1
|
Rimkunas A, Januskevicius A, Vasyle E, Palacionyte J, Kalinauskaite-Zukauske V, Miliauskas S, Malakauskas K. The Effect of Mepolizumab on Blood Eosinophil Subtype Distribution and Granule Protein Gene Expression in Severe Eosinophilic Asthma. J Asthma Allergy 2025; 18:455-466. [PMID: 40177298 PMCID: PMC11963823 DOI: 10.2147/jaa.s509001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
Purpose Mepolizumab, which causes a decrease in the number of blood eosinophils, is used to treat patients with severe eosinophilic asthma (SEA). However, there is a relative lack of data on dynamic changes in blood eosinophil subtype distribution and their granule protein expression following anti-interleukin (IL)-5 treatment. Our objective was to evaluate blood inflammatory-like (iEOS-like) and resident-like (rEOS-like) eosinophil subtype distribution and CLC, EDN, EPX, ECP, and MBP gene expression following up to 24 weeks of treatment with mepolizumab in SEA patients. Patients and Methods Ten free of oral steroids SEA patients and 9 healthy control subjects (HS) were included. Patients were treated with mepolizumab 100 mg subcutaneously/4 weeks, and investigation tests were performed at 0, 4, 12, and 24 weeks. Blood eosinophils were isolated by Ficoll centrifugation and magnetic separation, then subtyped using magnetic separation against CD62L. Gene expression investigation was done using quantitative real time-polymerase chain reaction analysis. Results Approximately three-quarters of isolated blood eosinophils were iEOS-like cells before mepolizumab treatment, p<0.01. Blood eosinophil granule protein gene expression was increased in SEA patients compared to the HS, p<0.05, and iEOS-like cells EPX, MBP, and CLC gene expressions were higher than rEOS-like cells, p<0.05. Following 4, 12, and 24 weeks of treatment with mepolizumab, residual blood eosinophils shifted towards rEOS-like cells, p<0.05, and CLC, EPX, ECP, and MBP gene expression of both eosinophil subtypes decreased to HS levels. Conclusion Treating SEA patients with mepolizumab shifts blood eosinophil subtype distribution towards rEOS-like cells and reduces granule protein gene expression levels to those of healthy individuals.
Collapse
Affiliation(s)
- Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Vasyle
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Skaidrius Miliauskas
- Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
2
|
Abd-Elkareem M, Alnasser SM, Meshal A, Kotob MH, Amer AS, Abdullah RI, Ali AU. The effect of norethisterone acetate on the uterine telocytes, immune cells and progesterone receptors in albino rats. Sci Rep 2025; 15:8997. [PMID: 40089502 PMCID: PMC11910565 DOI: 10.1038/s41598-025-92354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
This study is the first attempt to examine the effects of NETA on immune cells and telocytes. The results of this study form an important knowledge base for the development of new information on the mechanism of contraceptive action of NETA in the uterus. Norethisterone acetate (NETA) is a synthetic progestogen medication commonly utilized in birth control pills, menopausal hormone therapy, and for curing abnormal uterine bleeding and endometriosis. Furthermore NETA has many beneficial uses in veterinary medicine as control and synchronization of estrous cycle. The impact of NETA on the endometrial stromal cells (ESCs), telocytes, and uterine immune cells is not well understood. Therefore, this study focuses on assessing changes in uterine immune cells, ESCs, and telocytes following exposure to NETA in albino rats. To achieve this objective, fourteen adult female albino rats were randomly divided into two groups: a control group and an NETA-treated group. Rats in the control group received daily pelleted food, water, and were oral administered of 2 ml distilled water. In contrast, rats in the NETA-treated group received daily pelleted food, water, and were orally administered 20 µg of NETA dissolved in 2 ml distilled water. The experiment spanned three weeks. The findings of this study revealed that NETA usage increases the infiltration and activity of immune cells (eosinophils, neutrophils, macrophages, lymphocytes, and mast cells). Furthermore, it enhances the vesicular activity of uterine telocytes and their communication with various immune cells. NETA also influences decidualization and the immunoexpression of progesterone receptors in uterine epithelial and immune cells. This study concludes that the primary mechanism by which NETA controls pregnancy is through decidual (pregnancy-like) effects or improper decidualization, which inhibits fertilization and implantation respectively. Our research provides evidence of the contraceptive mechanism of NETA from an immunological perspective in an animal model.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Alotaibi Meshal
- Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafr Albatin,, Saudi Arabia
| | - Mohamed H Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090, Vienna, Austria
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ayman S Amer
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Raghda Ismail Abdullah
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Ahmed U Ali
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Carrasco-Díaz LM, Gallardo A, Voltà-Durán E, Virgili AC, Páez D, Villaverde A, Vazquez E, Álamo P, Unzueta U, Casanova I, Mangues R, Alba-Castellon L. A Targeted Nanotoxin Inhibits Colorectal Cancer Growth Through Local Tumor Pyroptosis and Eosinophil Infiltration and Degranulation. Int J Nanomedicine 2025; 20:2445-2460. [PMID: 40034221 PMCID: PMC11873025 DOI: 10.2147/ijn.s499192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025] Open
Abstract
Background Colorectal cancer (CRC) has traditionally been treated with genotoxic chemotherapy to activate pro-apoptotic proteins to induce anticancer effects. However, cancer cells develop resistance to apoptosis, which leads to recurrence and poor prognosis. Moreover, this kind of therapy has been shown to be highly toxic to healthy tissues and, therefore, to patients. To overcome this issue, we developed a self-assembly tumor-targeted nanoparticle, T22-DITOX-H6, that incorporates the T22 peptide (a CXCR4 ligand) to selectively target cells overexpressing CXCR4, fused to the catalytic domain of diphtheria toxin, that exhibits a potent cytotoxic effect on these CXCR4+ cancer cells that exhibits potent cytotoxic effects on CXCR4-overexpressing cancer cells through the activation of pyroptosis, an immunogenic type of cell death. Methods Colorectal CXCR4-expressing tumor cells (CT26-CXCR4+) were implanted subcutaneously into immunocompetent mice to study the effects of T22-DITOX-H6 treatment on tumor growth, cell death and innate immune cell recruitment to the tumor. Results Here, we demonstrated that the T22-DITOX-H6 nanoparticle selectively activated pyroptosis, an immunogenic cell death that differs from apoptosis, leading to cell death in CXCR4-expressing cells, without affecting the viability of CXCR4-lacking cells. In addition, the nanoparticle administered to tumor-bearing mice induced a local antitumor effect due to the selective activation of pyroptosis in CXCR4+ targeted cancer cells. Biochemical analysis of plasma and histological analysis of non-tumor tissues revealed no differences between the groups. Remarkably, pyroptosis activation stimulates eosinophil infiltration into the tumor microenvironment, an effect recently reported to have an anti-tumorigenic function. Conclusion These results highlight the dual role of CXCR4-targeted cytotoxic nanoparticle in eliminating cancer cells and boosting the self-immune response without compromising healthy organs.
Collapse
Affiliation(s)
- Luis Miguel Carrasco-Díaz
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Eric Voltà-Durán
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna C Virgili
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Department of Medical Oncology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - David Páez
- Department of Medical Oncology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patricia Álamo
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Ugutz Unzueta
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Isolda Casanova
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Ramon Mangues
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Lorena Alba-Castellon
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
4
|
Lefèvre G, Gibier JB, Bongiovanni A, Lhermitte L, Rossignol J, Anglo E, Dendooven A, Dubois R, Terriou L, Launay D, Barete S, Esnault S, Frenzel L, Gourguechon C, Ballul T, Dezoteux F, Staumont-Salle D, Copin MC, Rignault-Bricard R, Maciel TT, Damaj G, Tardivel M, Crinquette-Verhasselt M, Dubreuil P, Maouche-Chrétien L, Bruneau J, Lortholary O, Duployez N, Behal H, Molina TJ, Hermine O. Interactions between eosinophils and IL-5Rα-positive mast cells in nonadvanced systemic mastocytosis. J Allergy Clin Immunol 2024; 154:1523-1533. [PMID: 39151478 DOI: 10.1016/j.jaci.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Bidirectional interactions between eosinophils and mast cells (MCs) have been reported in various allergic diseases. Bone marrow (BM) eosinophilia, and to a lesser extent blood eosinophilia, is common in systemic mastocytosis (SM), but its significance remains unknown. OBJECTIVE We described blood and BM eosinophil characteristics in SM. METHODS A large collection of BM biopsy samples was analyzed using immunohistochemical staining and whole-slide imaging. Eosinophil and extracellular granules were detected by eosinophil peroxidase (EPX) staining and MCs by KIT staining. Complementary analyses were conducted using flow cytometry and immunofluorescence. RESULTS Eosinophil infiltrates and large areas of eosinophil degranulation were observed within or around BM MC infiltrates in SM. EPX staining surface, highlighting intact eosinophils and eosinophil degranulation, was higher in nonadvanced SM (n = 37 BM biopsy samples) compared with both controls (n = 8, P = .0003) and advanced SM (n = 24, P = .014). In nonadvanced SM, positive correlations were observed between serum tryptase levels and percentages of eosinophil counts in BM aspirations (Spearman r coefficient r = 0.38, P = .038), eosinophils count in BM biopsy samples (r = 0.45, P = .007), EPX staining (r = 0.37, P = .035), and eosinophil degranulation (r = 0.39, P = .023). Eosinophil counts in BM biopsy samples also correlated with MC counts (r = 0.47, P = .006) and KIT staining surface (r = 0.49, P = .003). BM MCs expressed IL-5 receptor and other usual eosinophil cytokine/chemokine receptors, and blood eosinophils displayed several increased surface markers compared with controls, suggesting an activated state. CONCLUSION Our data suggest possible cross talk between MCs and eosinophils, supporting MC tryptase release and MC activation-related symptoms. This suggests a rationale for targeting eosinophils in nonadvanced SM not fully controlled by other therapies.
Collapse
Affiliation(s)
- Guillaume Lefèvre
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Lille, and Institute for Translational Research in Inflammation (INFINITE), Lille, France; Institut d'Immunologie, CHU Lille, Lille, France; National Reference Center for Hypereosinophilic Syndromes (CEREO).
| | - Jean-Baptiste Gibier
- University of Lille, Institut de Pathologie, Centre de Biopathologie, CHU Lille, Lille, France
| | - Antonino Bongiovanni
- Centre National de la Recherche Scientifique (CNRS), INSERM, CHU Lille, University of Lille, Institut Pasteur de Lille, Lille, France
| | - Ludovic Lhermitte
- Laboratoire d'Onco-Hématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; University of Paris, Institut Imagine, INSERM, Paris, France; French Reference Center for Mastocytosis (CEREMAST), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Julien Rossignol
- University of Paris, Institut Imagine, INSERM, Paris, France; French Reference Center for Mastocytosis (CEREMAST), Hôpital Necker-Enfants Malades, AP-HP, Paris, France; Department of Hematology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Emilie Anglo
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Lille, and Institute for Translational Research in Inflammation (INFINITE), Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - Arnaud Dendooven
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Lille, and Institute for Translational Research in Inflammation (INFINITE), Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - Romain Dubois
- University of Lille, Institut de Pathologie, Centre de Biopathologie, CHU Lille, Lille, France
| | - Louis Terriou
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Lille, and Institute for Translational Research in Inflammation (INFINITE), Lille, France; National Reference Center for Hypereosinophilic Syndromes (CEREO); Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France
| | - David Launay
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Lille, and Institute for Translational Research in Inflammation (INFINITE), Lille, France; National Reference Center for Hypereosinophilic Syndromes (CEREO); Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France
| | - Stéphane Barete
- CEREMAST, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Unit de Dermatologie, Sorbonne Université Paris, Paris, France
| | - Stéphane Esnault
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Lille, and Institute for Translational Research in Inflammation (INFINITE), Lille, France; Institut d'Immunologie, CHU Lille, Lille, France; Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis
| | - Laurent Frenzel
- University of Paris, Institut Imagine, INSERM, Paris, France; French Reference Center for Mastocytosis (CEREMAST), Hôpital Necker-Enfants Malades, AP-HP, Paris, France; Department of Hematology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Thomas Ballul
- University of Paris, Institut Imagine, INSERM, Paris, France; French Reference Center for Mastocytosis (CEREMAST), Hôpital Necker-Enfants Malades, AP-HP, Paris, France; Department of Hematology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Frédéric Dezoteux
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Lille, and Institute for Translational Research in Inflammation (INFINITE), Lille, France; National Reference Center for Hypereosinophilic Syndromes (CEREO); Department of Dermatology, CHU Lille, Lille, France
| | - Delphine Staumont-Salle
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Lille, and Institute for Translational Research in Inflammation (INFINITE), Lille, France; National Reference Center for Hypereosinophilic Syndromes (CEREO); Department of Dermatology, CHU Lille, Lille, France
| | - Marie-Christine Copin
- Department of Pathology, CHU Angers, University of Angers, INSERM, CNRS, CRCI(2)NA, Angers, France
| | | | | | - Gandhi Damaj
- Institut d'Hématologie, University of Caen Normandie, Caen, France
| | - Meryem Tardivel
- Centre National de la Recherche Scientifique (CNRS), INSERM, CHU Lille, University of Lille, Institut Pasteur de Lille, Lille, France
| | | | - Patrice Dubreuil
- Signaling, Hematopoiesis, and Mechanism of Oncogenesis (CRCM), CEREMAST, and Association Française pour les Initiatives de Recherche sur le Mastocyte et les Mastocytose (AFIRMM) studies, INSERM U1068; Institut Paoli-Calmettes; UM105, Aix-Marseille University; and CNRS, UMR7258, Marseille, France
| | | | - Julie Bruneau
- University of Paris, Institut Imagine, INSERM, Paris, France; French Reference Center for Mastocytosis (CEREMAST), Hôpital Necker-Enfants Malades, AP-HP, Paris, France; Department of Pathology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Olivier Lortholary
- University of Paris, Institut Imagine, INSERM, Paris, France; French Reference Center for Mastocytosis (CEREMAST), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Nicolas Duployez
- CNRS, INSERM, CHU Lille, Cancer Heterogeneity, Plasticity, and Resistance to Therapies (CANTHER), University of Lille, Institut d'Hématologie, CHU Lille, Lille, France
| | - Hélène Behal
- University of Lille, CHU Lille, Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), Lille, France
| | - Thierry Jo Molina
- University of Paris, Institut Imagine, INSERM, Paris, France; Signaling, Hematopoiesis, and Mechanism of Oncogenesis (CRCM), CEREMAST, and Association Française pour les Initiatives de Recherche sur le Mastocyte et les Mastocytose (AFIRMM) studies, INSERM U1068; Institut Paoli-Calmettes; UM105, Aix-Marseille University; and CNRS, UMR7258, Marseille, France
| | - Olivier Hermine
- University of Paris, Institut Imagine, INSERM, Paris, France; French Reference Center for Mastocytosis (CEREMAST), Hôpital Necker-Enfants Malades, AP-HP, Paris, France; Department of Hematology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.
| |
Collapse
|
5
|
Liao Y, Li M, Song S, Xu X, Xiao X, Liu Y, Yang G, Yang P. The Immunosuppressive Functions of Eosinophils Are Compromised in Patients With Allergic Rhinitis, Particularly Concerning Rab27a Expression. Immun Inflamm Dis 2024; 12:e70091. [PMID: 39679991 PMCID: PMC11648009 DOI: 10.1002/iid3.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Eosinophils have been acknowledged to be involved in the induction of numerous inflammatory disorders. There is still a lack of knowledge about whether eosinophils play a role in immune regulation. The aim of this study is to uncover the immune regulatory functions of eosinophils. METHODS Blood samples were collected from patients with allergic rhinitis (AR) and healthy control subjects. Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples. Eosinophils were purified from PBMCs using flow cytometry cell sorting and analyzed using immunological approaches. RESULTS The results showed that eosinophils from healthy subjects had immune regulatory functions on T cell proliferation and cytokine release. Impairment of eosinophil immune regulatory functions was found in AR patients, which was associated with AR responses. Elevated Rab27a expression in eosinophils was associated with their impaired immune regulatory functions and the increased AR responses. Rab27a controlled the release of mediators from eosinophils. Low concentrations of Eosinophil mediators could trigger immune regulatory responses, while high concentrations could trigger inflammatory responses. Regulating Rab27a restored the immune regulatory functions of eosinophils of AR patients. CONCLUSIONS Eosinophils have immune regulatory functions, which are controlled by the expression of Rab27a. Regulation of Rab27a can improve the immune regulatory functions of eosinophils. The data suggest that inhibition of Rab27a can be a drug candidate for the treatment of eosinophil-related disorders.
Collapse
Grants
- This study was supported by the National Natural Science Foundation of China (32090052, 82371122, 82405301), Shenzhen Key Medical Discipline Construction Fund (SZXK062), Shenzhen Longgang Scientific & Technological Funds (LGKCYWS2020002), Shenzhen Science, Technology, and Innovation Committee (KQTD20170331145453160), China Postdoctoral Science Foundation (2023M740837, 2024M750659), and Shenzhen Medical Research Fund (A2403058).
Collapse
Affiliation(s)
- Yun Liao
- Department of OtolaryngologyLonggang Central HospitalShenzhenChina
| | - Minyao Li
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Shuo Song
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Xuejie Xu
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Shenzhen Key Laboratory of Allergy & ImmunologyShenzhenChina
| | - Xiaojun Xiao
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Shenzhen Key Laboratory of Allergy & ImmunologyShenzhenChina
| | - Yu Liu
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Gui Yang
- Department of OtolaryngologyLonggang Central HospitalShenzhenChina
| | - Pingchang Yang
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| |
Collapse
|
6
|
Fettrelet T, Hosseini A, Wyss J, Boros-Majewska J, Stojkov D, Yousefi S, Simon HU. Evidence for a Role of the Long Non-Coding RNA ITGB2-AS1 in Eosinophil Differentiation and Functions. Cells 2024; 13:1936. [PMID: 39682685 PMCID: PMC11640120 DOI: 10.3390/cells13231936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Eosinophils, a type of granulocyte derived from myeloid precursors in the bone marrow, are distinguished by their cytoplasmic granules. They play crucial roles in immunoregulation, tissue homeostasis, and host defense, while also contributing to the pathogenesis of various inflammatory diseases. Although long non-coding RNAs (lncRNAs) are known to be involved in eosinophilic conditions, their specific expression and functions within eosinophils have not been thoroughly investigated, largely due to the reliance on tissue homogenates. In an effort to address this gap, we analyzed publicly available high-throughput RNA sequencing data to identify lncRNAs associated with eosinophilic conditions. Among the identified lncRNAs, ITGB2 antisense RNA 1 (ITGB2-AS1) was significantly downregulated in blood eosinophils from patients with hypereosinophilia. To further explore its role in eosinophil biology, we generated a stable ITGB2-AS1 knockdown in the HL-60 cell line. Interestingly, ITGB2-AS1 deficiency led to impaired eosinophil differentiation, as evidenced by a reduction in cytoplasmic granules and decreased expression of key eosinophil granule proteins, including eosinophil peroxidase (EPX) and major basic protein-1 (MBP-1). Additionally, ITGB2-AS1-deficient cells exhibited compromised eosinophil effector functions, with reduced degranulation and impaired production of reactive oxygen species (ROS). These findings suggest that ITGB2-AS1 plays a pivotal role in eosinophil differentiation and function, positioning it as a novel regulator in eosinophil biology.
Collapse
Affiliation(s)
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Jacqueline Wyss
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | | | - Darko Stojkov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| |
Collapse
|
7
|
Li K, Jin J, Yang Y, Luo X, Wang Y, Xu A, Hao K, Wang Z. Application of Nanoparticles for Immunotherapy of Allergic Rhinitis. Int J Nanomedicine 2024; 19:12015-12037. [PMID: 39583318 PMCID: PMC11584337 DOI: 10.2147/ijn.s484327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Allergen Immunotherapy (AIT) is the only etiological therapeutic method available for allergic rhinitis (AR). Currently, several options for AIT in the market, such as subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT), have different routes of administration. These traditional methods have achieved encouraging outcomes in clinic. However, the side effects associated with these methods have raised the need for innovative approaches for AIT that improve safety, shorten the course of treatment and increase local drug concentration. Nanoparticles (NPs) are particles ranging in size from 1 to 100 nm, which have been hired as potential adjuvants for AIT. NPs can be employed as agents for modulating immune responses in AR or/and carriers for loading proteins, peptides or DNA molecules. This review focuses on different kinds of nanoparticle delivery systems, including chitosan nanoparticles, exosomes, metal nanoparticles, and viral nanoparticles. We summarized the advantages and limitations of NPs for the treatment of allergic rhinitis. Overall, NPs are expected to be a therapeutic option for AR, which requires more in-depth studies and long-term therapeutic validation.
Collapse
Affiliation(s)
- Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yimin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xuling Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yaling Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Aibo Xu
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Ke Hao
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| |
Collapse
|
8
|
Ciesielski W, Kupryś-Lipińska I, Kumor-Kisielewska A, Grząsiak O, Borodacz J, Niedźwiecki S, Hogendorf P, Durczyński A, Strzelczyk J, Majos A. Peripheral Eosinophil Count May Be the Prognostic Factor for Overall Survival in Patients with Pancreatic Ductal Adenocarcinoma Undergoing Surgical Treatment. Biomedicines 2024; 12:2596. [PMID: 39595162 PMCID: PMC11591827 DOI: 10.3390/biomedicines12112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: The importance of total eosinophil count in peripheral blood (EOS) as a type 2 inflammation marker is known to be fundamental in asthma, chronic sinusitis, and vasculitis. In cancer, despite their questionable antiproliferative effect, their role remains unclear. Our purpose was to describe the relationship between baseline blood EOS and overall survival (OS) in pancreatic ductal adenocarcinoma (PDAC) patients. (2) Methods: We retrospectively analyzed data from 137 adult patients who underwent surgical treatment for pancreatic ductal adenocarcinoma (PDAC) between the years 2012 and 2019. Patients with no recent history of systemic steroid use and without intraoperative metastases were included. Patients were categorized into two groups based on EOS (≥0.1 G/l and <0.1 G/l). Survival outcomes were analyzed using Cox proportional hazards regression models. (3) Results: According to EOS and PDAC stage, median OS values were as follows: in stage I-III, EOS ≥ 0.1 G/l group: 14.5 months, in stage I-III, EOS < 0.1 G/l group: 8.0 months, in stage IV, EOS ≥ 0.1 G/l group: 7.0 months, and in stage IV, EOS < 0.1 G/l group: 5.0 months. EOS < 0.1 G/l (vs. ≥0.1 G/l) was an independent prognostic factor for OS in both the uni- and multivariate Cox regression, respectively (HR = 1.48, p = 0.035 and HR = 1.57, p = 0.021). (4) Conclusions: Peripheral eosinophilia seems to be a potential independent prognostic factor. Further studies are necessary to confirm this hypothesis, since our findings suggest that type 2 inflammation may be the factor directly or indirectly lengthening the survival of patients with PDAC.
Collapse
Affiliation(s)
- Wojciech Ciesielski
- General and Transplant Surgery Department, Medical University of Łódź, 90-419 Łódź, Poland; (W.C.); (O.G.); (P.H.); (A.D.); (J.S.)
| | - Izabela Kupryś-Lipińska
- Internal Medicine, Asthma and Allergy Department, Medical University of Łódź, 90-419 Łódź, Poland;
| | | | - Oliwia Grząsiak
- General and Transplant Surgery Department, Medical University of Łódź, 90-419 Łódź, Poland; (W.C.); (O.G.); (P.H.); (A.D.); (J.S.)
| | - Julia Borodacz
- Students’ Scientific Association in General and Transplant Surgery Department, Medical University of Łódź, 90-419 Łódź, Poland;
| | | | - Piotr Hogendorf
- General and Transplant Surgery Department, Medical University of Łódź, 90-419 Łódź, Poland; (W.C.); (O.G.); (P.H.); (A.D.); (J.S.)
| | - Adam Durczyński
- General and Transplant Surgery Department, Medical University of Łódź, 90-419 Łódź, Poland; (W.C.); (O.G.); (P.H.); (A.D.); (J.S.)
| | - Janusz Strzelczyk
- General and Transplant Surgery Department, Medical University of Łódź, 90-419 Łódź, Poland; (W.C.); (O.G.); (P.H.); (A.D.); (J.S.)
| | - Alicja Majos
- General and Transplant Surgery Department, Medical University of Łódź, 90-419 Łódź, Poland; (W.C.); (O.G.); (P.H.); (A.D.); (J.S.)
| |
Collapse
|
9
|
Elizabeth E, Rohmawaty E, Bashari MH. The Effects of Turmeric and Mangosteen Pericarp Ethanol Extract on Eosinophil Count, TNF-α and TGF-β1 Gene Expression in Asthmatic Rat Model. J Exp Pharmacol 2024; 16:397-411. [PMID: 39502830 PMCID: PMC11537174 DOI: 10.2147/jep.s471113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Background Asthma is a chronic respiratory disease that is characterized by inflammation, bronchial hyperreactivity, and airway remodeling. The long-term use of corticosteroids at high doses causes various side effects. Traditional herbal medicine has been suggested as an alternative therapy that is safe and effective in dealing with asthma. Natural plants such as turmeric and mangosteen are known to treat asthma and reduce inflammation. Objective The purpose of this study was to investigate the effects of turmeric and mangosteen pericarp ethanol extracts on the eosinophil counts, TNF-α and TGF-β1 gene expression, and inflammatory cell counts in the histopathology of an asthmatic rat model. Methods The preliminary study used 30 rats, which were divided into a normal group, negative control group (OVA-sensitized), turmeric normal group, mangosteen group, and positive control group. Blood samples were collected after the sensitization period to determine eosinophil counts. TNF-α and TGF-β1 gene expression, and histopathology were observed in the rat's lungs. The follow-up study used 30 rats divided into a normal group, negative control group (OVA-sensitized), combination of turmeric and mangosteen group (54m/200gr rats, 36mg/200gr rats, and 36mg/200gr rats), and positive control group. The examination procedures were the same as in the preliminary study. Results The administration of single ethanol extracts of turmeric and mangosteen significantly decreased eosinophils and improved the histopathological features of the lungs (inflammatory cell counts, bronchial inflammatory score, and bronchial smooth muscle thickness) (p<0.05). The combination of turmeric and mangosteen extracts at all doses significantly decreased eosinophils and improved the histopathological features of the lungs (inflammatory cell counts, bronchial inflammatory score, and bronchial smooth muscle thickness) (p<0.05). Both the single and combined administration of turmeric and mangosteen ethanol extracts did not cause significant changes in TNF-alpha and TGF-beta (p>0.05). Conclusion Turmeric ethanol extract and mangosteen pericarp ethanol extract have a reductional effect on the parameters of asthma based on the eosinophil counts, the inflammatory cell counts and score, and bronchial smooth muscle thickness.
Collapse
Affiliation(s)
- Elizabeth Elizabeth
- Postgraduate Program of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, Indonesia
- Department of Pharmacology, Faculty of Medicine, Universitas Kristen Maranatha, West Java, Indonesia
| | - Enny Rohmawaty
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, Indonesia
| |
Collapse
|
10
|
Yang JE, Mitchell JM, Bingman CA, Mosher DF, Wright ER. In situ crystalline structure of the human eosinophil major basic protein-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617336. [PMID: 39416224 PMCID: PMC11483036 DOI: 10.1101/2024.10.09.617336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Eosinophils are white blood cells that participate in innate immune responses and have an essential role in the pathogenesis of inflammatory and neoplastic disorders. Upon activation, eosinophils release cytotoxic proteins such as major basic protein-1 (MBP-1) from cytoplasmic secretory granules (SGr) wherein MBP-1 is stored as nanocrystals. How the MBP-1 nanocrystalline core is formed, stabilized, and subsequently mobilized remains unknown. Here, we report the in-situ structure of crystalline MBP-1 within SGrs of human eosinophils. The structure reveals a mechanism for intragranular crystal packing and stabilization of MBP-1 via a structurally conserved loop region that is associated with calcium-dependent carbohydrate binding in other C-type lectin (CTL) proteins. Single-cell and single-SGr profiling correlating real-space three-dimensional information from cellular montage cryo-electron tomography (cryo-ET) and microcrystal electron diffraction (MicroED) data obtained from non-activated and IL33-activated eosinophils revealed activation-dependent crystal expansion and extrusion of expanded crystals from SGr. These results suggest that MBP-1 crystals play a dynamic role in the release of SGr contents. Collectively, this research demonstrates the importance of in-situ macromolecular structure determination.
Collapse
Affiliation(s)
- Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI USA
| | - Joshua M Mitchell
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Collaborative Crystallography Core, University of Wisconsin, Madison, WI USA
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Morgridge Institute for Research, Madison, WI, USA
| |
Collapse
|
11
|
Kaminska P, Tempes A, Scholz E, Malik AR. Cytokines on the way to secretion. Cytokine Growth Factor Rev 2024; 79:52-65. [PMID: 39227243 DOI: 10.1016/j.cytogfr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
The activation of immune cells by pro-inflammatory or immunosuppressive stimuli is followed by the secretion of immunoregulatory cytokines which serve as messengers to activate the immune response in target cells. Although the mechanisms that control the secretion of cytokines by immune cells are not yet fully understood, several key aspects of this process have recently emerged. This review focuses on cytokine release via exocytosis and highlights the routes of cytokine trafficking leading to constitutive and regulated secretion as well as the impact of sorting receptors on this process. We discuss the involvement of cytoskeletal rearrangements in vesicular transport, secretion, and formation of immunological synapses. Finally, we describe the non-classical pathways of cytokine release that are independent of vesicular ER-Golgi transport. Instead, these pathways are based on processing by inflammasome or autophagic mechanisms. Ultimately, understanding the molecular mechanisms behind cytokine release may help to identify potential therapeutic targets in diseases associated with altered immune responses.
Collapse
Affiliation(s)
- Paulina Kaminska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, Warsaw 02-093, Poland
| | - Aleksandra Tempes
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Ela Scholz
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Anna R Malik
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.
| |
Collapse
|
12
|
Parrish KM, Gestal MC. Eosinophils as drivers of bacterial immunomodulation and persistence. Infect Immun 2024; 92:e0017524. [PMID: 39007622 PMCID: PMC11385729 DOI: 10.1128/iai.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Traditionally, eosinophils have been linked to parasitic infections and pathological disease states. However, emerging literature has unveiled a more nuanced and intricate role for these cells, demonstrating their key functions in maintaining mucosal homeostasis. Eosinophils exhibit diverse phenotypes and exert multifaceted effects during infections, ranging from promoting pathogen persistence to triggering allergic reactions. Our investigations primarily focus on Bordetella spp., with particular emphasis on Bordetella bronchiseptica, a natural murine pathogen that induces diseases in mice akin to pertussis in humans. Recent findings from our published work have unveiled a striking interaction between B. bronchiseptica and eosinophils, facilitated by the btrS-mediated mechanism. This interaction serves to enhance pathogen persistence while concurrently delaying adaptive immune responses. Notably, this role of eosinophils is only noted in the absence of a functional btrS signaling pathway, indicating that wild-type B. bronchiseptica, and possibly other Bordetella spp., possess such adeptness in manipulating eosinophils that the true function of these cells remains obscured during infection. In this review, we present the mounting evidence pointing toward eosinophils as targets of bacterial exploitation, facilitating pathogen persistence and fostering chronic infections in diverse mucosal sites, including the lungs, gut, and skin. We underscore the pivotal role of the master regulator of Bordetella pathogenesis, the sigma factor BtrS, in orchestrating eosinophil-dependent immunomodulation within the context of pulmonary infection. These putative convergent strategies of targeting eosinophils offer promising avenues for the development of novel therapeutics targeting respiratory and other mucosal pathogens.
Collapse
Affiliation(s)
- Katelyn M. Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
13
|
Pascal M, Bax HJ, Bergmann C, Bianchini R, Castells M, Chauhan J, De Las Vecillas L, Hartmann K, Álvarez EI, Jappe U, Jimenez-Rodriguez TW, Knol E, Levi-Schaffer F, Mayorga C, Poli A, Redegeld F, Santos AF, Jensen-Jarolim E, Karagiannis SN. Granulocytes and mast cells in AllergoOncology-Bridging allergy to cancer: An EAACI position paper. Allergy 2024; 79:2319-2345. [PMID: 39036854 DOI: 10.1111/all.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Drug Hypersensitivity and Desensitization Center, Mastocytosis Center, Brigham and Women's Hospital; Harvard Medical School, Boston, USA
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Elena Izquierdo Álvarez
- Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Madrid, Spain
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | | - Edward Knol
- Departments Center of Translational Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine. The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Cristobalina Mayorga
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Allergy Unit and Research Laboratory, Hospital Regional Universitario de Málaga-HRUM, Instituto de investigación Biomédica de Málaga -IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
14
|
Ling Lundström M, Peterson C, Hedin CRH, Bergemalm D, Lampinen M, Magnusson MK, Keita ÅV, Kruse R, Lindqvist CM, Repsilber D, D'Amato M, Hjortswang H, Strid H, Söderholm JD, Öhman L, Venge P, Halfvarson J, Carlson M. Faecal biomarkers for diagnosis and prediction of disease course in treatment-naïve patients with IBD. Aliment Pharmacol Ther 2024; 60:765-777. [PMID: 38997818 DOI: 10.1111/apt.18154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Faecal biomarkers can be used to assess inflammatory bowel disease (IBD). AIM To explore the performance of some promising biomarkers in diagnosing and predicting disease course in IBD. METHODS We included 65 patients with treatment-naïve, new-onset Crohn's disease (CD), 90 with ulcerative colitis (UC), 67 symptomatic controls (SC) and 41 healthy controls (HC) in this prospective observational study. We analysed faecal samples for calprotectin (FC), myeloperoxidase (MPO), human neutrophil lipocalin (HNL), eosinophil cationic protein ECP and eosinophil-derived neurotoxin (EDN) and compared markers among groups. We assessed the diagnostic capability of biomarkers with receiver operating characteristic curves. Clinical disease course was determined for each patient with IBD and analysed the association with biomarkers by logistic regression. RESULTS All markers were elevated at inclusion in patients with IBD compared with HC (p < 0.001) and SC (p < 0.001). FC (AUC 0.85, 95% CI: 0.79-0.89) and MPO (AUC 0.85, 95% CI: 0.80-0.89) showed the highest diagnostic accuracy in distinguishing IBD from SC. The diagnostic ability of biomarkers differed between IBD subtypes with the highest performance for FC and MPO in CD. The diagnostic accuracy was further improved by combining FC and MPO (p = 0.02). Levels of FC, MPO and HNL at inclusion were predictive of an aggressive disease course with MPO showing the strongest association (p = 0.006). CONCLUSIONS This study provides new insight into the diagnostic and prognostic capability of neutrophil and eosinophil biomarkers in IBD and suggests that MPO, alone or in combination with FC, may add to the diagnostic power of faecal biomarkers.
Collapse
Affiliation(s)
- Maria Ling Lundström
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| | - Christer Peterson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Charlotte R H Hedin
- Karolinska Institute, Department of Medicine Solna, Stockholm, Sweden
- Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maria Lampinen
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Carl Mårten Lindqvist
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC BioGUNE-BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Henrik Hjortswang
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linkoping, Sweden
| | - Hans Strid
- Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Johan D Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Surgery, Linköping University, Linköping, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Per Venge
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marie Carlson
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Leiferman KM, Gleich GJ. The true extent of eosinophil involvement in disease is unrecognized: the secret life of dead eosinophils. J Leukoc Biol 2024; 116:271-287. [PMID: 38922831 DOI: 10.1093/jleuko/qiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 06/28/2024] Open
Abstract
Eosinophil-mediated pathophysiology is tissue destructive and tissue altering with proinflammatory, prothrombotic, and profibrotic effects. The distinctive morphology of an eosinophil reveals a cytoplasm chockfull of unique granules, and the granule proteins have numerous toxic effects on cells, tissues, and organs. Eosinophils are not found in most human tissues, and eosinophil involvement in diseased tissues generally is identified by cell infiltration on histopathologic examination. However, eosinophils characteristically lose their structural integrity and deposit granules and granule proteins at sites of inflammation. Hence, their participation in tissue damage may be underrecognized or entirely overlooked. The eosinophil major basic protein 1 is a toxic granule protein and, when deposited, persists in tissues. Major basic protein 1 deposition can be regarded as a footprint of eosinophil activity. Analyses of numerous eosinophil-related diseases have demonstrated clear-cut evidence of major basic protein 1 deposition in affected tissues where eosinophils were not recognized by hematoxylin and eosin tissue staining and light microscopy. Eosinophil granule protein deposition, as exemplified by localization of major basic protein 1, especially when disproportionately greater than cellular infiltration, emerges as a biomarker of hidden eosinophil-related pathophysiology. Consequently, current assessments of recognized eosinophils may vastly underestimate their role in disease.
Collapse
Affiliation(s)
- Kristin M Leiferman
- Department of Dermatology, University of Utah Health, Helix Building, 1st Floor South, 30 North Mario Capecchi Drive, Salt Lake City, UT, 84112United States
| | - Gerald J Gleich
- Department of Dermatology, University of Utah Health, Helix Building, 1st Floor South, 30 North Mario Capecchi Drive, Salt Lake City, UT, 84112United States
- Department of Internal Medicine, University of Utah Health, Helix Building, 3rd Floor North, 30 North Mario Capechhi Drive, Salt Lake City, UT, 84112United States
| |
Collapse
|
16
|
Chang LA, Schotsaert M. Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. J Leukoc Biol 2024; 116:224-243. [PMID: 38289826 PMCID: PMC11288382 DOI: 10.1093/jleuko/qiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.
Collapse
Affiliation(s)
- Lauren A Chang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1630, New York, NY 10029, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
17
|
Qin R, Long F, Zhang P, Huang R, Hu H, Guo Y, Zheng Z, Xiao J, He L, Peng T, Li J. Presence of sputum IgG against eosinophilic inflammatory proteins in asthma. Front Immunol 2024; 15:1423764. [PMID: 39091502 PMCID: PMC11291201 DOI: 10.3389/fimmu.2024.1423764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Background Sputum immunoglobulin G (Sp-IgG) has been discovered to induce cytolytic extracellular trap cell death in eosinophils, suggesting a potential autoimmune mechanism contributing to asthma. This study aimed to explore the potential origin of Sp-IgG and identify clinically relevant subtypes of Sp-IgG that may indicate autoimmune events in asthma. Methods This study included 165 asthmatic patients and 38 healthy volunteers. We measured Sp-IgG and its five subtypes against eosinophil inflammatory proteins (Sp-IgGEPs), including eosinophil peroxidase, eosinophil major basic protein, eosinophil-derived neurotoxin, eosinophil cationic protein, and Charcot-Leyden Crystal protein in varying asthma severity. Clinical and Mendelian randomization (MR) analyses were conducted. A positive Sp-IgGEPs signature (Sp-IgGEPs+) was defined when any of the five Sp-IgGEPs values exceeded the predefined cutoff thresholds, calculated as the mean values of healthy controls plus twice the standard deviation. Results The levels of Sp-IgG and Sp-IgGEPs were significantly elevated in moderate/severe asthma than those in mild asthma/healthy groups (all p < 0.05). Sp-IgG levels were positively correlated with airway eosinophil and Sp-IgGEPs. MR analysis showed causality between eosinophil and IgG (OR = 1.02, 95%CI = 1.00-1.04, p = 0.020), and elevated IgG was a risk factor for asthma (OR = 2.05, 95%CI = 1.00-4.17, p = 0.049). Subjects with Sp-IgGEPs+ exhibited worse disease severity and served as an independent risk factor contributing to severe asthma (adjusted-OR = 5.818, adjusted-95% CI = 2.193-15.431, adjusted-p < 0.001). Receiver operating characteristic curve analysis demonstrated that the combination of Sp-IgGEPs+ with non-allergic status, an ACT score < 15, and age ≥ 45 years, effectively predicted severe asthma (AUC = 0.84, sensitivity = 86.20%, specificity = 67.80%). Conclusion This study identifies a significant association between airway eosinophilic inflammation, Sp-IgG, and asthma severity. The Sp-IgGEPs panel potentially serves as the specific biomarker reflecting airway autoimmune events in asthma.
Collapse
Affiliation(s)
- Rundong Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Pingan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Renbin Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hao Hu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Yubiao Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Xiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Li He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Kan LLY, Li P, Hon SSM, Lai AYT, Li A, Wong KCY, Huang D, Wong CK. Deciphering the Interplay between the Epithelial Barrier, Immune Cells, and Metabolic Mediators in Allergic Disease. Int J Mol Sci 2024; 25:6913. [PMID: 39000023 PMCID: PMC11241838 DOI: 10.3390/ijms25136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Chronic exposure to harmful pollutants, chemicals, and pathogens from the environment can lead to pathological changes in the epithelial barrier, which increase the risk of developing an allergy. During allergic inflammation, epithelial cells send proinflammatory signals to group 2 innate lymphoid cell (ILC2s) and eosinophils, which require energy and resources to mediate their activation, cytokine/chemokine secretion, and mobilization of other cells. This review aims to provide an overview of the metabolic regulation in allergic asthma, atopic dermatitis (AD), and allergic rhinitis (AR), highlighting its underlying mechanisms and phenotypes, and the potential metabolic regulatory roles of eosinophils and ILC2s. Eosinophils and ILC2s regulate allergic inflammation through lipid mediators, particularly cysteinyl leukotrienes (CysLTs) and prostaglandins (PGs). Arachidonic acid (AA)-derived metabolites and Sphinosine-1-phosphate (S1P) are significant metabolic markers that indicate immune dysfunction and epithelial barrier dysfunction in allergy. Notably, eosinophils are promoters of allergic symptoms and exhibit greater metabolic plasticity compared to ILC2s, directly involved in promoting allergic symptoms. Our findings suggest that metabolomic analysis provides insights into the complex interactions between immune cells, epithelial cells, and environmental factors. Potential therapeutic targets have been highlighted to further understand the metabolic regulation of eosinophils and ILC2s in allergy. Future research in metabolomics can facilitate the development of novel diagnostics and therapeutics for future application.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Peiting Li
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Sharon Sze-Man Hon
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Andrea Yin-Tung Lai
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Aixuan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Katie Ching-Yau Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Danqi Huang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Birkmann K, Jebbawi F, Waldern N, Hug S, Inversini V, Keller G, Holm A, Grest P, Canonica F, Schmid-Grendelmeier P, Fettelschoss-Gabriel A. Eosinophils Play a Surprising Leading Role in Recurrent Urticaria in Horses. Vaccines (Basel) 2024; 12:562. [PMID: 38932291 PMCID: PMC11209473 DOI: 10.3390/vaccines12060562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Urticaria, independent of or associated with allergies, is commonly seen in horses and often shows a high reoccurrence rate. Managing these horses is discouraging, and efficient treatment options are lacking. Due to an incidental finding in a study on horses affected by insect bite hypersensitivity using the eosinophil-targeting eIL-5-CuMV-TT vaccine, we observed the prevention of reoccurring seasonal urticaria in four subsequent years with re-vaccination. In an exploratory case series of horses affected with non-seasonal urticaria, we aimed to investigate the role of eosinophils in urticaria. Skin punch biopsies for histology and qPCR of eosinophil associated genes were performed. Further, two severe, non-seasonal, recurrent urticaria-affected horses were vaccinated using eIL-5-CuMV-TT, and urticaria flare-up was followed up with re-vaccination for several years. Eotaxin-2, eotaxin-3, IL-5, CCR5, and CXCL10 showed high sensitivity and specificity for urticarial lesions, while eosinophils were present in 50% of histological tissue sections. The eIL-5-CuMV-TT vaccine reduced eosinophil counts in blood, cleared clinical signs of urticaria, and even prevented new episodes of urticaria in horses with non-seasonal recurrent urticaria. This indicates that eosinophils play a leading role in urticaria in horses, and targeting eosinophils offers an attractive new treatment option, replacing the use of corticosteroids.
Collapse
Affiliation(s)
- Katharina Birkmann
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Equine Department, Veterinary Faculty, Ludwig Maximilians University Munich LMU, Sonnenstrasse 14, 85764 Oberschleißheim, Germany
| | - Fadi Jebbawi
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Nina Waldern
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
| | - Sophie Hug
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
| | - Victoria Inversini
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Giulia Keller
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Anja Holm
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Central VetPharma Consultancy, Hauchsvej 7, 4180 Sorø, Denmark
| | - Paula Grest
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland;
| | - Fabia Canonica
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Allergy Unit, Department of Dermatology, University Hospital Zurich, The Circle 59, 8058 Zurich-Airport, Switzerland
| | - Antonia Fettelschoss-Gabriel
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
20
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
21
|
Gigon L, Müller P, Haenni B, Iacovache I, Barbo M, Gosheva G, Yousefi S, Soragni A, von Ballmoos C, Zuber B, Simon HU. Membrane damage by MBP-1 is mediated by pore formation and amplified by mtDNA. Cell Rep 2024; 43:114084. [PMID: 38583154 DOI: 10.1016/j.celrep.2024.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Eosinophils play a crucial role in host defense while also contributing to immunopathology through the release of inflammatory mediators. Characterized by distinctive cytoplasmic granules, eosinophils securely store and rapidly release various proteins exhibiting high toxicity upon extracellular release. Among these, major basic protein 1 (MBP-1) emerges as an important mediator in eosinophil function against pathogens and in eosinophil-associated diseases. While MBP-1 targets both microorganisms and host cells, its precise mechanism remains elusive. We demonstrate that formation of small pores by MBP-1 in lipid bilayers induces membrane permeabilization and disrupts potassium balance. Additionally, we reveal that mitochondrial DNA (mtDNA) present in eosinophil extracellular traps (EETs) amplifies MBP-1 toxic effects, underscoring the pivotal role of mtDNA in EETs. Furthermore, we present evidence indicating that absence of CpG methylation in mtDNA contributes to the regulation of MBP-1-mediated toxicity. Taken together, our data suggest that the mtDNA scaffold within extracellular traps promotes MBP-1 toxicity.
Collapse
Affiliation(s)
- Lea Gigon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Philipp Müller
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Beat Haenni
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Maruša Barbo
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gordana Gosheva
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Alice Soragni
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany.
| |
Collapse
|
22
|
Jahanbani F, Sing JC, Maynard RD, Jahanbani S, Dafoe J, Dafoe W, Jones N, Wallace KJ, Rastan A, Maecker HT, Röst HL, Snyder MP, Davis RW. Longitudinal cytokine and multi-modal health data of an extremely severe ME/CFS patient with HSD reveals insights into immunopathology, and disease severity. Front Immunol 2024; 15:1369295. [PMID: 38650940 PMCID: PMC11033372 DOI: 10.3389/fimmu.2024.1369295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents substantial challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. The heterogeneity among patient populations, coupled with the absence of FDA-approved diagnostics and therapeutics, further complicates research into disease etiology and patient managment. Integrating longitudinal multi-omics data with clinical, health,textual, pharmaceutical, and nutraceutical data offers a promising avenue to address these complexities, aiding in the identification of underlying causes and providing insights into effective therapeutics and diagnostic strategies. Methods This study focused on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) during a period of marginal symptom improvements. Longitudinal cytokine profiling was conducted alongside the collection of extensive multi-modal health data to explore the dynamic nature of symptoms, severity, triggers, and modifying factors. Additionally, an updated severity assessment platform and two applications, ME-CFSTrackerApp and LexiTime, were introduced to facilitate real-time symptom tracking and enhance patient-physician/researcher communication, and evaluate response to medical intervention. Results Longitudinal cytokine profiling revealed the significance of Th2-type cytokines and highlighted synergistic activities between mast cells and eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS pathogenesis, particularly in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major ME/CFS comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasized the importance of investigating adverse reactions to medication and supplements and drug interactions in ME/CFS severity and progression. Discussion Our study advocates for the integration of longitudinal multi-omics with multi-modal health data and artificial intelligence (AI) techniques to better understand ME/CFS and its major comorbidities. These findings highlight the significance of dysregulated Th2-type cytokines in patient stratification and precision medicine strategies. Additionally, our results suggest exploring the use of low-dose drugs with partial agonist activity as a potential avenue for ME/CFS treatment. This comprehensive approach emphasizes the importance of adopting a patient-centered care approach to improve ME/CFS healthcare management, disease severity assessment, and personalized medicine. Overall, these findings contribute to our understanding of ME/CFS and offer avenues for future research and clinical practice.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Rajan Douglas Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| | - Janet Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Whitney Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Nathan Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Kelvin J. Wallace
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Azuravesta Rastan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Holden T. Maecker
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Pulmonary and Critical Care Medicine, Institute of Immunity, Transplantation, and Infectious Diseases, Stanford University, Palo Alto, CA, United States
| | - Hannes L. Röst
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
23
|
Sakamoto K, Fujihiro M, Sakamoto A, Yamada C, Nagao K, Honda T. A case of nonpigmented fixed-drug eruption with eosinophilic intraepidermal vesicle formation. J Dermatol 2024; 51:e120-e122. [PMID: 37950416 PMCID: PMC10987267 DOI: 10.1111/1346-8138.17022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Keiko Sakamoto
- Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Mayu Fujihiro
- Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Atsushi Sakamoto
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Chika Yamada
- Yamada hihuka, 537-1 Aritamaminami-cho, Higashi-ku, Hamamatsu, Shizuoka, 431-3122, Japan
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
24
|
Salaiza-Suazo N, Porcel-Aranibar R, Cañeda-Guzmán IC, Ruiz-Remigio A, Zamora-Chimal J, Delgado-Domínguez J, Cervantes-Sarabia R, Carrada-Figueroa G, Sánchez-Barragán B, Leal-Ascencio VJ, Pérez-Torres A, Rodríguez-Martínez HA, Becker I. Eosinophils of patients with localized and diffuse cutaneous leishmaniasis: Differential response to Leishmania mexicana, with insights into mechanisms of damage inflicted upon the parasites by eosinophils. PLoS One 2024; 19:e0296887. [PMID: 38359037 PMCID: PMC10868813 DOI: 10.1371/journal.pone.0296887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
Eosinophils are mainly associated with parasitic infections and allergic manifestations. They produce many biologically active substances that contribute to the destruction of pathogens through the degranulation of microbicidal components and inflammatory tissue effects. In leishmaniasis, eosinophils have been found within inflammatory infiltrate with protective immunity against the parasite. We analyzed the responses of eosinophils from patients with localized (LCL) and diffuse (DCL) cutaneous leishmaniasis, as well as from healthy subjects, when exposed to Leishmania mexicana. All DCL patients exhibited blood eosinophilia, along with elevated eosinophil counts in non-ulcerated nodules. In contrast, only LCL patients with prolonged disease progression showed eosinophils in their blood and cutaneous ulcers. Eosinophils from DCL patients secreted significantly higher levels of IL-6, IL-8, and IL-13, compared to eosinophils from LCL patients. Additionally, DCL patients displayed higher serum levels of anti-Leishmania IgG antibodies. We also demonstrated that eosinophils from both LCL and DCL patients responded to L. mexicana promastigotes with a robust oxidative burst, which was equally intense in both patient groups and significantly higher than in healthy subjects. Coincubation of eosinophils (from donors with eosinophilia) with L. mexicana promastigotes in vitro revealed various mechanisms of parasite damage associated with different patterns of granule exocytosis: 1) localized degranulation on the parasite surface, 2) the release of cytoplasmic membrane-bound "degranulation sacs" containing granules, 3) release of eosinophil extracellular traps containing DNA and granules with major basic protein. In conclusion, eosinophils damage L. mexicana parasites through the release of granules via diverse mechanisms. However, despite DCL patients having abundant eosinophils in their blood and tissues, their apparent inability to provide protection may be linked to the release of cytokines and chemokines that promote a Th2 immune response and disease progression in these patients.
Collapse
Affiliation(s)
- Norma Salaiza-Suazo
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roxana Porcel-Aranibar
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Isabel Cristina Cañeda-Guzmán
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Adriana Ruiz-Remigio
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Zamora-Chimal
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Delgado-Domínguez
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rocely Cervantes-Sarabia
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Georgina Carrada-Figueroa
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Tabasco, México
| | | | - Victor Javier Leal-Ascencio
- Hospital Regional de Alta Especialidad Dr. Juan Graham, Secretaría de Salud del Estado de Tabasco, Villahermosa, Tabasco, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Héctor A. Rodríguez-Martínez
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ingeborg Becker
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
25
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
26
|
Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, Lacy P, Vijverberg S, Slisz T, Sediva A, Simon HU, Striz I, Plevkova J, Schwarze J, Kosturiak R, Alexis NE, Untersmayr E, Vasakova MK, Knol E, Koenderman L. Eosinophils-from cradle to grave: An EAACI task force paper on new molecular insights and clinical functions of eosinophils and the clinical effects of targeted eosinophil depletion. Allergy 2023; 78:3077-3102. [PMID: 37702095 DOI: 10.1111/all.15884] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
- Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Vijverberg
- Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
| | - Tomas Slisz
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jurgen Schwarze
- Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Radovan Kosturiak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Edward Knol
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
27
|
Yu S, Ma L, Jiang W. Eosinophils misclassified into neutrophils by hematology analyzers in a case. Int J Lab Hematol 2023; 45:1003-1006. [PMID: 37455020 DOI: 10.1111/ijlh.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Sha Yu
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lianwei Ma
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Wei Jiang
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
28
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Gigon L, Fettrelet T, Miholic M, McLeish KR, Yousefi S, Stojkov D, Simon HU. Syntaxin-4 and SNAP23 are involved in neutrophil degranulation, but not in the release of mitochondrial DNA during NET formation. Front Immunol 2023; 14:1272699. [PMID: 37885878 PMCID: PMC10599146 DOI: 10.3389/fimmu.2023.1272699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Neutrophils are a specialized subset of white blood cells, which have the ability to store pre-formed mediators in their cytoplasmic granules. Neutrophils are well-known effector cells involved in host protection against pathogens through diverse mechanisms such as phagocytosis, degranulation, extracellular traps, and oxidative burst. In this study, we provide evidence highlighting the significance of the SNARE proteins syntaxin-4 and synaptosomal-associated protein (SNAP) 23 in the release of azurophilic granules, specific granules, and the production of reactive oxygen species in human neutrophils. In contrast, the specific blockade of either syntaxin-4 or SNAP23 did not prevent the release of mitochondrial dsDNA in the process of neutrophil extracellular trap (NET) formation. These findings imply that degranulation and the release of mitochondrial dsDNA involve at least partially distinct molecular pathways in neutrophils.
Collapse
Affiliation(s)
- Lea Gigon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Marta Miholic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
30
|
Zhang Y, Wang M, Liu Z, Zhu X, Huang Q, Wang J, Liu Y. CCR3 gene knockout inhibits proliferation, differentiation, and migration of eosinophils in allergic rhinitis model mice. Mol Immunol 2023; 162:1-10. [PMID: 37611377 DOI: 10.1016/j.molimm.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Allergic rhinitis (AR) is characterized by various bothersome clinical symptoms of the nasal mucosa that impaired the quality of daily life. Different chemokine receptors play a crucial role in the recruitment of inflammatory cells in AR. However, the effect of CC chemokine receptor (CCR) 3 on the function of eosinophils (EOS) is still unclear. We investigated the effect of CCR3 on EOS in a murine model of OVA-mediated allergic rhinitis using CCR3-deficient (CCR3-/-) mice. In vitro, bone marrow of CCR3-/- and wild-type (WT) mice were used to investigate the induction and development of EOS. In vivo, Allergic rhinitis was initiated in CCR3-/- and wild-type (WT) mice by passive transfer OVA, followed by detecting the eosinophil infiltration of the nasal mucosa and bone marrow. Then CD34+ progenitor cells in bone marrow and blood were evaluated by IHC analysis. Furthermore, the degranulation proteins of EOS in nasal mucosa, marrow, blood and NALF were determined by IHC, real-time PCR analysis and Western blot. We found that CCR3 gene can regulate the growth and development of primary cultured eosinophils. Knockout CCR3 gene can inhibit the proliferation and degranulation of EOS. The infiltration of eosinophils in the nasal mucosa following OVA-challenged, was significantly higher in WT mice compared with those stimulated with phosphate-buffered saline (PBS) for WT, but that was not seen in similarly treated CCR3-/- mice. Besides, the number of CD34+ progenitor cells in bone marrow and blood were also suppressed in CCR3-/- mice. The degranulation proteins of EOS expressed in nasal mucosa, marrow, blood and NALF were decreased in CCR3-/- AR mice compared with WT-AR mice. And the clinical symptoms were significantly alleviated. The expression of granulation proteins in NALF were not detected in both untreated CCR3-/- mice and WT mice. These results demonstrate a contribution of CCR3 to both the growth, migration, and degranulation of EOS during allergic rhinitis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Meiqun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zheng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xinhua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Quanlong Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jialin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
31
|
Ricaurte Archila L, Smith L, Sihvo HK, Koponen V, Jenkins SM, O'Sullivan DM, Cardenas Fernandez MC, Wang Y, Sivasubramaniam P, Patil A, Hopson PE, Absah I, Ravi K, Mounajjed T, Dellon ES, Bredenoord AJ, Pai R, Hartley CP, Graham RP, Moreira RK. Performance of an Artificial Intelligence Model for Recognition and Quantitation of Histologic Features of Eosinophilic Esophagitis on Biopsy Samples. Mod Pathol 2023; 36:100285. [PMID: 37474003 DOI: 10.1016/j.modpat.2023.100285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
We have developed an artificial intelligence (AI)-based digital pathology model for the evaluation of histologic features related to eosinophilic esophagitis (EoE). In this study, we evaluated the performance of our AI model in a cohort of pediatric and adult patients for histologic features included in the Eosinophilic Esophagitis Histologic Scoring System (EoEHSS). We collected a total of 203 esophageal biopsy samples from patients with mucosal eosinophilia of any degree (91 adult and 112 pediatric patients) and 10 normal controls from a prospectively maintained database. All cases were assessed by a specialized gastrointestinal (GI) pathologist for features in the EoEHSS at the time of original diagnosis and rescored by a central GI pathologist (R.K.M.). We subsequently analyzed whole-slide image digital slides using a supervised AI model operating in a cloud-based, deep learning AI platform (Aiforia Technologies) for peak eosinophil count (PEC) and several histopathologic features in the EoEHSS. The correlation and interobserver agreement between the AI model and pathologists (Pearson correlation coefficient [rs] = 0.89 and intraclass correlation coefficient [ICC] = 0.87 vs original pathologist; rs = 0.91 and ICC = 0.83 vs central pathologist) were similar to the correlation and interobserver agreement between pathologists for PEC (rs = 0.88 and ICC = 0.91) and broadly similar to those for most other histologic features in the EoEHSS. The AI model also accurately identified PEC of >15 eosinophils/high-power field by the original pathologist (area under the curve [AUC] = 0.98) and central pathologist (AUC = 0.98) and had similar AUCs for the presence of EoE-related endoscopic features to pathologists' assessment. Average eosinophils per epithelial unit area had similar performance compared to AI high-power field-based analysis. Our newly developed AI model can accurately identify, quantify, and score several of the main histopathologic features in the EoE spectrum, with agreement regarding EoEHSS scoring which was similar to that seen among GI pathologists.
Collapse
Affiliation(s)
| | | | | | | | - Sarah M Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Donnchadh M O'Sullivan
- Department of Pediatric and Adolescence Medicine, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology and Hepatology, Mayo Clinic Rochester, Minnesota
| | - Maria Camila Cardenas Fernandez
- Department of Pediatric and Adolescence Medicine, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology and Hepatology, Mayo Clinic Rochester, Minnesota
| | - Yaohong Wang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Ameya Patil
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Puanani E Hopson
- Department of Pediatric and Adolescence Medicine, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology and Hepatology, Mayo Clinic Rochester, Minnesota
| | - Imad Absah
- Department of Pediatric and Adolescence Medicine, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology and Hepatology, Mayo Clinic Rochester, Minnesota
| | - Karthik Ravi
- Department of Gastroenterology and Hepatology, Mayo Clinic Rochester, Minnesota
| | - Taofic Mounajjed
- Department of Pathology, Allina Hospitals and Clinics, Minneapolis, Minnesota
| | - Evan S Dellon
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Albert J Bredenoord
- Department of Gastroenterology & Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Rish Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Roger K Moreira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
32
|
Shen K, Zhang M, Zhao R, Li Y, Li C, Hou X, Sun B, Liu B, Xiang M, Lin J. Eosinophil extracellular traps in asthma: implications for pathogenesis and therapy. Respir Res 2023; 24:231. [PMID: 37752512 PMCID: PMC10523707 DOI: 10.1186/s12931-023-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
Asthma is a common, chronic inflammatory disease of the airways that affects millions of people worldwide and is associated with significant healthcare costs. Eosinophils, a type of immune cell, play a critical role in the development and progression of asthma. Eosinophil extracellular traps (EETs) are reticular structures composed of DNA, histones, and granulins that eosinophils form and release into the extracellular space as part of the innate immune response. EETs have a protective effect by limiting the migration of pathogens and antimicrobial activity to a controlled range. However, chronic inflammation can lead to the overproduction of EETs, which can trigger and exacerbate allergic asthma. In this review, we examine the role of EETs in asthma.
Collapse
Affiliation(s)
- Kunlu Shen
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyuan Zhang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiheng Zhao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yun Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chunxiao Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xin Hou
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Bingqing Sun
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Xiang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Lin
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
- Peking University Health Science Center, Beijing, China.
| |
Collapse
|
33
|
Barnabas M, Awakan OJ, Rotimi DE, Akanji MA, Adeyemi OS. Exploring redox imbalance and inflammation for asthma therapy. Mol Biol Rep 2023; 50:7851-7865. [PMID: 37517067 DOI: 10.1007/s11033-023-08688-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Asthma is a prolonged inflammatory disorder of the airways, that affects an estimated 300 million people worldwide. Asthma is triggered by numerous endogenous and exogenous stimuli with symptoms like wheezing, cough, short of breath, chest tightening, airway obstruction, and hyperreactivity observed in patients. OBJECTIVE The review seeks to identify targets of redox imbalance and inflammation that could be explored to create effective treatments for asthma. METHODS The methodology involved a search and review of literature relating to asthma pathogenesis, redox homeostasis, and inflammation. RESULTS Eosinophils and neutrophils are involved in asthma pathogenesis. These inflammatory cells generate high levels of endogenous oxidants such as hydrogen peroxide and superoxide, which could result in redox imbalance in the airways of asthmatics. Redox imbalance occurs when the antioxidant systems becomes overwhelmed resulting in oxidative stress. Oxidative stress and inflammation have been linked with asthma inflammation and severity. Reactive oxygen species (ROS)/reactive nitrogen species (RNS) cause lung inflammation by activating nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), activator protein-1, as well as additional transcription factors. These factors stimulate cytokine production which ultimately activates inflammatory cells in the bronchi, causing lung cellular injury and destruction. ROS/RNS is also produced by these inflammatory cells to eradicate invading bacteria. Antioxidant treatments for asthma have not yet been fully explored. CONCLUSION Redox and inflammatory processes are viable targets that could be explored to create better therapy for asthma.
Collapse
Affiliation(s)
- Morayo Barnabas
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | - Oluwakemi J Awakan
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | - Damilare Emmanuel Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | - Musbau A Akanji
- Department of Biochemistry, Kwara State University, Malete, Ilorin, Kwara State, Nigeria
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria.
| |
Collapse
|
34
|
Pałgan K, Tretyn A. Platelet-activating factor as an endogenous cofactor of food anaphylaxis. Biofactors 2023; 49:976-983. [PMID: 37203358 DOI: 10.1002/biof.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/02/2023] [Indexed: 05/20/2023]
Abstract
Anaphylaxis is a severe, acute, life-threatening generalized or systemic hypersensitivity reaction. The incidence of anaphylaxis is increasing worldwide, with medications and food contributing to most cases. Physical exercise, acute infections, drugs, alcohol, and menstruation are the external cofactors associated with more severe systemic reaction. The aim of this review is to show that platelet-activating factor contributes to the development of severe anaphylactic reaction, and even to anaphylactic shock.
Collapse
Affiliation(s)
- Krzysztof Pałgan
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
35
|
Ghaffari S, Rezaei N. Eosinophils in the tumor microenvironment: implications for cancer immunotherapy. J Transl Med 2023; 21:551. [PMID: 37587450 PMCID: PMC10433623 DOI: 10.1186/s12967-023-04418-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023] Open
Abstract
Despite being an integral part of the immune response in the tumor microenvironment (TME), few studies have mechanistically elucidated eosinophil functions in cancer outcomes. Eosinophils are a minor population of granulocytes that are mostly explored in asthma and allergic disorders. Their influence on primary and metastatic tumors, however, has recently come to light. Eosinophils' diverse armamentarium of mediators and receptors allows them to participate in innate and adaptive immunity, such as type 1 and type 2 immunity, and shape TME and tumor outcomes. Based on TME cells and cytokines, activated eosinophils drive other immune cells to ultimately promote or suppress tumor growth. Discovering exactly what conditions determine the pro-tumorigenic or anti-tumorigenic role of eosinophils allows us to take advantage of these signals and devise novel strategies to target cancer cells. Here, we first revisit eosinophil biology and differentiation as recognizing eosinophil mediators is crucial to their function in homeostatic and pathological conditions as well as tumor outcome. The bulk of our paper discusses eosinophil interactions with tumor cells, immune cells-including T cells, plasma cells, natural killer (NK) cells-and gut microbiota. Eosinophil mediators, such as IL-5, IL-33, granulocyte-macrophage colony-stimulating factor (GM-CSF), thymic stromal lymphopoietin (TSLP), and CCL11 also determine eosinophil behavior toward tumor cells. We then examine the implications of these findings for cancer immunotherapy approaches, including immune checkpoint blockade (ICB) therapy using immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy. Eosinophils synergize with CAR T cells and ICB therapy to augment immunotherapies.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
36
|
Macchia I, La Sorsa V, Urbani F, Moretti S, Antonucci C, Afferni C, Schiavoni G. Eosinophils as potential biomarkers in respiratory viral infections. Front Immunol 2023; 14:1170035. [PMID: 37483591 PMCID: PMC10358847 DOI: 10.3389/fimmu.2023.1170035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Eosinophils are bone marrow-derived granulocytes that, under homeostatic conditions, account for as much as 1-3% of peripheral blood leukocytes. During inflammation, eosinophils can rapidly expand and infiltrate inflamed tissues, guided by cytokines and alarmins (such as IL-33), adhesion molecules and chemokines. Eosinophils play a prominent role in allergic asthma and parasitic infections. Nonetheless, they participate in the immune response against respiratory viruses such as respiratory syncytial virus and influenza. Notably, respiratory viruses are associated with asthma exacerbation. Eosinophils release several molecules endowed with antiviral activity, including cationic proteins, RNases and reactive oxygen and nitrogen species. On the other hand, eosinophils release several cytokines involved in homeostasis maintenance and Th2-related inflammation. In the context of SARS-CoV-2 infection, emerging evidence indicates that eosinophils can represent possible blood-based biomarkers for diagnosis, prognosis, and severity prediction of disease. In particular, eosinopenia seems to be an indicator of severity among patients with COVID-19, whereas an increased eosinophil count is associated with a better prognosis, including a lower incidence of complications and mortality. In the present review, we provide an overview of the role and plasticity of eosinophils focusing on various respiratory viral infections and in the context of viral and allergic disease comorbidities. We will discuss the potential utility of eosinophils as prognostic/predictive immune biomarkers in emerging respiratory viral diseases, particularly COVID-19. Finally, we will revisit some of the relevant methods and tools that have contributed to the advances in the dissection of various eosinophil subsets in different pathological settings for future biomarker definition.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
37
|
Costanzo G, Costanzo GAML, Del Moro L, Nappi E, Pelaia C, Puggioni F, Canonica GW, Heffler E, Paoletti G. Mast Cells in Upper and Lower Airway Diseases: Sentinels in the Front Line. Int J Mol Sci 2023; 24:ijms24119771. [PMID: 37298721 DOI: 10.3390/ijms24119771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells (MCs) are fascinating cells of the innate immune system involved not only in allergic reaction but also in tissue homeostasis, response to infection, wound healing, protection against kidney injury, the effects of pollution and, in some circumstances, cancer. Indeed, exploring their role in respiratory allergic diseases would give us, perhaps, novel therapy targets. Based on this, there is currently a great demand for therapeutic regimens to enfeeble the damaging impact of MCs in these pathological conditions. Several strategies can accomplish this at different levels in response to MC activation, including targeting individual mediators released by MCs, blockade of receptors for MC-released compounds, inhibition of MC activation, limiting mast cell growth, or inducing mast cell apoptosis. The current work focuses on and summarizes the mast cells' role in pathogenesis and as a personalized treatment target in allergic rhinitis and asthma; even these supposed treatments are still at the preclinical stage.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Emanuele Nappi
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
38
|
Fijolek J, Radzikowska E. Eosinophilic granulomatosis with polyangiitis - Advances in pathogenesis, diagnosis, and treatment. Front Med (Lausanne) 2023; 10:1145257. [PMID: 37215720 PMCID: PMC10193253 DOI: 10.3389/fmed.2023.1145257] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/13/2023] [Indexed: 05/24/2023] Open
Abstract
Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare disease characterized by eosinophil-rich granulomatous inflammation and necrotizing vasculitis, pre-dominantly affecting small-to-medium-sized vessels. It is categorized as a primary antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) but also shares features of hypereosinophilic syndrome (HES); therefore, both vessel inflammation and eosinophilic infiltration are suggested to cause organ damage. This dual nature of the disease causes variable clinical presentation. As a result, careful differentiation from mimicking conditions is needed, especially from HES, given the overlapping clinical, radiologic, and histologic features, and biomarker profile. EGPA also remains a diagnostic challenge, in part because of asthma, which may pre-dominate for years, and often requires chronic corticosteroids (CS), which can mask other disease features. The pathogenesis is still not fully understood, however, the interaction between eosinophils and lymphocytes B and T seems to play an important role. Furthermore, the role of ANCA is not clear, and only up to 40% of patients are ANCA-positive. Moreover, two ANCA-dependent clinically and genetically distinct subgroups have been identified. However, a gold standard test for establishing a diagnosis is not available. In practice, the disease is mainly diagnosed based on the clinical symptoms and results of non-invasive tests. The unmet needs include uniform diagnostic criteria and biomarkers to help distinguish EGPA from HESs. Despite its rarity, notable progress has been made in understanding the disease and in its management. A better understanding of the pathophysiology has provided new insights into the pathogenesis and therapeutic targets, which are reflected in novel biological agents. However, there remains an ongoing reliance on corticosteroid therapy. Therefore, there is a significant need for more effective and better-tolerated steroid-sparing treatment schemes.
Collapse
|
39
|
Siewiera J, McIntyre TI, Cautivo KM, Mahiddine K, Rideaux D, Molofsky AB, Erlebacher A. Circumvention of luteolysis reveals parturition pathways in mice dependent upon innate type 2 immunity. Immunity 2023; 56:606-619.e7. [PMID: 36750100 PMCID: PMC10023352 DOI: 10.1016/j.immuni.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/31/2022] [Accepted: 01/09/2023] [Indexed: 02/09/2023]
Abstract
Although mice normally enter labor when their ovaries stop producing progesterone (luteolysis), parturition can also be triggered in this species through uterus-intrinsic pathways potentially analogous to the ones that trigger parturition in humans. Such pathways, however, remain largely undefined in both species. Here, we report that mice deficient in innate type 2 immunity experienced profound parturition delays when manipulated endocrinologically to circumvent luteolysis, thus obliging them to enter labor through uterus-intrinsic pathways. We found that these pathways were in part driven by the alarmin IL-33 produced by uterine interstitial fibroblasts. We also implicated important roles for uterine group 2 innate lymphoid cells, which demonstrated IL-33-dependent activation prior to labor onset, and eosinophils, which displayed evidence of elevated turnover in the prepartum uterus. These findings reveal a role for innate type 2 immunity in controlling the timing of labor onset through a cascade potentially relevant to human parturition.
Collapse
Affiliation(s)
- Johan Siewiera
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tara I McIntyre
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karim Mahiddine
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Damon Rideaux
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Erlebacher
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
40
|
Abstract
Eosinophilic keratitis is a disease of the feline ocular surface. It is characterized by conjunctivitis, white to pink raised plaques on the corneal and conjunctival surfaces, corneal vascularization, and variable ocular pain. Cytology is the diagnostic test of choice. Identification of eosinophils in a corneal cytology sample usually confirms the diagnosis, although lymphocytes, mast cells, and neutrophils are often present concurrently. Immunosuppressives are the mainstay of therapy, topically or systemically. The role of feline herpesvirus-1 in the pathogenesis of eosinophilic keratoconjunctivitis (EK) remains unclear. Eosinophilic conjunctivitis is a less common manifestation of EK and presents as severe conjunctivitis without corneal involvement.
Collapse
Affiliation(s)
- Amber Labelle
- Bright Light Veterinary Eye Care, Ottawa, Ontario, Canada.
| | - Philippe Labelle
- Antech Diagnostics, 7555 Danbro Crescent, Mississauga, Ontario L5N 6P9, Canada
| |
Collapse
|
41
|
Blood Inflammatory-like and Lung Resident-like Eosinophils Affect Migration of Airway Smooth Muscle Cells and Their ECM-Related Proliferation in Asthma. Int J Mol Sci 2023; 24:ijms24043469. [PMID: 36834879 PMCID: PMC9958882 DOI: 10.3390/ijms24043469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Airway remodeling is a hallmark feature of asthma, and one of its key structural changes is increased airway smooth muscle (ASM) mass and disturbed extracellular matrix (ECM) homeostasis. Eosinophil functions in asthma are broadly defined; however, we lack knowledge about eosinophil subtypes' interaction with lung structural cells and their effect on the airway's local microenvironment. Therefore, we investigated the effect of blood inflammatory-like eosinophils (iEOS-like) and lung resident-like eosinophils (rEOS-like) on ASM cells via impact on their migration and ECM-related proliferation in asthma. A total of 17 non-severe steroid-free allergic asthma (AA), 15 severe eosinophilic asthma (SEA) patients, and 12 healthy control subjects (HS) were involved in this study. Peripheral blood eosinophils were enriched using Ficoll gradient centrifugation and magnetic separation, subtyped by using magnetic separation against CD62L. ASM cell proliferation was assessed by AlamarBlue assay, migration by wound healing assay, and gene expression by qRT-PCR analysis. We found that blood iEOS-like and rEOS-like cells from AA and SEA patients' upregulated genes expression of contractile apparatus proteins, COL1A1, FN, TGF-β1 in ASM cells (p < 0.05), and SEA eosinophil subtypes demonstrated the highest effect on sm-MHC, SM22, and COL1A1 gene expression. Moreover, AA and SEA patients' blood eosinophil subtypes promoted migration of ASM cells and their ECM-related proliferation, compared with HS (p < 0.05) with the higher effect of rEOS-like cells. In conclusion, blood eosinophil subtypes may contribute to airway remodeling by upregulating contractile apparatus and ECM component production in ASM cells, further promoting their migration and ECM-related proliferation, with a stronger effect of rEOS-like cells and in SEA.
Collapse
|
42
|
Wiese AV, Duhn J, Korkmaz RÜ, Quell KM, Osman I, Ender F, Schröder T, Lewkowich I, Hogan S, Huber-Lang M, Gumprecht F, König P, Köhl J, Laumonnier Y. C5aR1 activation in mice controls inflammatory eosinophil recruitment and functions in allergic asthma. Allergy 2023. [PMID: 36757006 DOI: 10.1111/all.15670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Pulmonary eosinophils comprise at least two distinct populations of resident eosinophils (rEOS) and inflammatory eosinophils (iEOS), the latter recruited in response to pulmonary inflammation. Here, we determined the impact of complement activation on rEOS and iEOS trafficking and function in two models of pulmonary inflammation. METHODS BALB/c wild-type and C5ar1-/- mice were exposed to different allergens or IL-33. Eosinophil populations in the airways, lung, or mediastinal lymph nodes (mLN) were characterized by FACS or immunohistochemistry. rEOS and iEOS functions were determined in vivo and in vitro. RESULTS HDM and IL-33 exposure induced a strong accumulation of iEOS but not rEOS in the airways, lungs, and mLNs. rEOS and iEOS expressed C3/C5 and C5aR1, which were significantly higher in iEOS. Initial pulmonary trafficking of iEOS was markedly reduced in C5ar1-/- mice and associated with less IL-5 production from ILC2 cells. Functionally, adoptively transferred pulmonary iEOS from WT but not from C5ar1-/- mice-induced airway hyperresponsiveness (AHR), which was associated with significantly reduced C5ar1-/- iEOS degranulation. Pulmonary iEOS but not rEOS were frequently associated with T cells in lung tissue. After HDM or IL-33 exposure, iEOS but not rEOS were found in mLNs, which were significantly reduced in C5ar1-/- mice. C5ar1-/- iEOS expressed less costimulatory molecules, associated with a decreased potency to drive antigen-specific T cell proliferation and differentiation into memory T cells. CONCLUSIONS We uncovered novel roles for C5aR1 in iEOS trafficking and activation, which affects key aspects of allergic inflammation such as AHR, ILC2, and T cell activation.
Collapse
Affiliation(s)
- Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ibrahim Osman
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Hogan
- Mary H. Weiser Food Allergy Center, Experimental Pathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, Ulm, Germany
| | | | - Peter König
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
43
|
Nam YH. Nonepisodic angioedema with eosinophilia after COVID-19 vaccination: a case successfully treated with reslizumab. Allergy Asthma Clin Immunol 2023; 19:11. [PMID: 36732834 PMCID: PMC9893190 DOI: 10.1186/s13223-023-00765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Angioedema with eosinophilia (AE) is a rare allergic disease classified as episodic or nonepisodic. AE is characterized by angioedema, urticaria, fever, weight gain, and eosinophilia, but its etiology and pathogenesis have not yet been clarified. CASE PRESENTATIONS We present a 70-year-old woman presented with generalized edema and urticaria after Moderna COVID-19 vaccination. Peripheral blood eosinophil count was marked elevated and echocardiography and Doppler ultrasonography of both the upper and lower extremities were unremarkable. Her symptoms and peripheral blood eosinophil count were improved after systemic steroid therapy, but she failed to respond to steroid tapering. Reslizumab (anti-interluekin-5) was administered intravenously, and she remained symptom free with a normal eosinophil count during 8 months of reslizumab treatment without steroids. CONCLUSIONS We report a case of nonepisodic AE after COVID-19 vaccination that was successfully treated with reslizumab.
Collapse
Affiliation(s)
- Young-Hee Nam
- grid.255166.30000 0001 2218 7142Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
44
|
Thompson-Souza GA, Vasconcelos CRI, Neves JS. Eosinophils: Focus on DNA extracellular traps. Life Sci 2022; 311:121191. [DOI: 10.1016/j.lfs.2022.121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
45
|
Griscti Soler D, Bennici A, Brunetto S, Gangemi S, Ricciardi L. Benralizumab in the management of rare primary eosinophilic lung diseases. Allergy Asthma Proc 2022; 43:494-500. [PMID: 36335418 DOI: 10.2500/aap.2022.43.220056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Eosinophils have a double-edged role in the human body, being essential in important physiologic functions but whose presence is conspicuous in a variety of diseases characterized by a T2 inflammation phenotype. Eosinophils are exquisitely sensitive to corticosteroids, and the latter have, until recently, represented the cornerstone of treatment of eosinophilic diseases. However, most patients remain dependent on oral corticosteroids, with a notable adverse effect burden and experience a chronic relapsing disease that leads to high morbidity and mortality. Treatment prospects have changed with the advent of biologic drugs that target the eosinotropic cytokine interleukin (IL) 5 or its receptor. The success of the latter drugs in severe eosinophilic asthma has paved the way for their use in other, rarer, eosinophilic lung diseases. Recently, mepolizumab, a humanized monoclonal antibody that works against IL-5, was approved for the add-on treatment of relapsing-remitting or refractory eosinophilic granulomatosis with polyangiitis (EGPA) in patients ages ≥ 6 years. Benralizumab, a humanized antibody that binds to the α portion of the IL-5 receptor, is also being tested for its efficacy in EGPA in two clinical trials, after a growing number of case reports and case series supported its use as a steroid-sparing agent in the treatment of EGPA. Methods: In this review, we summarized the scientific literature evaluating the efficacy of benralizumab treatment in patients afflicted with rare primary eosinophilic lung diseases. Results: The literature we found, largely case reports, reported that the use of benralizumab in EGPA, chronic eosinophilic pneumonia (CEP) and allergic bronchopulmonary aspergillosis (ABPA) often led to a depletion of eosinophils, less exacerbations and a decreased systemic corticosteroid burden. No adverse effects were reported. Conclusion: Benralizumab has a prospective role in the treatment of rare eosinophilic lung diseases, which needs to be further elucidated in randomized controlled trials.
Collapse
|
46
|
Proposal for Structured Histopathology of Nasal Secretions for Endotyping Chronic Rhinosinusitis: An Exploratory Study. ALLERGIES 2022. [DOI: 10.3390/allergies2040012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: The EPOS guidelines promote cellular analysis as a primary goal in endotyping chronic rhinosinusitis (CRS). Current analysis is mainly based on biopsy or operative tissue collection, whereas the use of sinonasal secretions for inflammatory endotyping is not advocated in clinical practice. Early endotyping is crucial though, especially regarding the increasing evidence of patient-tailored therapy. We aimed to investigate the diagnostic value and reproducibility of sinonasal secretions sampling. Methods: First, preoperative secretion analysis of 53 Caucasian CRS patients was compared to subsequent operative tissue analysis. Second, secretion analysis at two different time points was compared for 10 postoperative Caucasian CRS patients with type 2 (T2) inflammation and 10 control participants. Secretions were collected by both endoscopic aspiration and nasal blown secretions in all participants. Results: The sensitivity to detect T2 inflammation was higher in nasal aspiration samples (85%) compared to nasal blow secretions (32%). A specificity of 100% for both techniques was obtained. A 90% reproducibility for T2 eosinophil detection was found by sampling at different time points regardless of the technique. Of the T2 patients, 60% showed no T2 inflammatory pattern more than one year after endoscopic sinus surgery. Conclusions: Nasal secretion sampling, especially aspiration of nasal secretions, is useful in the detection of T2 inflammation in CRS pathology. We proposed a structured histopathology analysis to be useful in daily clinical practice, which includes Congo red staining sensitive for eosinophilic cells and free eosinophil granules. Analysis of nasal secretions enables endotyping in an early stage, allowing more directed therapy.
Collapse
|
47
|
Eosinophilic inflammation: An Appealing Target for Pharmacologic Treatments in Severe Asthma. Biomedicines 2022; 10:biomedicines10092181. [PMID: 36140282 PMCID: PMC9496162 DOI: 10.3390/biomedicines10092181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Severe asthma is characterized by different endotypes driven by complex pathologic mechanisms. In most patients with both allergic and non-allergic asthma, predominant eosinophilic airway inflammation is present. Given the central role of eosinophilic inflammation in the pathophysiology of most cases of severe asthma and considering that severe eosinophilic asthmatic patients respond partially or poorly to corticosteroids, in recent years, research has focused on the development of targeted anti-eosinophil biological therapies; this review will focus on the unique and particular biology of the eosinophil, as well as on the current knowledge about the pathobiology of eosinophilic inflammation in asthmatic airways. Finally, current and prospective anti-eosinophil therapeutic strategies will be discussed, examining the reason why eosinophilic inflammation represents an appealing target for the pharmacological treatment of patients with severe asthma.
Collapse
|
48
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
49
|
Cederberg RA, Franks SE, Wadsworth BJ, So A, Decotret LR, Hall MG, Shi R, Hughes MR, McNagny KM, Bennewith KL. Eosinophils Decrease Pulmonary Metastatic Mammary Tumor Growth. Front Oncol 2022; 12:841921. [PMID: 35756626 PMCID: PMC9213661 DOI: 10.3389/fonc.2022.841921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic breast cancer is challenging to effectively treat, highlighting the need for an improved understanding of host factors that influence metastatic tumor cell colonization and growth in distant tissues. The lungs are a common site of breast cancer metastasis and are host to a population of tissue-resident eosinophils. Eosinophils are granulocytic innate immune cells known for their prominent roles in allergy and Th2 immunity. Though their presence in solid tumors and metastases have been reported for decades, the influence of eosinophils on metastatic tumor growth in the lungs is unclear. We used transgenic mouse models characterized by elevated pulmonary eosinophils (IL5Tg mice) and eosinophil-deficiency (ΔdblGATA mice), as well as antibody-mediated depletion of eosinophils, to study the role of eosinophils in EO771 mammary tumor growth in the lungs. We found that IL5Tg mice exhibit reduced pulmonary metastatic colonization and decreased metastatic tumor burden compared to wild-type (WT) mice or eosinophil-deficient mice. Eosinophils co-cultured with tumor cells ex vivo produced peroxidase activity and induced tumor cell death, indicating that eosinophils are capable of releasing eosinophil peroxidase (EPX) and killing EO771 tumor cells. We found that lung eosinophils expressed phenotypic markers of activation during EO771 tumor growth in the lungs, and that metastatic growth was accelerated in eosinophil-deficient mice and in WT mice after immunological depletion of eosinophils. Our results highlight an important role for eosinophils in restricting mammary tumor cell growth in the lungs and support further work to determine whether strategies to trigger local eosinophil degranulation may decrease pulmonary metastatic growth.
Collapse
Affiliation(s)
- Rachel A Cederberg
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Brennan J Wadsworth
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alvina So
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Lisa R Decotret
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael G Hall
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hughes
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada.,Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Klimov V, Cherevko N, Klimov A, Novikov P. Neuronal-Immune Cell Units in Allergic Inflammation in the Nose. Int J Mol Sci 2022; 23:6938. [PMID: 35805946 PMCID: PMC9266453 DOI: 10.3390/ijms23136938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Immune cells and immune-derived molecules, endocrine glands and hormones, the nervous system and neuro molecules form the combined tridirectional neuroimmune network, which plays a significant role in the communication pathways and regulation at the level of the whole organism and local levels, in both healthy persons and patients with allergic rhinitis based on an allergic inflammatory process. This review focuses on a new research paradigm devoted to neuronal-immune cell units, which are involved in allergic inflammation in the nose and neuroimmune control of the nasal mucociliary immunologically active epithelial barrier. The categorization, cellular sources of neurotransmitters and neuropeptides, and their prevalent profiles in constituting allergen tolerance maintenance or its breakdown are discussed. Novel data on the functional structure of the nasal epithelium based on a transcriptomic technology, single-cell RNA-sequencing results, are considered in terms of neuroimmune regulation. Notably, the research of pathogenesis and therapy for atopic allergic diseases, including recently identified local forms, from the viewpoint of the tridirectional interaction of the neuroimmune network and discrete neuronal-immune cell units is at the cutting-edge.
Collapse
Affiliation(s)
- Vladimir Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Natalia Cherevko
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Andrew Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Pavel Novikov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
- Medical Association “Center for Family Medicine”, 634050 Tomsk, Russia
| |
Collapse
|