembled genomes of clinical strains obtained from the NCBI database. Among the analyzed genomes, the I-F1 subtype of the CRISPR-Cas system was detected showcasing variations in architecture and phylogeny. Using bioinformatic tools, we determined the presence, distribution, and specific characteristics of the CRISPR-Cas system. We found a possible association of the system with resistance genes but not with virulence determinants. Analysis of the system's components, including spacer sequences, suggests its potential role in protecting against phage infections, highlighting its protective function.
Collapse
Affiliation(s)
- Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan Manuel Ruiz-Ruiz
- Laboratorio Clínico, Unidad Médica de Alta Especialidad, Hospital de Pediatría Dr. Silvestre Frenk Freud, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Raúl de Jesús Colmenero-Solís
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
42
|
Mojtaba Mousavi S, Alireza Hashemi S, Yari Kalashgrani M, Rahmanian V, Riazi M, Omidifar N, Hamed Althomali R, Rahman MM, Chiang WH, Gholami A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024; 19:e202300359. [PMID: 37916531 DOI: 10.1002/cmdc.202300359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Exosomes are essential indicators of molecular mechanisms involved in interacting with cancer cells and the tumor environment. As nanostructures based on lipids and nucleic acids, exosomes provide a communication pathway for information transfer by transporting biomolecules from the target cell to other cells. Importantly, these extracellular vesicles are released into the bloodstream by the most invasive cells, i. e., cancer cells; in this way, they could be considered a promising specific biomarker for cancer diagnosis. In this matter, CRISPR-Cas systems and microfluidic approaches could be considered practical tools for cancer diagnosis and understanding cancer biology. CRISPR-Cas systems, as a genome editing approach, provide a way to inactivate or even remove a target gene from the cell without affecting intracellular mechanisms. These practical systems provide vital information about the factors involved in cancer development that could lead to more effective cancer treatment. Meanwhile, microfluidic approaches can also significantly benefit cancer research due to their proper sensitivity, high throughput, low material consumption, low cost, and advanced spatial and temporal control. Thereby, employing CRISPR-Cas- and microfluidics-based approaches toward exosome monitoring could be considered a valuable source of information for cancer therapy and diagnosis. This review assesses the recent progress in these promising diagnosis approaches toward accurate cancer therapy and in-depth study of cancer cell behavior.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| |
Collapse
|
43
|
Sánchez‐Costa M, Gola S, Rodríguez‐Sáiz M, Barredo J, Hidalgo A, Berenguer J. From accurate genome sequence to biotechnological application: The thermophile Mycolicibacterium hassiacum as experimental model. Microb Biotechnol 2024; 17:e14290. [PMID: 37498289 PMCID: PMC10832570 DOI: 10.1111/1751-7915.14290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/28/2023] Open
Abstract
Mycobacteria constitute a large group of microorganisms belonging to the phylum Actinobacteria encompassing some of the most relevant pathogenic bacteria and many saprophytic isolates that share a unique and complex cell envelope. Also unique to this group is the extensive capability to use and synthesize sterols, a class of molecules that include active signalling compounds of pharmaceutical use. However, few mycobacterial species and strains have been established as laboratory models to date, Mycolicibacterium smegmatis mc2 155 being the most common one. In this work, we focus on the use of a thermophilic mycobacterium, Mycolicibacterium hassiacum, which grows optimally above 50°C, as an emerging experimental model valid to extend our general knowledge of mycobacterial biology as well as for application purposes. To that end, accurate genomic sequences are key for gene mining, the study of pathogenicity or lack thereof and the potential for gene transfer. The combination of long- and short-massive sequencing technologies is strictly necessary to remove biases caused by errors specific to long-reads technology. By doing so in M. hassiacum, we obtained from the curated genome clues regarding the genetic manipulation potential of this microorganism from the presence of insertion sequences, CRISPR-Cas, type VII ESX secretion systems, as well as lack of plasmids. Finally, as a proof of concept of the applicability of M. hassiacum as a laboratory and industrial model, we used this high-quality genome of M. hassiacum to successfully knockout a gene involved in the use of phytosterols as source of carbon and energy, using an improved gene cassette for thermostable selection and a transformation protocol at high temperature.
Collapse
Affiliation(s)
- Mercedes Sánchez‐Costa
- Department of Molecular Biology, Faculty of SciencesCentre for Molecular Biology (UAM‐CSIC)University Institute for Molecular BiologyMadridSpain
| | - Susanne Gola
- Department of Medical Technology and BiotechnologyErnst‐Abbe‐Hochschule Jena, University of Applied SciencesJenaGermany
| | | | - José‐Luis Barredo
- Department of BiotechnologyCuria, Parque Tecnológico de LeónLeónSpain
| | - Aurelio Hidalgo
- Department of Molecular Biology, Faculty of SciencesCentre for Molecular Biology (UAM‐CSIC)University Institute for Molecular BiologyMadridSpain
| | - José Berenguer
- Department of Molecular Biology, Faculty of SciencesCentre for Molecular Biology (UAM‐CSIC)University Institute for Molecular BiologyMadridSpain
| |
Collapse
|
44
|
Chanchal DK, Chaudhary JS, Kumar P, Agnihotri N, Porwal P. CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Curr Gene Ther 2024; 24:193-207. [PMID: 38310456 DOI: 10.2174/0115665232275754231204072320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/05/2024]
Abstract
With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.
Collapse
Affiliation(s)
- Dilip Kumar Chanchal
- Department of Pharmacy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| | | | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Neha Agnihotri
- Department of Pharmacy, Maharana Pratap College of Pharmacy, Kothi, Mandhana, Kanpur-209217, Uttar Pradesh, India
| | - Prateek Porwal
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| |
Collapse
|
45
|
Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM. Worldwide trend discovery of structural and functional relationship of metallo-β-lactamase for structure-based drug design: A bibliometric evaluation and patent analysis. Int J Biol Macromol 2024; 256:128230. [PMID: 38013072 DOI: 10.1016/j.ijbiomac.2023.128230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Metallo-β-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.
Collapse
Affiliation(s)
- Ameera Aisyah Azman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Siti Aminah Mohd Noor
- Center for Defence Foundation Studies, National Defence University of Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
46
|
Upreti A, Mukherjee S. Therapeutic Potential of CRISPR/Cas in Hashimoto's Thyroiditis: A Comprehensive Review. Curr Gene Ther 2024; 24:179-192. [PMID: 38310457 DOI: 10.2174/0115665232266508231210154930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
Hashimoto's thyroiditis (HT) is a commonly occurring illness of autoimmune endocrine origin. It is usually present in the pediatric age group along with other well-known diseases, such as type 1 insulin-dependent diabetes. The defining feature of this disease is the immune-- mediated attack on the thyroid gland resulting in the destruction of thyroid tissues and cells. Given that HT frequently affects family members, it is well-recognized that individuals are genetically predisposed to this disease. Patients with HT also display a significantly increased risk for several different cancers, justifying the eminent need for the development of therapies for managing and treating HT. Gene editing has made several advancements in the field of molecular biology and has turned out to become a promising approach to correct several autoimmune diseases. Currently, CRISPR/Cas, a nuclease-based editing technique, is publicized as a promising tool for curing several genetic diseases and cancers. However, very limited research has been conducted as of now on autoimmune disease management and cure via CRISPR/Cas technique. This review provides an account of the potential candidate genes associated with Hashimoto's thyroiditis, and only a few animal and human models have been generated via the CRISPR/Cas gene editing technique. Mouse models of autoimmune thyroiditis generated through the CRISPR/Cas gene editing technique by targeting the candidate genes will provide us with a deeper insight into the pathophysiology of HT and further pave the way for the immunomodulation of HT via gene editing.
Collapse
Affiliation(s)
- Apoorva Upreti
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
47
|
Hsiao J, Deng LC, Moroz LL, Chalasani SH, Edsinger E. Ocean to Tree: Leveraging Single-Molecule RNA-Seq to Repair Genome Gene Models and Improve Phylogenomic Analysis of Gene and Species Evolution. Methods Mol Biol 2024; 2757:461-490. [PMID: 38668979 PMCID: PMC11112408 DOI: 10.1007/978-1-0716-3642-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Understanding gene evolution across genomes and organisms, including ctenophores, can provide unexpected biological insights. It enables powerful integrative approaches that leverage sequence diversity to advance biomedicine. Sequencing and bioinformatic tools can be inexpensive and user-friendly, but numerous options and coding can intimidate new users. Distinct challenges exist in working with data from diverse species but may go unrecognized by researchers accustomed to gold-standard genomes. Here, we provide a high-level workflow and detailed pipeline to enable animal collection, single-molecule sequencing, and phylogenomic analysis of gene and species evolution. As a demonstration, we focus on (1) PacBio RNA-seq of the genome-sequenced ctenophore Mnemiopsis leidyi, (2) diversity and evolution of the mechanosensitive ion channel Piezo in genetic models and basal-branching animals, and (3) associated challenges and solutions to working with diverse species and genomes, including gene model updating and repair using single-molecule RNA-seq. We provide a Python Jupyter Notebook version of our pipeline (GitHub Repository: Ctenophore-Ocean-To-Tree-2023 https://github.com/000generic/Ctenophore-Ocean-To-Tree-2023 ) that can be run for free in the Google Colab cloud to replicate our findings or modified for specific or greater use. Our protocol enables users to design new sequencing projects in ctenophores, marine invertebrates, or other novel organisms. It provides a simple, comprehensive platform that can ease new user entry into running their evolutionary sequence analyses.
Collapse
Affiliation(s)
- Jan Hsiao
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| | - Lola Chenxi Deng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL32611
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| |
Collapse
|
48
|
Huang SH, Chen SC, Wu TY, Chen CY, Yu CH. Programmable modulation of ribosomal frameshifting by mRNA targeting CRISPR-Cas12a system. iScience 2023; 26:108492. [PMID: 38125012 PMCID: PMC10730746 DOI: 10.1016/j.isci.2023.108492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Minus 1 programmed ribosomal frameshifting (-1 PRF) is a conserved translational regulation event essential for critical biological processes, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Efficient trans-modulation of the structured RNA element crucial to -1 PRF will endow the therapeutic application. Here, we demonstrate that CRISPR RNA can stimulate efficient -1 PRF. Assembled CRISPR-Cas12a, but not CRISPR-Cas9, complex further enhances -1 PRF efficiency through its higher capacity to stall translating ribosomes. We additionally perform CRISPR-Cas12a targeting to impair the SARS-CoV-2 frameshifting pseudoknot structure via a focused screening. We demonstrate that targeting CRISPR-Cas12a results in more than 70% suppression of -1 PRF in vitro and about 50% suppression in mammalian cells. Our results show the expanded function of the CRISPR-Cas12 system in modulating -1 PRF efficiency through stalling ribosomes and deforming frameshifting stimulatory signals, which could serve as a new strategy for future coronavirus pandemics.
Collapse
Affiliation(s)
- Shih-Hong Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | | | - Cheng-Yao Chen
- YD BioLabs, Inc., Hsinchu, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
49
|
Bost J, Recalde A, Waßmer B, Wagner A, Siebers B, Albers SV. Application of the endogenous CRISPR-Cas type I-D system for genetic engineering in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Front Microbiol 2023; 14:1254891. [PMID: 37849926 PMCID: PMC10577407 DOI: 10.3389/fmicb.2023.1254891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas systems are widely distributed among bacteria and archaea. In this study, we demonstrate the successful utilization of the type I-D CRISPR-Cas system for genetic engineering in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Given its extreme growth conditions characterized by a temperature of 75°C and pH 3, an uracil auxotrophic selection system was previously established, providing a basis for our investigations. We developed a novel plasmid specifically designed for genome editing, which incorporates a mini-CRISPR array that can be induced using xylose, resulting in targeted DNA cleavage. Additionally, we integrated a gene encoding the β-galactosidase of Saccharolobus solfataricus into the plasmid, enabling blue-white screening and facilitating the mutant screening process. Through the introduction of donor DNA containing genomic modifications into the plasmid, we successfully generated deletion mutants and point mutations in the genome of S. acidocaldarius. Exploiting the PAM (protospacer adjacent motif) dependence of type I systems, we experimentally confirmed the functionality of three different PAMs (CCA, GTA, and TCA) through a self-targeting assessment assay and the gene deletion of upsE. Our findings elucidate the application of the endogenous Type I-D CRISPR-Cas system for genetic engineering in S. acidocaldarius, thus expanding its genetic toolbox.
Collapse
Affiliation(s)
- Jan Bost
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alejandra Recalde
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bianca Waßmer
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexander Wagner
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Xiao Y, Fei D, Li M, Ma Y, Ma M. Establishment and Application of CRISPR-Cas12a-Based Recombinase Polymerase Amplification and a Lateral Flow Dipstick and Fluorescence for the Detection and Distinction of Deformed Wing Virus Types A and B. Viruses 2023; 15:2041. [PMID: 37896818 PMCID: PMC10612068 DOI: 10.3390/v15102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Deformed wing virus (DWV) is one of the important pathogens of the honey bee (Apis mellifera), which consists of three master variants: types A, B, and C. Among them, DWV types A (DWV-A) and B (DWV-B) are the most prevalent variants in honey bee colonies and have been linked to colony decline. DWV-A and DWV-B have different virulence, but it is difficult to distinguish them via traditional methods. In this study, we established a visual detection assay for DWV-A and DWV-B using recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 12a fluorescence system (RPA-CRISPR-Cas12a-LFD). The limit of detection of this system was ~6.5 × 100 and 6.2 × 101 copies/μL for DWV-A and DWV-B, respectively. The assays were specific and non-cross-reactive against other bee viruses, and the results could be visualized within 1 h. The assays were validated by extracting cDNA from 36 clinical samples of bees that were suspected to be infected with DWV. The findings were consistent with those of traditional reverse transcription-quantitative polymerase chain reaction, and the RPA-CRISPR-Cas12a assay showed the specific, sensitive, simple, and appropriate detection of DWV-A and DWV-B. This method can facilitate the visual and qualitative detection of DWV-A and DWV-B as well as the monitoring of different subtypes, thereby providing potentially better control and preventing current and future DWV outbreaks.
Collapse
Affiliation(s)
- Yuting Xiao
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| | - Dongliang Fei
- Experimental Animal Center of Jinzhou Medical University, Jinzhou 121000, China; (D.F.); (Y.M.)
| | - Ming Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| | - Yueyu Ma
- Experimental Animal Center of Jinzhou Medical University, Jinzhou 121000, China; (D.F.); (Y.M.)
| | - Mingxiao Ma
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| |
Collapse
|