1
|
Mao M, Yang Z, Ni X, Pan C. Comparative analysis of airflow dynamics and sputum expulsion during cough in healthy and bronchial stenosis respiratory tract. Comput Methods Biomech Biomed Engin 2025:1-15. [PMID: 39826532 DOI: 10.1080/10255842.2025.2453925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Bronchial stenosis impacts cough mechanisms and respiratory function. This study used MIMICS and Fluent to construct and simulate a 3D airway model of an elderly female patient with bronchial stenosis. Utilizing dynamic mesh and fluid-structure interaction, airflow during coughing was analyzed, including velocity, wall shear stress, and deformation. The Eulerian wall film model quantified sputum dynamics, revealing that stenosis increases shear stress, exacerbates deformation, and reduces sputum expulsion efficiency, particularly for medium to high viscosity sputum. These findings deepen understanding of bronchial stenosis pathophysiology and offer insights for improving diagnosis, treatment, and prevention of respiratory diseases.
Collapse
Affiliation(s)
- Mingqian Mao
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province, China
| | - Zhichen Yang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province, China
| | - Xiaoyu Ni
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province, China
| | - Changwang Pan
- Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments Micro-Tech (Nanjing) Co., Ltd, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Kapat K, Gondane P, Kumbhakarn S, Takle S, Sable R. Challenges and Opportunities in Developing Tracheal Substitutes for the Recovery of Long-Segment Defects. Macromol Biosci 2024; 24:e2400054. [PMID: 39008817 DOI: 10.1002/mabi.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Tracheal resection and reconstruction procedures are necessary when stenosis, tracheomalacia, tumors, vascular lesions, or tracheal injury cause a tracheal blockage. Replacement with a tracheal substitute is often recommended when the trauma exceeds 50% of the total length of the trachea in adults and 30% in children. Recently, tissue engineering and other advanced techniques have shown promise in fabricating biocompatible tracheal substitutes with physical, morphological, biomechanical, and biological characteristics similar to native trachea. Different polymers and biometals are explored. Even with limited success with tissue-engineered grafts in clinical settings, complete healing of tracheal defects remains a substantial challenge due to low mechanical strength and durability of the graft materials, inadequate re-epithelialization and vascularization, and restenosis. This review has covered a range of reconstructive and regenerative techniques, design criteria, the use of bioprostheses and synthetic grafts for the recovery of tracheal defects, as well as the traditional and cutting-edge methods of their fabrication, surface modification for increased immuno- or biocompatibility, and associated challenges.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| |
Collapse
|
3
|
Pozzi J, Conte A, Lorenzon L, Maselli M, Marchese MR, Nacci A, Cianchetti M. Mimicking Human Laryngeal Tissues for a Soft Artificial Prosthesis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039397 DOI: 10.1109/embc53108.2024.10781559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The larynx is a vital organ, with three main functions: breathing, swallowing, and phonation. Nevertheless, in the case of advanced laryngeal carcinoma, the total laryngectomy is still the gold standard. This clinical practice causes several physical and social problems to the patient. An implantable artificial larynx, able to reproduce the natural organ functions, is still missing. In a previous work, we have identified the basic structures and movements of the larynx, obtaining a biomimetic design, composed of cartilages, and a thin membrane (the elastic cone) that integrates artificial vocal folds. In this work, we have reproduced the anatomical structures with materials whose mechanical properties match the ones of the natural counterparts, creating a full-scale benchtop prototype of the artificial larynx. Since quantitative data on the mechanical characteristics of the laryngeal cartilages and the elastic cone have never been reported before, this work contributes to the field of artificial organs, with the creation of artificial airway cartilages and mucous-associated membranes. Moreover, it represents a fundamental step towards the creation of an implantable total artificial larynx that will improve the physical and psychological health of laryngectomee patients.
Collapse
|
4
|
Amaral VA, de Souza JF, Alves TFR, de Oliveira Junior JM, Severino P, Aranha N, Souto EB, Chaud MV. Psidium guajava L. phenolic compound-reinforced lamellar scaffold for tracheal tissue engineering. Drug Deliv Transl Res 2024; 14:62-79. [PMID: 37566362 PMCID: PMC10746760 DOI: 10.1007/s13346-023-01381-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/12/2023]
Abstract
The aim of this work was to develop a dense lamellar scaffold, as a biomimetic material with potential applications in the regeneration of tracheal tissue after surgical tumor resection. The scaffolds were produced by plastic compression technique, exploiting the use of total phenolic compounds (TPC) from Psidium guajava Linn as a potential cross-linking agent in a polymeric mixture based on collagen (COL), silk fibroin (SF), and polyethylene glycol 400 (PEG 400). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) confirmed the chemical interactions between the polymers and the cross-linking of TPC between COL and SF. Morphological analyses showed scaffolds with porosity, interconnectivity, and a porous surface structure with a gyroid-like geometry. The analysis of the anisotropic degree resulted in anisotropic structures (0.1% TFC and 0.3% TFC) and an isotropic structure (0.5% TFC). In the mechanical properties, it was evidenced greater resistance for the 0.3% TFC formulation. The addition of TPC percentages did not result in a significant difference (p > 0.05) in swelling capacity and disintegration rate. The results confirmed that TPC were able to modulate the morphological, morphometric, and mechanical properties of scaffolds. Thus, this study describes a potential new material to improve the regeneration of major tracheal structures after surgical tumor removal.
Collapse
Affiliation(s)
- Venâncio A Amaral
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
| | - Juliana Ferreira de Souza
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
| | - Thais F R Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
| | - José M de Oliveira Junior
- Laboratory of Applied Nuclear Physics, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
| | - Patrícia Severino
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, Aracaju, Sergipe, 300, Brazil
| | - Norberto Aranha
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
- College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, 18023-000, Brazil
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira, 4050-313, Porto, Portugal.
- MEDTECH, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil.
- College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, 18023-000, Brazil.
| |
Collapse
|
5
|
Mondal A, Visner GA, Kaza AK, Dupont PE. A novel ex vivo tracheobronchomalacia model for airway stent testing and in vivo model refinement. J Thorac Cardiovasc Surg 2023; 166:679-687.e1. [PMID: 37156367 PMCID: PMC10524727 DOI: 10.1016/j.jtcvs.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES We sought to develop an ex vivo trachea model capable of producing mild, moderate, and severe tracheobronchomalacia for optimizing airway stent design. We also aimed to determine the amount of cartilage resection required for achieving different tracheobronchomalacia grades that can be used in animal models. METHODS We developed an ex vivo trachea test system that enabled video-based measurement of internal cross-sectional area as intratracheal pressure was cyclically varied for peak negative pressures of 20 to 80 cm H2O. Fresh ovine tracheas were induced with tracheobronchomalacia by single mid-anterior incision (n = 4), mid-anterior circumferential cartilage resection of 25% (n = 4), and 50% per cartilage ring (n = 4) along an approximately 3-cm length. Intact tracheas (n = 4) were used as control. All experimental tracheas were mounted and experimentally evaluated. In addition, helical stents of 2 different pitches (6 mm and 12 mm) and wire diameters (0.52 mm and 0.6 mm) were tested in tracheas with 25% (n = 3) and 50% (n = 3) circumferentially resected cartilage rings. The percentage collapse in tracheal cross-sectional area was calculated from the recorded video contours for each experiment. RESULTS Ex vivo tracheas compromised by single incision and 25% and 50% circumferential cartilage resection produce tracheal collapse corresponding to clinical grades of mild, moderate, and severe tracheobronchomalacia, respectively. A single anterior cartilage incision produces saber-sheath type tracheobronchomalacia, whereas 25% and 50% circumferential cartilage resection produce circumferential tracheobronchomalacia. Stent testing enabled the selection of stent design parameters such that airway collapse associated with moderate and severe tracheobronchomalacia could be reduced to conform to, but not exceed, that of intact tracheas (12-mm pitch, 0.6-mm wire diameter). CONCLUSIONS The ex vivo trachea model is a robust platform that enables systematic study and treatment of different grades and morphologies of airway collapse and tracheobronchomalacia. It is a novel tool for optimization of stent design before advancing to in vivo animal models.
Collapse
Affiliation(s)
- Abhijit Mondal
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass.
| | - Gary A Visner
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Aditya K Kaza
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass
| | - Pierre E Dupont
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass
| |
Collapse
|
6
|
Dbouk T, Roger F, Drikakis D, Ali S, Menu H, Wiel E. The impact of endotracheal intubation on oxygen delivery, trachea pressure and wall deformation. Comput Biol Med 2023; 164:107325. [PMID: 37586206 DOI: 10.1016/j.compbiomed.2023.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
This paper concerns improving endotracheal tube (ETT) insertion through advanced computational science modelling. The study aims to better understand endotracheal intubation (ETI) and reduce medical errors in intensive and critical care units since ETT insertion is unique for each patient, depending on age, gender, size, physiology, and underlying health conditions. We have employed computational fluid dynamics and biomechanics modelling to investigate the effect of ETT for three ventilation modes on (a) local oxygen delivery to the lungs, (b) air pressure and wall shear stress at the tracheal walls, and (c) oscillatory elastic deformation of the tracheal tissues and muscle. For the first time, we reveal how the ventilation mode and ETT insertion in the trachea may induce major complications, especially in long periods of ETT. We show that rotating the ETT or displacing it by 2 mm only can induce a significant rise in the tracheal pressure up to 177 cmH2O. This study, for the first time, shows the vital role of computers in biology and medicine to provide enhanced decision-making-support to clinicians and medical doctors dealing with ETI.
Collapse
Affiliation(s)
- T Dbouk
- CORIA, CNRS, UMR 6614, Rouen Normandy University, UNIROUEN, 76000 Rouen, France.
| | - F Roger
- IMT Nord Europe, Materials and processes Center, University of Lille, F-59000 Lille, France
| | - D Drikakis
- Institute for Advanced Modelling and Simulation, University of Nicosia, Nicosia, CY-2417, Cyprus
| | - S Ali
- Junia, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - H Menu
- Faculté des Sciences de la Santé et du Sport (UFR3S) - Médecine, CHU de Lille, ULR 2694, METRICS, 59000 Lille, France
| | - E Wiel
- Faculté des Sciences de la Santé et du Sport (UFR3S) - Médecine, CHU de Lille, ULR 2694, METRICS, 59000 Lille, France
| |
Collapse
|
7
|
Uslu E, Rana VK, Anagnostopoulos S, Karami P, Bergadano A, Courbon C, Gorostidi F, Sandu K, Stergiopulos N, Pioletti DP. Wet adhesive hydrogels to correct malacic trachea (tracheomalacia) A proof of concept. iScience 2023; 26:107168. [PMID: 37456833 PMCID: PMC10338288 DOI: 10.1016/j.isci.2023.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Tracheomalacia (TM) is a condition characterized by a weak tracheal cartilage and/or muscle, resulting in excessive collapse of the airway in the newborns. Current treatments including tracheal reconstruction, tracheoplasty, endo- and extra-luminal stents have limitations. To address these limitations, this work proposes a new strategy by wrapping an adhesive hydrogel patch around a malacic trachea. Through a numerical model, first it was demonstrated that a hydrogel patch with sufficient mechanical and adhesion strength can preserve the trachea's physiological shape. Accordingly, a new hydrogel providing robust adhesion on wet tracheal surfaces was synthesized employing the hydroxyethyl acrylamide (HEAam) and polyethylene glycol methacrylate (PEGDMA) as main polymer network and crosslinker, respectively. Ex vivo experiments revealed that the adhesive hydrogel patches can restrain the collapsing of malacic trachea under negative pressure. This study may open the possibility of using an adhesive hydrogel as a new approach in the difficult clinical situation of tracheomalacia.
Collapse
Affiliation(s)
- Ece Uslu
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Vijay Kumar Rana
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Sokratis Anagnostopoulos
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Peyman Karami
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | | | - Cecile Courbon
- Department of Anesthesiology, University Hospital, CHUV, Lausanne, Switzerland
| | - Francois Gorostidi
- Department of Otorhinolaryngology, Airway Sector, University Hospital, CHUV, Lausanne, Switzerland
| | - Kishore Sandu
- Department of Otorhinolaryngology, Airway Sector, University Hospital, CHUV, Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Dominique P. Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| |
Collapse
|
8
|
Maldonado JA, Puentes DA, Quintero ID, González-Estrada OA, Villegas DF. Image-Based Numerical Analysis for Isolated Type II SLAP Lesions in Shoulder Abduction and External Rotation. Diagnostics (Basel) 2023; 13:diagnostics13101819. [PMID: 37238302 DOI: 10.3390/diagnostics13101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The glenohumeral joint (GHJ) is one of the most critical structures in the shoulder complex. Lesions of the superior labral anterior to posterior (SLAP) cause instability at the joint. Isolated Type II of this lesion is the most common, and its treatment is still under debate. Therefore, this study aimed to determine the biomechanical behavior of soft tissues on the anterior bands of the glenohumeral joint with an Isolated Type II SLAP lesion. Segmentation tools were used to build a 3D model of the shoulder joint from CT-scan and MRI images. The healthy model was studied using finite element analysis. Validation was conducted with a numerical model using ANOVA, and no significant differences were shown (p = 0.47). Then, an Isolated Type II SLAP lesion was produced in the model, and the joint was subjected to 30 degrees of external rotation. A comparison was made for maximum principal strains in the healthy and the injured models. Results revealed that the strain distribution of the anterior bands of the synovial capsule is similar between a healthy and an injured shoulder (p = 0.17). These results demonstrated that GHJ does not significantly deform for an Isolated Type II SLAP lesion subjected to 30-degree external rotation in abduction.
Collapse
Affiliation(s)
- Javier A Maldonado
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Duvert A Puentes
- School of Mechanical Engineering, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga 680002, Colombia
| | - Ivan D Quintero
- School of Medicine, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga 680002, Colombia
| | - Octavio A González-Estrada
- School of Mechanical Engineering, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga 680002, Colombia
| | - Diego F Villegas
- School of Mechanical Engineering, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga 680002, Colombia
| |
Collapse
|
9
|
Mariano CA, Sattari S, Ramirez GO, Eskandari M. Effects of tissue degradation by collagenase and elastase on the biaxial mechanics of porcine airways. Respir Res 2023; 24:105. [PMID: 37031200 PMCID: PMC10082978 DOI: 10.1186/s12931-023-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/22/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Common respiratory illnesses, such as emphysema and chronic obstructive pulmonary disease, are characterized by connective tissue damage and remodeling. Two major fibers govern the mechanics of airway tissue: elastin enables stretch and permits airway recoil, while collagen prevents overextension with stiffer properties. Collagenase and elastase degradation treatments are common avenues for contrasting the role of collagen and elastin in healthy and diseased states; while previous lung studies of collagen and elastin have analyzed parenchymal strips in animal and human specimens, none have focused on the airways to date. METHODS Specimens were extracted from the proximal and distal airways, namely the trachea, large bronchi, and small bronchi to facilitate evaluations of material heterogeneity, and subjected to biaxial planar loading in the circumferential and axial directions to assess airway anisotropy. Next, samples were subjected to collagenase and elastase enzymatic treatment and tensile tests were repeated. Airway tissue mechanical properties pre- and post-treatment were comprehensively characterized via measures of initial and ultimate moduli, strain transitions, maximum stress, hysteresis, energy loss, and viscoelasticity to gain insights regarding the specialized role of individual connective tissue fibers and network interactions. RESULTS Enzymatic treatment demonstrated an increase in airway tissue compliance throughout loading and resulted in at least a 50% decrease in maximum stress overall. Strain transition values led to significant anisotropic manifestation post-treatment, where circumferential tissues transitioned at higher strains compared to axial counterparts. Hysteresis values and energy loss decreased after enzymatic treatment, where hysteresis reduced by almost half of the untreated value. Anisotropic ratios exhibited axially led stiffness at low strains which transitioned to circumferentially led stiffness when subjected to higher strains. Viscoelastic stress relaxation was found to be greater in the circumferential direction for bronchial airway regions compared to axial counterparts. CONCLUSION Targeted fiber treatment resulted in mechanical alterations across the loading range and interactions between elastin and collagen connective tissue networks was observed. Providing novel mechanical characterization of elastase and collagenase treated airways aids our understanding of individual and interconnected fiber roles, ultimately helping to establish a foundation for constructing constitutive models to represent various states and progressions of pulmonary disease.
Collapse
Affiliation(s)
- Crystal A Mariano
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Samaneh Sattari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Gustavo O Ramirez
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA.
- BREATHE Center, School of Medicine, University of California at Riverside, Riverside, CA, USA.
- Department of Bioengineering, University of California at Riverside, Riverside, CA, USA.
| |
Collapse
|
10
|
Derman ID, Singh YP, Saini S, Nagamine M, Banerjee D, Ozbolat IT. Bioengineering and Clinical Translation of Human Lung and its Components. Adv Biol (Weinh) 2023; 7:e2200267. [PMID: 36658734 PMCID: PMC10121779 DOI: 10.1002/adbi.202200267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Indexed: 01/21/2023]
Abstract
Clinical lung transplantation has rapidly established itself as the gold standard of treatment for end-stage lung diseases in a restricted group of patients since the first successful lung transplant occurred. Although significant progress has been made in lung transplantation, there are still numerous obstacles on the path to clinical success. The development of bioartificial lung grafts using patient-derived cells may serve as an alternative treatment modality; however, challenges include developing appropriate scaffold materials, advanced culture strategies for lung-specific multiple cell populations, and fully matured constructs to ensure increased transplant lifetime following implantation. This review highlights the development of tissue-engineered tracheal and lung equivalents over the past two decades, key problems in lung transplantation in a clinical environment, the advancements made in scaffolds, bioprinting technologies, bioreactors, organoids, and organ-on-a-chip technologies. The review aims to fill the lacuna in existing literature toward a holistic bioartificial lung tissue, including trachea, capillaries, airways, bifurcating bronchioles, lung disease models, and their clinical translation. Herein, the efforts are on bridging the application of lung tissue engineering methods in a clinical environment as it is thought that tissue engineering holds enormous promise for overcoming the challenges associated with the clinical translation of bioengineered human lung and its components.
Collapse
Affiliation(s)
- I. Deniz Derman
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Shweta Saini
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Momoka Nagamine
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Chemistry, Penn State University; University Park, PA,16802, USA
| | - Dishary Banerjee
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University; University Park, PA, 16802, USA
- Materials Research Institute, Penn State University; University Park, PA, 16802, USA
- Cancer Institute, Penn State University; University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University; University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
11
|
Bao Y, Li K, Qu S. Research on removing characteristics of tracheal foreign bodies based on the baskets. Clin Biomech (Bristol, Avon) 2023; 103:105905. [PMID: 36822065 DOI: 10.1016/j.clinbiomech.2023.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Foreign body aspiration is a prevalent respiratory disease in life. There is a lack of relevant research on removing foreign bodies. The process that foreign bodies are removing with baskets is very complicated and the relevant theoretical research is immature. METHODS The characteristics of the basket to remove foreign bodies in the trachea were analyzed. According to the geometric and force relationship between the basket, the foreign body and the trachea, the geometric relationship model and mechanical model are established, and validated by finite element analysis and experiments. FINDINGS The simulation results and experimental results show that the simulation curves of the contact force between the baskets and the foreign bodies, and the simulation curves of the contact force between the basket and the trachea are the same as the theoretical curve. Therefore, the geometric relationship model and mechanical model have reference values. INTERPRETATION These results can not only improve the quality of the operation, and shorten the operation time, but also provide a theoretical basis for automatic removal of foreign bodies.
Collapse
Affiliation(s)
- Yudong Bao
- Harbin University of Science and Technology, Harbin, China; Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin, China.
| | - Kai Li
- Harbin University of Science and Technology, Harbin, China; Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin, China.
| | - Shengqian Qu
- Harbin University of Science and Technology, Harbin, China; Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin, China.
| |
Collapse
|
12
|
Zhu X, Sun K, Xia X, Chen Y, Sun A, Chen X. A preliminary biomechanical study on trachea reconstruction surgery using the clavicular periosteum. Front Bioeng Biotechnol 2023; 11:1117483. [PMID: 36733972 PMCID: PMC9888552 DOI: 10.3389/fbioe.2023.1117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction: The clavicular periosteum is a suitable material for trachea reconstruction. However, because the periosteum is softer and has different mechanical properties than tracheal cartilage, the mechanical loads under physiological conditions after trachea reconstruction may cause collapse or stenosis of the repaired trachea. Methods: In this study, the mechanical properties of the clavicular periosteum were tested, and the 3D trachea geometry was constructed based on CT-scanning images acquired before the surgery. Differing degrees of stenosis (0%, 33%, and 55%) for the repaired trachea sections were predetermined, presenting the different degrees of the tracheal cross-sectional area immediately after clavicular periosteum reconstruction. Then the biomechanical environments of the trachea and the airflow were simulated and analyzed. Results: In the fluid mechanics simulation, the air pressure on the patch area decreased with increasing degrees of stenosis, while the fluid velocity increased as stenosis increased. In solid mechanics simulations, patch area deformation increased as the cross-sectional area of the trachea decreased, and the stress in the patch increased as stenosis increased. Discussion: The solid stress changes may cause tissue remodeling, thickening, and scarring of the patch area. The fluid mechanical changes in the repaired trachea would further aggravate the stenosis. The numerical simulation study would provide references for biomechanical evaluation of trachea reconstruction surgery. The surgical indications may be expanded in the future based on the model prediction results.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kangli Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xin Xia
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Chen
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China,*Correspondence: Xingming Chen, ; Anqiang Sun,
| | - Xingming Chen
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Xingming Chen, ; Anqiang Sun,
| |
Collapse
|
13
|
Heise RL. Computational, Ex Vivo, and Tissue Engineering Techniques for Modeling Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:107-120. [PMID: 37195528 DOI: 10.1007/978-3-031-26625-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The large airways are a critical component of the respiratory tree serving both an immunoprotective role and a physiological role for ventilation. The physiological role of the large airways is to move a large amount of air to and from the gas exchange surfaces of the alveoli. This air becomes divided along the respiratory tree as it moves from the large airways to smaller airways, bronchioles, and alveoli. The large airways are incredibly important from an immunoprotective role as the large airways are an early line of defense against inhaled particles, bacteria, and viruses. The key immunoprotective feature of the large airways is mucus production and mucociliary clearance mechanism. Each of these key features of the lung is important from both a basic physiology perspective and an engineering perspective for regenerative medicine. In this chapter, we will cover the large airways from an engineering perspective to highlight existing models of the large airways as well as future directions for modeling and repair.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
DeSchmidt AM, Gong AT, Batista JE, Song AY, Bidinger SL, Schul AL, Wang EY, Norfleet JE, Sweet RM. Characterization of Puncture Forces of the Human Trachea and Cricothyroid Membrane. J Biomech Eng 2022; 144:1140296. [PMID: 35445243 DOI: 10.1115/1.4054380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Accurate human tissue biomechanical data represents a critical knowledge gap that will help facilitate the advancement of new medical devices, patient-specific predictive models, and training simulators. Tissues related to the human airway are a top priority, as airway medical procedures are common and critical. Placement of a surgical airway, though less common, is often done in an emergent (cricothyrotomy) or urgent (tracheotomy) fashion. This study is the first to report relevant puncture force data for the human cricothyroid membrane and tracheal annular ligaments. Puncture forces of the cricothyroid membrane and tracheal annular ligaments were collected from 39 and 42 excised human donor tracheas, respectively, with a mechanized load frame holding various surgical tools. The average puncture force of the cricothyroid membrane using an 11 blade scalpel was 1.01 ± 0.36 N, and the average puncture force of the tracheal annular ligaments using a 16 gauge needle was 0.98 ± 0.34 N. This data can be used to inform medical device and airway training simulator development as puncture data of these anatomies has not been previously reported.
Collapse
Affiliation(s)
- Aleah M DeSchmidt
- Department of Surgery, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000; Department of Bioengineering, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000
| | - Alex T Gong
- Department of Surgery, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000
| | | | - Agnes Y Song
- Department of Surgery, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000; Department of Bioengineering, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000
| | - Sophia L Bidinger
- Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Alyssa L Schul
- Philips Healthcare, 22100 Bothell Everett Hwy, Bothell, WA 98021
| | - Everet Y Wang
- Department of Surgery, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000
| | - Jack E Norfleet
- Medical Simulation Research Branch Simulation and Training Technology Center, U.S. Army CCDC Soldier Center, 12423 Research Parkway, Orlando, FL 32826
| | - Robert M Sweet
- Department of Surgery, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000; Department of Urology, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000;Department of Bioengineering, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000
| |
Collapse
|
15
|
Microstructure and mechanics of the bovine trachea: Layer specific investigations through SHG imaging and biaxial testing. J Mech Behav Biomed Mater 2022; 134:105371. [PMID: 35868065 DOI: 10.1016/j.jmbbm.2022.105371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
The trachea is a complex tissue made up of hyaline cartilage, fibrous tissue, and muscle fibers. Currently, the knowledge of microscopic structural organization of these components and their role in determining the tissue's mechanical response is very limited. The purpose of this study is to provide data on the microstructure of the tracheal components and its influence on tissue's mechanical response. Five bovine tracheae were used in this study. Adventitia, cartilage, mucosa/submucosa, and trachealis muscle layers were methodically cut out from the whole tissue. Second-harmonic generation(SHG) via multi-photon microscopy (MPM) enabled imaging of collagen fibers and muscle fibers. Simultaneously, a planar biaxial test rig was used to record the mechanical behavior of each layer. In total 60 samples were tested and analyzed. Fiber architecture in the adventitia and mucosa/submucosa layer showed high degree of anisotropy with the mean fiber angle varying from sample to sample. The trachealis muscle displayed neat layers of fibers organized in the longitudinal direction. The cartilage also displayed a structure of thick mesh-work of collagen type II organized predominantly towards the circumferential direction. Further, mechanical testing demonstrated the anisotropic nature of the tissue components. The cartilage was identified as the stiffest component for strain level < 20% and hence the primary load bearing component. The other three layers displayed a non-linear mechanical response which could be explained by the structure and organization of their fibers. This study is useful in enhancing the utilization of structurally motivated material models for predicting tracheal overall mechanical response.
Collapse
|
16
|
Three-dimensional models of the lung: past, present and future: a mini review. Biochem Soc Trans 2022; 50:1045-1056. [PMID: 35411381 DOI: 10.1042/bst20190569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 01/09/2023]
Abstract
Respiratory diseases are a major reason for death in both men and women worldwide. The development of therapies for these diseases has been slow and the lack of relevant human models to understand lung biology inhibits therapeutic discovery. The lungs are structurally and functionally complex with many different cell types which makes designing relevant lung models particularly challenging. The traditional two-dimensional (2D) cell line cultures are, therefore, not a very accurate representation of the in vivo lung tissue. The recent development of three-dimensional (3D) co-culture systems, popularly known as organoids/spheroids, aims to bridge the gap between 'in-dish' and 'in-tissue' cell behavior. These 3D cultures are modeling systems that are widely divergent in terms of culturing techniques (bottom-up/top-down) that can be developed from stem cells (adult/embryonic/pluripotent stem cells), primary cells or from two or more types of cells, to build a co-culture system. Lung 3D models have diverse applications including the understanding of lung development, lung regeneration, disease modeling, compound screening, and personalized medicine. In this review, we discuss the different techniques currently being used to generate 3D models and their associated cellular and biological materials. We further detail the potential applications of lung 3D cultures for disease modeling and advances in throughput for drug screening.
Collapse
|
17
|
Tang H, Sun W, Chen Y, She Y, Chen C. Future directions for research on tissue-engineered trachea. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Soriano L, Khalid T, Whelan D, O'Huallachain N, Redmond KC, O'Brien FJ, O'Leary C, Cryan SA. Development and clinical translation of tubular constructs for tracheal tissue engineering: a review. Eur Respir Rev 2021; 30:30/162/210154. [PMID: 34750116 DOI: 10.1183/16000617.0154-2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Effective restoration of extensive tracheal damage arising from cancer, stenosis, infection or congenital abnormalities remains an unmet clinical need in respiratory medicine. The trachea is a 10-11 cm long fibrocartilaginous tube of the lower respiratory tract, with 16-20 tracheal cartilages anterolaterally and a dynamic trachealis muscle posteriorly. Tracheal resection is commonly offered to patients suffering from short-length tracheal defects, but replacement is required when the trauma exceeds 50% of total length of the trachea in adults and 30% in children. Recently, tissue engineering (TE) has shown promise to fabricate biocompatible tissue-engineered tracheal implants for tracheal replacement and regeneration. However, its widespread use is hampered by inadequate re-epithelialisation, poor mechanical properties, insufficient revascularisation and unsatisfactory durability, leading to little success in the clinical use of tissue-engineered tracheal implants to date. Here, we describe in detail the historical attempts and the lessons learned for tracheal TE approaches by contextualising the clinical needs and essential requirements for a functional tracheal graft. TE manufacturing approaches explored to date and the clinical translation of both TE and non-TE strategies for tracheal regeneration are summarised to fully understand the big picture of tracheal TE and its impact on clinical treatment of extensive tracheal defects.
Collapse
Affiliation(s)
- Luis Soriano
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Joint first authors
| | - Tehreem Khalid
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Joint first authors
| | - Derek Whelan
- Dept of Mechanical, Biomedical and Manufacturing Engineering, Munster Technological University, Cork, Ireland
| | - Niall O'Huallachain
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Karen C Redmond
- National Cardio-thoracic Transplant Unit, Mater Misericordiae University Hospital and UCD School of Medicine, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Cian O'Leary
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Both authors contributed equally
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland .,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Both authors contributed equally
| |
Collapse
|
19
|
Matrix Description of Non-Linear Properties of Materials or Structural Components-Idea and Application Examples. MATERIALS 2021; 14:ma14195837. [PMID: 34640233 PMCID: PMC8510341 DOI: 10.3390/ma14195837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Numerical methods are widely used in structural analysis problems. In the cases of the most complex and practical problems, they are often the only way to obtain solutions, as analytical methods prove ineffective. The motivation for this paper was the desire to extend the scope of numerical methods to cover the problems of creating constitutive models of structural materials. The aim of this research was to develop a matrix or numerical discrete constitutive model of materials. It presents the general assumptions of the developed method for modeling the physical properties of materials. The matrix model is only useful with an appropriate numerical algorithm. Such an algorithm was created and described in this paper. Based on its findings, computer software was developed to perform numerical simulations. Presented calculation examples confirmed the effectiveness of the developed method to create constitutive matrix models of various typical materials, such as steel, but also, e.g., hyper-elastic materials. It also presents the usefulness of constitutive matrix models for simulations of simple stress states and analyses of structural elements such as reinforced concrete. All presented examples involved the physical nonlinearity of the materials. It is proved that the developed matrix constitutive model of materials is efficient and quite versatile. In complex analyses of structures made of nonlinear materials, it can be used as an effective alternative to classical constitutive or analytical models based on elementary mathematical functions.
Collapse
|
20
|
A Standardised Approach to the Biomechanical Evaluation of Tracheal Grafts. Biomolecules 2021; 11:biom11101461. [PMID: 34680094 PMCID: PMC8533576 DOI: 10.3390/biom11101461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The ideal tracheal substitute must have biomechanical properties comparable to the native trachea, but currently there is no standardised approach to evaluating these properties. Here we propose a novel method for evaluating and comparing the properties of tracheal substitutes, thus systematising both measurement and data curation. This system was tested by comparing native rabbit tracheas to frozen and decellularised specimens and determining the histological characteristics of those specimens. We performed radial compression tests on the anteroposterior tracheal axis and longitudinal axial tensile tests with the specimens anastomosed to the jaw connected to a measuring system. All calculations and results were adjusted according to tracheal size, always using variables relative to the tracheal dimensions, thus permitting comparison of different sized organs. The biomechanical properties of the decellularised specimens were only slightly reduced compared to controls and significant in regard to the maximum stress withstood in the longitudinal axis (-0.246 MPa CI [-0.248, -0.145] MPa) and the energy stored per volume unit (-0.124 mJ·mm-3 CI [-0.195, -0.055] mJ·mm-3). The proposed method is suitable for the systematic characterisation of the biomechanical properties of different tracheal substitutes, regardless of the size or nature of the substitute, thus allowing for direct comparisons.
Collapse
|
21
|
Abdul Samat A, Abdul Hamid ZA, Jaafar M, Yahaya BH. Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic Acid Blend for Fabrication of 3D Filaments for Tracheal Tissue Engineering. Polymers (Basel) 2021; 13:polym13183087. [PMID: 34577988 PMCID: PMC8472949 DOI: 10.3390/polym13183087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Surgical reconstruction of extensive tracheal lesions is challenging. It requires a mechanically stable, biocompatible, and nontoxic material that gradually degrades. One of the possible solutions for overcoming the limitations of tracheal transplantation is a three-dimensional (3D) printed tracheal scaffold made of polymers. Polymer blending is one of the methods used to produce material for a trachea scaffold with tailored characteristics. The purpose of this study is to evaluate the mechanical and in vitro properties of a thermoplastic polyurethane (TPU) and polylactic acid (PLA) blend as a potential material for 3D printed tracheal scaffolds. Both materials were melt-blended using a single screw extruder. The morphologies (as well as the mechanical and thermal characteristics) were determined via scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, tensile test, and Differential Scanning calorimetry (DSC). The samples were also evaluated for their water absorption, in vitro biodegradability, and biocompatibility. It is demonstrated that, despite being not miscible, TPU and PLA are biocompatible, and their promising properties are suitable for future applications in tracheal tissue engineering.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Sains@Bertam, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
- Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (Z.A.A.H.); (M.J.)
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (Z.A.A.H.); (M.J.)
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Sains@Bertam, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
- Correspondence:
| |
Collapse
|
22
|
Li S, Li Y, Kong M, Zhang C, Geng Y, Sun M, He L, Li S, Liu H. Factors Associated with Age-Related Changes in Non-Smoking Urban Men and Women in China Determined by Low-Dose Computed Tomography Imaging. Med Sci Monit 2021; 27:e931006. [PMID: 34437515 PMCID: PMC8406892 DOI: 10.12659/msm.931006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Respiratory function usually worsens in the elderly with aging. This study aimed to retrospectively investigate tracheal changes caused by “normal aging” through use of low-dose CT (LDCT) in non-smoking asymptomatic urban residents and the related factors influencing tracheal changes. Material/Methods A total of 733 Chinese subjects who underwent LDCT were recruited. The trachea shape, width, and calcification degree of the tracheal wall were measured and compared between males and females and among different age groups. The effects of age, sex, trachea morphology, BMI, BP, GLU, TC, TG, HDL, and LDL on the width and calcification of tracheal wall were analyzed by multiple linear regression. Results Significant sex differences in trachea shape were found, as type II and type I were found mainly in the males and females, respectively. The values of anterior-posterior inner diameter (AP), left-right inner diameter (LR), width, and calcification score of tracheae in the males were higher than that in the females. In both males and females, trachea AP, wall width, and calcification scores increased with age, but this trend was not observed in tracheal LR. Age, sex, and trachea shape had significant effects on the width and calcification scores of tracheal walls, and trachea calcification was one of the factors influencing tracheal wall width. Conclusions Tracheal aging can be evaluated by measuring trachea shape, thickness, and the degree of calcification of the tracheal wall by LDCT, while sex and age should be taken into consideration comprehensively for judging normal trachea aging. In addition, obesity may aggravate trachea aging.
Collapse
Affiliation(s)
- Shujing Li
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yaguang Li
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Meibao Kong
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Chenguang Zhang
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yulan Geng
- Department of Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Mengyue Sun
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Li He
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Shengnan Li
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Huaijun Liu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
23
|
Pien N, Palladino S, Copes F, Candiani G, Dubruel P, Van Vlierberghe S, Mantovani D. Tubular bioartificial organs: From physiological requirements to fabrication processes and resulting properties. A critical review. Cells Tissues Organs 2021; 211:420-446. [PMID: 34433163 DOI: 10.1159/000519207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sara Palladino
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
- GenT Lab, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
| | - Gabriele Candiani
- GenT Lab, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
| |
Collapse
|
24
|
Zobaer T, Sutradhar A. Modeling the effect of tumor compression on airflow dynamics in trachea using contact simulation and CFD analysis. Comput Biol Med 2021; 135:104574. [PMID: 34175532 DOI: 10.1016/j.compbiomed.2021.104574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Malignant central airway obstruction can cause severe breathing difficulty in a patient that requires surgical intervention or stent implantation to alleviate it. A predictive model to identify the onset of this event as the central airway is progressively compressed by tumor growth will be helpful for clinicians to plan for medical intervention. We present such a model to simulate tumor compression of the trachea and the resulting change in airflow dynamics to estimate the level of stenosis that will cause severe breathing difficulties. A patient-specific model of trachea was generated from acquired Computed Tomography (CT) scans for the simulations. The compression of this trachea due to tumor growth is modeled using nonlinear contact simulations of ellipsoidal tumors with the trachea. Computational fluid dynamics (CFD) is employed to simulate the turbulent airflow during inhalation in the stenosed trachea. From the CFD simulated flow fields, the power loss due to airflow through the domain is calculated. The results show that when the obstruction in the trachea reaches 50%, compared to the undeformed model, the power loss can rise to more than 66%. A measure of breathing difficulty can be derived by correlating it with the power loss. Thus, medical intervention can be predicted based on the degree of stenosis if the induced power loss exceeds a threshold that causes severe breathing discomfort.
Collapse
Affiliation(s)
- Tareq Zobaer
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.
| | - Alok Sutradhar
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
25
|
Yoshimura T, Colley N, Komizunai S, Ninomiya S, Kanai S, Konno A, Yasuda K, Taguchi H, Hashimoto T, Shimizu S. Construction of a detachable artificial trachea model for three age groups for use in an endotracheal suctioning training environment simulator. PLoS One 2021; 16:e0249010. [PMID: 33780512 PMCID: PMC8007018 DOI: 10.1371/journal.pone.0249010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/09/2021] [Indexed: 11/18/2022] Open
Abstract
Tracheal suctioning is an important procedure to maintain airway patency by removing secretions. Today, suctioning operators include not only medical staff, but also family caregivers. The use of a simulation system has been noted to be the most effective way to learn the tracheal suctioning technique for operators. While the size of the trachea varies across different age groups, the artificial trachea model in the simulation system has only one fixed model. Thus, this study aimed to construct multiple removable trachea models according to different age groups. We enrolled 20 patients who had previously received proton beam therapy in our institution and acquired the treatment planning computed tomography (CT) image data. To construct the artificial trachea model for three age groups (children, adolescents and young adults, and adults), we analyzed the three-dimensional coordinates of the entire trachea, tracheal carina, and the end of the main bronchus. We also analyzed the diameter of the trachea and main bronchus. Finally, we evaluated the accuracy of the model by analyzing the difference between the constructed model and actual measurements. The trachea model was 8 cm long for children and 12 cm for adolescents and young adults, and for adults. The angle between the trachea and bed was about 20 degrees, regardless of age. The mean model accuracy was less than 0.4 cm. We constructed detachable artificial trachea models for three age groups for implementation in the endotracheal suctioning training environment simulator (ESTE-SIM) based on the treatment planning CT image. Our constructed artificial trachea models will be able to provide a simulation environment for various age groups in the ESTE-SIM.
Collapse
Affiliation(s)
- Takaaki Yoshimura
- Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Noriyo Colley
- Department of Comprehensive Development Nursing, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Shunsuke Komizunai
- Division of System Science and Informatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Shinji Ninomiya
- Department of Medical Science and Technology, Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
| | - Satoshi Kanai
- Division of System Science and Informatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Atsushi Konno
- Division of System Science and Informatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Hashimoto
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Subramaniam DR, Oren L, Willging JP, Gutmark EJ. Evaluating the biomechanical characteristics of cuffed-tracheostomy tubes using finite element analysis. Comput Methods Biomech Biomed Engin 2021; 24:1595-1605. [PMID: 33761806 DOI: 10.1080/10255842.2021.1902511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study was to perform finite element analysis (FEA) of cuff inflation within an anatomically accurate model of an adult trachea in four different cuffed-tracheostomy tube designs. The leakage quantified by the distance between the cuff and trachea was largest for the Tracoe cuff and smallest for the Portex cuff. The smooth muscle stresses were greatest for the Portex and least for the Distal cuff, respectively. The proposed FEA model offers a promising approach to virtually evaluate the sealing efficacy of cuffed-tracheostomy tubes and the tracheal wall stresses induced by cuff inflation, prior to application.
Collapse
Affiliation(s)
| | - Liran Oren
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Paul Willging
- Division of Pediatric Otolaryngology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ephraim J Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
27
|
Preliminary Study on the Development of In Vitro Human Respiratory Epithelium Using Collagen Type I Scaffold as a Potential Model for Future Tracheal Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pathological conditions of the tracheal epithelium, such as postoperative injuries and chronic conditions, often compromise the functionality of the respiratory epithelium. Although replacement of the respiratory epithelium using various types of tracheal transplantation has been attempted, there is no predictable and dependable replacement method that holds for safe and practicable long-term use. Therefore, we used a tissue engineering approach for ex vivo regeneration of the respiratory epithelium (RE) construct. Collagen type I was isolated from sheep tendon and it was fabricated in a three-dimensional (3D) scaffold format. Isolated human respiratory epithelial cells (RECs) and fibroblasts from nasal turbinate were co-cultured on the 3D scaffold for 48 h, and epithelium maturation was allowed for another 14 days in an air–liquid interface culture system. The scanning electron microscope results revealed a fabricated porous-structure 3D collagen scaffold. The scaffold was found to be biocompatible with RECs and fibroblasts and allows cells attachment, proliferation, and migration. Immunohistochemical analysis showed that the seeded RECs and fibroblasts were positive for expression of cytokeratin 14 and collagen type I markers, respectively, indicating that the scaffold supports the native phenotype of seeded cells over a period of 14 days. Although a longer maturation period is needed for ciliogenesis to occur in RECs, the findings suggest that the tissue-engineered RE construct is a potential candidate for direct use in tracheal epithelium replacement or tracheal tube reengineering.
Collapse
|
28
|
García-Herrera CM, Cuevas ÁA, Celentano DJ, Navarrete Á, Aranda P, Herrera E, Uribe S. Analysis of the passive biomechanical behavior of a sheep-specific aortic artery in pulsatile flow conditions. Comput Methods Biomech Biomed Engin 2021; 24:1228-1241. [PMID: 33475015 DOI: 10.1080/10255842.2021.1872549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this work, a novel numerical-experimental procedure is proposed, through the use of the Cardiac Simulation Test (CST), device that allows the exposure of the arterial tissue to in-vitro conditions, mimicking cardiac cycles generated by the heart. The main goal is to describe mechanical response of the arterial wall under physiological conditions, when it is subjected to a variable pressure wave over time, which causes a stress state affecting the biomechanical behavior of the artery wall. In order to get information related to stress and strain states, numerical simulation via finite element method, is performed under a condition of systolic and diastolic pressure. The description of this methodological procedure is performed with a sample corresponding to a sheep aorta without cardiovascular pathologies. There are two major findings: the evaluation of the mechanical properties of the sheep aorta through the above-mentioned tests and, the numerical simulation of the mechanical response under the conditions present in the CST. The results state that differences between numerical and experimental circumferential stretch in diastole and systole to distinct zones studied do not exceed 1%. However, greater discrepancies can be seen in the distensibility and incremental modulus, two main indicators, which are in the order of 30%. In addition, numerical results determine an increase of the principal maximum stress and strain between the case of systolic and diastolic pressure, corresponding to 31.1% and 14.9% for the stress and strain measurement respectively; where maximum values of these variables are located in the zone of the ascending aorta and the aortic arch.
Collapse
Affiliation(s)
- Claudio M García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Álvaro A Cuevas
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Diego J Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica, Santiago, Chile.,Radiology department and biomedical imaging center, school of medicine, Pontificia Universidad Católica de Chile
| | - Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro Aranda
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Emilio Herrera
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sergio Uribe
- Radiology department and biomedical imaging center, school of medicine, Pontificia Universidad Católica de Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Chile
| |
Collapse
|
29
|
Li Y, Li L, Zhou Z, Ren K, Lu H, Wang X, Li Z, Ren J, Han X, Li Q. Evaluation of the Physiological Changes in the Central Airway on Multi-Detector Computed Tomography. Respiration 2020; 99:771-778. [PMID: 33032277 DOI: 10.1159/000509939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Most data about the trachea are collected during deep inspiration breath holding (DIBH) using multi-detector computed tomography (MDCT). Images of the physiological changes in the central airway are lacking. OBJECTIVE The aim of this study was to explore the physiological changes in the central airway on MDCT during DIBH and deep expiration breath holding (DEBH). METHOD The data from 62 patients (38 men and 24 women) who underwent enhanced computed tomography in our hospital were collected. Patients were grouped according to sex and age (18-45, 46-60, and >61 years). Anteroposterior diameter (APD) and transverse diameter (TD) at 3 levels (cricoid, intrathoracic inlet, and 2 cm above the carina), tracheal length, bronchial length, and subcarina angle (SCA) were measured. RESULTS The average length of the trachea from the cricoid cartilage to the carina was 103.91 ± 10.37 mm at DEBH and 108.63 ± 11.31 mm at DIBH (p < 0.001). The APD of the trachea at the level of the cricoid, intrathoracic inlet, and 2 cm above the carina showed no differences between DEBH and DIBH. The TD of the trachea at the level of the cricoid, intrathoracic inlet, and 2 cm above the carina showed no differences between DEBH and DIBH. The average length of the right main bronchus during DEBH and DIBH was measured as 13.21 ± 3.60 and 13.24 ± 3.49 mm, respectively (p = 0.956). The average length of the left main bronchus at DEBH and DIBH was measured as 44.19 ± 5.50 and 44.27 ± 5.11 mm, respectively (p = 0.929). The average SCA was 81.74 ± 14.56 at DIBH, while it was 80.53 ± 14.38 at DEBH. The change in SCA between DIBH and DEBH showed no significant difference (p = 0.642). CONCLUSIONS The APD at the level of the intrathoracic inlet is larger than that at the cricoid and 2 cm above the carina, while the TD is the opposite. These findings about the trachea and bronchus in our study may contribute to bronchoscopy examinations, tube applications, stent design, and stenting.
Collapse
Affiliation(s)
- Yahua Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zihe Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kewei Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huibin Lu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Wang
- School of Mechanics and Engineering Science, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou, China
| | - Zhaonan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
| | - Qian Li
- School of Mechanics and Engineering Science, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Kenja K, Madireddy S, Vemaganti K. Calibration of hyperelastic constitutive models: the role of boundary conditions, search algorithms, and experimental variability. Biomech Model Mechanobiol 2020; 19:1935-1952. [PMID: 32140961 DOI: 10.1007/s10237-020-01318-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 02/20/2020] [Indexed: 11/26/2022]
Abstract
The calibration of hyperelastic constitutive models of soft tissue and tissue surrogates is often treated as an exercise in curve-fitting to the average experimental response, and many of the complicating factors such as experimental boundary conditions and data variability are ignored. In this work, we focus on three questions that arise in this area: the ramifications of ignoring the experimental boundary conditions, the use of local optimizers, and the role of data variability. Using data from a uniaxial extension experiment on a tissue surrogate, we study how these three factors affect the calibration of isotropic hyperelastic constitutive models. Our results show that even with the simplest of constitutive models, it is necessary to look beyond a "good fit" to the average.
Collapse
Affiliation(s)
- Krishna Kenja
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA
| | - Sandeep Madireddy
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kumar Vemaganti
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA.
| |
Collapse
|
31
|
Wu L, Magaz A, Huo S, Darbyshire A, Loizidou M, Emberton M, Birchall M, Song W. Human airway-like multilayered tissue on 3D-TIPS printed thermoresponsive elastomer/collagen hybrid scaffolds. Acta Biomater 2020; 113:177-195. [PMID: 32663664 DOI: 10.1016/j.actbio.2020.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023]
Abstract
Developing a biologically representative complex tissue of the respiratory airway is challenging, however, beneficial for treatment of respiratory diseases, a common medical condition representing a leading cause of death in the world. This in vitro study reports a successful development of synthetic human tracheobronchial epithelium based on interpenetrated hierarchical networks composed of a reversely 3D printed porous structure of a thermoresponsive stiffness-softening elastomer nanohybrid impregnated with collagen nanofibrous hydrogel. Human bronchial epithelial cells (hBEpiCs) were able to attach and grow into an epithelial monolayer on the hybrid scaffolds co-cultured with either human bronchial fibroblasts (hBFs) or human bone-marrow derived mesenchymal stem cells (hBM-MSCs), with substantial enhancement of mucin expression, ciliation, well-constructed intercellular tight junctions and adherens junctions. The multi-layered co-culture 3D scaffolds consisting of a top monolayer of differentiated epithelium, with either hBFs or hBM-MSCs proliferating within the hyperelastic nanohybrid scaffold underneath, created a tissue analogue of the upper respiratory tract, validating these 3D printed guided scaffolds as a platform to support co-culture and cellular organization. In particular, hBM-MSCs in the co-culture system promoted an overall matured physiological tissue analogue of the respiratory system, a promising synthetic tissue for drug discovery, tracheal repair and reconstruction. STATEMENT OF SIGNIFICANCE: Respiratory diseases are a common medical condition and represent a leading cause of death in the world. However, the epithelium is one of the most challenging tissues to culture in vitro, and suitable tracheobronchial models, physiologically representative of the innate airway, remain largely elusive. This study presents, for the first time, a systematic approach for the development of functional multilayered epithelial synthetic tissue in vitro via co-culture on a 3D-printed thermoresponsive elastomer interpenetrated with a collagen hydrogel network. The viscoelastic nature of the scaffold with stiffness softening at body temperature provide a promising matrix for soft tissue engineering. The results presented here provide new insights about the epithelium at different surfaces and interfaces of co-culture, and pave the way to offer a customizable reproducible technology to generate physiologically relevant 3D biomimetic systems to advance our understanding of airway tissue regeneration.
Collapse
|
32
|
Smeltz AM, Bhatia M, Arora H, Long J, Kumar PA. Anesthesia for Resection and Reconstruction of the Trachea and Carina. J Cardiothorac Vasc Anesth 2020; 34:1902-1913. [DOI: 10.1053/j.jvca.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022]
|
33
|
Sant S, Wang D, Agarwal R, Dillender S, Ferrell N. Glycation alters the mechanical behavior of kidney extracellular matrix. Matrix Biol Plus 2020; 8:100035. [PMID: 33543034 PMCID: PMC7852306 DOI: 10.1016/j.mbplus.2020.100035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
The mechanical properties of the extracellular matrix (ECM) are important in maintaining normal physiological function, and changes in ECM mechanics drive disease. The biochemical structure of the ECM is modified with aging and in diseases such as diabetes. One mechanism of ECM modification is the non-enzymatic reaction between sugars and ECM proteins resulting in formation of advanced glycation end products (AGEs). Some AGE reactions result in formation of molecular crosslinks within or between matrix proteins, but it is not clear how sugar-mediated biochemical modification of the ECM translates to changes in kidney ECM mechanical properties. AGE-mediated changes in ECM mechanics may have pathological consequences in diabetic kidney disease. To determine how sugars alter the mechanical properties of the kidney ECM, we employ custom methodologies to evaluate the mechanical properties of isolated tubular basement membrane (TBM) and glomerular ECM. Results show that the mechanical properties of TBM and glomerular ECM stiffness were altered by incubation in glucose and ribose. Mechanical behavior of TBM and glomerular ECM were further evaluated using mechanical models for hyperelastic materials in tension and compression. Increased ECM stiffness following sugar modification corresponded to increased crosslinking as determined by ECM fluorescence and reduced pepsin extractability of sugar modified ECM. These results show that sugar-induced modifications significantly affect the mechanical properties of kidney ECM. AGE-mediated changes in ECM mechanics may be important in progression of chronic diseases including diabetic kidney disease.
Collapse
Affiliation(s)
- Snehal Sant
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States of America
| | - Dan Wang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States of America
| | - Rishabh Agarwal
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States of America
| | - Sarah Dillender
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States of America
| | - Nicholas Ferrell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States of America.,Department of Biomedical Engineering, Vanderbilt University, United States of America.,Vanderbilt Center for Kidney Disease, United States of America
| |
Collapse
|
34
|
Tsukamoto M, Yamanaka H, Hitosugi T, Yokoyama T. Endotracheal Tube Migration Associated With Extension During Tracheotomy. Anesth Prog 2020; 67:3-8. [PMID: 32191508 DOI: 10.2344/anpr-66-04-05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tracheotomy is occasionally performed to prevent postoperative airway obstruction especially for invasive surgical procedures involving head and neck cancer. When performed under general anesthesia, attention must be paid to avoid rupture of the tracheal tube cuff during the incision into the trachea. In this study, changes in the position of the endotracheal tube tip during extension of the head and neck for a tracheotomy were investigated. Twelve patients underwent placement of a tracheotomy during surgical procedures for oral cancer. After nasal intubation, the distance between the tube tip and the carina was measuring using a fiberoptic scope with the patient's head placed at an angle of 110°. Patients were repositioned for tracheotomy by placing a pillow under the shoulders and extending the head and neck at an angle of 140°. The distance measurements were subsequently repeated. The difference between the first and second measurements was calculated and analyzed statistically using a paired t test. On average the patients were 69.5 ± 9.0 years in age. The distance between the tube tip and the carina at an angle of 140° (3.6 ± 1.1 cm) was significantly longer than that at an angle of 110° (1.7 ± 1.0 cm) (p < 0.001). The migration in the positioning of the endotracheal tube tip was 1.9 ± 0.7 cm (range: 0.7-3.7 cm) upon extension. In 3 cases, the tube cuff was ruptured during incision of the trachea. The endotracheal tube tip may migrate in the cephalad direction approximately 2 cm as a result of the extension of the patient's head and neck during a tracheotomy. Therefore, consideration should be given to advancing the endotracheal tube tip towards the caudal side and to confirming the position of the tube and cuff during a tracheotomy.
Collapse
Affiliation(s)
- Masanori Tsukamoto
- Department of Dental Anesthesiology, Kyushu University Hospital, Fukuoka, Japan
| | - Hitoshi Yamanaka
- Department of Dental Anesthesiology, Kyushu University Hospital, Fukuoka, Japan
| | - Takashi Hitosugi
- Department of Dental Anesthesiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Yokoyama
- Department of Dental Anesthesiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Eskandari M, Nordgren TM, O'Connell GD. Mechanics of pulmonary airways: Linking structure to function through constitutive modeling, biochemistry, and histology. Acta Biomater 2019; 97:513-523. [PMID: 31330329 DOI: 10.1016/j.actbio.2019.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Breathing involves fluid-solid interactions in the lung; however, the lack of experimental data inhibits combining the mechanics of air flow to airway deformation, challenging the understanding of how biomaterial constituents contribute to tissue response. As such, lung mechanics research is increasingly focused on exploring the relationship between structure and function. To address these needs, we characterize mechanical properties of porcine airways using uniaxial tensile experiments, accounting for bronchial orientation- and location- dependency. Structurally-reinforced constitutive models are developed to incorporate the role of collagen and elastin fibers embedded within the extrafibrillar matrix. The strain-energy function combines a matrix description (evaluating six models: compressible NeoHookean, unconstrained Ogden, uncoupled Mooney-Rivlin, incompressible Ogden, incompressible Demiray and incompressible NeoHookean), superimposed with non-linear fibers (evaluating two models: exponential and polynomial). The best constitutive formulation representative of all bronchial regions is determined based on curve-fit results to experimental data, accounting for uniqueness and sensitivity. Glycosaminoglycan and collagen composition, alongside tissue architecture, indicate fiber form to be primarily responsible for observed airway anisotropy and heterogeneous mechanical behavior. To the authors' best knowledge, this study is the first to formulate a structurally-motivated constitutive model, augmented with biochemical analysis and microstructural observations, to investigate the mechanical function of proximal and distal bronchi. Our systematic pulmonary tissue characterization provides a necessary foundation for understanding pulmonary mechanics; furthermore, these results enable clinical translation through simulations of airway obstruction in disease, fluid-structure interaction insights during breathing, and potentially, predictive capabilities for medical interventions. STATEMENT OF SIGNIFICANCE: The advancement of pulmonary research relies on investigating the biomechanical response of the bronchial tree. Experiments demonstrating the non-linear, heterogeneous, and anisotropic material behavior of porcine airways are used to develop a structural constitutive model representative of proximal and distal bronchial behavior. Calibrated material parameters exhibit regional variation in biomaterial properties, initially hypothesized to originate from tissue constituents. Further exploration through biochemical and histological analysis indicates mechanical function is primarily governed by microstructural form. The results of this study can be directly used in finite element and fluid-structure interaction models to enable physiologically relevant and more accurate computational simulations aimed to help diagnose and monitor pulmonary disease.
Collapse
Affiliation(s)
- Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA 92521, USA; Department of Bioengineering, University of California at Riverside, Riverside, CA 92521, USA; BREATHE Center School of Medicine, University of California at Riverside, Riverside, CA 92521, USA; Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Tara M Nordgren
- Division of Biomedical Sciences, University of California at Riverside, Riverside, CA 92521, USA; BREATHE Center School of Medicine, University of California at Riverside, Riverside, CA 92521, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
36
|
Yan XZ, van den Beucken JJJP, Yuan C, Jansen JA, Yang F. Evaluation of polydimethylsiloxane-based substrates for in vitro culture of human periodontal ligament cells. J Biomed Mater Res A 2019; 107:2796-2805. [PMID: 31408269 DOI: 10.1002/jbm.a.36782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
Periodontal ligament (PDL) cells are regarded as the cell type with the highest potential for periodontal regeneration. Biophysical cues of the culture substrate are increasingly identified as vital parameters to affect cell behavior. Compared to traditional tissue culture polystyrene (TCPS), polydimethylsiloxane (PDMS) substrates corroborate more closely the elastic modulus values of the physiological environment. Consequently, the aim of this study was to evaluate the effect of PDMS-based substrates with different stiffness on cellular responses of human PDL cells. PDMS substrates with different stiffness were fabricated by varying the ratio of base to curing component. The influence of PDMS substrates on PDL cell spreading and cytoskeletal morphologies, motility, proliferation, stemness gene expression, and osteogenic differentiation was evaluated and compared to that on conventional TCPS. PDL cells cultured on PDMS substrates exhibited a smaller cell size and more elongated morphology, with less spreading area, fewer focal adhesions, and faster migration than cells on TCPS. Compared to TCPS, PDMS substrates promoted the rapid in vitro expansion of PDL cells without interfering with their self-renewal ability. In contrast, the osteogenic differentiation ability of PDL cells cultured on PDMS was lower in comparison to cells on TCPS. PDL cells on PDMS exhibited similar cell morphology, motility, proliferation, and self-renewal gene expression. The stiffer PDMS substrate increased the osteogenic gene expression of PDL cells compared to the soft PDMS group in one donor. These data indicate that PDMS-based substrates have the potential for the efficient PDL cell expansion.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- Department of Periodontology, School and hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | | | - Chunxue Yuan
- College of Materials Science and Engineering, Tongji University, Shanghai, China
| | - John A Jansen
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fang Yang
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
37
|
Excessive Tracheal Length in Patients With Congenital Tracheal Stenosis. Ann Thorac Surg 2019; 108:138-145. [DOI: 10.1016/j.athoracsur.2019.01.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 11/20/2022]
|
38
|
van Haaften EE, van Turnhout MC, Kurniawan NA. Image-based analysis of uniaxial ring test for mechanical characterization of soft materials and biological tissues. SOFT MATTER 2019; 15:3353-3361. [PMID: 30924833 DOI: 10.1039/c8sm02343c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Uniaxial ring test is a widely used mechanical characterization method for a variety of materials, from industrial elastomers to biological materials. Here we show that the combination of local material compression, bending, and stretching during uniaxial ring test results in a geometry-dependent deformation profile that can introduce systematic errors in the extraction of mechanical parameters. We identify the stress and strain regimes under which stretching dominates and develop a simple image-based analysis approach that eliminates these systematic errors. We rigorously test this approach computationally and experimentally, and demonstrate that we can accurately estimate the sample mechanical properties for a wide range of ring geometries. As a proof of concept for its application, we use the approach to analyze explanted rat vascular tissues and find a clear temporal change in the mechanical properties of these explants after graft implantation. The image-based approach can therefore offer a straightforward, versatile, and accurate method for mechanically characterizing new classes of soft and biological materials.
Collapse
Affiliation(s)
- Eline E van Haaften
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
| | - Mark C van Turnhout
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
39
|
Park JH, Yoon JK, Lee JB, Shin YM, Lee KW, Bae SW, Lee J, Yu J, Jung CR, Youn YN, Kim HY, Kim DH. Experimental Tracheal Replacement Using 3-dimensional Bioprinted Artificial Trachea with Autologous Epithelial Cells and Chondrocytes. Sci Rep 2019; 9:2103. [PMID: 30765760 PMCID: PMC6375946 DOI: 10.1038/s41598-019-38565-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Various treatment methods for tracheal defects have been attempted, such as artificial implants, allografts, autogenous grafts, and tissue engineering; however, no perfect method has been established. We attempted to create an effective artificial trachea via a tissue engineering method using 3D bio-printing. A multi-layered scaffold was fabricated using a 3D printer. Polycaprolactone (PCL) and hydrogel were used with nasal epithelial and auricular cartilage cells in the printing process. An artificial trachea was transplanted into 15 rabbits and a PCL scaffold without the addition of cells was transplanted into 6 rabbits (controls). All animals were followed up with radiography, CT, and endoscopy at 3, 6, and 12 months. In the control group, 3 out of 6 rabbits died from respiratory symptoms. Surviving rabbits in control group had narrowed tracheas due to the formation of granulation tissue and absence of epithelium regeneration. In the experimental group, 13 of 15 animals survived, and the histologic examination confirmed the regeneration of epithelial cells. Neonatal cartilage was also confirmed at 6 and 12 months. Our artificial trachea was effective in the regeneration of respiratory epithelium, but not in cartilage regeneration. Additional studies are needed to promote cartilage regeneration and improve implant stability.
Collapse
Affiliation(s)
- Jae-Hyun Park
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong-Kee Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung Bok Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Min Shin
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Kang-Woog Lee
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Sang-Woo Bae
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - JunHee Lee
- Department of Nature-Inspired Nanoconvergence System, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 34103, Republic of Korea
| | - JunJie Yu
- Department of Nature-Inspired Nanoconvergence System, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 34103, Republic of Korea.,Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Hwi-Yool Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Dae-Hyun Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
40
|
An Iterative Method for Estimating Nonlinear Elastic Constants of Tumor in Soft Tissue from Approximate Displacement Measurements. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:2374645. [PMID: 30723537 PMCID: PMC6339765 DOI: 10.1155/2019/2374645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/24/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
Abstract
Objectives Various elastography techniques have been proffered based on linear or nonlinear constitutive models with the aim of detecting and classifying pathologies in soft tissues accurately and noninvasively. Biological soft tissues demonstrate behaviors which conform to nonlinear constitutive models, in particular the hyperelastic ones. In this paper, we represent the results of our steps towards implementing ultrasound elastography to extract hyperelastic constants of a tumor inside soft tissue. Methods Hyperelastic parameters of the unknown tissue have been estimated by applying the iterative method founded on the relation between stress, strain, and the parameters of a hyperelastic model after (a) simulating the medium's response to a sinusoidal load and extracting the tissue displacement fields in some instants and (b) estimating the tissue displacement fields from the recorded/simulated ultrasound radio frequency signals and images using the cross correlation-based technique. Results Our results indicate that hyperelastic parameters of an unidentified tissue could be precisely estimated even in the conditions where there is no prior knowledge of the tissue, or the displacement fields have been approximately calculated using the data recorded by a clinical ultrasound system. Conclusions The accurate estimation of nonlinear elastic constants yields to the correct cognizance of pathologies in soft tissues.
Collapse
|
41
|
Liang J, Smith KD, Lu H, Seale TW, Gan RZ. Mechanical properties of the Papio anubis tympanic membrane: Change significantly from infancy to adulthood. Hear Res 2018; 370:143-154. [PMID: 30388572 DOI: 10.1016/j.heares.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/05/2018] [Accepted: 10/14/2018] [Indexed: 11/16/2022]
Abstract
Mechanical properties of the tympanic membrane (TM) are important for studying the transfer function of the auditory system. However, nearly all reported human data are limited to adults because of the unavailability of temporal bones from children. In this study, we used the baboon (Papio anubis), a genetically close human relative, as a model to address the occurrence of age-dependent changes of the human TM. Forty-five baboon TMs were characterized in five age groups: <1 year, 1 to <2 years, 2 to <3 years, 3 to <5, and >5 years of age, comparable to human ages ranging from newborn to adult. The elastic properties of the baboon TMs were characterized by a micro-fringe projection technique. Volume displacement of the TM under quasi-static pressure was first determined from its micro-fringe pattern. Subsequently, these displacement values were used in a finite element model to derive mechanical properties. The Young's modulus of the baboon TM exhibited a modest decrease from 29.1 MPa to 26.0 MPa over the age groups. The average Young's modulus was ∼1.4 times higher than that of the adult human TM. This is the first time that age-related TM mechanical properties of high primate are reported. These new findings may help to explore the potential value of the baboon as a new primate model for future age-related hearing research on the normal and diseased ear.
Collapse
Affiliation(s)
- Junfeng Liang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, USA; Dept. of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kyle D Smith
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, USA
| | - Hongbing Lu
- Dept. of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Thomas W Seale
- Dept. of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
42
|
Yamanaka H, Tsukamoto M, Hitosugi T, Yokoyama T. Changes in nasotracheal tube depth in response to head and neck movement in children. Acta Anaesthesiol Scand 2018; 62:1383-1388. [PMID: 29971764 DOI: 10.1111/aas.13207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/21/2018] [Accepted: 06/10/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND A tracheal tube is often inserted via the nasal cavity for dental surgery. The position of the tube tip is important, given that the head position sometimes changes during surgery. Head movement induces changes in the length of the trachea (t-length) and/or the distance between the nare and the vocal cords (n-v-distance). In this study, we investigated the changes in t-length and n-v-distance in children undergoing nasotracheal intubation. METHODS Eighty patients aged 2-8 year undergoing dental surgery were enrolled. After nasotracheal intubation with an uncuffed nasotracheal tube (4.5-6.0 mm), the tube was fixed at the patient's nares. The distance between the tube tip and the first carina was measured using a fibrescope with the angle between the Frankfort plane and horizontal plane set at 110°. The location of the tube in relation to the vocal cords was then checked. These measurements were repeated at angles of 80° (flexion) and 130° (extension). The t-length and n-v-distance were then calculated using these measurements. RESULTS On flexion, the t-length shortened significantly from 87.5 ± 10.4 mm to 82.9 ± 10.7 mm (P = 0.017) and the n-v-distance decreased from 128.1 ± 10.7 mm to 125.6 ± 10.4 mm (P = 0.294). On extension, the t-length increased significantly from 87.5 ± 10.4 mm to 92.7 ± 10.1 mm (P = 0.007) and the n-v-distance increased from 128.1 ± 10.7 mm to 129.4 ± 10.7 mm (P = 0.729). The change in t-length was significantly greater than that in the n-v-distance. CONCLUSION A change in the position of the tracheal tube tip in the trachea depends mainly on changes in t-length during paediatric dental surgery.
Collapse
Affiliation(s)
- Hitoshi Yamanaka
- Department of Dental Anesthesiology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Masanori Tsukamoto
- Department of Dental Anesthesiology Kyushu University Hospital Fukuoka Japan
| | - Takashi Hitosugi
- Department of Dental Anesthesiology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Takeshi Yokoyama
- Department of Dental Anesthesiology Faculty of Dental Science Kyushu University Fukuoka Japan
| |
Collapse
|
43
|
Osborne MS, Krishna ST, George A, Costello D, Corbridge R. A helpful technique for increasing the size of a tracheostomy window in patients with calcified or challenging tracheas utilising a Kerrison punch forceps. Clin Otolaryngol 2018; 44:208-210. [PMID: 30092614 DOI: 10.1111/coa.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Ajith George
- Keele Anatomy and Surgical Training Centre, Staffordshire, UK
| | | | | |
Collapse
|
44
|
Tobajas R, Elduque D, Ibarz E, Javierre C, Canteli AF, Gracia L. Visco-Hyperelastic Model with Damage for Simulating Cyclic Thermoplastic Elastomers Behavior Applied to an Industrial Component. Polymers (Basel) 2018; 10:E668. [PMID: 30966702 PMCID: PMC6404139 DOI: 10.3390/polym10060668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022] Open
Abstract
In this work a nonlinear phenomenological visco-hyperelastic model including damage consideration is developed to simulate the behavior of Santoprene 101-73 material. This type of elastomeric material is widely used in the automotive and aeronautic sectors, as it has multiple advantages. However, there are still challenges in properly analyzing the mechanical phenomena that these materials exhibit. To simulate this kind of material a lot of theories have been exposed, but none of them have been endorsed unanimously. In this paper, a new model is presented based on the literature, and on experimental data. The test samples were extracted from an air intake duct component of an automotive engine. Inelastic phenomena such as hyperelasticity, viscoelasticity and damage are considered singularly in this model, thus modifying and improving some relevant models found in the literature. Optimization algorithms were used to find out the model parameter values that lead to the best fit of the experimental curves from the tests. An adequate fitting was obtained for the experimental results of a cyclic uniaxial loading of Santoprene 101-73.
Collapse
Affiliation(s)
- Rafael Tobajas
- Department of Mechanical Engineering, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain.
| | - Daniel Elduque
- i+aitiip, Department of Mechanical Engineering, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain.
| | - Elena Ibarz
- i3A, Department of Mechanical Engineering, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain.
| | - Carlos Javierre
- i+aitiip, Department of Mechanical Engineering, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain.
| | - Alfonso F Canteli
- Department of Construction and Manufacturing Engineering, University of Oviedo, C/Pedro Puig Adam, 33203 Gijón, Spain.
| | - Luis Gracia
- i3A, Department of Mechanical Engineering, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain.
| |
Collapse
|
45
|
Abstract
Trachea replacement for nonoperable defects remains an unsolved problem due to complications with stenosis and mechanical insufficiency. While native trachea has anisotropic mechanical properties, the vast majority of engineered constructs focus on uniform cartilaginous-like conduits. These conduits often lack quantitative mechanical analysis at the construct level, which limits analysis of functional outcomes in vivo, as well as comparisons across studies. This review aims to present a clear picture of native tracheal mechanics at the tissue and organ level, as well as loading conditions to establish design criteria for trachea replacements. We further explore the implications of failing to match native properties with regards to implant collapse, stenosis, and infection.
Collapse
Affiliation(s)
- Elizabeth M Boazak
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, 160 Convent Avenue, New York, New York 10031, United States
| | - Debra T Auguste
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, 160 Convent Avenue, New York, New York 10031, United States.,Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
46
|
Chen H, Wang H, Li B, Feng B, He X, Fu W, Yuan H, Xu Z. Enhanced chondrogenic differentiation of human mesenchymal stems cells on citric acid-modified chitosan hydrogel for tracheal cartilage regeneration applications. RSC Adv 2018; 8:16910-16917. [PMID: 35540552 PMCID: PMC9080310 DOI: 10.1039/c8ra00808f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Congenital tracheal stenosis in infants and children is a worldwide clinical problem. Tissue engineering is a promising method for correcting long segmental tracheal defects. Nonetheless, the lack of desirable scaffolds always limits the development and applications of tissue engineering in clinical practice. In this study, a citric-acid-functionalized chitosan (CC) hydrogel was fabricated by a freeze–thaw method. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed that citric acid was successfully attached to the chitosan hydrogel. Scanning electron microscopy (SEM) images and compression tests showed that the CC hydrogel had an interconnected porous structure and better wet mechanical properties. Using morphological and proliferation analyses, cell biocompatibility of the CC hydrogel was shown by culturing human mesenchymal stem cells (hMSCs) on it. Specific expression of cartilage-related markers was analyzed by real-time polymerase chain reaction and western blotting. The expression of chondrocytic markers was strongly upregulated in the culture on the CC hydrogel. Hematoxylin and eosin staining revealed that the cells had the characteristic shape of chondrocytes and clustered into the CC hydrogel. Both Alcian blue staining and a sulfated glycosaminoglycan (sGAG) assay indicated that the CC hydrogel promoted the expression of glycosaminoglycans (GAGs). In a nutshell, these results suggested that the CC hydrogel enhanced chondrogenic differentiation of hMSCs. Thus, the newly developed CC hydrogel may be a promising tissue-engineered scaffold for tracheal cartilage regeneration. A novel citric acid functionalized chitosan hydrogel for tracheal cartilage regeneration applications.![]()
Collapse
Affiliation(s)
- Hao Chen
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
| | - Hao Wang
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
| | - Biyun Li
- School of Life Sciences
- Nantong University
- Nantong
- China
| | - Bei Feng
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| | - Xiaomin He
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| | - Huihua Yuan
- School of Life Sciences
- Nantong University
- Nantong
- China
| | - Zhiwei Xu
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| |
Collapse
|
47
|
Designing a tissue-engineered tracheal scaffold for preclinical evaluation. Int J Pediatr Otorhinolaryngol 2018; 104:155-160. [PMID: 29287858 PMCID: PMC5922759 DOI: 10.1016/j.ijporl.2017.10.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Recent efforts to tissue engineer long-segment tracheal grafts have been complicated by stenosis and malacia. It has been proposed that both the mechanical characteristics and cell seeding capacity of TETG scaffolds are integral to graft performance. Our aim was to design a tracheal construct that approximates the biomechanical properties of native sheep trachea and optimizes seeding with bone marrow derived mononuclear cells prior to preclinical evaluation in an ovine model. METHODS A solution of 8% polyethylene terephthalate (PET) and 3% polyurethane (PU) was prepared at a ratio of either 8:2 or 2:8 and electrospun onto a custom stainless steel mandrel designed to match the dimensional measurements of the juvenile sheep trachea. 3D-printed porous or solid polycarbonate C-shaped rings were embedded within the scaffolds during electrospinning. The scaffolds underwent compression testing in the anterior-posterior and lateral-medial axes and the biomechanical profiles compared to that of a juvenile ovine trachea. The most biomimetic constructs then underwent vacuum seeding with ovine bone marrow derived mononuclear cells. Fluorometric DNA assay was used to quantify scaffold seeding. RESULTS Both porous and solid rings approximated the biomechanics of the native ovine trachea, but the porous rings were most biomimetic. The load-displacement curve of scaffolds fabricated from a ratio of 2:8 PET:PU most closely mimicked that of native trachea in the anterior-posterior and medial-lateral axes. Solid C-ringed scaffolds had a greater cell seeding efficiency when compared to porous ringed scaffolds (Solid: 19 × 104 vs. Porous: 9.6 × 104 cells/mm3, p = 0.0098). CONCLUSION A long segment tracheal graft composed of 2:8 PET:PU with solid C-rings approximates the biomechanics of the native ovine trachea and demonstrates superior cell seeding capacity of the two prototypes tested. Further preclinical studies using this graft design in vivo would inform the rational design of an optimal TETG scaffold.
Collapse
|
48
|
Aoki FG, Moriya HT. Mechanical Evaluation of Tracheal Grafts on Different Scales. Artif Organs 2017; 42:476-483. [PMID: 29226358 DOI: 10.1111/aor.13063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Abstract
Tissue engineered (or bioengineered) tracheas are alternative options under investigation when the resection with end-to-end anastomosis cannot be performed. One approach to develop bioengineered tracheas is a complex process that involves the use of decellularized tissue scaffolds, followed by recellularization in custom-made tracheal bioreactors. Tracheas withstand pressure variations and their biomechanics are of great importance so that they do not collapse during respiration, although there has been no preferred method of mechanical assay of tracheas among several laboratories over the years. These methods have been performed in segments or whole tracheas and in different species of mammals. This article aims to present some methods used by different research laboratories to evaluate the mechanics of tracheal grafts and presents the importance of the tracheal biomechanics in both macro and micro scales. If bioengineered tracheas become a reality in hospitals in the next few years, the standardization of biomechanical parameters will be necessary for greater consistency of results before transplantations.
Collapse
Affiliation(s)
- Fabio Gava Aoki
- Biomedical Engineering Laboratory, University of São Paulo, Escola Politécnica, São Paulo, Brazil
| | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory, University of São Paulo, Escola Politécnica, São Paulo, Brazil
| |
Collapse
|
49
|
Safshekan F, Tafazzoli-Shadpour M, Abdouss M, Shadmehr MB. Viscoelastic Properties of Human Tracheal Tissues. J Biomech Eng 2017; 139:2552974. [PMID: 27618230 DOI: 10.1115/1.4034651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 01/23/2023]
Abstract
The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.
Collapse
Affiliation(s)
- Farzaneh Safshekan
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15875-4413, Iran e-mail:
| | - Mohammad Tafazzoli-Shadpour
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15875-4413, Iran e-mail:
| | - Majid Abdouss
- Chemistry Department, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15875-4413, Iran e-mail:
| | - Mohammad B Shadmehr
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Darabad Avenue, Shahid Bahonar Roundabout, Tehran 19558-41452, Iran e-mail:
| |
Collapse
|
50
|
Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation. Med Sci (Basel) 2017; 5:medsci5040021. [PMID: 29099037 PMCID: PMC5753650 DOI: 10.3390/medsci5040021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 01/30/2023] Open
Abstract
Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.
Collapse
|