1
|
Jäger R, Heileson JL, Abou Sawan S, Dickerson BL, Leonard M, Kreider RB, Kerksick CM, Cornish SM, Candow DG, Cordingley DM, Forbes SC, Tinsley GM, Bongiovanni T, Cannataro R, Campbell BI, Arent SM, Stout JR, Kalman DS, Antonio J. International Society of Sports Nutrition Position Stand: Long-Chain Omega-3 Polyunsaturated Fatty Acids. J Int Soc Sports Nutr 2025; 22:2441775. [PMID: 39810703 PMCID: PMC11737053 DOI: 10.1080/15502783.2024.2441775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.Diets rich in ω-3 PUFA, including supplements, are effective strategies for increasing ω-3 PUFA levels.ω-3 PUFA supplementation, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has been shown to enhance endurance capacity and cardiovascular function during aerobic-type exercise.ω-3 PUFA supplementation may not confer a muscle hypertrophic benefit in young adults.ω-3 PUFA supplementation in combination with resistance training may improve strength in a dose- and duration-dependent manner.ω-3 PUFA supplementation may decrease subjective measures of muscle soreness following intense exercise.ω-3 PUFA supplementation can positively affect various immune cell responses in athletic populations.Prophylactic ω-3 PUFA supplementation may offer neuroprotective benefits in athletes exposed to repeated head impacts.ω-3 PUFA supplementation is associated with improved sleep quality.ω-3 PUFA are classified as prebiotics; however, studies on the gut microbiome and gut health in athletes are currently lacking.
Collapse
Affiliation(s)
| | - Jeffery L. Heileson
- Walter Reed National Military Medical Center, Nutrition Services Division, Bethesda, MD, USA
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | | | - Broderick L. Dickerson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Megan Leonard
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Stephen M. Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, Faculty of Graduate Studies, University of Manitoba, Winnipeg, Canada
| | - Scott C. Forbes
- Department of Physical Education Studies, Brandon University, Brandon, Canada
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Tindaro Bongiovanni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Player Health & Performance Department, Palermo Football Club, Palermo, Italy
| | - Roberto Cannataro
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Research Division, Dynamical Business & Science Society – DBSS International SAS, Bogotá, Colombia, USA
| | - Bill I. Campbell
- Performance& Physique Enhancement Laboratory, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Shawn M. Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jeffrey R. Stout
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Douglas S. Kalman
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
2
|
Rivera-Sánchez E, Villaró-Cos S, Salinas-García M, Lafarga T. Increasing the sustainability of photoautotrophic microalgae production by minimising freshwater requirements. N Biotechnol 2025; 86:14-24. [PMID: 39824244 DOI: 10.1016/j.nbt.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
There are now several companies that are producing microalgae such as Arthrospira platensis, Chlorella vulgaris, and Dunaliella salina, among others. They are cultivated mainly in large-scale raceway and tubular photobioreactors. Microalgae production represents a sustainable alternative to conventional biomass production. Microalgae can be used to manufacture agricultural products, animal feed, food and other commercial products. The water requirements for cultivating microalgae are significant, exceeding 1 m3·kg-1. This value varies depending on the production strategy. One of the main reasons for water loss is evaporation, which is influenced by the photobioreactor location, the season, and the operating conditions. Efforts are being made to reduce water requirements and make microalgae production economically viable and more environmentally friendly. Several strategies are being investigated for reducing freshwater use in microalgae cultivation; these include reusing the culture medium and producing microalgae using seawater or wastewater. Such strategies not only reduce water consumption, but also reduce nutrient consumption and costs while increasing sustainability.
Collapse
Affiliation(s)
- Elia Rivera-Sánchez
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Faculty of Science, Universidad Nacional de Agricultura, Carretera a Dulce Nombre de Culmí, Km 215, Catacamas 16201, Honduras
| | - Silvia Villaró-Cos
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Desalination and Photosynthesis Functional Unit, CIESOL Solar Energy Research Centre, Almería 04120, Spain
| | - María Salinas-García
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Desalination and Photosynthesis Functional Unit, CIESOL Solar Energy Research Centre, Almería 04120, Spain
| | - Tomás Lafarga
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Desalination and Photosynthesis Functional Unit, CIESOL Solar Energy Research Centre, Almería 04120, Spain.
| |
Collapse
|
3
|
Souza da Silva C, Pires Santos GM, Conceição GR, da Silva Andrade I, Silva AN, Pires Santos RM, de Almeida PF, Chinalia FA. Role of low-level alternating current and impedance for enhancing microalgae biomass and lipid production. J Biosci Bioeng 2025; 139:369-376. [PMID: 40069002 DOI: 10.1016/j.jbiosc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 04/05/2025]
Abstract
Microalgae hold significant potential for producing value-added bioproducts in pharmaceutical, cosmetic, food, and biofuel industries, with a global market value estimated at US$ 11.8 billion in 2023. Innovations in culturing systems, such as electric stimulation, aim to enhance growth performance, as it can improve cellular processes, including nutrient uptake and lipid accumulation. This study investigates the effect of low alternating electrical currents (μA) on the growth and lipid production of the halotolerant microalga Dunaliella salina across varying salt concentrations (3.5 % and 8.5 % Conway medium). Applying electric stimulation at 50, 750, and 990 μA for 30 min daily over 15 days resulted in significant enhancements, particularly at 3.5 % salinity, where lipid content increased by 144 %. The findings indicate that electrical stimulation notably reduced the lag phase and increased exponential growth rates, with superior growth coefficients correlating with higher medium impedance rather than direct current levels.
Collapse
Affiliation(s)
- Carine Souza da Silva
- Moacyr D. de Moura-Costa Biotechnology Laboratory, Institute of Health Sciences, Federal University of Bahia - UFBA, Av. Reitor Miguel Calmon, S/N, Salvador, BA 40110-100, Brazil.
| | - Gustavo Miranda Pires Santos
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Sciences, Federal University of Bahia - UFBA, Av. Reitor Miguel Calmon, S/N, Salvador, BA 40110-100, Brazil.
| | - Gabriele Rodrigues Conceição
- Moacyr D. de Moura-Costa Biotechnology Laboratory, Institute of Health Sciences, Federal University of Bahia - UFBA, Av. Reitor Miguel Calmon, S/N, Salvador, BA 40110-100, Brazil.
| | - Ian da Silva Andrade
- Moacyr D. de Moura-Costa Biotechnology Laboratory, Institute of Health Sciences, Federal University of Bahia - UFBA, Av. Reitor Miguel Calmon, S/N, Salvador, BA 40110-100, Brazil.
| | - Alana Nogueira Silva
- Moacyr D. de Moura-Costa Biotechnology Laboratory, Institute of Health Sciences, Federal University of Bahia - UFBA, Av. Reitor Miguel Calmon, S/N, Salvador, BA 40110-100, Brazil.
| | - Rodrigo Miranda Pires Santos
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Sciences, Federal University of Bahia - UFBA, Av. Reitor Miguel Calmon, S/N, Salvador, BA 40110-100, Brazil.
| | - Paulo Fernando de Almeida
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Sciences, Federal University of Bahia - UFBA, Av. Reitor Miguel Calmon, S/N, Salvador, BA 40110-100, Brazil.
| | - Fabio Alexandre Chinalia
- Moacyr D. de Moura-Costa Biotechnology Laboratory, Institute of Health Sciences, Federal University of Bahia - UFBA, Av. Reitor Miguel Calmon, S/N, Salvador, BA 40110-100, Brazil.
| |
Collapse
|
4
|
Silva FA, Dos Santos RL, Barão CE, de Medeiros VPB, Silva TO, da Costa Sassi CF, Feihrmann AC, Dos Santos Lima M, Pimentel TC, Magnani M. Freshwater microalgae biomasses are a source of bioaccessible bioactive compounds and have antioxidant, antihypertensive, and antidiabetic activity. Food Res Int 2025; 208:116259. [PMID: 40263856 DOI: 10.1016/j.foodres.2025.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Due to their sustainable production, freshwater microalgae have received attention as an alternative food rich in nutrients and bioactive compounds. This work assessed the composition and bioaccessibility of amino acids (AA), fatty acids (FA), and phenolic compounds (PC) present in the Chlorella vulgaris, Spirulina platensis, Scenedesmus acuminatus, Desmodesmus maximus, and Tetraselmis sp. biomass, and their antioxidant, antihypertensive and antidiabetic in vitro activities. The microalgae had a similar profile of compounds, but the concentration varied significantly between species. Lysine was the most abundant essential AA and palmitic and oleic (ω9) acids were the main FA detected in all microalgae. Moreover, the bioaccessibility was higher than 70 % for most FA, while the bioaccessibility of PC was generally low (<20 %). All microalgae showed significant antidiabetic (∼20-54 % ⍺-amylase inhibition and ∼ 91 % to ∼96 % ⍺-glucosidase inhibition), antihypertensive (∼13-53 % ACE inhibition) and antioxidant (1313.10-1821.60 μM eq Trolox/g) potential. C. vulgaris showed a higher concentration and bioaccessibility of phenolic compounds, resulting in an increased antidiabetic activity (higher α-glucosidase inhibition). S. platensis showed higher concentrations of fatty acids (palmitic, palmitoleic, and linoleic). D. maximus was characterized by higher concentrations and bioaccessibility of amino acids and an increased antioxidant and antidiabetic activities. Finally, Tetraselmis sp. presented improved concentration of tyrosine and increased antihypertensive activity. Therefore, the results can support the application of microalgae biomass in new functional foods for delivering bioactive compounds, primarily essential AA and FA, targeting specific niches that benefit from their potential health advantages. Findings underscore the commercial applicability of microalgae-based products.
Collapse
Affiliation(s)
- Francyeli Araújo Silva
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | - Renally Lima Dos Santos
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | - Thiago Okagawa Silva
- Department of Food Science and Technology, State University of Londrina, Londrina, Paraná, Brazil
| | - Cristiane Francisca da Costa Sassi
- Laboratory of Reef Environments and Biotechnology with Microalgae - Exact and Natural Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão of Pernambuco, Petrolina, Brazil
| | - Tatiana Colombo Pimentel
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil; Federal Institute of Paraná, Campus Paranavaí, Paranavaí, Paraná, Brazil; Department of Food Science and Technology, State University of Londrina, Londrina, Paraná, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
5
|
Pandey A, Israr J, Pandey J, Misra S. Current Approaches and Implications in Discovery of Novel Bioactive Products from Microbial Sources. Curr Microbiol 2025; 82:258. [PMID: 40263159 DOI: 10.1007/s00284-025-04237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Bioactive Natural Products (BNPs) are in high demand due to their disease-preventive capabilities and resistance to pathogens. However, our understanding of BNP-producing microbes is limited, because many microbial populations remain uncultivated. Various approaches have been employed to explore the potential of these hidden microbes for new bioactive therapeutic compounds. Nevertheless, the possibility of discovering BNPs from microbial communities is largely cryptic due to their unculturable nature and the absence of triggers to activate the dormant Biosynthetic Gene Clusters (BGCs). Metagenome sequencing, followed by mining and characterization, is an effective approach for discovering new therapeutic BNPs. The inactive state of BGCs can be activated through the combinatorial interaction of different microbial communities within a common niche, overcoming programmable co-evolutionary stress and producing new BNPs. The present review discusses and explores the potential of hidden, uncultivated microbes for discovering novel Bioactive Natural Products (BNPs). Moreover, it provides insights into optimizing microbial production systems and fostering sustainable drug discovery and development practices by integrating multidisciplinary strategies. This review also emphasizes the critical role of microbial sources in the ongoing search for new bioactive products that can meet the demands of modern healthcare and environmental sustainability.
Collapse
Affiliation(s)
- Ankesh Pandey
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, 250005, Uttar Pradesh, India
| | - Juveriya Israr
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Janmejay Pandey
- Department of Biotechnology, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Sankalp Misra
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India.
| |
Collapse
|
6
|
Therdyothin A, Phiphopthatsanee N. The Effect of Omega-3 on Mitigating Exercise-Induced Muscle Damage. Cureus 2025; 17:e81559. [PMID: 40313441 PMCID: PMC12044634 DOI: 10.7759/cureus.81559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Exercise-induced muscle damage (EIMD) refers to muscle injuries following exercises involving repetitive eccentric muscle contractions. The resultant inflammation and muscle protein leakage into the circulation lead to muscle pain and strength deficit, compromising athletic performance. This narrative review summarizes the current evidence on the effect and mechanism of omega-3 polyunsaturated fatty acids (n-3 PUFA) in potentially mitigating EIMD. Several studies suggested n-3 PUFA's role in alleviating delayed-onset muscle soreness, particularly in untrained individuals and those receiving higher doses of continuous supplementation. However, its impact on muscle strength attenuation and the reduction of performance post-exercise remains inconclusive. Also unclear are n-3 PUFA's effects on the reduction of circulating pro-inflammatory substances and muscle proteins. One of the possible mechanisms is its anti-inflammatory property, which involves its ability to incorporate into cell membranes and displace prostaglandin precursor. n-3 PUFA also decreases cyclooxygenase production and can be converted into specialized pro-resolving mediators (SPMs), further reducing inflammation. Moreover, n-3 PUFA's incorporation into cell membranes alters cell membrane properties, diminishing protein release during muscle breakdown. n-3 PUFA exhibits analgesic effects through SPM-induced modulation of receptors and ion channels, reducing both peripheral and central sensitization. n-3 PUFA also diminishes mitochondrial free radical production and accelerates nerve conduction, thereby improving voluntary muscle activation.
Collapse
|
7
|
Gadzama IU, Ray S, Méité R, Mugweru IM, Gondo T, Rahman MA, Redoy MRA, Rohani MF, Kholif AE, Salahuddin M, Brito AF. Chlorella vulgaris as a Livestock Supplement and Animal Feed: A Comprehensive Review. Animals (Basel) 2025; 15:879. [PMID: 40150407 PMCID: PMC11939222 DOI: 10.3390/ani15060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
This review explores the potential of Chlorella vulgaris (CLV) as an alternative supplement in animal feed. CLV is rich in essential nutrients including fatty acids, amino acids, vitamins, and minerals, as well as bioactive compounds such as antioxidants, which contribute to its health-promoting properties. The nutritional composition of CLV can vary depending on factors such as cultivation methods, nutrient availability, light intensity, temperature, water pH, strain, and processing techniques. The rigid cell wall of the microalga limits nutrient accessibility, particularly in monogastric animals. However, processing techniques such as enzymatic treatments can disrupt the cell wall, enhancing nutrient bioavailability and improving its utility as a feed ingredient. Research across livestock species has demonstrated the positive effects of CLV supplementation. For instance, CLV has improved milk production and composition in ruminants, modulated rumen microbiota, enhanced lamb growth, and elevated blood immunoglobulin levels. Moreover, the impact of CLV on ruminal fermentation is dose-dependent, with higher inclusion rates exhibiting more pronounced effects, and it may also play a role in mitigating methane emissions. In poultry, CLV supplementation leads to better growth, feed conversion ratios, immune responses, and meat and egg quality. Similarly, studies on pigs suggest that CLV can benefit immune response and fatty acid profiles, while in rabbits, CLV has been found to reduce oxidative stress and improve immune responses. Additionally, CLV has shown promise in aquaculture, improving feed utilization, immunity, and disease resistance in various fish species. While CLV shows considerable potential, the variability in animal responses and the need for optimized inclusion levels necessitate further species-specific research to elucidate the long-term implications of its inclusion in animal diets.
Collapse
Affiliation(s)
- Ishaya Usman Gadzama
- School of Agriculture and Food Sustainability, University of Queensland, Gatton, QLD 4343, Australia
| | - Saraswati Ray
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law (SABL), University of New England, Armidale, NSW 2351, Australia
| | - René Méité
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany;
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Department of Agricultural Economics, Humboldt University of Berlin, 10117 Berlin, Germany
| | - Isaac Maina Mugweru
- Department of Animal Sciences, College of Agriculture and Natural Resources (COANRE), Jomo Kenyatta University of Agriculture and Technology, Nairobi 002001, Kenya;
| | - Takudzwa Gondo
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Md Atikur Rahman
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824, USA; (M.A.R.); (A.F.B.)
| | | | - Md Fazle Rohani
- Nutrition and Seafood Laboratory (NuSea.Lab), School of Life and Environmental Sciences, Deakin University, Queenscliff, VIC 3225, Australia;
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ahmed Eid Kholif
- Department of Animal Science, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Md Salahuddin
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Andre F. Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824, USA; (M.A.R.); (A.F.B.)
| |
Collapse
|
8
|
García-Encinas JP, Ruiz-Cruz S, Juárez J, Ornelas-Paz JDJ, Del Toro-Sánchez CL, Márquez-Ríos E. Proteins from Microalgae: Nutritional, Functional and Bioactive Properties. Foods 2025; 14:921. [PMID: 40231937 PMCID: PMC11941487 DOI: 10.3390/foods14060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 04/16/2025] Open
Abstract
Microalgae have emerged as a sustainable and efficient source of protein, offering a promising alternative to conventional animal and plant-based proteins. Species such as Arthrospira platensis and Chlorella vulgaris contain protein levels ranging from 50% to 70% of their dry weight, along with a well-balanced amino acid profile rich in essential amino acids such as lysine and leucine. Their cultivation avoids competition for arable land, aligning with global sustainability goals. However, the efficient extraction of proteins is challenged by their rigid cell walls, necessitating the development of optimized methods such as bead milling, ultrasonication, enzymatic treatments, and pulsed electric fields. These techniques preserve functionality while achieving yields of up to 96%. Nutritional analyses reveal species-dependent digestibility, ranging from 70 to 90%, with Spirulina platensis achieving the highest rates due to low cellulose content. Functionally, microalgal proteins exhibit emulsifying, water-holding, and gel-forming properties, enabling applications in baking, dairy, and meat analogs. Bioactive peptides derived from these proteins exhibit antioxidant, antimicrobial (inhibiting E. coli and S. aureus), anti-inflammatory (reducing TNF-α and IL-6), and antiviral activities (e.g., Dengue virus inhibition). Despite their potential, commercialization faces challenges, including regulatory heterogeneity, high production costs, and consumer acceptance barriers linked to eating habits or sensory attributes. Current market products like Spirulina-enriched snacks and Chlorella tablets highlight progress, but food safety standards and scalable cost-effective extraction technologies remain critical for broader adoption. This review underscores microalgae's dual role as a nutritional powerhouse and a source of multifunctional bioactives, positioning them at the forefront of sustainable food and pharmaceutical innovation.
Collapse
Affiliation(s)
- Juan Pablo García-Encinas
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Boulevard Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (J.P.G.-E.); (S.R.-C.); (C.L.D.T.-S.)
| | - Saul Ruiz-Cruz
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Boulevard Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (J.P.G.-E.); (S.R.-C.); (C.L.D.T.-S.)
| | - Jousé Juárez
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico;
| | - José de Jesús Ornelas-Paz
- Coordinación de Fisiología y Tecnología de Alimentos de la Zona Templada, Centro de Investigación en Alimentación y Desarrollo, Av. Río Conchos S/N, Parque Industrial, Cuauhtémoc 31570, Chihuahua, Mexico;
| | - Carmen Lizette Del Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Boulevard Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (J.P.G.-E.); (S.R.-C.); (C.L.D.T.-S.)
| | - Enrique Márquez-Ríos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Boulevard Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (J.P.G.-E.); (S.R.-C.); (C.L.D.T.-S.)
| |
Collapse
|
9
|
Esteves AF, Gonçalves AL, Vilar VJP, Pires JCM. Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation? Biotechnol Adv 2025; 79:108493. [PMID: 39645210 DOI: 10.1016/j.biotechadv.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO2 fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.
Collapse
Affiliation(s)
- Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Vítor J P Vilar
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
10
|
García García B, Fernández-Manteca MG, Gómez-Galdós C, Deus Álvarez S, Monteoliva AP, López-Higuera JM, Algorri JF, Ocampo-Sosa AA, Rodríguez-Cobo L, Cobo A. Integration of Fluorescence Spectroscopy into a Photobioreactor for the Monitoring of Cyanobacteria. BIOSENSORS 2025; 15:128. [PMID: 40136925 PMCID: PMC11940672 DOI: 10.3390/bios15030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025]
Abstract
Phytoplankton are essential to aquatic ecosystems but can cause harmful algal blooms (HABs) that threaten water quality, aquatic life, and human health. Developing new devices based on spectroscopic techniques offers a promising alternative for rapid and accurate monitoring of aquatic environments. However, phytoplankton undergo various physiological changes throughout their life cycle, leading to alterations in their optical properties, such as autofluorescence. In this study, we present a modification of a low-cost photobioreactor designed to implement fluorescence spectroscopy to analyze the evolution of spectral signals during phytoplankton growth cycles. This device primarily facilitates the characterization of changes in autofluorescence, providing valuable information for the development of future spectroscopic techniques for detecting and monitoring phytoplankton. Additionally, real-time testing was performed on cyanobacterial cultures, where changes in autofluorescence were observed under different conditions. This work demonstrates a cost-effective implementation of spectroscopic techniques within a photobioreactor, offering a preliminary analysis for the future development of functional field devices for monitoring aquatic ecosystems.
Collapse
Affiliation(s)
- Borja García García
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - María Gabriela Fernández-Manteca
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Celia Gómez-Galdós
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | | | - José Miguel López-Higuera
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-BBN, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Francisco Algorri
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-BBN, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alain A. Ocampo-Sosa
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Rodríguez-Cobo
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-BBN, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adolfo Cobo
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-BBN, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Cocksedge SP, Mantecón L, Castaño E, Infante C, Bailey SJ. The Potential of Superoxide Dismutase-Rich Tetraselmis chuii as a Promoter of Cellular Health. Int J Mol Sci 2025; 26:1693. [PMID: 40004157 PMCID: PMC11855123 DOI: 10.3390/ijms26041693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tetraselmis chuii (T. chuii) is a green, marine, eukaryotic, microalgae that was authorized in the European Union (EU) as a novel food for human consumption in 2014, and as a food supplement in 2017. This narrative review will provide an overview of preclinical and clinical trials assessing the efficacy of a T. chuii-derived ingredient, characterized by a high superoxide dismutase (SOD) activity (SOD-rich T. chuii), to improve various aspects of cellular health. Collectively, results from in vitro, and more importantly in vivo research, support SOD-rich T. chuii as a potential promoter of cellular health. Principally, the ingredient appears to function as an indirect antioxidant by boosting intracellular antioxidant systems. Moreover, it can positively modulate inflammatory status by up-regulating anti-inflammatory and down-regulating pro-inflammatory cytokines and factors. In addition, SOD-rich T. chuii appears to promote cellular health though protecting from DNA damage, boosting immune function, strengthening cell structure and integrity, and positively modulating cell signaling pathways. There is also some evidence to suggest that SOD-rich T. chuii may improve aspects of mitochondrial function through the up-regulation of genes linked to mitochondrial biogenesis and ATP synthesis. From the trials conducted to date, transcriptional activation of nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) appear to be important in mediating the effects of SOD-rich T. chuii on cellular health. These exciting preliminary observations suggest that SOD-rich T. chuii may represent a natural blue food supplement with the potential to enhance various aspects of cellular health.
Collapse
Affiliation(s)
- Stuart P. Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., Dársena Comercial s/n, 11500 El Puerto de Santa María, Cádiz, Spain; (L.M.); (E.C.); (C.I.)
| | - Enrique Castaño
- Fitoplancton Marino, S.L., Dársena Comercial s/n, 11500 El Puerto de Santa María, Cádiz, Spain; (L.M.); (E.C.); (C.I.)
| | - Carlos Infante
- Fitoplancton Marino, S.L., Dársena Comercial s/n, 11500 El Puerto de Santa María, Cádiz, Spain; (L.M.); (E.C.); (C.I.)
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| |
Collapse
|
12
|
Vasilakis G, Marka S, Ntzouvaras A, Zografaki ME, Kyriakopoulou E, Kalliampakou KI, Bekiaris G, Korakidis E, Papageorgiou N, Christofi S, Vassilaki N, Moschopoulou G, Tzovenis I, Economou-Amilli A, Papanikolaou S, Flemetakis E. Wound Healing, Antioxidant, and Antiviral Properties of Bioactive Polysaccharides of Microalgae Strains Isolated from Greek Coastal Lagoons. Mar Drugs 2025; 23:77. [PMID: 39997201 PMCID: PMC11857774 DOI: 10.3390/md23020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Microalgae have gained significant attention as sustainable sources of high value compounds, such as bioactive polysaccharides that are usually rich in sulfated groups and exhibit antioxidant properties. Here, 14 new microalgae strains of the genera Tetraselmis, Dunaliella, and Nannochloropsis, isolated from Greek coastal lagoons were analyzed to quantify and characterize their polysaccharide content. Heterogeneity was observed regarding the content of their total sugars (5.5-40.9 g/100 g dry biomass). The strains with a total sugar content above 20% were analyzed concerning the content of total, α- and β-glucans. Tetraselmis verrucosa f. rubens PLA1-2 and T. suecica T3-1 were rich in β-glucans (11%, and 8.1%, respectively). The polysaccharides of the two Tetraselmis strains were isolated and they were mainly composed of glucose and galactose. The isolated polysaccharides were fractionated using ion-exchange-chromatography. The anionic fraction from T. verrucosa f. rubens PLA1-2 was rich in sulfated polysaccharides, had antioxidant capacity, and exhibited healing properties. The anionic polysaccharides from the two Tetraselmis strains did not negatively influence the viability of human cells, while exhibiting antiviral properties against the replication of Hepatitis C Virus (HCV), with median efficient concentrations (EC50) at a range of 210-258 μg/mL.
Collapse
Affiliation(s)
- Gabriel Vasilakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.V.); (G.B.); (S.C.); (S.P.)
| | - Sofia Marka
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (S.M.); (A.N.); (M.-E.Z.); (K.I.K.); (N.P.)
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Alexandros Ntzouvaras
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (S.M.); (A.N.); (M.-E.Z.); (K.I.K.); (N.P.)
- Sector of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.T.); (A.E.-A.)
| | - Maria-Eleftheria Zografaki
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (S.M.); (A.N.); (M.-E.Z.); (K.I.K.); (N.P.)
| | - Eirini Kyriakopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.K.); (E.K.); (N.V.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (S.M.); (A.N.); (M.-E.Z.); (K.I.K.); (N.P.)
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.K.); (E.K.); (N.V.)
| | - Georgios Bekiaris
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.V.); (G.B.); (S.C.); (S.P.)
| | - Evangelos Korakidis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.K.); (E.K.); (N.V.)
| | - Niki Papageorgiou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (S.M.); (A.N.); (M.-E.Z.); (K.I.K.); (N.P.)
| | - Stefania Christofi
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.V.); (G.B.); (S.C.); (S.P.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.K.); (E.K.); (N.V.)
| | - Georgia Moschopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Ioannis Tzovenis
- Sector of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.T.); (A.E.-A.)
| | - Athena Economou-Amilli
- Sector of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.T.); (A.E.-A.)
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.V.); (G.B.); (S.C.); (S.P.)
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (S.M.); (A.N.); (M.-E.Z.); (K.I.K.); (N.P.)
| |
Collapse
|
13
|
Wang L, Wang L, Liu X, Lin X, Fei T, Zhang W. Seaweeds-derived proteins and peptides: preparation, virtual screening, health-promoting effects, and industry applications. Crit Rev Food Sci Nutr 2025:1-28. [PMID: 39812419 DOI: 10.1080/10408398.2025.2449596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Seaweed, a promising source of nutritional proteins, including protein hydrolysates, bioactive peptides, phycobiliproteins, and lectins with multi-biological activities. Seaweeds-derived proteins and peptides have attracted increasing interest for their potential applications in dietary supplements, functional foods, and pharmaceuticals industries. This work aims to comprehensively review the preparation methods and virtual screening strategies for seaweed-derived functional peptides. Additionally, it elucidates their diverse biological activities, mechanisms of action, and industrial applications. Enzymatic hydrolysis appears as the most effective method for preparing functional peptides from seaweeds. Computational virtual screening has also proven to be a valuable strategy for assessing the nature of the peptides. Seaweeds-derived proteins and peptides offer numerous health benefits, including alleviation of oxidative stress, anti-diabetic, anti-hypertensive, anti-inflammatory, anti-obesity, anti-cancer, and anti-microbial activities. Studies indicate that proteins hydrolysates and peptides derived from seaweeds with low molecular weight and aromatic and/or hydrophobic amino acids are particularly significant in contributing to these diverse bio-activities. Furthermore, seaweeds-derived proteins and peptides hold great promise for industrial applications owing to the broad spectrum of bio-functional effects. They can be used as active ingredients in food products or pharmaceuticals for disease prevention and treatment, and as food preservatives, potentially with fewer side effects.
Collapse
Affiliation(s)
- Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| | - Lang Wang
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
| | - Xiaoze Liu
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| | - Tao Fei
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| |
Collapse
|
14
|
Vasquez-Moscoso CA, Merlano JAR, Olivera Gálvez A, Volcan Almeida D. Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture. Prep Biochem Biotechnol 2025; 55:26-35. [PMID: 38970798 DOI: 10.1080/10826068.2024.2365357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The excessive use of conventional antibiotics has resulted in significant aquatic pollution and a concerning surge in drug-resistant bacteria. Efforts have been consolidated to explore and develop environmentally friendly antimicrobial alternatives to mitigate the imminent threat posed by multi-resistant pathogens. Antimicrobial peptides (AMPs) have gained prominence due to their low propensity to induce bacterial resistance, attributed to their multiple mechanisms of action and synergistic effects. Microalgae, particularly cyanobacteria, have emerged as promising alternatives with antibiotic potential to address these challenges. The aim of this review is to present some AMPs extracted from microalgae, emphasizing their activity against common pathogens and elucidating their mechanisms of action, as well as their potential application in the aquaculture industry. Likewise, the biosynthesis, advantages and disadvantages of the use of AMPs are described. Currently, biotechnology tolls are used to enhance the action of these peptides, such as genetically modified microalgae and recombinant proteins. Cyanobacteria are also mentioned as major producers of peptides, among them, the genus Lyngbya is described as the most important producer of bioactive peptides with potential therapeutic use. The majority of cyanobacterial AMPs are of the cyclic type, meaning that they have cysteine and disulfide bridges, thanks to this, their greater antimicrobial activity and selectivity. Likewise, we found that large hydrophobic aromatic amino acid residues increase specificity, and improve antibacterial efficacy. However, based on the results of this review, it is possible to highlight that while microalgae show potential as a source of AMPs, further research in this field is necessary to achieve safe and competitive production. Therefore, the data presented here can aid in the selection of microalgal species, peptide structures, and target bacteria, with the goal of establishing biotechnological platforms for aquaculture applications.
Collapse
Affiliation(s)
- Camila A Vasquez-Moscoso
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Juan Antonio Ramírez Merlano
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | |
Collapse
|
15
|
Mikkili I, Gaddirala BVST, Borugadda S, Davuluri SB. Harnessing algal biomass for sustainable energy: cultivation, strain improvement, and biofuel production. Prep Biochem Biotechnol 2024; 55:521-534. [PMID: 39679595 DOI: 10.1080/10826068.2024.2434879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The world faces pressing environmental challenges, including greenhouse gas emissions, global warming, climate change, and rising sea levels. Alongside, these issues, the depletion of fossil fuels has intensified the search for alternative energy sources. Algal biomass presents a promising long-term solution to these global problems. The quest for sustainable energy has driven significant research into algal biofuels as a viable alternative to fossil fuels. Algae offers several advantages as a feedstock for biofuel production, including high biomass yield, rapid growth rates, cost-effective cultivation, carbon dioxide fixation capabilities, and the potential to grow on non-arable land using non-potable water. This manuscript provides an overview of algal biomass cultivation using renewable feedstocks, identifies potential algal strains for biofuel production, and explores bioengineering advancements in algae. Additionally, strain improvement strategies to enhance biofuel yields are discussed. The review also addresses large-scale algal biomass cultivation for biofuel production, assesses its commercial viability, examines challenges faced by the biofuel industry, and outlines prospects for biofuel production using highly potent algal strains. By overcoming and addressing these challenges, algal biofuels have the potential to become a cornerstone of sustainable energy solutions.
Collapse
Affiliation(s)
- Indira Mikkili
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
| | | | - Sudarsini Borugadda
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
| | - Syam Babu Davuluri
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
| |
Collapse
|
16
|
Figueira Garcia L, Gojkovic Z, Venuleo M, Guidi F, Portillo E. The Use of Chemical Flocculants and Chitosan as a Pre-Concentration Step in the Harvesting Process of Three Native Microalgae Species from the Canary Islands Cultivated Outdoors at the Pilot Scale. Microorganisms 2024; 12:2583. [PMID: 39770786 PMCID: PMC11677443 DOI: 10.3390/microorganisms12122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl3 and AlCl3 were tested on freshwater Chlorella sorokiniana and two marine algae, Dunaliella tertiolecta and Tetraselmis striata. A preliminary screening at the laboratory scale was performed to detect the most suitable doses of flocculants. On the basis of these results, selected doses were tested on the pilot scale, using the flocculants for a pre-concentration step and the centrifugation as a second step to confirm the effectiveness of flocculants in a realistic operational environment. The biomass recoveries (Rpilot, %) of 100 L cultures were as follows: (1) for T. striata, Rpilot = 94.6% for 0.08 g/L AlCl3, 88.4% for 0.1 g/L FeCl3, and 68.3% for 0.04 g/L chitosan; (2) for D. tertiolecta, Rpilot = 81.7% for 0.1 g/L AlCl3, 87.9% for 0.2 g/L FeCl3, and 81.6% for 0.1 g/L chitosan; and (3) for C. sorokiniana, Rpilot = 89.6% for 0.1 g/L AlCl3, 98.6% for 0.2 g/L FeCl3, and 68.3% for 0.1 g/L chitosan. Flocculation reduced the harvesting costs by 85.9 ± 4.5% using chemical flocculants. Excesses of aluminum and iron in the biomass could be solved by decreasing the pH in the biomass combined with washing. This is the first study, to the best of our knowledge, that investigates the pilot-scale flocculation of three native Canarian microalgal strains. A pilot-scale pre-concentration step before centrifugation can improve the yield and reduce costs in the microalgae harvesting process.
Collapse
Affiliation(s)
| | - Zivan Gojkovic
- Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía de Tirajana, Gran Canaria, Spain
| | | | | | | |
Collapse
|
17
|
Abdullah M, Ali Z, Yasin MT, Amanat K, Sarwar F, Khan J, Ahmad K. Advancements in sustainable production of biofuel by microalgae: Recent insights and future directions. ENVIRONMENTAL RESEARCH 2024; 262:119902. [PMID: 39222730 DOI: 10.1016/j.envres.2024.119902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microalgae is considered as sustainable and viable feedstock for biofuel production due to its significant advantages over terrestrial plants. Algal biofuels have received significant attention among researchers and energy experts owing to an upsurge in global energy issues emanating from depletion in fossil fuel reserves increasing greenhouse gases emission conflict among agricultural crops, traditional biomass feedstock, and potential futuristic energy security. Further, the exploration of value-added microalgae as sustainable and viable feedstock for the production of variety of biofuels such as biogas, bio-hydrogen, bioethanol, and biodiesel are addressed. Moreover, the assessment of life-cycle, energy balance, and environmental impacts of biofuel production from microalgae are briefly discussed. The present study focused on recent advancements in synthetic biology, metabolic engineering tools, algal bio refinery, and the optimization of algae growth conditions. This paper also elucidates the function of microalgae as bio refineries, the conditions of algae-based cultures, and other operational factors that must be adjusted to produce biofuels that are price-competitive with fossil fuels.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Industrial Biotechnology Division, National Institute for Biotechnology & Genetic Engineering, P.O. Box 577-Jhang Road, Faisalabad, Pakistan; Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| |
Collapse
|
18
|
Sarkar P, Bandyopadhyay TK, Gopikrishna K, Nath Tiwari O, Bhunia B, Muthuraj M. Algal carbohydrates: Sources, biosynthetic pathway, production, and applications. BIORESOURCE TECHNOLOGY 2024; 413:131489. [PMID: 39278363 DOI: 10.1016/j.biortech.2024.131489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Algae play a significant role in the global carbon cycle by utilizing photosynthesis to efficiently convert solar energy and atmospheric carbon dioxide into various chemical compounds, notably carbohydrates, pigments, lipids, and released oxygen, making them a unique sustainable cellular factory. Algae mostly consist of carbohydrates, which include a broad variety of structures that contribute to their distinct physical and chemical properties such as degree of polymerization, side chain, branching, degree of sulfation, hydrogen bond etc., these features play a crucial role in regulating many biological activity, nutritional and pharmaceutical properties. Algal carbohydrates have not received enough attention in spite of their distinctive structural traits linked to certain biological and physicochemical properties. Nevertheless, it is anticipated that there will be a significant increase in the near future due to increasing demand, sustainable source, biofuel generation and their bioactivity. This is facilitated by the abundance of easily accessible information on the structural data and distinctive characteristics of these biopolymers. This review delves into the different types of saccharides such as agar, alginate, fucoidan, carrageenan, ulvan, EPS and glucans synthesized by various macroalgal and microalgal systems, which include intracellular, extracellular and cell wall saccharides. Their structure, biosynthetic pathway, sources, production strategies and their applications in various field such as nutraceuticals, pharmaceuticals, biomedicine, food and feed, cosmetics, and bioenergy are also elaborately discussed. Algal polysaccharide has huge a scope for exploitation in future due to their application in food and pharmaceutical industry and it can become a huge source of capital and income.
Collapse
Affiliation(s)
- Pradip Sarkar
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India
| | | | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, Government of India, New Delhi 110 016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
19
|
Georgieva Z, Karcheva Z, Toshkova-Yotova T, Georgieva A, Toshkova R, Petrova D, Zhiponova M, Chaneva G. Blue Light Enhances the Antioxidant, Antimicrobial, and Antitumor Potential of the Green Microalgae Coelastrella sp. BGV. PLANTS (BASEL, SWITZERLAND) 2024; 13:3295. [PMID: 39683088 DOI: 10.3390/plants13233295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Green algae of the genus Coelastrella have attracted the attention of scientists due to their rich biochemical composition and potential for application in phytomedicine. The present study investigated the influence of light on the bioactive capacity of extracts from the Bulgarian strain of the green microalgae Coelastrella sp. BGV. Three LED lights were examined-red/blue (C1), blue (C2), and control white light (C3). The respective ethanol extracts were analyzed for the total content of phenolic antioxidants. The antimicrobial activity was tested using the disk-diffusion method against 10 microorganisms. The antiproliferative and cytotoxic effects on cervical carcinoma HeLa and hepatocellular carcinoma HepG2 cell lines, as well as non-tumorigenic embryonal fibroblasts BALB/3T3 control, were evaluated using a cell viability assay. The overall results highlighted blue light as a factor enhancing the antioxidant, antibacterial, and cytotoxic activities of the C2 microalgal extract. Additionally, the investigated mechanism of the antitumor activity revealed a proapoptotic effect. In contrast, the C1 extract exhibited weaker activity and selectivity, while the C3 extract was the least active but demonstrated high cytotoxic selectivity. This study could contribute to expanding knowledge about the high biological potential of green microalgae and the development of biotechnological approaches for its regulation.
Collapse
Affiliation(s)
- Zhaneta Georgieva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Zornitsa Karcheva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Tanya Toshkova-Yotova
- Laboratory "Experimental and Applied Algology", Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
20
|
Xia Z, Wang S, Wu Y, Qiao X, Guo X, Wang Q, Liu Y, Qiu N, Wu Y, Liu X. Unveiling the Contamination of Thiocyanate, Perchlorate, and Chlorate in Edible Microalgae: Detection, Distribution, and Risk Assessment in Sustainable Food Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39568100 DOI: 10.1021/acs.jafc.4c08334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
With the growing interest in microalgae as a sustainable food source, concerns about potential chemical contaminants in these products have emerged. In this study, a sensitive and reliable LC-MS/MS method was developed for the simultaneous detection of thiocyanate, perchlorate, and chlorate in edible microalgae samples. The method was validated with excellent linearity (R2 > 0.998), low detection limits (LOD: 1-8 μg/kg), quantification limits (LOQ: 4-26 μg/kg), and high recovery rates (75-101.9%) across different sample types. We collected a total of 77 microalgae products based on the available varieties in the market, including 43 Spirulina powder samples, 10 Chlorella powder samples, and 24 microalgae-based food products, sourced from key microalgae production regions in China. The contamination levels for thiocyanate (median: 1843.06-2645.72 μg/kg) and perchlorate (median: 23.29-31.4 μg/kg) were consistently quantitated in all samples, while chlorate concentrations showed greater variability (median: 18.94-160.21 μg/kg). Risk assessment revealed a significant dietary exposure risk to thiocyanate, with estimated daily intake (EDI) values exceeding the EPA's subchronic reference dose, whereas no significant risk was identified for perchlorate or chlorate. Monte Carlo simulations further supported the conclusion that perchlorate and chlorate posed minimal dietary risks, while thiocyanate exposure warrants concern. This study not only provides a foundational method for monitoring these contaminants in microalgae but also contributes critical data for future food safety standards and regulatory practices regarding edible microalgae products.
Collapse
Affiliation(s)
- Zhunan Xia
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Sisi Wang
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yatao Wu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Xiangqi Qiao
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Xiao Guo
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Qiao Wang
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yan Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Nannan Qiu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xin Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food, State Administration for Market Regulation, Wuhan 430075, China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, Hubei 430023, China
| |
Collapse
|
21
|
Gamberi C, Leverette CL, Davis AC, Ismail M, Piccialli I, Borbone N, Oliviero G, Vicidomini C, Palumbo R, Roviello GN. Oceanic Breakthroughs: Marine-Derived Innovations in Vaccination, Therapy, and Immune Health. Vaccines (Basel) 2024; 12:1263. [PMID: 39591167 PMCID: PMC11598900 DOI: 10.3390/vaccines12111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The vast, untapped potential of the world's oceans is revealing groundbreaking advancements in human health and vaccination. Microalgae such as Nannochloropsis spp. and Dunaliella salina are emerging as resources for recombinant vaccine development with specific and heterologous genetic tools used to boost production of functional recombinant antigens in Dunaliella salina and Nannochloropsis spp. to induce immunoprotection. In humans, several antigens produced in microalgae have shown potential in combating diseases caused by the human papillomavirus, human immunodeficiency virus, hepatitis B virus, influenza virus, Zika virus, Zaire Ebola virus, Plasmodium falciparum, and Staphylococcus aureus. For animals, microalgae-derived vaccine prototypes have been developed to fight against the foot-and-mouth disease virus, classical swine fever virus, vibriosis, white spot syndrome virus, and Histophilus somni. Marine organisms offer unique advantages, including the ability to express complex antigens and sustainable production. Additionally, the oceans provide an array of bioactive compounds that serve as therapeutics, potent adjuvants, delivery systems, and immunomodulatory agents. These innovations from the sea not only enhance vaccine efficacy but also contribute to broader immunological and general health. This review explores the transformative role of marine-derived substances in modern medicine, emphasizing their importance in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Chad L. Leverette
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Alexis C. Davis
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Moayad Ismail
- Faculty of Medicine, European University, 76 Guramishvili Ave., 0141 Tbilisi, Georgia;
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| |
Collapse
|
22
|
Quan X, Liu C, Chen J, Li Y, Yuan Z, Zheng Y, Mok GSP, Wang R, Zhao Y. Neutrophil-Mimetic Upconversion Photosynthetic Nanosystem Derived from Microalgae for Targeted Treatment of Thromboembolic Stroke. ACS NANO 2024; 18:30307-30320. [PMID: 39465976 DOI: 10.1021/acsnano.4c06247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Thromboembolic stroke constitutes the majority of brain strokes, resulting in elevated mortality and morbidity rates, as well as significant societal and economic burdens. Although intravenous thrombolysis serves as the standard clinical treatment, its narrow therapeutic window and the inflammatory response induced by tissue plasminogen activator (tPA) administration limit its efficacy. In the initial stages of stroke, the abrupt cessation of blood flow leads to an energy metabolism disorder, marked by a substantial decrease in adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) levels, causing irreversible damage to neural cells. In this study, we introduce a neutrophil-mimetic, microalgae-derived upconversion photosynthetic nanosystem designed for targeted treatment of thromboembolic stroke. This system features upconversion nanoparticles coated with a thylakoid membrane and wrapped in an activated neutrophil membrane, further decorated with ROS-responsive thrombolytic tPA on its surface. The neutrophil-mimetic design facilitates high targeting specificity and accumulation at the thrombus site after intravenous administration. Upon exposure to elevated levels of reactive oxygen species (ROS) at the thrombus location, the nanosystem promptly demonstrated potent thrombolytic efficacy through the surface-modified tPA. Furthermore, near-infrared II (NIR-II) laser irradiation activated the generation of ATP and NADPH, which inhibited inflammatory cell infiltration, platelet activation, oxidative stress, and neuronal injury. This constructed nanoplatform not only showcases exceptional targeting efficiency at the stroke site and controllable release of the thrombolytic agent but also facilitates ATP/NADPH-mediated thrombolytic, anti-inflammatory, antioxidative stress, and neuroprotective effects. Additionally, it offers valuable insights into the potential therapeutic applications of microalgae-based derivatives in managing thromboembolic stroke.
Collapse
Affiliation(s)
- Xingping Quan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Chang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Jinfen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Yiyang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, SAR 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Greta S P Mok
- Department of Electrical and Computer Engineering, University of Macau, Macau, SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| |
Collapse
|
23
|
Morais AMMB, Kumla D, Martins VFR, Alves A, Gales L, Silva AMS, Costa PM, Mistry S, Kijjoa A, Morais RMSC. Monoterpene Hydroxy Lactones Isolated from Thalassiosira sp. Microalga and Their Antibacterial and Antioxidant Activities. Molecules 2024; 29:5175. [PMID: 39519816 PMCID: PMC11547300 DOI: 10.3390/molecules29215175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Two monoterpenoid lactones, loliolide (1) and epi-loliolide (2), were isolated from the crude dichloromethane extract of a microalga, Thalassiosira sp.). The structures of loliolide (1) and epi-loliolide (2) were elucidated by 1D and 2D NMR analysis, as well as a comparison of their 1H or/and 13C NMR data with those reported in the literature. In the case of loliolide (1), the absolute configurations of its stereogenic carbons were confirmed by X-ray analysis, whereas those of epi-loliolide (2) were determined by NOESY correlations. Loliolide (1) and epi-loliolide (2) were tested for their growth inhibitory activity against two Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and two Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bacteria, as well as one clinical isolate (E. coli SA/2, an extended-spectrum β-lactamase producer-ESBL) and two environmental isolates, S. aureus 74/24, a methicillin-resistant (MRSA), and E. faecalis B3/101, a vancomycin-resistant (VRE) isolates. The results showed that none of the tested compounds exhibited antibacterial activity at the highest concentrations tested (325 μM), and both revealed low antioxidant activity, with ORAC values of 2.786 ± 0.070 and 2.520 ± 0.319 µmol TE/100 mg for loliolide (1) and epi-loliolide (2), respectively.
Collapse
Affiliation(s)
- Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| | - Decha Kumla
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| | - Valter F. R. Martins
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| | - Ana Alves
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| | - Luis Gales
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (L.G.); (P.M.C.); (A.K.)
- Instituto de Biologia Molecular e Celular (i3S-IBMC), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Artur M. S. Silva
- Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Paulo M. Costa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (L.G.); (P.M.C.); (A.K.)
- Instituto de Biologia Molecular e Celular (i3S-IBMC), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sharad Mistry
- Department of Chemistry, University of Leicester, University Road, Leicester LE 7 RH, UK;
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (L.G.); (P.M.C.); (A.K.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Rui M. S. C. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| |
Collapse
|
24
|
Wu X, Zhao X, Hu J, Li S, Guo X, Wang Q, Liu Y, Gong Z, Wu Y, Fang M, Liu X. Occurrence and health risk assessment of toxic metals and rare earth elements in microalgae: Insight into potential risk factors in new sustainable food resources. Food Chem X 2024; 23:101697. [PMID: 39176040 PMCID: PMC11339045 DOI: 10.1016/j.fochx.2024.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Microalgae are a promising sustainable food source with high nutritional value and environmental benefits. This study investigated the presence of toxic metals and rare earth elements (REEs) in 68 microalgal-based food products and conducted a probabilistic risk assessment to evaluate potential health risks. The findings revealed high detection rates of REEs (80.96% to 100%) and heavy metals (83.82% to 100%), with REE concentrations ranging from 0.0055 to 0.5207 mg/kg. Heavy metals were detected at the following average concentrations: As (2.80 mg/kg) > Cr (1.27 mg/kg) > Pb (0.30 mg/kg) > Cd (0.20 mg/kg) > Hg (0.01 mg/kg). Carcinogenic risk analysis for Cd (3.004 × 10-3), Cr (1.484 × 10-3), and As (1.1283 × 10-2) indicated that 95th percentile values exceeded established safety thresholds (10-4). These findings highlight the critical need for stringent monitoring and the establishment of comprehensive regulatory frameworks for the safety of novel microalgae foods.
Collapse
Affiliation(s)
- Xiaopan Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Xiaole Zhao
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Jiayong Hu
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Shiwen Li
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Xiao Guo
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Yan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Department of Nutrition and Food Safety, Peking Union Medical College; Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing 100010, China
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100010, China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| |
Collapse
|
25
|
Mummaleti G, Udo T, Mohan A, Kong F. Synthesis, characterization and application of microbial pigments in foods as natural colors. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39466660 DOI: 10.1080/10408398.2024.2417802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Colorants have played a crucial role in various applications, particularly in food processing, with natural sources such as mineral ores, plants, insects, and animals being commonly used. However, the nineteenth century saw the development of synthetic dyes, which replaced these natural colorants. In recent years, there has been a growing demand for natural products, driving an increased interest in natural colorants. Microbial pigments have emerged as promising sources of natural pigments due to their numerous health benefits. They can be produced in large quantities rapidly and from more affordable substrates, making them economically attractive. This review focuses on the current advancements in the low-cost synthesis of microbial pigments, exploring their biological activities and commercial applications. Microbial pigments offer a sustainable and economically viable alternative to natural and synthetic colorants, meeting the growing demand for natural products. These pigments are relatively nontoxic and exhibit significant health benefits, making them suitable for a wide range of applications. As interest in natural products continues to rise, microbial pigments hold great potential in shaping the future of colorant production across various sectors.
Collapse
Affiliation(s)
- Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
26
|
Tyowua AT, Harbottle D, Binks BP. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Adv Colloid Interface Sci 2024; 332:103274. [PMID: 39159542 DOI: 10.1016/j.cis.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Department of Chemistry, Benue State University, PMB, 102119, Makurdi, Nigeria; School of Chemical Engineering, University of Birmingham, Edgbaston. B15 2TT. UK.
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT. UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull. HU6 7RX. UK
| |
Collapse
|
27
|
Cui J, Eddaoudi A, Purton S, Jayasinghe SN. Bio-Sprayed/Threaded Microalgae Remain Viable and Indistinguishable from Controls. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402611. [PMID: 39031806 DOI: 10.1002/smll.202402611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/24/2024] [Indexed: 07/22/2024]
Abstract
Microalgae are increasingly playing a significant role in many areas of research and development. Recent studies have demonstrated their ability to aid wound healing by their ability to generate oxygen, aiding the healing process. Bearing this in mind, the capability to spray/spin deposit microalgae in suspension (solution) or compartmentalize living microalgae within architectures such as fibers/scaffolds and beads, would have significance as healing mechanisms for addressing a wide range of wounds. Reconstructing microalgae-bearing architectures as either scaffolds or beads could be generated via electric field (bio-electrospraying and cell electrospinning) and non-electric field (aerodynamically assisted bio-jetting/threading) driven technologies. However, before studying the biomechanical properties of the generated living architectures, the microalgae exposed to these techniques must be interrogated from a molecular level upward first, to establish these techniques, have no negative effects brought on the processed microalgae. Therefore these studies, demonstrate the ability of both these jetting and threading technologies to directly handle living microalgae, in suspension or within a polymeric suspension, safely, and form algae-bearing architectures such as beads and fibers/scaffolds.
Collapse
Affiliation(s)
- Jing Cui
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK
- Algal Research Group, Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ayad Eddaoudi
- Flow Cytometry Core Facility, University College London, Great Ormond Street, Institute of Child Health/Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London, WC1N 1DZ, UK
| | - Saul Purton
- Algal Research Group, Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Suwan N Jayasinghe
- BioPhysics Group, Centre for Stem Cells and Regenerative Medicine, Institute of Healthcare Engineering, UCL Department of Mechanical Engineering, Torrington Place, London, WC1E 7JE, UK
| |
Collapse
|
28
|
Dubey SK, Lee SS, Kim JH. Efficient enhancement of the antimicrobial activity of Chlamydomonas reinhardtii extract by transgene expression and molecular modification using ionizing radiation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:125. [PMID: 39354614 PMCID: PMC11443672 DOI: 10.1186/s13068-024-02575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Ionizing radiation has been used for mutagenesis or material modification. The potential to use microalgae as a platform for antimicrobial production has been reported, but little work has been done to advance it beyond characterization to biotechnology. This study explored two different applications of ionizing radiation as a metabolic remodeler and a molecular modifier to enhance the antimicrobial activity of total protein and solvent extracts of Chlamydomonas reinhardtii cells. RESULTS First, highly efficient transgenic C. reinhardtii strains expressing the plant-derived antimicrobial peptides, AtPR1 or AtTHI2.1, were developed using the radiation-inducible promoter, CrRPA70Ap. Low transgene expression was significantly improved through X-irradiation (12-50 Gy), with peak activity observed within 2 h. Protein extracts from these strains after X-irradiation showed enhanced antimicrobial activity against the prokaryotic bacterium, Pseudomonas syringae, and the eukaryotic fungus, Cryptococcus neoformans. In addition, X-irradiation (12 Gy) increased the growth and biomass of the transgenic strains. Second, C. reinhardtii cell extracts in ethanol were γ-irradiated (5-20 kGy), leading to molecular modifications and increased antimicrobial activity against the phytopathogenic bacteria, P. syringae and Burkholderia glumae, in a dose-dependent manner. These changes were associated with alterations in fatty acid composition. When both transgenic expression of antimicrobial peptides and molecular modification of bioactive substances were applied, the antimicrobial activity of C. reinhardtii cell extracts was further enhanced to some extent. CONCLUSION Overall, these findings suggest that ionizing radiation can significantly enhance the antimicrobial potential of C. reinhardtii through efficient transgene expression and molecular modification of bioactive substances, making it a valuable source of natural antimicrobial agents. Ionizing radiation can act not only as a metabolic remodeler of transgene expression in microalgae but also as a molecular modifier of the bioactive substances.
Collapse
Affiliation(s)
- Shubham Kumar Dubey
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea
- Department of Radiation Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea
- Department of Radiation Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
29
|
Paterson S, Majchrzak M, Alexandru D, Di Bella S, Fernández-Tomé S, Arranz E, de la Fuente MA, Gómez-Cortés P, Hernández-Ledesma B. Impact of the biomass pretreatment and simulated gastrointestinal digestion on the digestibility and antioxidant activity of microalgae Chlorella vulgaris and Tetraselmis chuii. Food Chem 2024; 453:139686. [PMID: 38788650 DOI: 10.1016/j.foodchem.2024.139686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Chlorella vulgaris and Tetraselmis chuii are two microalgae species already marketed because of their richness in high-value and health-beneficial compounds. Previous studies have demonstrated the biological properties of compounds isolated from both microalgae, although data are not yet available on the impact that pre-treatment and gastrointestinal digestion could exert on these properties. The aim of the present study was to analyze the impact of the biomass pre-treatment (freeze/thaw cycles plus ultrasounds) and simulated gastrointestinal digestion in the bioaccessibility and in vitro antioxidant activity (ABTS, ORAC, Q-FRAP, Q-DPPH) of the released digests. The cell wall from microalgae were susceptible to the pre-treatment and the action of saliva and gastric enzymes, releasing bioactive peptides and phenolic compounds that contributed to the potent antioxidant activity of digests through their radical scavenging and iron reduction capacities. Our findings suggest the potential of these microalgae against oxidative stress-associated diseases at both, intestinal and systemic level.
Collapse
Affiliation(s)
- Samuel Paterson
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Marta Majchrzak
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Denisa Alexandru
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Serena Di Bella
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Samuel Fernández-Tomé
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Elena Arranz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Departmental Section of Food Science. Faculty of Science, Autonomous University of Madrid (UAM) and Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Miguel Angel de la Fuente
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
30
|
Panchal SK, Heimann K, Brown L. Improving Undernutrition with Microalgae. Nutrients 2024; 16:3223. [PMID: 39339823 PMCID: PMC11435262 DOI: 10.3390/nu16183223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Undernutrition is an important global health problem, especially in children and older adults. Both reversal of maternal and child undernutrition and heathy ageing have become United Nations-supported global initiatives, leading to increased attention to nutritional interventions targeting undernutrition. One feasible option is microalgae, the precursor of all terrestrial plants. Most commercially farmed microalgae are photosynthetic single-celled organisms producing organic carbon compounds and oxygen. This review will discuss commercial opportunities to grow microalgae. Microalgae produce lipids (including omega-3 fatty acids), proteins, carbohydrates, pigments and micronutrients and so can provide a suitable and underutilised alternative for addressing undernutrition. The health benefits of nutrients derived from microalgae have been identified, and thus they are suitable candidates for addressing nutritional issues globally. This review will discuss the potential benefits of microalgae-derived nutrients and opportunities for microalgae to be converted into food products. The advantages of microalgae cultivation include that it does not need arable land or pesticides. Additionally, most species of microalgae are still unexplored, presenting options for further development. Further, the usefulness of microalgae for other purposes such as bioremediation and biofuels will increase the knowledge of these microorganisms, allowing the development of more efficient production of these microalgae as nutritional interventions.
Collapse
Affiliation(s)
- Sunil K Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Kirsten Heimann
- College of Medicine and Public Health, Flinders University, Health Science Building, Building 4, Registry Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
31
|
Fassi Fihri R, Ez-Zoubi A, Mbarkiou L, Amar A, Farah A, Bouchamma EO. Antibacterial and antioxidant activities of Chlorella vulgaris and Scenedesmus incrassatulus using natural deep eutectic solvent under microwave assisted by ultrasound. Heliyon 2024; 10:e35071. [PMID: 39161814 PMCID: PMC11332902 DOI: 10.1016/j.heliyon.2024.e35071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Microalgae are increasingly recognized as promising sources of natural bioactive compounds. However, traditional extraction methods using volatile organic solvents (VOCs) pose environmental risks. This study explores renewable deep eutectic solvents (DES) as sustainable alternatives for extracting bioactive compounds from microalgae biomass, focusing on Chlorella vulgaris and Scenedesmus incrassatulus. Four DES systems, comprising choline chloride (ChCl) and glycerol, citric acid, urea, and glucose, were compared with three conventional solvents (ethanol, methanol, and water). Extraction efficiency was assessed based on total phenolic content (TPC), flavonoid content, and tannin content, followed by antioxidant activity evaluation using DPPH, CAT, and FRAP assays. Additionally, antibacterial activity of the DES extracts was determined against Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 29213), and Bacillus subtilis (ATCC 3366) using disc diffusion and microplate dilution methods to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results reveal that DES, particularly choline chloride: citric acid, outperform conventional solvents in terms of polyphenol extraction efficiency, antioxidant activity, and antibacterial activity against both Gram-negative and Gram-positive bacteria. For instance, the citric acid-based DES (SIDES2) showed a TPC of 4.98 mg/g, while the conventional solvent ethanol exhibited a TPC of 3.27 mg/g. Additionally, SIDES2 exhibiting the highest DPPH scavenging activity of 75 %, compared to 60 % for ethanol. Furthermore, SIDES2 showed an MIC of 0.5 mg/ml against Staphylococcus aureus. This study underscores the potential of DES for sustainable extraction of natural antioxidants from microalgae biomass, contributing to the development of environmentally friendly extraction processes in various industries.
Collapse
Affiliation(s)
- Reda Fassi Fihri
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| | - Amine Ez-Zoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| | - Latifa Mbarkiou
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| | - Aya Amar
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Science Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Atlas, B. P. 1796, Fez, Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| | - El Ouazna Bouchamma
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| |
Collapse
|
32
|
Yuan S, Du M, Li X, Xu K, Zhang K, Liu X, Wang J. Adaptability and nutritional analysis of a newly isolated Chlorella sp. NeZha in brackish and marine environments with potential bioeconomic impacts. Front Nutr 2024; 11:1460675. [PMID: 39206305 PMCID: PMC11349555 DOI: 10.3389/fnut.2024.1460675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The microalga Chlorella sp. NeZha, recently isolated from a balcony environment, shows significant adaptability across various salinity conditions, including seawater (SeaW), freshwater (FreshW), and high salinity levels (45‰). This study investigates its potential for sustainable aquaculture and biotechnological applications. Methods Morphological and genetic identification were conducted using optical microscopy and DNA sequencing. The microalga was cultivated in a 400 L outdoor photobioreactor, and its biochemical composition, including chlorophyll a, carbohydrate, protein, and lipid content, was analyzed. Its compatibility with zooplankton and growth in aquaculture wastewater were also evaluated. Results Chlorella sp. NeZha produced chlorophyll a at concentrations exceeding seaweed and Spirulina by 10- and 5-fold, respectively, with a dry weight chlorophyll a content of 34.25 mg/g and 25 pg./cell. The microalga also contained carbohydrate (~33%), protein (~20%), and lipids (~14%). It was compatible with zooplankton species, such as rotifers and brine shrimp, and showed promising growth in aquaculture wastewater. Discussion The findings suggest that Chlorella sp. NeZha is a viable candidate for sustainable aquaculture and biotechnological applications, offering high nutritional value and environmental resilience. Its adaptability to diverse salinity conditions and ability to thrive in wastewater highlight its potential for bioremediation and use as feedstock for zooplankton. Further research is recommended to optimize its cultivation and explore broader applications.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Hainan Chenhai Aquatic Co., Ltd., Sanya City, Hainan, China
| | - Ming Du
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xianhui Li
- Hainan Chenhai Aquatic Co., Ltd., Sanya City, Hainan, China
| | - Ke Xu
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Kaining Zhang
- PingYi County Hospital of Traditional Chinese Medicine, LinYi, Shangdong, China
| | - Xiaoya Liu
- PingYi County Hospital of Traditional Chinese Medicine, LinYi, Shangdong, China
| | - Jiangxin Wang
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
33
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
34
|
Şirin PA, Serdar S. Effects of nitrogen starvation on growth and biochemical composition of some microalgae species. Folia Microbiol (Praha) 2024; 69:889-902. [PMID: 38285280 DOI: 10.1007/s12223-024-01136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Nitrogen is one of the most important nutrient sources for the growth of microalgae. We studied the effects of nitrogen starvation on the growth responses, biochemical composition, and fatty acid profile of Dunaliella tertiolecta, Phaeodactylum tricornutum, and Nannochloropsis oculata. The lack of nitrogen caused changes in carbohydrate, protein, lipid, and fatty acid composition in all examined microalgae. The carbohydrate content increased 59% in D. tertiolecta, while the lipid level increased 139% in P. tricornutum under nitrogen stress conditions compared to the control groups. Nitrogen starvation increased the oligosaccharide and polysaccharide contents of D. tertiolecta 4.1-fold and 3.6-fold, respectively. Furthermore, triacylglycerol (TAG) levels in N. oculata and P. tricornutum increased 2.3-fold and 7.4-fold, respectively. The dramatic increase in the amount of TAG is important for the use of these microalgae as raw materials in biodiesel. Nitrogen starvation increased the amounts of oligosaccharides and polysaccharides of D. tertiolecta, while increased eicosapentaenoic acid (EPA) in N. oculata and docosahexaenoic acid (DHA) content in P. tricornutum. The amount of polyunsaturated fatty acids (PUFAs), EPA, DHA, oligosaccharides, and polysaccharides in microalgal species can be increased without using the too costly nitrogen source in the culture conditions, which can reduce the most costly of living feeding.
Collapse
Affiliation(s)
- Pınar Akdoğan Şirin
- Fatsa Faculty of Marine Science, Department of Fisheries Technology Engineering, Ordu University, 52400, Fatsa, Ordu, Turkey.
| | - Serpil Serdar
- Faculty of Fisheries, Department of Aquaculture, Ege University, 35030, Bornova, Izmir, Turkey
| |
Collapse
|
35
|
Emam KRS, Ali SAM, Morsy AS, Fouda WA, Elbaz AM. Role of Nannochloropsis Oculata supplement in improving performance, antioxidant status, blood metabolites, and egg quality of laying hens under hot environmental conditions. Sci Rep 2024; 14:16884. [PMID: 39043736 PMCID: PMC11266347 DOI: 10.1038/s41598-024-66595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The increase in environmental temperature led to economic losses in the poultry industry, urging the use of feed supplements to mitigate the negative effects on chick's welfare and performance. Therefore, this study aimed to examine the effects of marine microalgae (Nannochloropsis Oculata, N. Oculata) additive on commercial Brown Lohmann laying hen's performance, blood metabolites, and antioxidant status under hot environmental conditions. One hundred and eighty birds (34 weeks old with an initial body weight of 1885 ± 23.5 g) were used till 47 weeks. The birds were divided into three equal groups (birds in each group were distributed into four equal replicates 15 hens/ replicate). The 1st group was the control (CON) and was fed the basal diet, while the 2nd (TR1) and 3rd (TR2) groups were fed the basal diet supplemented with 0.5 and 1.0% of N. Oculata, respectively. The results showed that total protein and globulin concentrations increased (P < 0.05) in treated groups compared with the control group, whereas, albumin concentration increased (P < 0.05) in TR2 compared to the control group. The concentration of ALT and AST decreased in hens fed N. Oculata. Supplementing with N. Oculata reduced serum cholesterol and creatinine concentrations, while glucose concentration increased (P < 0.05) in the treated groups compared to the control group. Serum calcium, total antioxidant capacity (TAC), Triiodothyronine (T3), and progesterone increased (P < 0.05) in hens fed N. Oculata. N. Oculata supplement improved production performance through a positive effect on egg number, egg weight, egg mass, feed conversion ratio, and mortality rate. In addition, the overall mean of shell thickness increased (P < 0.05) in hens fed N. Oculata. It can be concluded that the supplementation of 1.0% N. Oculata to the laying hens' diet enhanced productive performance, serum constituents, and antioxidant status under hot environmental conditions.
Collapse
Affiliation(s)
- K R S Emam
- Animal and Poultry Production Department, Faculty of Agriculture, Beni-Suef University, Beni Suef, Egypt
| | - Safaa A M Ali
- Animal and Poultry Physiology Department, Desert Research Center, Cairo, Egypt
| | - A S Morsy
- Animal and Poultry Physiology Department, Desert Research Center, Cairo, Egypt
| | - Wafaa A Fouda
- Animal and Poultry Physiology Department, Desert Research Center, Cairo, Egypt
| | - Ahmed M Elbaz
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt.
| |
Collapse
|
36
|
Sarpal AS, Teixeira CMLL, Costa ICR. Cultivation of Chlorella vulgaris in wastewater: biodiesel potential and wastewater remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48795-48810. [PMID: 38990262 DOI: 10.1007/s11356-024-34231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
The present investigation has evaluated the use of effluents from a secondary municipal wastewater treatment plant for biomass production and potential of the biomass for biodiesel production. Cultivations of Chlorella vulgaris using wastewater, wastewater with supplementation, and WC medium were carried out. Effect of wastewater collected in different months on biomass productivity (BP) and lipid composition was studied. Methods based on NMR and GC-MS techniques were applied for determining the composition of the lipids and their fatty acid profile including poly unsaturated fatty acids (PUFAs). Lipids extracted are comprised of both neutral (tri acyl glycerides, TAG; free fatty acids, FFA) and polar (glyco glycero/phospho) lipids. The TAG content of the extracted lipids was determined in the range of 22.5-41.3% w/w. The NMR and GC-MS compositional results of microalgal lipids of biomasses cultivated in wastewater without nutrient supplementation, collected in different months, showed potential for biodiesel production. The fatty acid profiles of neutral and polar lipids, which are mainly comprised of saturated and unsaturated long alkyl chain (C16-C22) fatty acids, are potential sources for the biodiesel and food industry. The concentration of nitrates (45-78 mg L-1) in wastewater without supplementation, collected in different months, was found to be optimum to enable cultivation of biomasses with reasonably good BP of 21.5-28.1 mg L-1 day-1. Similar results have been obtained in the present work as well as reported in the literature in the case of WC medium (nitrate, 69 mg L-1) with BP of 25.5-28.2 mg L-1 day-1, thus highlighted the significance of the presented work.
Collapse
Affiliation(s)
- Amarjit S Sarpal
- Instituto Nacional de Metrologia, Qualidade E Tecnologia-INMETRO, Avenida Nossa Senhora das Gracas 50Duque de ́Caxias, Xerem, RJ, Brazil.
- Indian Oil Corporation Ltd., R&D Center, Fariadabad, Haryana, 121006, India.
| | - Cláudia M L L Teixeira
- Laboratório de Biotecnologia de M, icroalgas, Instituto Nacional de Tecnologia, Av Venezuela, 82, Sala 716, Saúde, Rio de Janeiro, RJ, Brazil
| | - Ingrid C R Costa
- Laboratório de Biotecnologia de M, icroalgas, Instituto Nacional de Tecnologia, Av Venezuela, 82, Sala 716, Saúde, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
37
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
38
|
Santacroce L, Bottalico L, Charitos IA, Castellaneta F, Gaxhja E, Topi S, Palmirotta R, Jirillo E. Exploitation of Natural By-Products for the Promotion of Healthy Outcomes in Humans: Special Focus on Antioxidant and Anti-Inflammatory Mechanisms and Modulation of the Gut Microbiota. Antioxidants (Basel) 2024; 13:796. [PMID: 39061865 PMCID: PMC11273986 DOI: 10.3390/antiox13070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Daily, a lot of food is wasted, and vegetables, fruit, and cereals as well as marine products represent the major sources of unwanted by-products. The sustainability, waste recovery, and revalorization of food by-products have been proposed as the main goals of the so-called circular economy. In fact, food wastes are enriched in by-products endowed with beneficial effects on human health. Grape, olives, vegetables, and rice contain different compounds, such as polyphenols, dietary fibers, polysaccharides, vitamins, and proteins, which exert antioxidant and anti-inflammatory activities, inhibiting pro-oxidant genes and the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kβ) pathway, as demonstrated by in vitro and in vivo experiments. Dietary fibers act upon the gut microbiota, expanding beneficial bacteria, which contribute to healthy outcomes. Furthermore, marine foods, even including microalgae, arthropods, and wastes of fish, are rich in carotenoids, polyphenols, polyunsaturated fatty acids, proteins, and chitooligosaccharides, which afford antioxidant and anti-inflammatory protection. The present review will cover the major by-products derived from food wastes, describing the mechanisms of action involved in the antioxidant and anti-inflammatory activities, as well as the modulation of the gut microbiota. The effects of some by-products have also been explored in clinical trials, while others, such as marine by-products, need more investigation for their full exploitation as bioactive compounds in humans.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Elona Gaxhja
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| |
Collapse
|
39
|
Kim DY, Park HJ, Eom JI, Han CH, Pan CH, Lee JK. Ethanol Extract of the Microalga Phaeodactylum tricornutum Shows Hepatoprotective Effects against Acetaminophen-Induced Acute Liver Injury in Mice. Int J Mol Sci 2024; 25:6247. [PMID: 38892435 PMCID: PMC11172906 DOI: 10.3390/ijms25116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Acute liver failure is an infrequent yet fatal condition marked by rapid liver function decline, leading to abnormalities in blood clotting and cognitive impairment among individuals without prior liver ailments. The primary reasons for liver failure are infection with hepatitis virus or overdose of certain medicines, such as acetaminophen. Phaeodactylum tricornutum (PT), a type of microalgae known as a diatom species, has been reported to contain an active ingredient with anti-inflammatory and anti-obesity effects. In this study, we evaluated the preventive and therapeutic activities of PT extract in acute liver failure. To achieve our purpose, we used two different acute liver failure models: acetaminophen- and D-GalN/LPS-induced acute liver failure. PT extract showed protective activity against acetaminophen-induced acute liver failure through attenuation of the inflammatory response. However, we failed to demonstrate the protective effects of PT against acute liver injury in the D-GalN/LPS model. Although the PT extract did not show protective activity against two different acute liver failure animal models, this study clearly demonstrates the importance of considering the differences among animal models when selecting an acute liver failure model for evaluation.
Collapse
Affiliation(s)
- Dae Yoon Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea;
| | - Hui Jin Park
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28160, Republic of Korea;
| | - Jae-In Eom
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.)
| | - Cheol-Ho Han
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.)
| | - Cheol-Ho Pan
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.)
| | - Jae Kwon Lee
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28160, Republic of Korea;
| |
Collapse
|
40
|
Bhatnagar P, Gururani P, Parveen A, Gautam P, Chandra Joshi N, Tomar MS, Nanda M, Vlaskin MS, Kumar V. Algae: A promising and sustainable protein-rich food ingredient for bakery and dairy products. Food Chem 2024; 441:138322. [PMID: 38190793 DOI: 10.1016/j.foodchem.2023.138322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The consumer demand for protein rich foods urges the exploration for novel products of natural origin. Algae can be considered as a gold mine of different bioactive compounds, among which protein is distributed in significant amounts i.e., around 30% and can even reach to 55-60% in some cyanobacteria. Bakery and dairy products are extensively consumed worldwide due to product diversification and innovation. However, incorporation of algae biomass can lead to the development of green colour and fishy flavour that usually is not accepted in such products. Therefore, isolation and application of algae-derived proteins opens a new door for food industry. The present review provides a comprehensive understanding of incorporation of algae as a protein-rich ingredient in bakery and dairy products. The paper provides a deep insight for all the possible recent trends related to production and extraction of algae proteins accompanied by their incorporation in bakery and dairy foods.
Collapse
Affiliation(s)
- Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| | - Afreen Parveen
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Pankaj Gautam
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research & Innovation, Uttaranchal University Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Manisha Nanda
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russian Federation
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
41
|
Ying M, Zeng Z, Li Q, Chen X, Xiong Y, Wu B, Peng L, Zhang Q, Wang L, Dai Z, Li S, Chen H, Yang X. Water-soluble intracellular extract of Desmodesmus sp. YT enhanced the antioxidant capacity of human skin fibroblast to protect the skin from UV damage. J Cosmet Dermatol 2024; 23:1850-1861. [PMID: 38327116 DOI: 10.1111/jocd.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The oxidative stress induced by ultraviolet (UV) radiation is a pivotal factor in skin aging and can even contribute to the development of skin cancer. AIM This study explored the antioxidant effect and mechanism of water-soluble intracellular extract (WIE) of Desmodesmus sp.YT (YT), aiming to develop a natural antioxidant suitable for incorporation into cosmetics. METHODS The study evaluated the scavenging capacity of YT-WIE against free radicals and assessed its impact on human skin fibroblasts (HSF) cell viability and UV resistance using Cell Counting Kit-8 (CCK-8). Transcriptome sequencing was employed to elucidate the mechanism of action, while RT-qPCR and western blot were used to validate the expression of key genes. RESULTS YT-WIE displayed robust antioxidant activity, demonstrating potent scavenging abilities against 2,2-diphenyl-1-picrylhydrazyl (DPPH; IC50 = 0.55 mg mL-1), 2,2'-Azino-bis (3 ethylbenzothiazoline-6-sulfonic acid; ABTS; IC50 = 3.11 mg mL-1), Hydroxyl (·OH; IC50 = 2.21 mg mL-1), and Superoxide anion (O2 •-; IC50 = 0.98 mg mL-1). Furthermore, compared to the control group, the YT-WIE group exhibited an 89.30% enhancement in HSF viability and a 44.63% increase in survival rate post-UV irradiation. Significant upregulation of antioxidant genes (GCLC, GCLM, TXNRD1, HMOX1, NQO1) was observed with YT-WIE treatment at 400 μg mL-1, with fold increases ranging from 1.13 to 5.85 times. CONCLUSION YT-WIE demonstrated considerable potential as an antioxidant, shielding human cells from undue oxidative stress triggered by external stimuli such as UV radiation. This suggests its promising application in cosmetics antioxidants.
Collapse
Affiliation(s)
- Ming Ying
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Innova Bay (Shenzhen) Technology Co. Ltd, Shenzhen, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zuye Zeng
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qin Li
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xianglan Chen
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ying Xiong
- Department of Dermatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Bo Wu
- Department of Dermatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Liang Peng
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Qian Zhang
- The Sixth Affiliated Hospital of Shenzhen University and Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Li Wang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen, China
| | - Zhongming Dai
- Shenzhen University General Hospital, Shenzhen, China
| | - Shuangfei Li
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Huirong Chen
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xuewei Yang
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
42
|
Canini D, Ceschi E, Perozeni F. Toward the Exploitation of Sustainable Green Factory: Biotechnology Use of Nannochloropsis spp. BIOLOGY 2024; 13:292. [PMID: 38785776 PMCID: PMC11117969 DOI: 10.3390/biology13050292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Securing food, energy, and raw materials for a growing population is one of the most significant challenges of our century. Algae play a central role as an alternative to plants. Wastewater and flue gas can secure nutrients and CO2 for carbon fixation. Unfortunately, algae domestication is necessary to enhance biomass production and reduce cultivation costs. Nannochloropsis spp. have increased in popularity among microalgae due to their ability to accumulate high amounts of lipids, including PUFAs. Recently, the interest in the use of Nannochloropsis spp. as a green bio-factory for producing high-value products increased proportionally to the advances of synthetic biology and genetic tools in these species. In this review, we summarized the state of the art of current nuclear genetic manipulation techniques and a few examples of their application. The industrial use of Nannochloropsis spp. has not been feasible yet, but genetic tools can finally lead to exploiting this full-of-potential microalga.
Collapse
Affiliation(s)
| | | | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (D.C.); (E.C.)
| |
Collapse
|
43
|
Guehaz K, Boual Z, Telli A, Meskher H, Belkhalfa H, Pierre G, Michaud P, Adessi A. A sulfated exopolysaccharide derived from Chlorella sp. exhibiting in vitro anti-α-D-Glucosidase activity. Arch Microbiol 2024; 206:218. [PMID: 38625565 PMCID: PMC11021272 DOI: 10.1007/s00203-024-03940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
There is a great scientific curiosity to discover all environments sheltering microalgae, especially those with exceptional characteristics from coldest to hottest ones, the purpose remains to explore the potential of the native microalgae flora and the research for new bioactive compounds. This study aimed to isolate a polysaccharide-producing microalga from an extreme ecosystem and to evaluate its capacity to inhibit the α-D-glucosidase enzyme. Chlorella strain is isolated from hypersaline Lake in the Algerian desert. The exopolysaccharide extraction was performed by the concentration of free-cell supernatant in a rotary evaporator. The infrared analysis showed a characteristic footprint of carbohydrates with particular functional groups, such as sulfate. Gas chromatography-mass spectrometry has revealed a hetero-exopolysaccharide composed of galactose 35.75%, glucose 21.13%, xylose 16.81%, fructose 6.96%, arabinose 5.10%, and glucuronic acid 2.68%. The evaluation of the anti-hyperglycemic activity demonstrated a significant α-D-glucosidase inhibition of 80.94 ± 0.01% at 10 mg mL-1 with IC50 equal to 4.31 ± 0.20 mg mL-1. This study opens a vast prospect to use exopolysaccharides as natural nutraceutical or food additive.
Collapse
Affiliation(s)
- Karima Guehaz
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, FNSV, Kasdi Merbah University, 30000, Ouargla, Algeria.
| | - Zakaria Boual
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, FNSV, Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Alia Telli
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, FNSV, Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Hicham Meskher
- Division of Process Engineering, College of Science and Technology, Chadli Bendjedid University, 36000, El Tarf, Algeria
| | - Hakim Belkhalfa
- Scientific and Technical Research Center in Physicochemical Analysis, 30000, Ouargla, Algeria
| | - Guillaume Pierre
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000, Clermont-Ferrand, France
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000, Clermont-Ferrand, France
| | - Alessandra Adessi
- Department of Agriculture Food Environment and Forestry (DAGRI), University of Florence, 50144, Florence, Italy
| |
Collapse
|
44
|
Yao T, Sun F, Zhu B, Han S, Zhang H, Meng C, Gao Z, Cui Y. Oral Administration of Antimicrobial Peptide NZ2114 Through the Microalgal Bait Tetraselmis subcordiformis (Wille) Butcher for Improving the Immunity and Gut Health in Turbot (Scophthalmus maximus L.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:230-242. [PMID: 38502428 DOI: 10.1007/s10126-024-10289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1β), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.
Collapse
Affiliation(s)
- Ting Yao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA, 30043, USA
| | - Bingkui Zhu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Subing Han
- College of Life Sciences, Yantai University, Yantai, 264000, Shandong, China
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
45
|
Morgado D, Fanesi A, Martin T, Tebbani S, Bernard O, Lopes F. Non-destructive monitoring of microalgae biofilms. BIORESOURCE TECHNOLOGY 2024; 398:130520. [PMID: 38432541 DOI: 10.1016/j.biortech.2024.130520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Biofilm-based cultivation systems are emerging as a promising technology for microalgae production. However, efficient and non-invasive monitoring routines are still lacking. Here, a protocol to monitor microalgae biofilms based on reflectance indices (RIs) is proposed. This framework was developed using a rotating biofilm system for astaxanthin production by cultivating Haematococcus pluvialis on cotton carriers. Biofilm traits such as biomass, astaxanthin, and chlorophyll were characterized under different light and nutrient regimes. Reflectance spectra were collected to identify the spectral bands and the RIs that correlated the most with those biofilm traits. Robust linear models built on more than 170 spectra were selected and validated on an independent dataset. Astaxanthin content could be precisely predicted over a dynamic range from 0 to 4% of dry weight, regardless of the cultivation conditions. This study demonstrates the strength of reflectance spectroscopy as a non-invasive tool to improve the operational efficiency of microalgae biofilm-based technology.
Collapse
Affiliation(s)
- David Morgado
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| | - Andrea Fanesi
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France.
| | - Thierry Martin
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| | - Sihem Tebbani
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire des Signaux et Systèmes (L2S), Gif sur Yvette, France
| | - Olivier Bernard
- INRIA, Centre d'Université Côte d'Azur, Biocore, Sorbonne Université, CNRS, Sophia-Antipolis, France
| | - Filipa Lopes
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| |
Collapse
|
46
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
47
|
Williamson E, Ross IL, Wall BT, Hankamer B. Microalgae: potential novel protein for sustainable human nutrition. TRENDS IN PLANT SCIENCE 2024; 29:370-382. [PMID: 37690907 DOI: 10.1016/j.tplants.2023.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
To support a global population of ~10 billion people in 2050, dietary protein demand is forecast to increase 32-78% compared to 2017, requiring significantly higher planetary resources. Microalgae are an attractive sustainable protein source compared with current plant and animal sources. Benefits include mass scalability, low CO2 emissions, and significantly reduced land and freshwater use per unit protein. Microalgae are already used as food products and numerous species exhibit high total protein contents and well-balanced essential amino acid (EAA) compositions for human dietary requirements. Microalgae proteins are also bioavailable for human digestion, and downstream processing steps are likely to further enhance protein digestibility. Species, cultivation, and process/product optimisation are actively being developed to enhance their nutritional, social, and environmental benefits.
Collapse
Affiliation(s)
- Ellen Williamson
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian L Ross
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin T Wall
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Benjamin Hankamer
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
48
|
Rezaei A, Cheniany M, Ahmadzadeh H, Vaezi J. A new isolate cold-adapted Ankistrodesmus sp. OR119838: influence of light, temperature, and nitrogen concentration on growth characteristics and biochemical composition using the two-stage cultivation strategy. Bioprocess Biosyst Eng 2024; 47:341-353. [PMID: 38281211 DOI: 10.1007/s00449-023-02964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Natural-based chemicals from microalgae such as lipids and pigments are the interests in industries and the bioeconomy. Cold-adapted Ankistrodesmus sp. OR119838, an isolated strain from Cheshmeh-Sabz Lake in northeastern Iran, was cultivated using a two-stage culture strategy under different environmental conditions. With doubling the nitrate concentration at the vegetative stage (170 mg/L) and increasing the light intensity (180 µmol photons/m2/s) the highest specific growth rate (0.61 ± 0.02 per day) and biomass productivity (121.1 ± 7.2 mg/L/day) were observed at 25 °C. In the optimal growth condition Chl a and Chl b contents of Ankistrodesmus sp. OR119838 reached the highest amount (11.07 ± 0.14 and 11.23 ± 0.29 µg/mL, respectively) at 25 °C. While carotenoid content correlated negatively with optimum biomass productivity (- 0.708) and had the best value (12.23 ± 0.29 µg/mL) in nitrogen deficiency (42 mg/L) and intense light conditions (180 µmol photons/m2/s) at 15 °C. Lipid content was increased with declined nitrate concentration (42 mg/L), high light intensity, and 180 µmol photons/m2/s at 25 °C. The highest percentage of polyunsaturated fatty acids (71.94%) and α-linolenic acid (57.73 ± 6.63%) was observed in conditions with 170 mg/L nitrate concentration and low light intensity (40 µmol photons/m2/ s) at the low temperature (15 °C). While saturated fatty acids content (43.27%) and palmitic acid reached the highest amount under 40 µmol photons/m2/s, 42 mg/L nitrate at 25 °C (35.02 ± 5.33%). Biomass productivity of Ankistrodesmus sp. OR119838, as a cold-adapted strain, decreased by only 8.2% with a 10-degree decline in temperature. Therefore, this strain has good potential to grow in open ponds by tolerating the daily temperature fluctuations.
Collapse
Affiliation(s)
- Azar Rezaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran.
| | - Hossein Ahmadzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran.
| | - Jamil Vaezi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
| |
Collapse
|
49
|
Naik B, Mishra R, Kumar V, Mishra S, Gupta U, Rustagi S, Gupta AK, Preet MS, Bhatt SC, Rizwanuddin S. Micro-algae: Revolutionizing food production for a healthy and sustainable future. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 15:100939. [DOI: 10.1016/j.jafr.2023.100939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Shwed PS, Bernatchez S, Leveque G. Draft genome sequences of biofuel production microalgae Auxenochlorella protothecoides and Chlorella sorokiniana. Microbiol Resour Announc 2024; 13:e0044023. [PMID: 38032237 DOI: 10.1128/mra.00440-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Green microalgae are used in biofuel production. To contribute to the knowledge of the Chlorellaceae family, the de novo assembled draft genome sequences of Auxenochlorella protothecoides Kruger and Chlorella sorokiniana Shihira and Krauss are presented.
Collapse
Affiliation(s)
- P S Shwed
- Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch , Ottawa, Canada
| | - S Bernatchez
- Biotechnology Section, New Substances Control and Assessment Bureau, Health Canada , Ottawa, Canada
| | - G Leveque
- Canadian Centre for Computational Genomics (C3G), McGill University , Montréal, Canada
| |
Collapse
|