1
|
Radi S, EzEldeen M, Végvári Á, Coates D, Jacobs R, Bostanci N, Bao K. The proteome of osteoblasts in a 3D culture perfusion bioreactor model compared with static conditions. Sci Rep 2025; 15:12120. [PMID: 40204872 PMCID: PMC11982442 DOI: 10.1038/s41598-025-96632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Bone disorders represent a significant global burden. Currently, animal models are used to develop and screen novel treatments. However, interspecies variations and ethical concerns highlight the need for a more complex 3D bone model. In this study, we developed a simplified in vitro bone-like model using a U-CUP perfusion-based bioreactor system, designed to provide continuous nutrient flow and mechanostimulation through 3D cultures. An immortalized human fetal osteoblastic cell line was seeded on collagen scaffolds and cultured for 21 days in both a perfusion bioreactor system and in static cultures. PrestoBlue™ assay, scanning electron microscopy, and proteomics allowed monitoring of metabolic activity and compared morphological and proteome differences between both conditions. Results indicated an altered cellular morphology in the bioreactor compared to the static cultures and identified a total of 3494 proteins. Of these, 105 proteins exhibited significant upregulation in the static culture, while 86 proteins displayed significant downregulation. Enrichment analyses of these proteins revealed ten significant pathways including epithelial-mesenchymal transition, TNF-alpha signaling via NF-kB, and KRAS pathway. The current data indicated of osteogenic differentiation enhancement within the bioreactor on day 21 compared to static cultures. In conclusion, the U-CUP perfusion bioreactor is beneficial for facilitating osteogenic differentiation in 3D cultures.
Collapse
Affiliation(s)
- Sonya Radi
- OMFS-IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS-IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Ákos Végvári
- Proteomics Biomedicum, Division of Chemistry I, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Solna, Stockholm, Sweden
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Dental Medicine (DENTMED), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kai Bao
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.
| |
Collapse
|
2
|
Yang X, Nagao M, Zhou CH. Editorial: Biomaterials and biological regulation for bone tissue remodeling and regeneration. Front Bioeng Biotechnol 2025; 13:1582215. [PMID: 40242356 PMCID: PMC11999967 DOI: 10.3389/fbioe.2025.1582215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Affiliation(s)
- Xianrui Yang
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, United States
| | - Masashi Nagao
- Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
| | - Chen-He Zhou
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Liu B, Yao X, Huang Q, Shi Z, Wei J, Li S, Li M, Chen X, Dai J. Sodium fluoride promotes myopia progression via the activation of the ferroptosis pathway by PIEZO1 and pharmacological targeting PIEZO1 represents an innovative approach for myopia treatment. Cell Biol Toxicol 2025; 41:64. [PMID: 40175653 PMCID: PMC11965261 DOI: 10.1007/s10565-025-10020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Sodium fluoride-induced ocular damage constitutes a significant public health concern globally; however, the precise molecular mechanisms underlying this issue remain obscure. This study aims to investigate the effects of sodium fluoride on myopia and to offer novel theoretical foundations for future strategies in myopia prevention and control. The experimental data showed that sodium fluoride could promote myopia progression, and through bioinformatics analysis, we found that sodium fluoride could affect the ferroptosis pathway. Western blotting and redox kit assays further confirmed that sodium fluoride activates the ferroptosis pathway. We also demonstrated that PIEZO1 plays a crucial role in sodium fluoride-induced myopia, and that the PIEZO1 inhibitor (GsMTx4) can inhibit the ferroptosis pathway. Subsequently, we identified PIEZO1 as a potential target of baicalin, which inhibited PIEZO1 expression in vivo and in vitro, as confirmed by molecular docking modeling and CETSA assays. Finally, we found that baicalin inhibited sodium fluoride-induced myopia via PIEZO1. Taken together, our findings indicate that sodium fluoride can promote myopia progression by activating the ferroptosis pathway through PIEZO1, and that targeting PIEZO1 expression can delay myopia progression, which may provide a new drug target for myopia treatment in the future.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinying Huang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zehui Shi
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinfei Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shijia Li
- Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiuping Chen
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Li J, Wu B, Wang X, Zhao L, Cui J, Liu J, Guo K, Zhang X, Liu J. Clinical features, risk factors, and a nomogram for predicting refractory cervicogenic headache: a retrospective multivariate analysis. Front Neurol 2025; 16:1531180. [PMID: 40196865 PMCID: PMC11973074 DOI: 10.3389/fneur.2025.1531180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Given the intricate nature and varied symptoms of cervicogenic headache, its treatment can be challenging, potentially leading to refractory cervicogenic headache. We aimed to identify risk factors that could help predict the development of refractory cervicogenic headache in patients with cervicogenic headache. Methods This is a retrospective cohort study of patients diagnosed with cervicogenic headache between January 1, 2022 and March 1, 2024 who underwent greater occipital nerve block. Data were collected by reviewing patients' medical records and pain questionnaires. Covariates were selected using univariate and multivariate logistic regression analyses. A predictive nomogram model was developed to predict the unresponsiveness of the greater occipital nerves to anesthetic blockade. Results Of the 82 patients studied, 46 experienced relief from headache following greater occipital nerve blocks, whereas 36 did not. In a multivariate analysis of patients with refractory cervicogenic headache, factors such as C2-C3 sensory loss [odds ratio (OR) = 13.10, 95% confidence interval (CI): 1.45-118.54], bilateral headache (OR = 7.99, 95% CI: 1.36-47.07), having two or more types of pain sources (OR = 5.51, 95% CI: 1.01-30.16), and limited cervical range of motion (>1) (OR = 13.05, 95% CI: 2.28-74.59) were identified as major prognostic indicators of unresponsiveness to greater occipital nerve blocks in cases of large occipital and cervical spine-related factors. Conclusion Patients with severely limited cervical spine mobility, bilateral headaches, and C2-C3 sensory loss may not respond well to greater and lesser occipital nerve block therapy. Pain originating from multiple sources is typically associated with less favorable outcomes.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Surgery, Beijing Huasheng Rehabilitation Hospital, Beijing, China
| | - Baishan Wu
- Department of Pain Medicine, Beijing Chaoyang Hospital Capital Medical University, Beijing, China
| | - Xiaochen Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Pain Medicine, The First Medical Center of PLA General Hospital, Beijing, China
| | - Lijuan Zhao
- Department of Surgery, Beijing Huasheng Rehabilitation Hospital, Beijing, China
| | - Jie Cui
- Department of Surgery, Beijing Huasheng Rehabilitation Hospital, Beijing, China
| | - Jing Liu
- Department of Surgery, Beijing Huasheng Rehabilitation Hospital, Beijing, China
| | - Kaikai Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaoyu Zhang
- Department of Surgery, Beijing Huasheng Rehabilitation Hospital, Beijing, China
| | - Juan Liu
- Department of Pain Medicine, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Wang FZ, Liu S, Gao M, Yu Y, Zhang WB, Li H, Peng X. 3D-Printed Polycaprolactone/Hydroxyapatite Bionic Scaffold for Bone Regeneration. Polymers (Basel) 2025; 17:858. [PMID: 40219249 PMCID: PMC11991156 DOI: 10.3390/polym17070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
The limitations of traditional, autologous bone grafts, such as the scarcity of donor material and the risks of secondary surgical trauma, have spurred the development of alternatives for the repair of large bone defects. Bionic bone scaffolds fabricated via fused deposition modeling (FDM)-a three-dimensional (3D) printing technique-are considered promising. While gyroid-structured scaffolds mimic the complex micro-architecture of cancellous bone, their application in FDM 3D printing remains understudied. Furthermore, no consensus has been reached on the ideal pore size for gyroid scaffolds, which is influenced by the infill density. In this study, we fabricated five groups of polycaprolactone/hydroxyapatite (PCL/HA) scaffolds with different infill densities (40%, 45%, 50%, 55%, and 60%) using a solvent-free filament preparation method. Scanning electron microscopy (SEM) observation showed that all scaffolds exhibit an interconnected porous structure. The scaffold with the 55% infill density, featuring a pore size of 465 ± 63 μm, demonstrated optimal hydrophilicity and mechanical properties comparable to natural cancellous bone. In addition, this scaffold supported cellular bridging within its pores and showed the highest alkaline phosphatase (ALP) activity and calcium salt deposition. Our findings offer novel insights into the design of gyroid-like scaffolds and their fabrication via FDM, paving the way for potential clinical applications.
Collapse
Affiliation(s)
- Feng-Ze Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (F.-Z.W.); (S.L.); (Y.Y.); (W.-B.Z.)
| | - Shuo Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (F.-Z.W.); (S.L.); (Y.Y.); (W.-B.Z.)
| | - Min Gao
- Department of VIP Dental Service, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China;
| | - Yao Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (F.-Z.W.); (S.L.); (Y.Y.); (W.-B.Z.)
| | - Wen-Bo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (F.-Z.W.); (S.L.); (Y.Y.); (W.-B.Z.)
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China;
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (F.-Z.W.); (S.L.); (Y.Y.); (W.-B.Z.)
| |
Collapse
|
6
|
He L, Gong F, Wang J, Huang Y, Wang H. mpECs with high Piezo2 expression promote fracture healing by driving angiogenesis through the Notch signaling pathway. BMC Musculoskelet Disord 2025; 26:238. [PMID: 40069682 PMCID: PMC11895173 DOI: 10.1186/s12891-025-08476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Fractures will impair or disrupt angiogenesis, resulting in delayed union or non-union. Exploring angiogenic signaling molecules and related pathways can promote fracture healing. In this study, the roles of different endothelial cell (EC) subsets in fracture healing were observed using single-cell RNA sequencing (scRNA-seq). It was found that mpECs did affect the repair and regeneration of fracture sites, and could up-regulate genes related to the Notch signaling, angiogenesis, and cell cycle. In addition, in this study, Piezo2 expression was successfully knocked down by transfection of shRNA in human umbilical vein endothelial cells (HUVECs) for in vitro assays. The results suggested that the reduced expression of Piezo2 in HUVECs can suppress cell proliferation and cell cycle and further impair the activation of the Notch signaling pathway, inhibiting angiogenesis. Subsequently, HUVECs were intervened with the Notch pathway inhibitor DAPT and agonist Jagged1. It was found that inhibition of the Notch signaling pathway by Piezo2 knockdown was more significant in the presence of DAPT, whereas Jagged1 reversed the Piezo2 knockdown-caused changes in the downstream protein expression of the Notch pathway. With Jagged1, Piezo2 knockdown-induced decrease in HUVEC tube formation disappeared. Moreover, the tube formation was significantly enhanced, with a marked increase in tube length. Cell counting kit-8 (CCK-8) assay and flow cytometry demonstrated that Jagged1 can promote cell proliferation and trigger cell cycle entry. In conclusion, Piezo2 affects the phenotype of ECs by modulating the Notch signaling pathway and further promotes angiogenesis, thus accelerating fracture healing.
Collapse
Affiliation(s)
- Lingfeng He
- Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Fanyong Gong
- Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiangyong Wang
- Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- The First Affiliated Hospital of Ningbo University, Haishu District, Liuting RoadZhejiang Province, Ningbo, People's Republic of China.
| |
Collapse
|
7
|
Alba E, García-Mesa Y, Cobo R, Cuendias P, Martín-Cruces J, Suazo I, Martínez-Barbero G, Vega JA, García-Suárez O, Cobo T. Immunohistochemical Detection of PIEZO Ion Channels in the Human Carotid Sinus and Carotid Body. Biomolecules 2025; 15:386. [PMID: 40149922 PMCID: PMC11940333 DOI: 10.3390/biom15030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The carotid sinus and the carotid body are major peripheral chemo- and baro(mechano)receptors that sense changes in arterial wall pressure and in oxygen, carbon dioxide, and pH in arterial blood. Recently, it was demonstrated that the PIEZO1 and PIEZO2 mechanoreceptor/mechanotransducers are responsible for the baroreflex in the murine aortic arch (aortic sinus). Furthermore, some experimental evidence suggests that the carotid body could participate in mechanosensing. In this study, we used immunohistochemistry and immunofluorescence in conjunction with laser confocal microscopy to study the distribution of PIEZO1 and PIEZO2 in the human carotid sinus and carotid body as well as in the petrosal ganglion of the glossopharyngeal nerve and the superior cervical sympathetic ganglion. PIEZO1 and PIEZO2 were detected in different morphotypes of sensory nerve formations in the walls of the carotid sinus and carotid artery walls. In the carotid body, PIEZO1 was present in a small population of type I glomus cells and absent in nerves, whereas PIEZO2 was present in both clusters of type I glomus cells and nerves. The most prominent expression of PIEZO1 and PIEZO2 in the carotid body was found in type II glomus cells. On the other hand, in the petrosal ganglion, around 25% of neurons were PIEZO1-positive, and around 85% were PIEZO2-positive; regarding the superior cervical sympathetic ganglion, around 71% and 86% displayed PIEZO1 and PIEZO2, respectively. The results of this study suggest that PIEZO1 and PIEZO2 could be involved in the detection and/or mechanotransduction of the human carotid sinus, whereas the role of the carotid body is more doubtful since PIEZO1 and PIEZO2 were only detected in some nerves and PIEZO2 was present in a small population of type I glomus cells, with PIEZO1 being absent in these cells. However, since immunoreactivity for PIEZO2 was detected in type II glomus cells, researchers should investigate whether these cells play a role in the detection of mechanical stimuli and/or participate in mechanotransduction.
Collapse
Affiliation(s)
- Elda Alba
- Instituto de Neurociencias Vithas, 28010 Madrid, Spain;
- Servicio de Neurología, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ramón Cobo
- Servicio de Otorrinolaringología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
| | - Patricia Cuendias
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - José Martín-Cruces
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
| | - Iván Suazo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8330015, Chile
| | - Graciela Martínez-Barbero
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8330015, Chile
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33003 Oviedo, Spain;
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
| |
Collapse
|
8
|
Gao Q, Wang M, Hou X, Li M, Li L. Substrate stiffness modulates osteogenic and adipogenic differentiation of osteosarcoma through PIEZO1 mediated signaling pathway. Cell Signal 2025; 127:111601. [PMID: 39798771 DOI: 10.1016/j.cellsig.2025.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Most osteosarcoma (OS) cases exhibit poor differentiation at the histopathological level. Disruption of the normal osteogenic differentiation process results in the unregulated proliferation of precursor cells, which is a critical factor in the development of OS. Differentiation therapy aims to slow disease progression by restoring the osteogenic differentiation process of OS cells and is considered a new approach to treating OS. However, there are currently few studies on the mechanism of differentiation of OS, which puts the development of differentiation therapeutic drugs into a bottleneck. Substrate stiffness can regulate differentiation in mesenchymal stem cells. Evidence supports that mesenchymal stem cells and osteoblast precursors are the origin of OS. In this study, we simulated different stiffnesses in vitro to investigate the mechanism of substrate stiffness affecting differentiation of OS. We demonstrate that Piezo type mechanosensitive ion channel component 1 (PIEZO1) plays a critical regulatory role in sensing substrate stiffness in osteogenic and adipogenic differentiation of OS. When OS cells are cultured on the stiff substrate, integrin subunit beta 1 (ITGB1) increases and cooperates with PIEZO1 to promote Yes-Associated Protein (YAP) entering the nucleus, and may inhibit EZH2, thereby inhibiting H3K27me3 and increasing RUNX2 expression, and cells differentiate toward osteogenesis. Our results provide new insights for research on differentiation treatment of OS and are expected to help identify new targets for future drug design.
Collapse
Affiliation(s)
- Qingyuan Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Meijing Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiangyi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
9
|
Rahaman SH, Bodhak S, Balla VK, Bhattacharya D. Role of in-situ electrical stimulation on early-stage mineralization and in-vitro osteogenesis of electroactive bioactive glass composites. BIOMATERIALS ADVANCES 2025; 166:214062. [PMID: 39406157 DOI: 10.1016/j.bioadv.2024.214062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/13/2024]
Abstract
Bioactive glass (BAG) has emerged as an effective bone graft substitute due to its diverse qualities of biocompatibility, bioactivity, osteoblast adhesion and enhanced revascularization. However, inferior osteogenic capacity of BAG compared to autologous bone grafts continues to limiting it's wide-spread clinical applications towards repairing of bone fractures and healing. In this study, we have fabricated BAG composites with 0.5 to 2 wt% bismuth ferrite (BF, a multiferroic material) with an aim to generate in-situ electrical charges pertinent to early-stage bone regeneration thus mimicking natural bone, which is a piezoelectric material. The fabricated BAG composites were characterised in terms of microstructures, phase analysis, remanent polarization, wettability and subsequently evaluated for in vitro cell proliferation and osteogenesis with and without magnetic field exposure (200 mT, 30 min./day). Pre-osteoblast cells from mice (MC3T3-E1) seeded on these composites exhibited excellent cell growth without any cytotoxicity, which is further supported by FITC/DAPI staining and a live/dead assay. The results of Alizarin Red S assay and increased levels of Alkaline Phosphatase (ALP) activity, at 21 days of culture, suggest that the BAG-BF composites promote in vitro osteogenic differentiation of pre-osteoblast cells. The enhanced osteogenesis of BAG-BF composites was also confirmed through qRT-PCR analysis, which showed rapid upregulation of osteoblastogenic specific genes namely RunX-2, Collagen-1, Bone Sialo Protein, and ALP after 21 days. Additionally, the osteogenic differentiation was assessed by the Western Blot technique, which revealed significantly higher band intensity of osteogenic markers in BAG-1.5 BF and BAG-2 BF composites than pure BAG. These findings clearly demonstrate that in-situ electrical stimulation and osteoconductive capacity of BF reinforced BAG composites have positive impact on osteoblast cell development, bone formation, and healing.
Collapse
Affiliation(s)
- Sk Hasanur Rahaman
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhadip Bodhak
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vamsi Krishna Balla
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dipten Bhattacharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
10
|
Zhai X, Wang Y. Physical modulation and peripheral nerve regeneration: a literature review. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:32. [PMID: 39710804 DOI: 10.1186/s13619-024-00215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
Peripheral nerve injury (PNI) usually causes severe motor, sensory and autonomic dysfunction. In addition to direct surgical repair, rehabilitation exercises, and traditional physical stimuli, for example, electrical stimulation, have been applied in promoting the clinical recovery of PNI for a long time but showed low efficiency. Recently, significant progress has been made in new physical modulation to promote peripheral nerve regeneration. We hereby review current progress on the mechanism of peripheral nerve regeneration after injury and summarize the new findings and evidence for the application of physical modulation, including electrical stimulation, light, ultrasound, magnetic stimulation, and mechanical stretching in experimental studies and the clinical treatment of patients with PNI.
Collapse
Affiliation(s)
- Xiangwen Zhai
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuzhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong Province, China.
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
| |
Collapse
|
11
|
Wan Y, Zhou J, Li H. The Role of Mechanosensitive Piezo Channels in Chronic Pain. J Pain Res 2024; 17:4199-4212. [PMID: 39679432 PMCID: PMC11646438 DOI: 10.2147/jpr.s490459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose of Review Mechanosensitive Piezo channels are ion channels activated by mechanical stimuli, playing a crucial role in mechanotransduction processes and mechanical hypersensitivity. When these channels are subjected to mechanical loading, membrane currents rise instantaneously, depolarizing and activating voltage-gated calcium channels. This results in an increase in intracellular Ca2+, which contributes to heightened sensitivity to mechanical stimuli. This review delves into the characteristics and mechanisms of Piezo channels in chronic pain. Recent Findings The findings suggest that Piezo channels are integral to the occurrence and development of chronic pain, including neuropathic pain, visceral pain, musculoskeletal pain, headache or orofacial pain, and inflammatory pain. Piezo channels significantly impact pain perception and transmission. These channels' critical involvement in various pain types highlights their potential as promising targets for chronic pain therapy. Summary This review discusses the role of Piezo channels in chronic pain. By understanding these pain mechanisms, new therapeutic strategies can be developed to alleviate chronic pain, offering hope for patients suffering from these debilitating conditions.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, People’s Republic of China
| | - Jieshu Zhou
- Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, People’s Republic of China
| | - Hao Li
- Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
12
|
He D, Liu X, Yang W, Guan T, Wang G. The role of mechanosensitive ion channel Piezo1 in knee osteoarthritis inflammation. Channels (Austin) 2024; 18:2393088. [PMID: 39169878 PMCID: PMC11346567 DOI: 10.1080/19336950.2024.2393088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Mechanosensitive ion channel Piezo1 is known to mediate a variety of inflammatory pathways and is also involved in the occurrence and development of many orthopedic diseases. Although its role in the inflammatory mechanism of knee osteoarthritis (KOA) has been reported, a systematic explanation is yet to be seen. This article aims to summarize the role of inflammatory responses in the pathogenesis of KOA and elucidate the mechanism by which the Piezo1-mediated inflammatory response contributes to the pathogenesis of KOA, providing a theoretical basis for the prevention and treatment of knee osteoarthritis. The results indicate that in the mechanism leading to knee osteoarthritis, Piezo1 can mediate the inflammatory response through chondrocytes and synovial cells, participating in the pathological progression of KOA. Piezo1 has the potential to become a new target for the prevention and treatment of this disease. Additionally, as pain is one of the most severe manifestations in KOA patients, the inflammatory response mediated by Piezo1, which causes the release of inflammatory mediators and pro-inflammatory factors leading to pain, can be further explored.
Collapse
Affiliation(s)
- Dingchang He
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xin Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenhao Yang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Taiyuan Guan
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Guoyou Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Orthopedic Disorders, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Henstock JR, Price JCFA, El Haj AJ. Determining Which Hydrostatic Pressure Regimes Promote Osteogenesis in Human Mesenchymal Stem Cells. Tissue Eng Regen Med 2024; 21:1141-1151. [PMID: 39190133 PMCID: PMC11589021 DOI: 10.1007/s13770-024-00666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Compressive loading of bone causes hydrostatic pressure changes which have been proposed as an osteogenic differentiation stimulus for mesenchymal stem cells (hMSCs). We hypothesised that hMSCs are adapted to differentiate only in response to cyclic hydrostatic pressures above critical thresholds of magnitude and frequency which correspond to physiological levels of anabolic bone loading. METHODS Using a pneumatic-hydrostatic bioreactor, we applied hydrostatic pressure regimes to human hMSCs in 3D collagen hydrogel cultures for 1 h/day over 28 days to determine which levels of pressure and frequency stimulated osteogenesis in vitro. RESULTS Stimulation of the 3D cultures with 0-280 kPa cyclic hydrostatic pressure at 1 Hz resulted in up to 75% mineralisation in the hydrogel (without exogenous growth factors), whilst static culture or variations of the regime with either constant high pressure (280 kPa, 0 Hz), low-frequency (0.05 Hz, 280 kPa) or low-magnitude (70 kPa, 1 Hz) stimulation had no osteogenic effects (< 2% mineralisation). Nuclear translocation of YAP was observed following cyclic hydrostatic pressure in mature MLO-A5 osteoblasts but not in hMSCs, suggesting that cyclic hydrostatic pressure activates different mechanotransduction pathways in undifferentiated stem cells and committed osteoblasts. CONCLUSIONS Hydrostatic pressure is a potent stimulus for differentiating MSC into highly active osteoblasts and may therefore be a versatile tool for translational cell engineering. We have demonstrated that there are minimum levels of force and frequency needed to trigger osteogenesis, i.e. a pressure 'switch', which corresponds to the physiological forces experienced by cells in their native mesenchymal niche. The mechanotransduction mechanisms underpinning these effects are the subject of further study.
Collapse
Affiliation(s)
- James R Henstock
- Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, NE2 1XE, UK.
| | - Joshua C F A Price
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TH, UK
| |
Collapse
|
14
|
Koster AK, Yarishkin O, Dubin AE, Kefauver JM, Pak RA, Cravatt BF, Patapoutian A. Chemical mapping of the surface interactome of PIEZO1 identifies CADM1 as a modulator of channel inactivation. Proc Natl Acad Sci U S A 2024; 121:e2415934121. [PMID: 39356664 PMCID: PMC11474052 DOI: 10.1073/pnas.2415934121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The propeller-shaped blades of the PIEZO1 and PIEZO2 ion channels partition into the plasma membrane and respond to indentation or stretching of the lipid bilayer, thus converting mechanical forces into signals that can be interpreted by cells, in the form of calcium flux and changes in membrane potential. While PIEZO channels participate in diverse physiological processes, from sensing the shear stress of blood flow in the vasculature to detecting touch through mechanoreceptors in the skin, the molecular details that enable these mechanosensors to tune their responses over a vast dynamic range of forces remain largely uncharacterized. To survey the molecular landscape surrounding PIEZO channels at the cell surface, we employed a mass spectrometry-based proteomic approach to capture and identify extracellularly exposed proteins in the vicinity of PIEZO1. This PIEZO1-proximal interactome was enriched in surface proteins localized to cell junctions and signaling hubs within the plasma membrane. Functional screening of these interaction candidates by calcium imaging and electrophysiology in an overexpression system identified the adhesion molecule CADM1/SynCAM that slows the inactivation kinetics of PIEZO1 with little effect on PIEZO2. Conversely, we found that CADM1 knockdown accelerates inactivation of endogenous PIEZO1 in Neuro-2a cells. Systematic deletion of CADM1 domains indicates that the transmembrane region is critical for the observed effects on PIEZO1, suggesting that modulation of inactivation is mediated by interactions in or near the lipid bilayer.
Collapse
Affiliation(s)
- Anna K. Koster
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
- Department of Chemistry, Scripps Research, La Jolla, CA92037
| | - Oleg Yarishkin
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | - Adrienne E. Dubin
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | - Jennifer M. Kefauver
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | - Ryan A. Pak
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | | | - Ardem Patapoutian
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| |
Collapse
|
15
|
Nagase T, Nagase M. Piezo ion channels: long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens Res 2024; 47:2786-2799. [PMID: 39103520 DOI: 10.1038/s41440-024-01820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Recent advances in mechanobiology and the discovery of mechanosensitive ion channels have opened a new era of research on hypertension and related diseases. Piezo1 and Piezo2, first reported in 2010, are regarded as bona fide mechanochannels that mediate various biological and pathophysiological phenomena in multiple tissues and organs. For example, Piezo channels have pivotal roles in blood pressure control, triggering shear stress-induced nitric oxide synthesis and vasodilation, regulating baroreflex in the carotid sinus and aorta, and releasing renin from renal juxtaglomerular cells. Herein, we provide an overview of recent literature on the roles of Piezo channels in the pathogenesis of hypertension and related kidney damage, including our experimental data on the involvement of Piezo1 in podocyte injury and that of Piezo2 in renin expression and renal fibrosis in animal models of hypertensive nephropathy. The mechanosensitive ion channels Piezo1 and Piezo2 play various roles in the pathogenesis of systemic hypertension by acting on vascular endothelial cells, baroreceptors in the carotid artery and aorta, and the juxtaglomerular apparatus. Piezo channels also contribute to hypertensive nephropathy by acting on mesangial cells, podocytes, and perivascular mesenchymal cells.
Collapse
Affiliation(s)
- Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tokyo, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Zhang Y, Feng X, Zheng B, Liu Y. Regulation and mechanistic insights into tensile strain in mesenchymal stem cell osteogenic differentiation. Bone 2024; 187:117197. [PMID: 38986825 DOI: 10.1016/j.bone.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are integral to bone remodeling and homeostasis, as they are capable of differentiating into osteogenic and adipogenic lineages. This differentiation is substantially influenced by mechanosensitivity, particularly to tensile strain, which is a prevalent mechanical stimulus known to enhance osteogenic differentiation. This review specifically examines the effects of various cyclic tensile stress (CTS) conditions on BMSC osteogenesis. It delves into the effects of different loading devices, magnitudes, frequencies, elongation levels, dimensionalities, and coculture conditions, providing a comparative analysis that aids identification of the most conducive parameters for the osteogenic differentiation of BMSCs. Subsequently, this review delineates the signaling pathways activated by CTS, such as Wnt/β-catenin, BMP, Notch, MAPK, PI3K/Akt, and Hedgehog, which are instrumental in mediating the osteogenic differentiation of BMSCs. Through a detailed examination of these pathways, this study elucidates the intricate mechanisms whereby tensile strain promotes osteogenic differentiation, offering valuable guidance for optimizing therapeutic strategies aimed at enhancing bone regeneration.
Collapse
Affiliation(s)
- Yongxin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Xu Feng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| |
Collapse
|
17
|
Hwang SM, Song JM, Choi JJ, Jung Y, Park CK, Kim YH. Functional Role of Piezo1 in the Human Eosinophil Cell Line AML14.3D10: Implications for the Immune and Sensory Nervous Systems. Biomolecules 2024; 14:1157. [PMID: 39334923 PMCID: PMC11429562 DOI: 10.3390/biom14091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mechanosensitive ion channels, particularly Piezo channels, are widely expressed in various tissues. However, their role in immune cells remains underexplored. Therefore, this study aimed to investigate the functional role of Piezo1 in the human eosinophil cell line AML14.3D10. We detected Piezo1 mRNA expression, but not Piezo2 expression, in these cells, confirming the presence of the Piezo1 protein. Activation of Piezo1 with Yoda1, its specific agonist, resulted in a significant calcium influx, which was inhibited by the Piezo1-specific inhibitor Dooku1, as well as other nonspecific inhibitors (Ruthenium Red, Gd3+, and GsMTx-4). Further analysis revealed that Piezo1 activation modulated the expression and secretion of both pro-inflammatory and anti-inflammatory cytokines in AML14.3D10 cells. Notably, supernatants from Piezo1-activated AML14.3D10 cells enhanced capsaicin and ATP-induced calcium responses in the dorsal root ganglion neurons of mice. These findings elucidate the physiological role of Piezo1 in AML14.3D10 cells and suggest that factors secreted by these cells can modulate the activity of transient receptor potential 1 (TRPV1) and purinergic receptors, which are associated with pain and itch signaling. The results of this study significantly advance our understanding of the function of Piezo1 channels in the immune and sensory nervous systems.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ji-Min Song
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Jung Ju Choi
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
18
|
Tang J, Feng M, Wang D, Zhang L, Yang K. Recent advancement of sonogenetics: A promising noninvasive cellular manipulation by ultrasound. Genes Dis 2024; 11:101112. [PMID: 38947740 PMCID: PMC11214298 DOI: 10.1016/j.gendis.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/02/2024] Open
Abstract
Recent advancements in biomedical research have underscored the importance of noninvasive cellular manipulation techniques. Sonogenetics, a method that uses genetic engineering to produce ultrasound-sensitive proteins in target cells, is gaining prominence along with optogenetics, electrogenetics, and magnetogenetics. Upon stimulation with ultrasound, these proteins trigger a cascade of cellular activities and functions. Unlike traditional ultrasound modalities, sonogenetics offers enhanced spatial selectivity, improving precision and safety in disease treatment. This technology broadens the scope of non-surgical interventions across a wide range of clinical research and therapeutic applications, including neuromodulation, oncologic treatments, stem cell therapy, and beyond. Although current literature predominantly emphasizes ultrasonic neuromodulation, this review offers a comprehensive exploration of sonogenetics. We discuss ultrasound properties, the specific ultrasound-sensitive proteins employed in sonogenetics, and the technique's potential in managing conditions such as neurological disorders, cancer, and ophthalmic diseases, and in stem cell therapies. Our objective is to stimulate fresh perspectives for further research in this promising field.
Collapse
Affiliation(s)
- Jin Tang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingxuan Feng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| |
Collapse
|
19
|
Yang Q, Xu M, Fang H, Gao Y, Zhu D, Wang J, Chen Y. Targeting micromotion for mimicking natural bone healing by using NIPAM/Nb 2C hydrogel. Bioact Mater 2024; 39:41-58. [PMID: 38800718 PMCID: PMC11127186 DOI: 10.1016/j.bioactmat.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Natural fracture healing is most efficient when the fine-tuned mechanical force and proper micromotion are applied. To mimick this micromotion at the fracture gap, a near-infrared-II (NIR-II)-activated hydrogel was fabricated by integrating two-dimensional (2D) monolayer Nb2C nanosheets into a thermally responsive poly(N-isopropylacrylamide) (NIPAM) hydrogel system. NIR-II-triggered deformation of the NIPAM/Nb2C hydrogel was designed to generate precise micromotion for co-culturing cells. It was validated that micromotion at 1/300 Hz, triggering a 2.37-fold change in the cell length/diameter ratio, is the most favorable condition for the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Moreover, mRNA sequencing and verification revealed that micromotion-induced augmentation was mediated by Piezo1 activation. Suppression of Piezo1 interrupts the mechano-sensitivity and abrogates osteogenic differentiation. Calvarial and femoral shaft defect models were established to explore the biocompatibility and osteoinductivity of the Micromotion Biomaterial. A series of research methods, including radiography, micro-CT scanning, and immunohistochemical staining have been performed to evaluate biosafety and osteogenic efficacy. The in vivo results revealed that tunable micromotion strengthens the natural fracture healing process through the sequential activation of endochondral ossification, promotion of neovascularization, initiation of mineral deposition, and combinatory acceleration of full-thickness osseous regeneration. This study demonstrated that Micromotion Biomaterials with controllable mechanophysical characteristics could promote the osteogenic differentiation of BMSCs and facilitate full osseous regeneration. The design of NIPAM/Nb2C hydrogel with highly efficient photothermal conversion, specific features of precisely controlled micromotion, and bionic-mimicking bone-repair capabilities could spark a new era in the field of regenerative medicine.
Collapse
Affiliation(s)
- Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Mengqiao Xu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jing Wang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
20
|
Zeng Y, Shen J, Zhou X, Ouyang Z, Zhong J, Qin Y, Jin L, He X, Li L, Xie J, Liu X. Osteogenic differentiation of bone mesenchymal stem cells on linearly aligned triangular micropatterns. J Mater Chem B 2024; 12:8420-8430. [PMID: 39093007 DOI: 10.1039/d4tb01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mesenchymal stem cells (MSCs) hold promise for regenerative medicine, particularly for bone tissue engineering. However, directing MSC differentiation towards specific lineages, such as osteogenic, while minimizing undesired phenotypes remains a challenge. Here, we investigate the influence of micropatterns on the behavior and lineage commitment of rat bone marrow-derived MSCs (rBMSCs), focusing on osteogenic differentiation. Linearly aligned triangular micropatterns (TPs) and circular micropatterns (CPs) coated with fibronectin were fabricated to study their effects on rBMSC morphology and differentiation and the underlying mechanobiological mechanisms. TPs, especially TP15 (15 μm), induced the cell elongation and thinning, while CPs also promoted the cell stretching, as evidenced by the decreased circularity and increased aspect ratio. TP15 significantly promoted osteogenic differentiation, with increased expression of osteogenic genes (Runx2, Spp1, Alpl, Bglap, Col1a1) and decreased expression of adipogenic genes (Pparg, Cebpa, Fabp4). Conversely, CPs inhibited both osteogenic and adipogenic differentiation. Mechanistically, TP15 increased Piezo1 activity, cytoskeletal remodeling including the aggregates of F-actin and myosin filaments at the cell periphery, YAP1 nuclear translocation, and integrin upregulation. Piezo1 inhibition suppressed the osteogenic genes expression, myosin remodeling, and YAP1 nuclear translocation, indicating Piezo1-mediated the mechanotransduction in rBMSCs on TPs. TP15 also induced osteogenic differentiation of BMSCs from aging rats, with upregulated Piezo1 and nuclear translocation of YAP1. Therefore, triangular micropatterns, particularly TP15, promote osteogenesis and inhibit adipogenesis of rBMSCs through Piezo1-mediated myosin and YAP1 pathways. Our study provides novel insights into the mechanobiological mechanisms governing MSC behaviors on micropatterns, offering new strategies for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Xintong Zhou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Zhi Ouyang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Jian Zhong
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Yixue Qin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Linlu Jin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Xueling He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| |
Collapse
|
21
|
Aragona M, Mhalhel K, Pansera L, Montalbano G, Guerrera MC, Levanti M, Laurà R, Abbate F, Vega JA, Germanà A. Localization of Piezo 1 and Piezo 2 in Lateral Line System and Inner Ear of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:9204. [PMID: 39273152 PMCID: PMC11395407 DOI: 10.3390/ijms25179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Piezo proteins have been identified as mechanosensitive ion channels involved in mechanotransduction. Several ion channel dysfunctions may be associated with diseases (including deafness and pain); thus, studying them is critical to understand their role in mechanosensitive disorders and to establish new therapeutic strategies. The current study investigated for the first time the expression patterns of Piezo proteins in zebrafish octavolateralis mechanosensory organs. Piezo 1 and 2 were immunoreactive in the sensory epithelia of the lateral line system and the inner ear. Piezo 1 (28.7 ± 1.55 cells) and Piezo 2 (28.8 ± 3.31 cells) immunopositive neuromast cells were identified based on their ultrastructural features, and their overlapping immunoreactivity to the s100p specific marker (28.6 ± 1.62 cells), as sensory cells. These findings are in favor of Piezo proteins' potential role in sensory cell activation, while their expression on mantle cells reflects their implication in the maintenance and regeneration of the neuromast during cell turnover. In the inner ear, Piezo proteins' colocalization with BDNF introduces their potential implication in neuronal plasticity and regenerative events, typical of zebrafish mechanosensory epithelia. Assessing these proteins in zebrafish could open up new scenarios for the roles of these important ionic membrane channels, for example in treating impairments of sensory systems.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
22
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
23
|
Celik B, Leal AF, Tomatsu S. Potential Targeting Mechanisms for Bone-Directed Therapies. Int J Mol Sci 2024; 25:8339. [PMID: 39125906 PMCID: PMC11312506 DOI: 10.3390/ijms25158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
| | - Andrés Felipe Leal
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
24
|
Zhang J, Hu W, Zou Z, Li Y, Kang F, Li J, Dong S. The role of lipid metabolism in osteoporosis: Clinical implication and cellular mechanism. Genes Dis 2024; 11:101122. [PMID: 38523674 PMCID: PMC10958717 DOI: 10.1016/j.gendis.2023.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 03/26/2024] Open
Abstract
In recent years, researchers have become focused on the relationship between lipids and bone metabolism balance. Moreover, many diseases related to lipid metabolism disorders, such as nonalcoholic fatty liver disease, atherosclerosis, obesity, and menopause, are associated with osteoporotic phenotypes. It has been clinically observed in humans that these lipid metabolism disorders promote changes in osteoporosis-related indicators bone mineral density and bone mass. Furthermore, similar osteoporotic phenotype changes were observed in high-fat and high-cholesterol-induced animal models. Abnormal lipid metabolism (such as increased oxidized lipids and elevated plasma cholesterol) affects bone microenvironment homeostasis via cross-organ communication, promoting differentiation of mesenchymal stem cells to adipocytes, and inhibiting commitment towards osteoblasts. Moreover, disturbances in lipid metabolism affect the bone metabolism balance by promoting the secretion of cytokines such as receptor activator of nuclear factor-kappa B ligand by osteoblasts and stimulating the differentiation of osteoclasts. Conclusively, this review addresses the possible link between lipid metabolism disorders and osteoporosis and elucidates the potential modulatory mechanisms and signaling pathways by which lipid metabolism affects bone metabolism balance. We also summarize the possible approaches and prospects of intervening lipid metabolism for osteoporosis treatment.
Collapse
Affiliation(s)
- Jing Zhang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi Zou
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jianmei Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
25
|
Lei L, Wen Z, Cao M, Zhang H, Ling SKK, Fu BSC, Qin L, Xu J, Yung PSH. The emerging role of Piezo1 in the musculoskeletal system and disease. Theranostics 2024; 14:3963-3983. [PMID: 38994033 PMCID: PMC11234281 DOI: 10.7150/thno.96959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024] Open
Abstract
Piezo1, a mechanosensitive ion channel, has emerged as a key player in translating mechanical stimuli into biological signaling. Its involvement extends beyond physiological and pathological processes such as lymphatic vessel development, axon growth, vascular development, immunoregulation, and blood pressure regulation. The musculoskeletal system, responsible for structural support, movement, and homeostasis, has recently attracted attention regarding the significance of Piezo1. This review aims to provide a comprehensive summary of the current research on Piezo1 in the musculoskeletal system, highlighting its impact on bone formation, myogenesis, chondrogenesis, intervertebral disc homeostasis, tendon matrix cross-linking, and physical activity. Additionally, we explore the potential of targeting Piezo1 as a therapeutic approach for musculoskeletal disorders, including osteoporosis, muscle atrophy, intervertebral disc degeneration, and osteoarthritis.
Collapse
Affiliation(s)
- Lei Lei
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenkang Wen
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingde Cao
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haozhi Zhang
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Samuel Ka-Kin Ling
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bruma Sai-Chuen Fu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
Ikiz ED, Hascup ER, Bae C, Hascup KN. Microglial Piezo1 mechanosensitive channel as a therapeutic target in Alzheimer's disease. Front Cell Neurosci 2024; 18:1423410. [PMID: 38957539 PMCID: PMC11217546 DOI: 10.3389/fncel.2024.1423410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) that control brain development, maintain neural environments, respond to injuries, and regulate neuroinflammation. Despite their significant impact on various physiological and pathological processes across mammalian biology, there remains a notable gap in our understanding of how microglia perceive and transmit mechanical signals in both normal and diseased states. Recent studies have revealed that microglia possess the ability to detect changes in the mechanical properties of their environment, such as alterations in stiffness or pressure. These changes may occur during development, aging, or in pathological conditions such as trauma or neurodegenerative diseases. This review will discuss microglial Piezo1 mechanosensitive channels as potential therapeutic targets for Alzheimer's disease (AD). The structure, function, and modulation of Piezo1 will be discussed, as well as its role in facilitating microglial clearance of misfolded amyloid-β (Aβ) proteins implicated in the pathology of AD.
Collapse
Affiliation(s)
- Erol D. Ikiz
- Department of Chemistry, School of Integrated Sciences, Sustainability, and Public Health, College of Health, Science, and Technology, University of Illinois at Springfield, Springfield, IL, United States
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Erin R. Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Chilman Bae
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University at Carbondale, Carbondale, IL, United States
| | - Kevin N. Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
27
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Ouyang M, Zhang Q, Zhu Y, Luo M, Bu B, Deng L. α-Catenin and Piezo1 Mediate Cell Mechanical Communication via Cell Adhesions. BIOLOGY 2024; 13:357. [PMID: 38785839 PMCID: PMC11118126 DOI: 10.3390/biology13050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Cell-to-cell distant mechanical communication has been demonstrated using in vitro and in vivo models. However, the molecular mechanisms underlying long-range cell mechanoresponsive interactions remain to be fully elucidated. This study further examined the roles of α-Catenin and Piezo1 in traction force-induced rapid branch assembly of airway smooth muscle (ASM) cells on a Matrigel hydrogel containing type I collagen. Our findings demonstrated that siRNA-mediated downregulation of α-Catenin or Piezo1 expression or chemical inhibition of Piezo1 activity significantly reduced both directional cell movement and branch assembly. Regarding the role of N-cadherin in regulating branch assembly but not directional migration, our results further confirmed that siRNA-mediated downregulation of α-Catenin expression caused a marked reduction in focal adhesion formation, as assessed by focal Paxillin and Integrin α5 localization. These observations imply that mechanosensitive α-Catenin is involved in both cell-cell and cell-matrix adhesions. Additionally, Piezo1 partially localized in focal adhesions, which was inhibited by siRNA-mediated downregulation of α-Catenin expression. This result provides insights into the Piezo1-mediated mechanosensing of traction force on a hydrogel. Collectively, our findings highlight the significance of α-Catenin in the regulation of cell-matrix interactions and provide a possible interpretation of Piezo1-mediated mechanosensing activity at focal adhesions during cell-cell mechanical communication.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| | - Qingyu Zhang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yiming Zhu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| |
Collapse
|
29
|
Wu W, Zhao Z, Wang Y, Zhu G, Tan K, Liu M, Li L. Biomechanical Effects of Mechanical Stress on Cells Involved in Fracture Healing. Orthop Surg 2024; 16:811-820. [PMID: 38439564 PMCID: PMC10984830 DOI: 10.1111/os.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Fracture healing is a complex staged repair process in which the mechanical environment plays a key role. Bone tissue is very sensitive to mechanical stress stimuli, and the literature suggests that appropriate stress can promote fracture healing by altering cellular function. However, fracture healing is a coupled process involving multiple cell types that balance and limit each other to ensure proper fracture healing. The main cells that function during different stages of fracture healing are different, and the types and molecular mechanisms of stress required are also different. Most previous studies have used a single mechanical stimulus on individual mechanosensitive cells, and there is no relatively uniform standard for the size and frequency of the mechanical stress. Analyzing the mechanisms underlying the effects of mechanical stimulation on the metabolic regulation of signaling pathways in cells such as in bone marrow mesenchymal stem cells (BMSCs), osteoblasts, chondrocytes, and osteoclasts is currently a challenging research hotspot. Grasping how stress affects the function of different cells at the molecular biology level can contribute to the refined management of fracture healing. Therefore, in this review, we summarize the relevant literature and describe the effects of mechanical stress on cells associated with fracture healing, and their possible signaling pathways, for the treatment of fractures and the further development of regenerative medicine.
Collapse
Affiliation(s)
- Weiyong Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Zhao
- Orthopedic Department, The Fourth Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Yongqing Wang
- Orthopedic Department, The Fourth Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Gengbao Zhu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Kemeng Tan
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Meiyue Liu
- Orthopedic Department, The Fourth Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| |
Collapse
|
30
|
Muraev AA, Manukyan GG, Salekh KM, Bonartsev AP, Volkov AV. Magnetic field application in bone tissue regeneration: issue current status and prospects for method development. RUDN JOURNAL OF MEDICINE 2024; 28:9-22. [DOI: 10.22363/2313-0245-2024-28-1-9-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Relevance. Magnets have long been used to treat various diseases, especially in inflammatory processes. According to existing historical data, magnetotherapy was already used in ancient times by the Chinese, Egyptians and Greeks. Different magnetic field strengths affect cells in different ways, with medium-strength magnetic fields being the most widely used. The review presents a brief history and current state of the issue of using a magnetic field in bone tissue regeneration. Modern knowledge about the mechanisms of physiological and reparative regeneration, restoration of bone tissue is clarified, and modern areas of bone tissue engineering are considered, taking into account the characteristics of microcirculation and the effect of a magnetic field on the physiology of bone tissue and reparative regeneration. One of the key findings of the review is that the magnetic field improves bone tissue repair by influencing the metabolic behavior of cells. Studies show that magnetotherapy promotes the activation of cellular processes, accelerates the formation of new bone tissue and improves its quality. It is also noted that the magnetic field has a positive effect on microcirculation, improving the blood supply to tissues and facilitating a better supply of nutrients to the site of injury. This contributes to faster wound healing and early rehabilitation of patients. Conclusion. Magnetotherapy is one of the effective physical and rehabilitation methods of treatment that will become increasingly important in modern medicine. However, further research is needed to better understand the mechanisms of action of a magnetic field on bone tissue and to determine the optimal parameters for its application.
Collapse
|
31
|
Chen G, Li Y, Zhang H, Xie H. [Role of Piezo mechanosensitive ion channels in the osteoarticular system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:240-248. [PMID: 38385239 PMCID: PMC10882244 DOI: 10.7507/1002-1892.202310092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca 2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca 2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.
Collapse
Affiliation(s)
- Guohui Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Yaxing Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Huiqi Xie
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
32
|
Du Y, Xu B, Li Q, Peng C, Yang K. The role of mechanically sensitive ion channel Piezo1 in bone remodeling. Front Bioeng Biotechnol 2024; 12:1342149. [PMID: 38390363 PMCID: PMC10882629 DOI: 10.3389/fbioe.2024.1342149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Piezo1 (2010) was identified as a mechanically activated cation channel capable of sensing various physical forces, such as tension, osmotic pressure, and shear force. Piezo1 mediates mechanosensory transduction in different organs and tissues, including its role in maintaining bone homeostasis. This review aimed to summarize the function and possible mechanism of Piezo1 in the mechanical receptor cells in bone tissue. We found that it is a potential therapeutic target for the treatment of bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Kai Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Gao Q, Liu J, Wang M, Liu X, Jiang Y, Su J. Biomaterials regulates BMSCs differentiation via mechanical microenvironment. BIOMATERIALS ADVANCES 2024; 157:213738. [PMID: 38154401 DOI: 10.1016/j.bioadv.2023.213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Bone mesenchymal stem cells (BMSCs) are crucial for bone tissue regeneration, the mechanical microenvironment of hard tissues, including bone and teeth, significantly affects the osteogenic differentiation of BMSCs. Biomaterials may mimic the microenvironment of the extracellular matrix and provide mechanical signals to regulate BMSCs differentiation via inducing the secretion of various intracellular factors. Biomaterials direct the differentiation of BMSCs via mechanical signals, including tension, compression, shear, hydrostatic pressure, stiffness, elasticity, and viscoelasticity, which can be transmitted to cells through mechanical signalling pathways. Besides, biomaterials with piezoelectric effects regulate BMSCs differentiation via indirect mechanical signals, such as, electronic signals, which are transformed from mechanical stimuli by piezoelectric biomaterials. Mechanical stimulation facilitates achieving vectored stem cell fate regulation, while understanding the underlying mechanisms remains challenging. Herein, this review summarizes the intracellular factors, including translation factors, epigenetic modifications, and miRNA level, as well as the extracellular factor, including direct and indirect mechanical signals, which regulate the osteogenic differentiation of BMSCs. Besides, this review will also give a comprehensive summary about how mechanical stimuli regulate cellular behaviours, as well as how biomaterials promote the osteogenic differentiation of BMSCs via mechanical microenvironments. The cellular behaviours and activated signal pathways will give more implications for the design of biomaterials with superior properties for bone tissue engineering. Moreover, it will also provide inspiration for the construction of bone organoids which is a useful tool for mimicking in vivo bone tissue microenvironments.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Xiangfei Liu
- Department of Orthopedics, Shanghai Zhongye Hospital, NO. 456 Chunlei Road, Shanghai 200941, PR China.
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, NO.1665 Kongjiang Road, Shanghai 200092, PR China.
| |
Collapse
|
34
|
Bielfeldt M, Budde-Sagert K, Weis N, Buenning M, Staehlke S, Zimmermann J, Arbeiter N, Mobini S, González MU, Rebl H, Uhrmacher A, van Rienen U, Nebe B. Discrimination between the effects of pulsed electrical stimulation and electrochemically conditioned medium on human osteoblasts. J Biol Eng 2023; 17:71. [PMID: 37996914 PMCID: PMC10668359 DOI: 10.1186/s13036-023-00393-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Electrical stimulation is used for enhanced bone fracture healing. Electrochemical processes occur during the electrical stimulation at the electrodes and influence cellular reactions. Our approach aimed to distinguish between electrochemical and electric field effects on osteoblast-like MG-63 cells. We applied 20 Hz biphasic pulses via platinum electrodes for 2 h. The electrical stimulation of the cell culture medium and subsequent application to cells was compared to directly stimulated cells. The electric field distribution was predicted using a digital twin. RESULTS Cyclic voltammetry and electrochemical impedance spectroscopy revealed partial electrolysis at the electrodes, which was confirmed by increased concentrations of hydrogen peroxide in the medium. While both direct stimulation and AC-conditioned medium decreased cell adhesion and spreading, only the direct stimulation enhanced the intracellular calcium ions and reactive oxygen species. CONCLUSION The electrochemical by-product hydrogen peroxide is not the main contributor to the cellular effects of electrical stimulation. However, undesired effects like decreased adhesion are mediated through electrochemical products in stimulated medium. Detailed characterisation and monitoring of the stimulation set up and electrochemical reactions are necessary to find safe electrical stimulation protocols.
Collapse
Affiliation(s)
- Meike Bielfeldt
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany.
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051, Rostock, Germany
- Institute for Visual and Analytic Computing, University of Rostock, 18051, Rostock, Germany
| | - Nikolai Weis
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Maren Buenning
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Susanne Staehlke
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051, Rostock, Germany
| | - Nils Arbeiter
- Institute of General Electrical Engineering, University of Rostock, 18051, Rostock, Germany
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid, Spain
| | - María Ujué González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid, Spain
| | - Henrike Rebl
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Adelinde Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, 18051, Rostock, Germany
- Interdisciplinary Faculty, University of Rostock, 18051, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051, Rostock, Germany
- Interdisciplinary Faculty, University of Rostock, 18051, Rostock, Germany
| | - Barbara Nebe
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
- Interdisciplinary Faculty, University of Rostock, 18051, Rostock, Germany
| |
Collapse
|
35
|
Stafin K, Śliwa P, Piątkowski M. Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique. Int J Mol Sci 2023; 24:16180. [PMID: 38003368 PMCID: PMC10671727 DOI: 10.3390/ijms242216180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The alveolar bone is a unique type of bone, and the goal of bone tissue engineering (BTE) is to develop methods to facilitate its regeneration. Currently, an emerging trend involves the fabrication of polycaprolactone (PCL)-based scaffolds using a three-dimensional (3D) printing technique to enhance an osteoconductive architecture. These scaffolds are further modified with hydroxyapatite (HA), type I collagen (CGI), or chitosan (CS) to impart high osteoinductive potential. In conjunction with cell therapy, these scaffolds may serve as an appealing alternative to bone autografts. This review discusses research gaps in the designing of 3D-printed PCL-based scaffolds from a biomimetic perspective. The article begins with a systematic analysis of biological mineralisation (biomineralisation) and ossification to optimise the scaffold's structural, mechanical, degradation, and surface properties. This scaffold-designing strategy lays the groundwork for developing a research pathway that spans fundamental principles such as molecular dynamics (MD) simulations and fabrication techniques. Ultimately, this paves the way for systematic in vitro and in vivo studies, leading to potential clinical applications.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| |
Collapse
|
36
|
Hu C, Ma L, Gao S, Yang MY, Mu MD, Chang L, Huang P, Ye X, Wang W, Tao X, Zhou BH, Chen W, Tang KL. PPP1R3A inhibits osteogenesis and negatively regulates intracellular calcium levels in calcific tendinopathy. iScience 2023; 26:107784. [PMID: 37876608 PMCID: PMC10590817 DOI: 10.1016/j.isci.2023.107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Calcific tendinopathy (CT) is defined by the progressive accumulation of calcium crystals in tendonic regions that results in severe pain in patients. The etiology of CT is not fully elucidated. In this study, we elucidate the role of PPP1R3A in CT. A significant decrease in PPP1R3A expression was observed in CT patient tissues, which was further confirmed in tissues from a CT-induced rat model. Overexpression of PPP1R3A ex vivo reduced the expression of osteo/chondrogenic markers OCN and Sox9, improved tendon tissue architecture, and reduced intracellular Ca2+ levels. Overexpression of SERCA2 and knockdown of Piezo1 decreased expression of osteo/chondrogenic markers and intracellular calcium in PPP1R3A-knockdown tendon cells. Lastly, PPP1R3A expression was regulated at the posttranscriptional level by binding of HuR. Collectively, the present study indicates that PPP1R3A plays an important role in regulating calcium homeostasis in tendon cells via Piezo1/SERCA2, rendering it a promising target for therapeutic interventions of CT.
Collapse
Affiliation(s)
- Chao Hu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
- Department of Orthopedics, 904 Hospital of PLA, Wuxi 214000 Jiangsu, China
| | - Lin Ma
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Shang Gao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Ming-Yu Yang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Mi-Duo Mu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Le Chang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Pan Huang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xiao Ye
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wei Wang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xu Tao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Bing-Hua Zhou
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wan Chen
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Kang-Lai Tang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| |
Collapse
|
37
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Ren X, Zhuang H, Jiang F, Zhang Y, Zhou P. Barasertib impedes chondrocyte senescence and alleviates osteoarthritis by mitigating the destabilization of heterochromatin induced by AURKB. Biomed Pharmacother 2023; 166:115343. [PMID: 37634474 DOI: 10.1016/j.biopha.2023.115343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage loss that causes disability worldwide. The accumulation of senescent chondrocytes in aging human cartilage contributes to the high incidence of OA. Heterochromatin instability, the hallmark and driving factor of senescence, regulates the expression of the senescence-associated secretory phenotype that induces inflammation and cartilage destruction. However, the role of heterochromatin instability in OA progression remains unclear. In this work, we identified AURKB as a key senescence-associated chromatin regulator using bioinformatics methods. We found that AURKB was upregulated in OA cartilage and chondrocytes exposed to abnormal mechanical strain. Overexpression of AURKB could cause senescence and heterochromatin instability. Furthermore, the AURKB inhibitor Barasertib reversed senescence and heterochromatin instability in chondrocytes and alleviated OA in a rat model. Mechanistically, abnormal mechanical strain increased AURKB levels through the Piezo1/Ca2+ signaling axis. Blocking Piezo1/Ca2+ signaling by short interfering RNA against Piezo1 and Ca2+ chelator BAPTA could reduce the expression of AURKB and alleviate senescence in chondrocytes exposed to abnormal mechanical strain. In conclusion, our data confirmed that abnormal mechanical strain increases the expression of AURKB by activating the Piezo1/Ca2+ signaling axis, leading to destabilized heterochromatin and senescence in chondrocytes, whereas Barasertib consolidates heterochromatin, counteracts senescence and alleviates OA.
Collapse
Affiliation(s)
- Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuze Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
39
|
Komrakova M, Schilling AF, Lehmann W, Vasilev V, Georgieva K, Gerginska F, Boyadjiev N, Delchev S. Selective Androgen Receptor Modulators Combined with Treadmill Exercise Have No Bone Benefit in Healthy Adult Rats. Pharmaceuticals (Basel) 2023; 16:1249. [PMID: 37765057 PMCID: PMC10536500 DOI: 10.3390/ph16091249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The effects of combination treatments using the selective androgen receptor modulators (SARMs) ostarine (OST) or ligandrol (LIG) with treadmill exercise (TE) were studied in healthy adult rats. Fifteen-week-old male Wistar rats were divided into groups (n = 10/group). Experiment 1 consisted of (1) Control group: sedentary rats receiving vehicle; (2) OST: sedentary rats receiving OST; (3) TE: training rats receiving vehicle; (4) OST + TE: training rats receiving OST. Experiment 2 consisted of (1) LIG: sedentary group receiving LIG; (2) LIG + TE: training group receiving LIG. The TE regime was as follows: 25 m/min, 5° elevation, 40 min, five times/week, and the sedentary regime was 5 min, three times/week. OST and LIG were administered subcutaneously (0.4 mg/kg body weight/day, five times/week). After eight weeks, bone samples underwent microcomputed tomographical, biomechanical, histological, and ashing analyses. All the treatments had weak effects on the bone structure without affecting bone biomechanics. The OST + TE improved bone structure, while the LIG + TE had unfavorable effects. In serum, OST, OST + TE, and LIG + TE altered cholesterol and lipoprotein levels; TE did not change the serum parameters. The SARM treatments had no clear bone benefit, and the serum effects can be considered as side effects. TE represents a safe treatment. Because SARMs are increasingly applied in gyms along with physical activities, attention should be paid to possible side effects.
Collapse
Affiliation(s)
- Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Arndt Friedrich Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Veselin Vasilev
- Department of Physiology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Katerina Georgieva
- Department of Physiology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Fanka Gerginska
- Department of Anatomy, Histology and Embryology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Nikolay Boyadjiev
- Department of Physiology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
40
|
Zhang X, Hou L, Guo Z, Wang G, Xu J, Zheng Z, Sun K, Guo F. Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov 2023; 9:320. [PMID: 37644030 PMCID: PMC10465515 DOI: 10.1038/s41420-023-01613-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial and increasingly prevalent degenerative disease that affects the whole joint. The pathogenesis of OA is poorly understood and there is a lack of therapeutic interventions to reverse the pathological process of this disease. Accumulating studies have shown that the overproduction of reactive oxygen species (ROS) and ROS-induced lipid peroxidation are involved in the pathogenesis of OA. 4-Hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) have received considerable attention for their role in cartilage degeneration and subchondral bone remodeling during OA development. Ferroptosis is a form of cell death characterized by a lack of control of membrane lipid peroxidation and recent studies have suggested that chondrocyte ferroptosis contributes to OA progression. In this review, we aim to discuss lipid peroxidation-derived 4-HNE and MDA in the progression of OA. In addition, the therapeutic potential for OA by controlling the accumulation of lipid peroxidation and inhibiting chondrocyte ferroptosis are discussed.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
41
|
Huang Z, Huang Y, Ning X, Li H, Li Q, Wu J. The functional effects of Piezo channels in mesenchymal stem cells. Stem Cell Res Ther 2023; 14:222. [PMID: 37633928 PMCID: PMC10464418 DOI: 10.1186/s13287-023-03452-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely used in cell therapy, tissue engineering, and regenerative medicine because of their self-renewal, pluripotency, and immunomodulatory properties. The microenvironment in which MSCs are located significantly affects their physiological functions. The microenvironment directly or indirectly affects cell behavior through biophysical, biochemical, or other means. Among them, the mechanical signals provided to MSCs by the microenvironment have a particularly pronounced effect on their physiological functions and can affect osteogenic differentiation, chondrogenic differentiation, and senescence in MSCs. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important in transducing mechanical signals, and these channels are widely distributed in sites such as skin, bladder, kidney, lung, sensory neurons, and dorsal root ganglia. Although there have been numerous studies on Piezo channels in MSCs in recent years, the function of Piezo channels in MSCs is still not well understood, and there has been no summary of their relationship to illustrate which physiological functions of MSCs are affected by Piezo channels and the possible underlying mechanisms. Therefore, based on the members, structures, and functions of Piezo ion channels and the fundamental information of MSCs, this paper focused on summarizing the advances in Piezo channels in MSCs from various tissue sources to provide new ideas for future research and practical applications of Piezo channels and MSCs.
Collapse
Affiliation(s)
- Zhilong Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yingying Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiner Ning
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Haodi Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qiqi Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Junjie Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
42
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
43
|
Liu C, Gao X, Lou J, Li H, Chen Y, Chen M, Zhang Y, Hu Z, Chang X, Luo M, Zhai Y, Li C. Aberrant mechanical loading induces annulus fibrosus cells apoptosis in intervertebral disc degeneration via mechanosensitive ion channel Piezo1. Arthritis Res Ther 2023; 25:117. [PMID: 37420255 PMCID: PMC10327399 DOI: 10.1186/s13075-023-03093-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is closely associated with the structural damage in the annulus fibrosus (AF). Aberrant mechanical loading is an important inducement of annulus fibrosus cells (AFCs) apoptosis, which contributes to the AF structural damage and aggravates IVDD, but the underlying mechanism is still unclear. This study aims to investigate the mechanism of a mechanosensitive ion channel protein Piezo1 in aberrant mechanical loading-induced AFCs apoptosis and IVDD. METHODS Rats were subjected to lumbar instability surgery to induce the unbalanced dynamic and static forces to establish the lumbar instability model. MRI and histological staining were used to evaluate the IVDD degree. A cyclic mechanical stretch (CMS)-stimulated AFCs apoptosis model was established by a Flexcell system in vitro. Tunel staining, mitochondrial membrane potential (MMP) detection, and flow cytometry were used to evaluate the apoptosis level. The activation of Piezo1 was detected using western blot and calcium fluorescent probes. Chemical activator Yoda1, chemical inhibitor GSMTx4, and a lentiviral shRNA-Piezo1 system (Lv-Piezo1) were utilized to regulate the function of Piezo1. High-throughput RNA sequencing (RNA-seq) was used to explore the mechanism of Piezo1-induced AFCs apoptosis. The Calpain activity and the activation of Calpain2/Bax/Caspase3 axis were evaluated by the Calpain activity kit and western blot with the siRNA-mediated Calapin1 or Calpain2 knockdown. Intradiscal administration of Lv-Piezo1 was utilized to evaluate the therapeutic effect of Piezo1 silencing in IVDD rats. RESULTS Lumbar instability surgery promoted the expression of Piezo1 in AFCs and stimulated IVDD in rats 4 weeks after surgery. CMS elicited distinct apoptosis of AFCs, with enhanced Piezo1 activation. Yoda1 further promoted CMS-induced apoptosis of AFCs, while GSMTx4 and Lv-Piezo1 exhibited opposite effects. RNA-seq showed that knocking down Piezo1 inhibited the calcium signaling pathway. CMS enhanced Calpain activity and elevated the expression of BAX and cleaved-Caspase3. Calpain2, but not Calpain1 knockdown, inhibited the expression of BAX and cleaved-Caspase3 and alleviated AFCs apoptosis. Lv-Piezo1 significantly alleviated the progress of IVDD in rats after lumbar instability surgery. CONCLUSIONS Aberrant mechanical loading induces AFCs apoptosis to promote IVDD by activating Piezo1 and downstream Calpain2/BAX/Caspase3 pathway. Piezo1 is expected to be a potential therapeutic target in treating IVDD.
Collapse
Affiliation(s)
- Chenhao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Xiaoxin Gao
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Jinhui Lou
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Haiyin Li
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Yuxuan Chen
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
- Center of Traumatic Orthopedics, People's Liberation Army 990 Hospital, Xinyang, 464000, Henan, China
| | - Molong Chen
- Department of Orthopedics/Sports Medicine Center, The First Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
| | - Yuyao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Zhilei Hu
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Menglin Luo
- Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Yu Zhai
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China.
| |
Collapse
|
44
|
Tang Y, Zhao C, Zhuang Y, Zhong A, Wang M, Zhang W, Zhu L. Mechanosensitive Piezo1 protein as a novel regulator in macrophages and macrophage-mediated inflammatory diseases. Front Immunol 2023; 14:1149336. [PMID: 37334369 PMCID: PMC10275567 DOI: 10.3389/fimmu.2023.1149336] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are the most important innate immune cells in humans. They are almost ubiquitous in peripheral tissues with a large variety of different mechanical milieus. Therefore, it is not inconceivable that mechanical stimuli have effects on macrophages. Emerging as key molecular detectors of mechanical stress, the function of Piezo channels in macrophages is becoming attractive. In this review, we addressed the architecture, activation mechanisms, biological functions, and pharmacological regulation of the Piezo1 channel and review the research advancements in functions of Piezo1 channels in macrophages and macrophage-mediated inflammatory diseases as well as the potential mechanisms involved.
Collapse
Affiliation(s)
- Yu Tang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Ying Zhuang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Anjing Zhong
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Wang
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
45
|
Sonkodi B. LF Power of HRV Could Be the Piezo2 Activity Level in Baroreceptors with Some Piezo1 Residual Activity Contribution. Int J Mol Sci 2023; 24:ijms24087038. [PMID: 37108199 PMCID: PMC10138994 DOI: 10.3390/ijms24087038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Heart rate variability is a useful measure for monitoring the autonomic nervous system. Heart rate variability measurements have gained significant demand not only in science, but also in the public due to the fairly low price and wide accessibility of the Internet of things. The scientific debate about one of the measures of heart rate variability, i.e., what low-frequency power is reflecting, has been ongoing for decades. Some schools reason that it represents the sympathetic loading, while an even more compelling reasoning is that it measures how the baroreflex modulates the cardiac autonomic outflow. However, the current opinion manuscript proposes that the discovery of the more precise molecular characteristics of baroreceptors, i.e., that the Piezo2 ion channel containing vagal afferents could invoke the baroreflex, may possibly resolve this debate. It is long known that medium- to high-intensity exercise diminishes low-frequency power to almost undetectable values. Moreover, it is also demonstrated that the stretch- and force-gated Piezo2 ion channels are inactivated in a prolonged hyperexcited state in order to prevent pathological hyperexcitation. Accordingly, the current author suggests that the almost undetectable value of low-frequency power at medium- to high-intensity exercise reflects the inactivation of Piezo2 from vagal afferents in the baroreceptors with some Piezo1 residual activity contribution. Consequently, this opinion paper highlights how low-frequency power of the heart rate variability could represent the activity level of Piezo2 in baroreceptors.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| |
Collapse
|
46
|
The Impact of Plasma Membrane Ion Channels on Bone Remodeling in Response to Mechanical Stress, Oxidative Imbalance, and Acidosis. Antioxidants (Basel) 2023; 12:antiox12030689. [PMID: 36978936 PMCID: PMC10045377 DOI: 10.3390/antiox12030689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical–physical features of the matrix, while others may come from the ‘outer’ environment, as in the case of mechanical loading applied on the bones. In addition to these forces, a plethora of chemical signals drives cell physiology and fate, possibly leading to dysfunctions when the homeostasis is disrupted. This variety of stimuli triggers different responses among the tissues: bones represent a particular milieu in which a fragile balance between mechanical and metabolic demands should be tuned and maintained by the concerted activity of cell biomolecules located at the interface between external and internal environments. Plasma membrane ion channels can be viewed as multifunctional protein machines that act as rapid and selective dual-nature hubs, sensors, and transducers. Here we focus on some multisensory ion channels (belonging to Piezo, TRP, ASIC/EnaC, P2XR, Connexin, and Pannexin families) actually or potentially playing a significant role in bone adaptation to three main stressors, mechanical forces, oxidative stress, and acidosis, through their effects on bone cells including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. Ion channel-mediated bone remodeling occurs in physiological processes, aging, and human diseases such as osteoporosis, cancer, and traumatic events.
Collapse
|
47
|
Li J, Wang X, Li X, Liu D, Zhai L, Wang X, Kang R, Yokota H, Yang L, Zhang P. Mechanical Loading Promotes the Migration of Endogenous Stem Cells and Chondrogenic Differentiation in a Mouse Model of Osteoarthritis. Calcif Tissue Int 2023; 112:363-376. [PMID: 36566445 DOI: 10.1007/s00223-022-01052-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is a major health problem, characterized by progressive cartilage degeneration. Previous works have shown that mechanical loading can alleviate OA symptoms by suppressing catabolic activities. This study evaluated whether mechanical loading can enhance anabolic activities by facilitating the recruitment of stem cells for chondrogenesis. We evaluated cartilage degradation in a mouse model of OA through histology with H&E and safranin O staining. We also evaluated the migration and chondrogenic ability of stem cells using in vitro assays, including immunohistochemistry, immunofluorescence, and Western blot analysis. The result showed that the OA mice that received mechanical loading exhibited resilience to cartilage damage. Compared to the OA group, mechanical loading promoted the expression of Piezo1 and the migration of stem cells was promoted via the SDF-1/CXCR4 axis. Also, the chondrogenic differentiation was enhanced by the upregulation of SOX9, a transcription factor important for chondrogenesis. Collectively, the results revealed that mechanical loading facilitated cartilage repair by promoting the migration and chondrogenic differentiation of endogenous stem cells. This study provided new insights into the loading-driven engagement of endogenous stem cells and the enhancement of anabolic responses for the treatment of OA.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoyu Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xuetong Wang
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Kang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
48
|
Sun Y, Fang Y, Li X, Li J, Liu D, Wei M, Liao Z, Meng Y, Zhai L, Yokota H, Yang L, Yu Y, Zhang P. A static magnetic field enhances the repair of osteoarthritic cartilage by promoting the migration of stem cells and chondrogenesis. J Orthop Translat 2023; 39:43-54. [PMID: 36721767 PMCID: PMC9849874 DOI: 10.1016/j.jot.2022.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 01/08/2023] Open
Abstract
Objective To investigate the therapeutic effects of static magnetic field (SMF) and its regulatory mechanism in the repair of osteoarthritic cartilage. Methods Fourteen-week-old female C57BL/6 mice were randomly divided into the sham operation group and the osteoarthritis (OA) groups with and without SMF application. SMF was applied at 200 mT for two consecutive weeks. Changes in knee cartilage were examined by histomorphometry, and the chondrogenesis and migration of endogenous stem cells were assessed. The expression of SRY-related protein 9 (SOX9), Collagen type II (COL2), matrix metallopeptidase 13 (MMP13), stromal cell-derived factor 1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4), Piezo1 and other genes was evaluated, and the mechanism of SMF's action was tested using the CXCR4 inhibitor, AMD3100, and Piezo1 siRNA. Results SMF significantly decreased the OARSI scores after induction of OA. SMF was beneficial to chondrogenesis by elevating SOX9. In the OA mouse model, an increase in MMP13 with a decrease in COL2 led to the destruction of the cartilage extracellular matrix, which was suppressed by SMF. SMF promoted the migration of cartilage-derived stem/progenitor cells and bone marrow-derived mesenchymal stem cells (MSCs). It increased SDF-1 and CXCR4, while the CXCR4 inhibitor significantly suppressed the beneficial effects of SMF. The application of Piezo1 siRNA inhibited the SMF-induced increase of CXCR4. Conclusion SMF enhanced chondrogenesis and improved cartilage extracellular matrices. It activated the Piezo1-mediated SDF-1/CXCR4 regulatory axis and promoted the migration of endogenous stem cells. Collectively, it attenuated the pathological progression of cartilage destruction in OA mice. The Translational potential of this article The findings in this study provided convincing evidence that SMF could enhance cartilage repair and improve OA symptoms, suggesting that SMF could have clinical value in the treatment of OA.
Collapse
Key Words
- BMSCs, Bone marrow mesenchymal stem cells
- CC, Calcified cartilage
- CD105, Endothelial glycoprotein
- CD146, Melanoma cell adhesion molecule
- CD166, Activated leukocyte adhesion molecule
- COL2, CollagenⅡ
- CSPCs, Cartilage-derived stem/progenitor cells
- CXCR4, C-X-C chemokine receptor type 4
- Chondrogenesis
- HC, Hyaline cartilage
- MMP13, Matrix metallopeptidase 13
- MSCs, Mesenchymal stem cells
- Mesenchymal stem cells
- OA, Osteoarthritis
- OARSI, Osteoarthritis Research Society International
- Osteoarthritis
- Piezo1
- SDF-1, Stromal cell-derived factor 1
- SDF-1/CXCR4
- SMF, Static magnetic field
- SOX9, SRY-related protein 9
- Static magnetic field
- TAC, Total articular cartilage
- mT, Millitesla
Collapse
Affiliation(s)
- Yuting Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd., Huzhou, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Min Wei
- Heye Health Technology Co., Ltd., Huzhou, China
| | | | - Yao Meng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN, USA
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, China,Corresponding author. Department of Anatomy and Histology School of Basic Medical Sciences Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
49
|
Ulbricht C, Cao Y, Niesner RA, Hauser AE. In good times and in bad: How plasma cells resolve stress for a life-long union with the bone marrow. Front Immunol 2023; 14:1112922. [PMID: 37033993 PMCID: PMC10080396 DOI: 10.3389/fimmu.2023.1112922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Yu Cao
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Raluca A. Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- *Correspondence: Anja E. Hauser,
| |
Collapse
|
50
|
Komka Z, Szilágyi B, Molnár D, Sipos B, Tóth M, Sonkodi B, Ács P, Elek J, Szász M. Exercise-related hemoconcentration and hemodilution in hydrated and dehydrated athletes: An observational study of the Hungarian canoeists. PLoS One 2022; 17:e0277978. [PMID: 36584041 PMCID: PMC9803156 DOI: 10.1371/journal.pone.0277978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 11/08/2022] [Indexed: 12/31/2022] Open
Abstract
Hemoconcentration during exercise is a well-known phenomenon, however, the extent to which dehydration is involved is unclear. In our study, the effect of dehydration on exercise-induced hemoconcentration was examined in 12 elite Hungarian kayak-canoe athletes. The changes of blood markers were examined during acute maximal workload in hydrated and dehydrated states. Dehydration was achieved by exercise, during a 120-minute extensive-aerobic preload. Our research is one of the first studies in which the changes in blood components were examined with a higher time resolution and a wider range of the measured parameters. Hydration status had no effect on the dynamics of hemoconcentration during both the hydrated (HS) and dehydrated (DHS) load, although lower maximal power output were measured after the 120-minute preload [HS Hemoglobin(Hgb)Max median 17.4 (q1 17.03; q3 17.9) g/dl vs. DHS HgbMax median 16.9 (q1 16.43; q3 17.6) g/dl (n.s); HS Hematocrit(Hct)Max 53.50 (q1 52.28; q3 54.8) % vs. DHS HctMax 51.90 (q1 50.35; q3 53.93) % (n.s)]. Thirty minutes after the maximal loading, complete hemodilution was confirmed in both exercises. Dehydration had no effect on hemoconcentration or hemodilution in the recovery period [HS HgbR30' 15.7 (q1 15.15; q3 16.05) g/dl (n.s.) vs. DHS HgbR30' 15.75 (q1 15.48; q3 16.13) g/dl (n.s.), HS HctR30' 48.15 (q1 46.5; q3 49.2) % vs. DHS HctR30' 48.25 (q1 47.48; q3 49.45) % (n.s.)], however, plasma osmolality did not follow a corresponding decrease in hemoglobin and hematocrit in the dehydrated group. Based on our data, metabolic products (glucose, lactate, sodium, potassium, chloride, bicarbonate ion, blood urea nitrogen) induced osmolality may not play a major role in the regulation of hemoconcentration and post-exercise hemodilution. From our results, we can conclude that hemoconcentration depends mainly on the intensity of the exercise.
Collapse
Affiliation(s)
- Zsolt Komka
- Department of Health Sciences and Sports Medicine, Hungarian University of Sports Science, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hungarian Canoe Federation, Budapest, Hungary
- * E-mail:
| | - Brigitta Szilágyi
- Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Mathematics and Statistical Modelling, Corvinus University of Budapest, Budapest, Hungary
| | - Dóra Molnár
- Hungarian Canoe Federation, Budapest, Hungary
| | - Bence Sipos
- Faculty of Natural Sciences Department of Geometry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Miklós Tóth
- Department of Health Sciences and Sports Medicine, Hungarian University of Sports Science, Budapest, Hungary
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Szentágothai Research Center, Pécs, Hungary
| | - Balázs Sonkodi
- Department of Health Sciences and Sports Medicine, Hungarian University of Sports Science, Budapest, Hungary
| | - Pongrác Ács
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Szentágothai Research Center, Pécs, Hungary
| | - János Elek
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|